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Abstract—The difficulties imposed by actuator limitations in a
range of active vibration and noise control problems are well rec-
ognized. This paper proposes and examines a new approach of em-
ploying model predictive control (MPC). MPC permits limitations
on allowable control action to be explicitly included in the com-
putation of an optimal control action. Such techniques have been
widely and successfully applied in many other areas. However, due
to the relatively high computational requirements of MPC, existing
applications have been limited to systems with slow dynamics. This
paper illustrates that MPC can be implemented on inexpensive
hardware at high sampling rates using traditional online quadratic
programming methods for nontrivial models and with significant
control performance dividends.

Index Terms—Active noise and vibration control, active struc-
tures, model predictive control (MPC), piezoelectric actuators.

I. INTRODUCTION

ACTIVE control of sound and vibration [16], [35] has
shown promise in a variety of applications ranging from

consumer and automotive products to military and aerospace
systems. In addition to increasing performance, the primary
motivation is to reduce the weight and volume requirements of
traditional passive treatments such as mechanical tuned-mass
absorbers [24] and acoustic Helmholtz resonators [33]. At
low frequencies, below 500 Hz, such techniques can become
prohibitively large and impractical.

In light of this, a large number of techniques for active noise
and vibration control have been proposed in the literature and
applications of the same are found in robotics [9], [30] maritime
technology [10], and airfoil control [23]. For mechanical sys-
tems, a commonly applied method is positive position feedback
(PPF) control as proposed by Caughey and co-workers [11],
[14], [18], [32]. Other methods, including optimal approaches
such as [2] and minimax Linear Quadratic Gaussian (LQG)
[37], have also been prominent but are less frequently applied
in practice.

One of the key issues limiting the industrial application of
high-performance noise and vibration control technology is the
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problem of actuator saturation. Transducer limitations are usu-
ally handled by upgrading the sensors and actuators until the
dynamic range significantly exceeds the expected signal range.
The consequences of this approach are extremely undesirable.

First, an equivalent transducer with greater dynamic range
has decreased signal-to-noise level, and for sampled systems,
less resolution. In addition, an over-specified transducer may be
physically larger, heavier, more costly and consume more power
than moderately specified transducers.

The second, and more important consequence, is the question
of reliability and performance. Regardless of the actuator dy-
namic range, it is almost always possible to imagine scenarios
where an unusually large excitation could result in actuator
saturation. In these circumstances, the control system should
provide the greatest immunity to disturbance, while in practice
some controllers drive the actuators hard into saturation, which
effectively opens the control loop, and consequently, degrades
regulatory performance. Worse still, the controller may be-
come unstable and itself contribute to increased vibration and
mechanical failure. In the high-reliability applications targeted
by active noise and vibration control, for example aerospace
structural control [23], all of the potential benefits may amount
to nothing if the system does not remain functional and reliable
during all feasible environmental conditions.

In addition to the over-specification of transducer require-
ments, another standard technique for dealing with actuator sat-
uration is to augment the controller with a saturation block [42].
This technique is not suitable when considering lightly-damped
resonant systems as the broad-spectrum saturation event can ex-
cite a large number of modes. A final unattractive technique is
to simply detune the controller thereby reducing the possibility
of actuator saturation [19], [22], [36].

In response to these shortcomings, and given a history of suc-
cesses in other areas for handling hard actuator limits, here we
examine the use of model predictive control (MPC) for the pur-
poses of active noise cancellation and vibration control in the
presence of hard actuator limits.

While, on the one hand, MPC is related to LQG control and is
known to offer good dynamic performance, on the other hand, it
also caters for hard actuator limits and other system constraints
in a straightforward manner [28]. Such constraints enter MPC
as side conditions on an optimization problem, which is solved
online and at each control interval to obtain the next control
action [7], [8], [17], [27], [34].

While solving this optimization problem is at the heart of
MPC and provides it with the ability to easily handle constraints,
it also presents a challenge in that this problem can be difficult to
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solve in real time. Certainly, the computational burden increases
as sampling rates increase and this has limited the application
of MPC to systems with relatively slow dynamics [39]. For ex-
ample, MPC has been used within the petrochemical industry
since the 1970s in the form of supervisory control, where sample
times are in the order of minutes, hours, or even days [39].

In order to reduce the computational effort required to solve
this problem online, recent work in the area has considered the
use of multiparametric programming techniques such as those
described in [4], [6], and [41]. This approach has been called ex-
plicit-MPC and generates a “lookup table” offline, which is then
implemented online in a straightforward and computationally
inexpensive manner. Even more recently, specific hardware im-
plementations of explicit-MPC have been considered with very
promising results at high sampling rates [25].

The more traditional alternative approach would employ an
optimization algorithm such as an active-set or interior-point
method in order to solve this problem online.

The choice between using explicit-MPC or more traditional
methods depends largely on the particular problem being con-
sidered (see, e.g., [25]). A major drawback of the explicit ap-
proach is the curse of dimensionality; as the degrees-of-freedom
increase the memory requirements and number of entries in the
lookup table can grow dramatically.

In light of this, the more traditional MPC approach is used
in this paper since the dimension of this problem currently pre-
cludes the use of explicit-MPC on the available hardware (see
Section IV-A for a discussion).

In particular, we consider a cantilevered beam example,
which is representative of many flexible structures, and employ
a standard active-set method in order to solve the associated
quadratic program online.

This presents a very challenging situation for standard MPC
since the beam exhibits a wide range of oscillatory dynamics,
from slow (5 Hz) to fast (500 Hz), which requires an 18th-order
model and a sampling rate of at least 5 kHz for control purposes.
Furthermore, in the interests of having a practical implementa-
tion, a very inexpensive floating-point hardware platform is used
to realize the MPC algorithm.

In light of this, the contributions of this paper are twofold.
First, we extend previous results on constraint handling for ac-
tive structures and show that MPC pays dividends compared
with already accepted strategies. In particular, it offers improved
dynamic performance in the presence of actuator limitations.

Second, we demonstrate that using an off-the-shelf active-set
method, MPC can be applied to systems with relatively broad
and complex dynamics (five bending modes between 5 and
500 Hz using an 18th-order model), using nontrivial prediction
horizons (12 steps ahead), while respecting input constraints,
using a sampling rate of 5 kHz, and with implementation on an
inexpensive 200-MHz digital signal processor.

II. PROBLEM DEFINITION

Active noise and vibration control problems can generally be
represented by the feedback diagram shown in Fig. 1. Com-
monly encountered mechanical [16], [24] and acoustic plants
[35] comprise a large number of lightly damped, close-in-fre-
quency, resonant modes. As higher frequency dynamics are usu-

Fig. 1. Typical active noise control scenario.

ally controlled by passive means, the bandwidth of interest in
active noise and vibration control is approximately 1 kHz. De-
pending on the system, this may require the control of just a few
to many hundreds of modes.

A feedback controller is designed to regulate the per-
formance variable in response to external input disturbances

. The performance variable may be a physical quantity such
as the acceleration at a point, or represent an abstract quantity
such as modal energy or spatial deflection [31].

Examples of measurement and control variables include:
force, strain, displacement, torque, moment, acceleration,
velocity, angle, and pressure. All of these variables require
transducers to convert to and from the physical domain. In
Fig. 1, actuating and sensing transducers are denoted by and

, respectively. In addition to their linear dynamics, the actu-
ating and sensing transducers and incorporate a number of
constraints that correspond to the physical limitations inherent
in each device.

Saturation, where a variable is constrained to lie within par-
ticular limits, is the most commonly encountered constraint. Ex-
amples found in active noise control include: the output voltage
and current range of a voltage amplifier, the displacement range
of a speaker baffle, the pressure range of a microphone, the de-
polarization voltage of a piezoelectric transducer and the force
limit of an inertial drive. Saturation constraints can represent
situations where there exist insufficient resources to develop the
required output, or where reproduction of the required output
would result in mechanical or electrical failure.

Another less commonly encountered constraint is the slew-
rate or rate-of-change limit in a physical variable. Voltage feed-
back amplifiers are slew-rate limited by both internal saturation
and current limits when driving capacitive loads. Electromag-
netic actuators, such as voice coil speakers, have limited velocity
and displacement slew-rate imposed by the maximum available
driving current.

In summary, our objective is to derive a control law that min-
imizes the performance variable subject to a set of actuator
constraints. The synthesis technique should be able to handle
wide-band systems with a large number of poles in close prox-
imity to the imaginary axis. In the following, MPC is proposed
as a solution and verified experimentally by suppressing vibra-
tion in a cantilever beam.

III. MPC FORMULATION

As already mentioned, a major attraction of MPC is its ability
to handle constraints, which is the main reason for its consid-
eration here. Constraints enter MPC straightforwardly as side
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conditions on the MPC optimization problem. This problem is
solved at each control interval in order to compute the next op-
timal control action. To make this more precise, we define the
control action generated by MPC as follows.

Definition III.1: The control action generated by MPC for
time given information up to and including time is denoted
by and is defined as the first element of the sequence

(1)

which is defined as the solution to the optimization problem

s.t. (2)

In order to adequately describe the optimization problem in (2),
we diverge momentarily to introduce a system model. Specifi-
cally, we assume that the system behaves according to the linear
time invariant state-space system

(3)

(4)

where is the input, is the output,
is the state, and and are independently and
identically distributed (in time) Gaussian stochastic processes
with joint distribution

(5)

With this in place, the paper considers the following cost func-
tion:

In the previous equation, , where is assumed
to be positive definite and symmetric. The positive integer is
known as the prediction horizon, is the predicted output
at time given measurements up to and including time ,
and is the predicted state at time .

In the interest of nominal closed-loop stability it is impor-
tant to choose the terminal weighting matrix carefully [7]. As
motivation for this, consider the case where there are no con-
straints in (2), i.e., if , then its solution coincides
with the well known LQG solution for any prediction horizon

when the weighting matrix is chosen as the posi-
tive definite solution to the following discrete algebraic Riccati
equation (DARE—see, e.g., [5])

(6)

(7)

While this choice for does not guarantee closed-loop sta-
bility when constraints are present, a sufficiently large predic-
tion horizon combined with this choice does [28].

Clearly, with the choice of , , , and already deter-
mined, in order to use this cost function, we require predictions

of the system outputs and state .
This is typically achieved using a state observer, and while the
possibilities for this are many, we propose the use of optimal (in
terms of minimum variance) predictions as given by the Kalman
Filter (see, e.g., [1])

(8)

(9)

(10)

In the previous equation, is known as the Kalman gain matrix
and is given by (again employing the positive definite solution
of a DARE)

(11)

It is important to note that the previous predictions depend only
on future inputs , which are free variables.
This is essential because it allows a search for the best (ac-
cording to the cost ) sequence of future inputs.

The remaining component of the optimization problem (2)
are the side conditions or constraints . The types of con-
straints considered in this paper include linear equality, linear
inequality, and simple bounds constraints. Therefore, it suffices
to assume that the constraint set is represented by

(12)

where the previous inequalities are element-wise.

IV. SUGGESTED MPC IMPLEMENTATION

With computational demand being of great practical interest,
it is important to minimize unnecessary overhead for online
computations and move certain operations offline. In this sec-
tion, we suggest one particular implementation of MPC where
a distinction is made between online and offline calculations.

Broadly speaking, offline calculations involve objects that in-
frequently (or never) change, for example, the system matrices

, tuning parameters and , observer gain matrix
, and prediction horizon . On the other hand, online calcula-

tions are reserved for objects that do frequently change, such as
output measurements , the state estimate , and the op-
timal input .

More specifically, the following offline procedure is required
before control commences.

Procedure 1: Given the plant model :
1) generate the state observer gain matrix ;
2) choose the prediction horizon and the state and input

weighting matrices and ;
3) calculate according to (6);
4) construct the constraint set according to physical limita-

tions and desired operating ranges.
Once the previous procedure is complete, MPC is implemented
online according to the following Algorithm.
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Algorithm IV.1 At each time interval , complete the fol-
lowing tasks:

1) apply the previously calculated control move to the
system (calculated as in the previous iteration);

2) measure the system output ;
3) estimate the state using the measured outputs and

inputs according to the observer (8);
4) compute the next control move by selecting the first

control move from , which is obtained by solving (2).
Computing the next control action (Step 4 in the previous

Algorithm) is the most computationally demanding operation
involved in implementing MPC. Therefore, the choice of opti-
mization algorithm will, to a large extent, determine the fastest
sampling rate possible for the controller and, consequently,
restrict the application of MPC to systems of appropriate dy-
namics. In light of this, Section IV-A discusses one particularly
suitable algorithm for solving quadratic programs of the type
arising in MPC.

A. Quadratic Programming Solver

By construction, the optimization problem (2) is in the form
of a convex quadratic program. To make this more precise, de-
fine a stacked version of the predicted output and terminal state
as , and denote by a stacked version of future inputs

... ...

From (9) and (10), it then follows that

(13)

where

...
...

. . .

Using these definitions, the cost function can be expressed
as

Here, is a constant term that may be ignored and the terms
and are given by

(14)

with and being block diagonal matrices given by

. . . . . .

In light of the previous definitions, (2) can be equivalently stated
as

s.t. (15)

TABLE I
APPROXIMATE MEMORY REQUIREMENTS FOR EXPLICIT MPC FOR DIFFERENT

HORIZONS N . NOTE, THIS IS THE CONTROLLER COMPONENT ONLY, STORAGE

OF THE LOOKUP TABLE REQUIRES MORE MEMORY

TABLE II
MEMORY REQUIREMENTS FOR OBSERVER AND QUADRATIC PROGRAMMING

SOLVER ON DSP, WHERE n IS THE NUMBER OF STATES, p IS THE NUMBER OF

OUTPUTS, m IS THE NUMBER OF INPUTS, AND N IS THE PREDICTION HORIZON

In this form, the optimization problem may be solved using
standard quadratic programming routines, or alternatively, using
a multiparametric programming approach [3], [6], [15], [41],
[44], [46]. Both approaches generate identical solutions, but
differ in implementation; the former approach employs a gen-
eral algorithm to solve the quadratic program online; the latter
exploits the fact that the solution to (15) is piecewise-affine [46]
in the state (or parameters) , and constructs all necessary
polytopes and associated control laws offline, which results in a
straightforward online implementation (see [44] for details).

While a full quantitative comparison of the two approaches
is beyond the scope of this paper, an attempt at using the multi-
parametric approach quickly identified one of its widely known
drawbacks, namely the potentially very demanding memory re-
quirements (see, e.g., [25]). In particular, for the system con-
sidered in this paper, Table I shows a portion of the memory
requirements for various prediction horizons. Bearing in mind
that the hardware has 1 Mb of storage capacity and that

is the desired prediction horizon for this application (see
Section V), Table I indicates that the multiparametric approach
is not currently suitable for this application. Therefore, a more
traditional online approach was employed (see Table II to com-
pare memory requirements for these two approaches).

Within the class of direct online methods, the two most
commonly used algorithms are active-set and interior-point
methods, which have numerous suitable implementations.1

However, for time-critical online optimization it is often neces-
sary to adapt such tools in order to exploit problem structure.

In light of this, we have implemented an active-set method
based on the work of [20], [38], and [40]. While this method re-
quires a positive definite Hessian matrix , which is automat-
ically satisfied, for example, whenever is positive definite, it
does not require a feasible initial point, which greatly simplifies
the algorithm. It handles equality, general inequality, and simple
bound constraints in a straightforward manner and caters for hot
“starting,” i.e., where previous solutions are used to initialize the
algorithm. Furthermore, it has been refined in the open literature
and open source community for some 20 years.

A cursory description of the algorithm is as follows. Starting
with the unconstrained solution , each subsequent it-
eration adds a violated constraint, if any, to the active-set of con-

1See http://www.numerical.rl.ac.uk/qp/qp.html.
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Fig. 2. Experimental apparatus.

Fig. 3. Plan view schematic of the experimental apparatus.

straints and then solves an equality constrained problem, where
the equality constraints are those listed in the active-set. There
is also the possibility of dropping an already active constraint
if no longer needed (i.e. the associated Lagrange multiplier is
negative).

The method maintains two matrices and such that
and , where the columns of

hold the normals to the active constraints and is an upper tri-
angular matrix. The implementation uses Givens rotations (see,
e.g., [21]) to update the matrices and in a numerically
robust fashion. If there are no more constraints in violation then
the algorithm terminates and the solution is optimal.

V. ILLUSTRATION ON AN ACTIVE STRUCTURE

To demonstrate the two main claims of this paper, namely that
MPC is a feasible and appealing alternative for active vibration
suppression in the presence of actuator limits, the MPC strategy
detailed in Section IV is applied to the cantilever beam apparatus
illustrated in Figs. 2 and 3.

It is important to make our objective clear. We seek to mini-
mize the displacement occurring at the beam tip while catering
for actuator limits. However, since the tip displacement is not
measured in practice, we instead minimize the estimate of tip ve-
locity using the model obtained in Section V-B. This is achieved
by designing an observer for the system state using the mea-
sured voltage across a piezoelectric patch (denoted in Fig. 3)
and input . This state is then used to predict the tip displace-
ment (denoted in Fig. 3).

Using this prediction, we then solve the MPC optimization
problem to determine a control action, which obeys the piezo-
electric input actuator limits (associated with input signal in
Fig. 3).

A. Apparatus Description

The experimental setup comprises a uniform aluminium
beam, clamped at one end, and free at the other. Such an appa-
ratus is a simple representation of many systems experienced
in the field of active vibration control.

Although six piezoelectric transducers are bonded to the front
and rear surfaces, only three patches are required in this appli-
cation. Remaining patches are short circuited to minimize their
influence on the structural dynamics.

The beam is 550 mm in length, 3 mm in thickness, and
50 mm in width. The transducer centers are mounted 55 and
215 mm from the clamped base. All transducers are manufac-
tured from Physik Instrumente PIC151 piezoelectric ceramic
and are 50 mm in length, 25 mm in width, and 0.25 mm in
thickness.

The disturbance and control signals, and , respectively, are
applied through high-voltage amplifiers to the base patches. The
location of these patches, over an area of high modal strain, af-
fords sufficient authority over all structural modes. The mechan-
ical strain at the beam center, acquired by buffering the induced
open-circuit transducer voltage, is utilized as the feedback vari-
able . For the purpose of performance analysis, a Polytec Laser
Vibrometer is employed to measure the tip displacement .

B. System Identification

As pointed out in Section III, it is important to have a dynamic
model of the system being controlled and we assume that the
cantilever beam can be adequately modelled by the state-space
structure (3) and (4).

Typically, however, the parameter values (i.e., all the matrix
entries in ) of such a model are not directly avail-
able. In such cases, system identification techniques are used to
generate an estimate of the parameters from measurements of
the input and/or output [26]. A detailed discussion of the many
possible techniques is beyond the scope of this paper. Never-
theless, it is worth noting that if the available measurements
are in the time domain, then it is standard practice to employ a
maximum-likelihood approach [26], while if frequency domain
measurements are available, then a frequency domain subspace
method is typically used [29]. Both of these approaches are sup-
ported in the recent system identification package available at
http://www.sigpromu.org/idtoolbox.

For the work presented here, frequency domain measure-
ments were obtained at 908 nonequidistant frequencies ranging
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Fig. 4. Magnitude (dB) frequency response of identified beam model versus
measured frequency response.

from 5 to 500 Hz. The subspace algorithm described by [29]
was then employed to obtain a two-input ( and ) two-output
( and ), 14th-order state-space model (which is adequate for
modeling the system). While the apparatus has two available
measurements (namely the voltage and tip displacement ),
only the voltage is available for the purposes of control.

A satisfactory fit in the frequency domain can be observed in
Fig. 4. The corresponding discrete-time state-space relationship
between , , , and is given by [note that the following has
a more specific noise structure than (3) and (4)]:

The disturbance and measurement noises and are as-
sumed to be Gaussian distributed with zero mean and respective
covariances of and and with no cross-covariance, i.e.,

Since we cannot use the measured tip displacement for con-
trol purposes (since this is typically not available in practice),
then the variance and for the purposes of estimating
the state may be ignored. In addition, since we cannot mea-
sure the states directly, a Kalman Predictor is used to predict

. Combining these, we generate a Kalman gain matrix
as given by (11) with

(16)

(17)

(18)

such that

C. Handling Unmodeled High-Frequency Modes

One important consideration for this application is that of un-
modeled high frequency modes. Since the model does not in-
clude any modes above the fifth, then any high frequency control
action could have a devastating effect on control performance
(indeed this was observed during initial trials). To ameliorate
this, we penalize high frequency control action in a standard
manner by augmenting the plant model with a high-pass filter
and include a penalty on this new signal, denoted , in the con-
trol objective function (see Section III).

More precisely, we constructed a fourth-order discrete-time
Butterworth high-pass filter with 3-dB cutoff point at 450 Hz
(c.f. frequency response in Fig. 4). The state-space matrices cor-
responding to this filter are denoted by and
the augmented system is given by

(19)

(20)

Combining the beam model with the augmented filters results in
an 18-state model. Note that the filtered states are known exactly
and, therefore, the observer defined in (11), (16)–(18) does not
need to be modified. However, since we are interested in using
the filtered states as part of the control action, the augmented
model (19), (20) must be used to form the optimization problem
in (15).

D. DSP Implementation

As a further challenge to implementing MPC for fast sys-
tems, we wanted to ensure that the MPC algorithm, including
state observer and quadratic programming solver, could be im-
plemented on an inexpensive and standard digital signal pro-
cessor (DSP) chip. In light of this, the particular hardware used
for the MPC experiments is an Analog Devices ADSP-21262
[12] evaluation kit connected to an ancillary board containing a
single channel analog-to-digital converter (ADC) and a single
channel digital-to-analog converter (DAC).

The ADSP-21262 is a 32-bit floating point DSP running at a
clock speed of 200 MHz. All instructions are single cycle (ex-
cept division) with the capability of performing two instructions
in parallel; although this feature is not being used in the current
application. All software used for online purposes was devel-
oped manually in assembler in order to minimize overhead.

The offline calculations as shown in Procedure 1 were com-
puted and the online calculations as shown in Algorithm IV.1
were executed on the DSP hardware according to the timing di-
agram in Fig. 5.

With regard to online calculations, there are two practical
metrics commonly used for determining algorithm perfor-
mance; the number of floating-point operations required
and memory requirements. The former will be discussed in
Section V-D.

The latter are shown in Table II. While it is difficult to com-
ment on memory requirements more generally, we can afford
to be critical about the current application. According to this
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Fig. 5. Controller timing: the sample time T is constant and t and t are the
sampling “instants.” t (and t ) mark the beginning of a DAC write operation,
which incurs a known delay. Thus, we preempt the delay so that writing the
input and reading the output occur within tolerable margins about t (and t ).

table the memory requirements for an 18th-order single-input
single-output system with prediction horizon of 12 requires
1270 words, and at 32 bits/word that is approximately 10 Kb of
total storage, which is very modest.

VI. EXPERIMENTAL RESULTS

In this section, some experimental results are presented for
the cantilever beam apparatus described in Section V and the
MPC algorithm described in Sections III–V.

In order to adequately observe and control the high-frequency
behavior of the output signal , a sample rate of 5 kHz (approx-
imately 10 times the frequency of the highest mode under con-
sideration) was tested.

In terms of the offline Procedure 1 [see also (16)–(18)], we
use the following values. The noise covariances and are
given by

The controller weighting matrices and are set to

Note that according to (20), the first diagonal term in weights
the measured voltage , the second weights the estimated tip dis-
placement , while the third diagonal term weights the filtered
input (see Section V-C). This means that we are penalizing de-
viations in estimated tip displacement and also penalizing high
frequency control action.

The constraint set was constructed as

for

which represent simple bounds on actuator voltage prior to am-
plification (see Section V).

Fig. 6. Open- and closed-loop frequency responses (no actuator limits encoun-
tered).

A. Controller Performance

The first experiment is intended to show that the controller
performs to a satisfactory level in the absence of hitting con-
straints. To achieve this, we used a periodic chirp disturbance
ranging from 5 to 800 Hz and adjusted the disturbance gain
so that actuator limits were not encountered. Fig. 6 shows the
open- and closed-loop response for this controller in both sim-
ulation and in practice. It can be seen that the controller is per-
forming well and the match between simulation and actual re-
sults is satisfactory.

In light of this, we proceeded to test the constraint handling
capabilities of MPC by increasing the gain of the periodic chirp
disturbance to ensure that limits were encountered.

In terms of comparing the performance, we also tested an
LQG controller that is “saturated” when hitting constraints. In
fact, the particular LQG controller gain matrix is given by (7) so
that is the optimal control action in the absence
of constraints. More precisely, the saturated LQG control law
(SLQG) is given by

if
if
otherwise.

That is, if constraints are inactive (not encountered) then, by
construction, the SLQG and MPC control laws coincide for any
prediction horizon (see, e.g., [5]). Furthermore, even
when hitting constraints, if the MPC prediction horizon is set
to , then SLQG and MPC still coincide [13]. For larger
horizons this equivalence is not guaranteed.

Fig. 7 shows time-domain plots of the measured beam tip ve-
locity when disturbed by a band-pass filtered step function under
the control of MPC and SLQG at 5 kHz sample rate with predic-
tion horizon . To generate the filtered step function an
eighth-order Butterworth filter is used with pass band between
230–270 Hz, which corresponds to the fourth mode (see Fig. 4).
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Fig. 7. Comparison of tip displacement for MPC and SLQG running at 5 kHz
sampling rate when a filtered step function (for fourth mode) is applied to the
disturbance patch. Notice a distinct reduction in settling time. Note that input
signals were measured and thus include some level of noise.

Fig. 8. Comparison of output and input energy for MPC and SLQG running at
5 kHz sampling rate when a series of filtered step functions (for fourth mode) are
applied to the disturbance patch. Notice that both in terms of input and output
energy, MPC outperforms SLQG.

Although there is visible evidence from Fig. 7 that MPC out-
performs SLQG, Fig. 8 confirms this by showing the output and
input energy signals for a series of filtered step disturbances
under both MPC and SLQG, where the energy signal of , for
example, is given by .

B. Empirical Limits for QP Solver

As intimated in Section V-D, a common difficulty when
using online optimization algorithms is uncertainty about so-
lution time. Some methods offer better theoretical complexity
limits than others (see, e.g., [45]), however, in practice the
efficacy and efficiency of an algorithm often depends on the
problem instance (see, e.g., [43]).

In order to provide some idea of the performance, we include
a histogram of actual completion times for different horizon

TABLE III
WORST CASE TIME TO SOLVE QP FOR DIFFERENT HORIZONS N

TABLE IV
SPREAD OF QP SOLVE TIMES FOR N = 12

TABLE V
NUMBER OF CONSTRAINTS ACTIVE AT SOLUTION (LEFT COLUMN) AND

NUMBER OF TIMES ACTIVE (RIGHT COLUMN) FOR N = 12

lengths in Table III. We recorded the worst-case (i.e., max-
imum) time to solve the QP for different prediction horizons

with sampling rate fixed at 5 kHz and using a periodic chirp
disturbance.

For each case, the controller is run for around 5 min (approxi-
mately 1 500 000 calls to the QP routine) and the maximum QP
solve times are recorded. Also, recorded in Table III, are the
number of times constraints were active at the solution.

Table IV provides some idea of the distribution for QP solve
times with prediction horizon . The disturbance signal
applied is the same as for the previous test condition. Finally,
Table V shows the number of constraints active at the solution
of the QP versus the number of times each case occurred.

VII. CONCLUSION

While MPC has attracted enormous research interest, it is
commonly perceived that difficulties associated with the re-
quired online optimization limit its applicability. The empirical
study of this issue has been a central motivation for this paper.

While we believe that the achieved active structural control
results are of interest in their own right, the problem was also
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chosen for its suitability in examining these computational over-
head issues.

In relation to this, a key outcome was to illustrate that using a
very inexpensive hardware platform, the MPC action based on a
nontrivial model (18 states), a reasonable prediction horizon (12
samples), and with input constraints, can be straightforwardly
computed in less than 150 s.
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