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Model Predictive Control based Real Time Power

System Protection Schemes
Licheng Jin, Member, IEEE, and Ratnesh Kumar, Fellow, IEEE, and Nicola Elia, Member, IEEE

Abstract—The objective of power system controls is to keep the
electrical flow as well as voltage magnitudes within acceptable
limits in spite of the load and network topology changes. The con-
trol of voltage level is accomplished by controlling the production,
absorption as well as flow of reactive power at various locations in
the system. This paper presents an approach to determine a real
time system protection scheme for maintaining voltage stability
following the occurrence of a contingency by means of reactive
power control. This approach is based on the Model Predictive
Control (MPC) theory. According to an economic criterion and
control effectiveness, a control switching strategy consisting of
a sequence of amounts of the shunt capacitors to switch is
identified for voltage restoration. The effect of the capacitive
control on voltage recovery is measured via trajectory sensitivity.
This approach is applied to the WECC system to enhance the
performance of voltage and to the 39 bus New England system
for preventing voltage collapse.

Index Terms—Model predictive control, trajectory sensitivity,
voltage stabilization, switching control, power system

I. INTRODUCTION

As a result of deregulation as well as increasing demands,

power systems operate close to their capacity. Although power

systems are designed with proper planning and with proper

stability margin, the instability can still occur under certain

severe disturbances. It is imperative that schemes for power

system protection be in place to mitigate their catastrophic

effects such as large scale shutdowns and collapses. The

objective of SPSs is to detect a potential instability or a

safety/security degradation of a power system and carry out

the necessary control actions to mitigate their effects (such as

a partial shutdown or a total collapse).

The traditional SPS is determined off-line and is rule based

[1], [2], [3]. A rule based system protection scheme relies on

voltage, or their rate of change levels, or line flow limits. For

example, if the measured voltage is lower than a specific value,

or the line flow exceeds the line rating limit, a predefined

SPS is triggered (such as adjustment of generator outputs or

load shedding). The limitation of the rule based SPSs lies in

the use of limited local information. In contrast, a real time

SPS computes and carries out control actions based on global
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state information in response to an impending contingency

detected by an online dynamic security assessment program.

Recent advances in monitoring, communication, and comput-

ing technologies have greatly facilitated the implementation of

real-time SPSs [4].

A real time system protection scheme for voltage stabiliza-

tion is studied in this work. The control of voltage level is

accomplished by controlling the production, absorption, and

flow of reactive power at various locations in the system. With

regard to a power system, sources and/or sinks of reactive

power, such as shunt capacitors, shunt reactors, synchronous

condensers, and static var compensators (SVCs) are used to

control voltage level. In literature, many algorithms [5], [6], [7]

have been developed to determine the amounts and locations

of shunt reactive power compensation devices needed for

maintaining a satisfactory voltage profile, while minimizing

their cost.

Most these work however are based on static analysis,

which means that the voltage performance criteria could be

met only if the system reaches a post-contingency stable

operating point. However, if the disturbances are sever, the

power system may lose stability. Under this situation, the

control strategy to restore the stable equilibrium point requires

a dynamic analysis.

Model predictive control has been applied in power system

voltage control based on dynamic analysis. [8] presents a

method of coordination of load shedding, capacitor switching

and tap changers using model preventive control. The predic-

tion of states is based on the numerical simulation of nonlinear

differential algebraic equations (DAEs) together with Euler

state prediction. A tree search method is adopted to solve the

optimization. [9] proposes a coordination of generator voltage

setting points, load shedding and ULTCs using a heuristic

search and the predictive control. The prediction of states is

based on the linearization of nonlinear DAEs. [10] presents

an optimal coordinated voltage control using model predictive

control. The controls used include: shunt capacitors, load

shedding, tap changers and generator voltage setting points.

The prediction of voltage trajectory is based on the Euler state

prediction. The optimization problem is solved by a pseudo

gradient evolutionary programming (PGEP) technique. In [11]

and [12], authors present a method to compute a voltage

emergency control strategy based on model predictive control.

The prediction of the output trajectories is based on trajectory

sensitivity. However, in these two papers, the authors employ a

simplified model predictive control, which computes the con-

trol actions only at the initial time and implements it over the

entire control horizon. A voltage stabilization control strategy
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is also proposed in [13] based on load shedding, where the

objective function is to minimize the amount of load shedding

required to restore the voltages. It shows load shedding is

an effective voltage control under emergency condition. [14]

presents a MPC based voltage control design. The controls

are reference voltage of automatic voltage regulators and load

shedding.

In this paper, we propose computation of the optimal

strategies based on model predictive control (MPC). We utilize

shunt capacitors for control purposes as they are effective

means of voltage stabilization. The problem then becomes

one of determining capacitor switching sequence and amounts

given their locations and limits which are determined in a

prior planning stage (see for example [15]), together with the

requirements on the magnitudes of voltages. In this work, the

trajectory deviation and the cost of controls are simultaneously

minimized. Here, trajectory deviation refers to the deviation

of voltage trajectory from the nominal value. This is a multi-

objective optimization and a positively weighted convex sum

is chosen as the objective function. Trajectory sensitivities

are used to estimate the effect of controls on the voltage

behavior in a linear manner. Due to the use of model predictive

approach, the influence of each optimization is limited to one

step and the control gets recalculated and refined at each step,

the overall control strategy turns out to be sound and robust.

The features of our work, compared to the prior works dealing

with dynamic analysis, is summarized as follows:

• Trajectory sensitivity is used to compute a 1st-order

(linear) approximation of the effect of control without

having to linearize the system model. Further at each

control step, the trajectory sensitivity is updated (based

on a prediction of system trajectory starting from an

estimate of the current state under the control applied

in the past steps). This way of computing the effect

of control provides a better approximation as compared

to [8], [9], [10], where either system linearization or

numerical simulation of DAEs was used.

• Optimization minimizes costs of control as well as

voltage-deviations. In contrast [13], only considers the

amount of controls to restore the voltage.

• Optimization at each control step is a quadratic pro-

gramming problem, and hence can be efficiently solved.

In contrast [10] uses a pseudo gradient evolutionary

programming. [8], [9] use a tree search method.

• In contrast to [11] and [12], where the control action is

calculated only at the initial time, and remains the same

over the entire control horizon, a sequence of control

inputs is determined and only the first of them is applied

in our case.

• [14] presented a voltage control strategy based on ref-

erence voltage of automatic voltage regulators and load

shedding. [13] applied MPC for load-shedding computa-

tion. This paper presents an MPC-based shunt capacitor

control for voltage stabilization, a commonly used control

mechanism in North America power grid.

II. BACKGROUND

A. Model predictive control

Model Predictive Control (MPC) refers to a class of al-

gorithms that compute a sequence of manipulated variable

adjustments in order to optimize the future behavior of a

plant. An introduction to the basic concepts of MPC and a

formulation can be found in [16]. The principle of MPC is

graphically depicted in Fig. 1. Here x represents the state

variable that needs to be controlled to a specific range. The

available control is represented by variable u.

Predicted state 

Manipulated input

State trajectory

 until current time, xk

Time 

Magnitude

Input until 

current time, uk

tk tk + Ts tk + Tc
tk + Tp

Control horizon Tc

Prediction horizon Tp

Fig. 1. Principle of MPC

At a current time tk, the MPC solves an optimization

problem over a finite prediction horizon [tk, tk + Tp] with

respect to a predetermined objective function such that the

predicted state variable x̂(tk +Tp) can optimally stay close to

a reference trajectory. The control is computed over a control

horizon [tk, tk + Tc], which is smaller than the prediction

horizon (Tc ≤ Tp). If there were no disturbances, no model-

plant mismatch and the prediction horizon is infinite, one

could apply the control strategy found at current time tk for

all times t ≥ tk. However, due to the disturbances, model-

plant mismatch and finite prediction horizon, the true system

behavior is different from the predicted behavior. In order to

incorporate the feedback information about the true system

state, the computed optimal control is implemented only until

the next measurement instant (tk + Ts), at which point the

entire computation is repeated.

In a MPC, the optimization problem to be solved at time

tk can be formulated as follows:

minû

∫ tk+Tp

tk

F (x̂(τ), û(τ))dτ (1)

subject to

˙̂x(τ) = f(x̂(τ), û(τ)), x̂(tk) = x(tk) (2)

umin ≤ û(τ) ≤ umax, ∀τ ∈ [tk, tk + Tc] (3)
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û(τ) = û(tk + Tc), ∀τ ∈ [tk + Tc, tk + Tp] (4)

xmin(τ) ≤ x̂(τ) ≤ xmax(τ), ∀τ ∈ [tk, tk + Tp] (5)

Here, Tc and Tp are the control and prediction horizon with

Tc ≤ Tp. x̂ denotes the estimated state and û represents

“estimated” control (The true state may be different and the

true control matches the estimated control only during the first

sampling period).

Equation (1) represents the cost function of the MPC opti-

mization. Equation (2) represents the dynamic system model

with initial state x(tk). Equations (3) and (4) represent the

constraints on the control input during the prediction horizon.

Equation (5) indicates the state operation requirement during

the prediction horizon.

B. Trajectory sensitivity

Consider a differential algebraic equation (DAE) of a sys-

tem,

ẋ = f(x, y, u), x(0) = x0 (6)

0 = g(x, y, u) (7)

where x is a vector of state variables, y is a vector of algebraic

variables, and u is a vector of control variables. Trajectory

sensitivity considers the influence of small variations in the

control u (and any other variable of interest) on the solution

of the state equations (6) and (7). Let u0 be a nominal value

of u, and assume that the nominal system in (8) and (9) has

a unique solution x(t, x0, u0) over [t0, t1].

ẋ = f(x, y, u0), x(0) = x0 (8)

0 = g(x, y, u0) (9)

Then the system in Equations (6) and (7) has a unique solution

x(t, x0, u) over [t0, t1] that is related to x(t, x0, u0) as:

x(t, x0, u) = x(t, x0, u0) + xu(t)(u − u0) + H.O.T.(10)

y(t, x0, u) = y(t, x0, u0) + yu(t)(u − u0) + H.O.T.(11)

Here xu(t) = ∂x(t,x0,u)
∂u

is called the trajectory sensitivities

of state variables with respect to variable u and yu(t) =
∂y(t,x0,u)

∂u
is the trajectory sensitivities of algebraic variables

with respect to variable u.

The evolution of trajectory sensitivities can be obtained by

differentiating Equations (6) and (7) with respect to the control

variables u and is expressed as:

ẋu(t) = fx(t)xu(t) + fy(t)yu(t) + fu(t) (12)

0 = gx(t)xu(t) + gy(t)yu(t) + gu(t) (13)

Detailed information about trajectory sensitivity theory can

be found in [17]. The trajectory sensitivity can be solved

numerically. [18] provides a methodology for the computation

of trajectory sensitivity. When time domain simulation of a

power system is based on trapezoidal numerical integration,

the calculation of trajectory sensitivity requires solving a set

of linear equations, thus costing a little time. In our work, we

extended the Power System Analysis Tool [19] (a MATLAB

based tool) to do trajectory sensitivity calculation and the MPC

optimization.

Fig. 2 illustrates the application of trajectory sensitivity

in evaluating the effect of controls on system behavior. The

trajectory xk of the nominal system represents the behavior

under the control uk. When the control is increased by ∆uk
1

at time tk, the change in predicted system behavior based

on sensitivity analysis at time tl, can be approximated as

∆xkl
1 = xl

uk
1

∆uk
1 . Here xl

uk
1

is the trajectory sensitivity of

the state variable at time tl with respect to the control at

time tk. Similarly if we increase the control by ∆uk
n at time

tk + (n − 1)Ts, the change in the state variable at time tl is

represented by ∆xkl
n = xl

uk
n
∆uk

n. Here, xl
uk

n
is the trajectory

sensitivity of the state variable at time tl with respect to the

control at time tk + (n − 1)Ts.Magnitude Step 1Time
Step n

ku1∆

k
nu∆

kl

u

kl uxx k 11
1
∆=∆

k
n

l

u

kl
n uxx k

n
∆=∆

kx

ku

kt sk Tt + sk Tnt )1( −+ lt

Nominal system trajectory
Fig. 2. Application of trajectory sensitivity in system behavior prediction

III. PROBLEM FORMULATION AND SOLUTION

The purpose of this work is to find an effective and eco-

nomic control strategy for controlling the shunt capacitors so

as to eliminate voltage instability following any pre-identified

contingency. For analyzing voltage performance following dis-

turbances, we model generator and automatic voltage regulator

(AVR) as well as aggregated exponential dynamic load models

[20], [21]. The overall power system is represented by a set

of differential algebraic equations (DAE) as in Equations (6)

and (7). Here x is a vector of states including state variables

in generator dynamic models, AVR models and dynamic load

models such as, rotor angles and angular speeds of generators,

outputs of AVRs, and active power recovery and reactive

power recovery of dynamic load models. y is a vector of

algebraic variables such as bus voltage magnitudes and phase

angles. The vector u indicates the output of shunt capacitors.

The computation is iterative over a finite control horizon,

where in each step a quadratic programming problem is solved

to compute the amounts of shunt capacitors to be added in that

step. The quadratic programming formulation is valid when

the capacitor control is continuous as in SVC. Even in the

case where capacitor control is discrete, we can still proceed

by assuming continuous control so as to compute an optimal

control by solving a quadratic programming relaxation. Then

for implementation, the nearest discrete control value can be

applied. Any error will get propagated to a following control

step, and where it will get corrected. The control is piecewise
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constant, changing only at the sampling times. Let Tp be the

prediction horizon, Tc be the control horizon, Ts be the control

sampling interval, and N = Tc

Ts
be the total number of control

steps. The procedure to determine the control strategy at time

tk based on MPC is as follows:

Step 1: At time tk (i.e. the (k + 1)th sampling in-

stant), an estimate of the current state x(tk) is

obtained. The nominal power system evolves ac-

cording to Equations (6) and (7). Here, u =
{B0

m +
∑k−1

i=0 ∆Bi
m1}

m=M
m=1 is the control variable

(i.e. amounts of shunt capacitors currently in use).

B0
m is the amounts of shunt capacitors that exist at

time 0.
∑k−1

i=0 ∆Bi
m1 is the amounts of shunt capac-

itors that were added over time [0, tk − Ts]. Time

domain simulation is used to obtain the trajectory

of the nominal system (6) and (7), starting from the

state x(tk) at time tk to the end of prediction horizon

tk+Tp. At the same time, the trajectory sensitivity of

bus voltages with respect to the shunt capacitors to

be added at instants tk + (n− 1)Ts, n = 1 . . . N − k

is obtained and denoted as V
kj
Bmn

(t) (see below for

the explanation of notation).

Step 2: At time tk, solve the optimization problem over

the prediction horizon [tk, tk + Tp] and the control

horizon [tk, tk + Tc] as stated in (14)-(18). The

objective function is composed of two parts. The

first term is the trajectory deviation, the second

term is the cost of controls. The combination of

the deviation of voltages from nominal values

and the control cost needs to be minimized. The

number of candidate control locations and their

upper limits are determined through a prior planning

step (see for example [15]). The total number

of control variables in the optimization is the

number of candidate control locations times the

number of control steps. The optimization is solved

in Matlab, and it does converge to a global minimum.

Minimize (with respect to ∆Bk
mn)

∫ tk+Tp

tk

(V̂ k(t)−Vref )′R(V̂ k(t)−Vref )dt+
∑

mn

Wmn∆Bk
mn

(14)

Subject to

∆Bmin
m ≤ ∆Bk

mn ≤ ∆Bmax
m (15)

Bmin
m ≤ B0

m +

k−1∑

i=0

∆Bi
m1 +

N∑

n=1

∆Bk
mn ≤ Bmax

m (16)

V
kj
min

(t) ≤ V kj(t)+

M∑

m=1

min(N,l)∑

n=1

V
kj

Bmn
(t)∆Bk

mn ≤ V
kj
max(t)

(17)

∆Bk
mn ≥ 0 (18)

• R is the weight matrix. V̂ k(t) is the predicted voltage vector
at the control sampling time tk that contains all the bus
voltages in the system at time t. ∆Bk is the control matrix
calculated at time tk .

• Wmn is the weighted cost of control m to be added at time
tk + (n − 1)Ts.

• M is the total number of control variables, i.e. the number
of shunt capacitor locations.

• N is the total number of control steps.
• ∆Bk

mn is the entry ∆Bk , which is the amount of control
m to be added at time tk + (n − 1)Ts.

• ∆Bmin
m ∈ ℜ is the minimum amount of control m to be

added at any step.
• ∆Bmax

m ∈ ℜ is the maximum amount of control m to be
added at any step.

• ∆Bi
m1 is the amount of control m implemented at the

control sampling point ti, i = 0, ...k − 1.
• Bmin

m ∈ ℜ is the minimum amount of control m that must
be used, typically 0.

• Bmax
m ∈ ℜ is the maximum available amount of control m.

• V kj(t) ∈ ℜ is the voltage of bus j at time t(tk ≤ t ≤

tk + Tp), of the nominal system of time tk .

• V
kj
min

(t) is the minimum voltage at bus j desired at time
tk ≤ t ≤ tk + Tp.

• V
kj
max(t) is the maximum voltage at bus j desired at time

tk ≤ t ≤ tk + Tp.

• V
kj

Bmn
(t) is the trajectory sensitivity of voltage at bus j at

time tk ≤ t ≤ tk + Tp with respect to control m added at
time tk + (n − 1)Ts.

Step 3: At time tk, a solution of the optimization problem

(14)-(18) computes a sequence of controls ∆Bk
mn.

Add only the first control ∆Bk
m1 at time tk and

observe or estimate the system state x(tk+1) at time

tk+1 = tk + Ts

Step 4: Increase k by k + 1 and repeat steps (1)-(3) until

the k = N − 1.

A. Implementation

The functional structure of a real time SPS is shown in

Figure 3. Line flow, bus voltage information, switch status

as well as phase measurement unit (PMU) measurements are

sent to a control center through communication channels of a

SCADA system. These measurements plus a network model

are used by the state estimator (SE) for filtering out the

noise and making best use of the measured data. The results

from the state estimator are used for power flow analysis.

A power flow solution is then used by an on-line dynamic

security assessment program to initialize the state variables

of the dynamic models. Further, it uses system models and

disturbance information to perform the contingency analysis

to evaluate the security margin of the power system. If

a contingency is identified where the system will become

unstable, the MPC based SPS computation will get triggered

at the time an identified critical contingency occurs. The steps

of the MPC computation in the kth iteration include:

• Estimate static variables such as voltage magnitudes and

angles at time tk as well as the dynamic variables x(tk)
such as generator angles, velocities and real and reactive

load recovery.

• Run time-domain simulation to compute the system tra-

jectory given the current state. This step also requires the

knowledge of a complete system model (including both

dynamic and static components).

• Obtain trajectory sensitivities of voltage with respect

to the control variables as a by-product of the time-

domain simulation performed in the previous step. This
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Fig. 3. Structure of a real time SPS

is required for the prediction of system response given a

certain control strategy.

• Solve the quadratic programming optimization problem

and implement the first step of the control.

• Repeat the above steps at each sampling point until the

end of control horizon.

Remark: While we suggested an on-line computation of

MPC based SPS above, it is also possible to do this computa-

tion off-line based on the predicted (rather estimated) values

of the states and trajectory sensitivities.

IV. APPLICATION TO WECC AND TO NEW ENGLAND

SYSTEMS

The proposed method has been applied to the WECC 9-bus

system as well as to the New England 39-bus system. The

exponential recovery load model is used in both cases. The

parameters of the load model are as following:

Tp = Tq = 30, αs = 0, αt = 1, βs = 0, βt = 4.5.

The parameters in MPC optimization are determined based

on the following considerations. Any voltage instability fol-

lowing a contingency must be stabilized in a certain time

duration (typically the time in which voltage will decrease by

15%). This is the prediction horizon Tp. The control should

be exercised on a time horizon Tc, which is shorter than the

prediction horizon, typically the time in which voltage will

decrease by 10% (if no control is applied). A discrete-time

control must be applied within this duration Tc at a sample-

rate high enough to adequately react to the changing voltage

trajectory, as well as to allow accurate enough predictions

of the voltage trajectory based on the linearization of the

trajectory-sensitivity. This dictates the sampling duration Ts.

The number of sampling point N is then determined as the

ratio of Tc and the sampling duration Ts.

A. WECC 3-generator 9-bus test system

1) System description: Figure 4 is a representation of the

WECC 3-generator 9-bus system. A fourth-order model is

used for modeling each of the three generators. The state

2

7 8 9

5 6

3

4

1

Gen 2 Gen 3

Gen 1

Fig. 4. WECC 3-generator 9-bus test system

variables include the rotor angle δ, the rotor speed ω, the

q-axis transient voltage e′q , and the d-axis transient voltage

e′d. Automatic Voltage Regulator (AVR) defines the primary

voltage regulation for generator 1. The continuously acting

regulator and exciter model [22] is employed in this study. It is

represented by a four-dimensional state equation. The loads at

buses 5, 6 and 8 are taken to be exponential recovery dynamic

load and each load is described by a two-dimensional state

equation. Therefore, the total dimension number of the state

space is 22. At buses 5, 7 and 8, there exist shunt capacitors

for voltage regulation. These are the control variables. Under

normal conditions, all of the shunt capacitors are disconnected.

2) Fault scenario: We consider a three-phase fault at bus

5 at t = 1.0 second, which is cleared at t = 1.2 seconds by

the tripping of the line between bus 4 and bus 5. Based on

the time domain simulation, the voltages at buses 5, 7 and

8 are shown in Fig. 5 and are not satisfactory. At t = 1.0
second, the voltages begin to drop dramatically due to the three

phase to ground fault. At t = 1.2 seconds, the voltages start

to recover since the fault gets cleared. However, the voltages

begin to oscillate. 15 seconds later, voltages begin to decline

gradually. The dynamic load models result in slightly recovery

load consumption, which deteriorate the voltage condition.

These three voltages fall out of the lower limit 0.95 p.u 1

minutes later. According to the system’s operational criteria,

the load bus voltages must be above 0.95 p.u. Therefore, some

control actions are required to satisfy the criterion that the

voltages outlined above remain above 0.95 p.u.

3) Simulation result: In this example, we have chosen

prediction horizon Tp to be 40 seconds (the time in which

voltage drops by nearly 15% at bus 5). Tc has been chosen

to be 35 seconds. We found that a sampling duration of Ts =

7 seconds works well for this example, and so we have the

number of control steps: N = Tc

Ts
= 35

7 = 5. Model predictive

control approach determines the amounts of shunt capacitors

to be added at each sampling instant so as to recover the local

voltages. Although the capacitors have a positive effect on low

voltage problems, the maximum capacitor to be added at any

step ∆Bmax
m was set to be 0.1 p.u. This is because if large

amounts of capacitors are added at one time, an over-voltage

may occur, which has a bad effect on the electrical devices of
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Fig. 5. Voltage behavior of WECC system without MPC control
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Fig. 6. Voltage behavior of WECC system with MPC control

the power system. During the optimization, we set the lower

bound of all bus voltages to be 0.95 p.u. and upper bound

of load bus voltages to be 1.05 p.u. For other buses, such

as a generator bus, we set the maximum voltage magnitude

to be 1.08 p.u., a bit higher than a load bus. These settings

are practical. Fig. 6 shows the bus voltages after MPC based

control was implemented starting at time t = 1.2 seconds.

From the figure, we can see that all the bus voltages were

restored to above 0.95 p.u and the oscillations of the voltages

disappeared within 35 seconds.

The control strategy is shown in Table I. Suppose the control

action starts right after the fault is cleared. The first control

action happens at t = 1.2 seconds. 0.1 p.u. capacitors at buses

5, 7 and 8 were added. The sample duration is 7 seconds as

explained in the last paragraph. Therefore, the second control

action happens at t = 8.2 seconds. The third, fourth and fifth

control steps happen at 15.2 seconds, 22.2 seconds and 29.2

seconds respectively.

B. New England 10-generator 39-bus test system

1) System description: Fig.7 represents the New England

10-generator 39-bus system. All the generator models are

TABLE I
THE RESULTING CONTROL STRATEGY FOR WECC SYSTEM

Time(second) 1.2 8.2 15.2 22.2 29.2

Capacitor at bus 5 (p.u.) 0.1 0.1 0.1 0.1 0.0981

Capacitor at bus 7 (p.u.) 0.1 0 0 0 0

Capacitor at bus 8 (p.u.) 0.1 0 0 0 0
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Fig. 7. New England 10-generator 35-bus test system

taken to have a fourth order state-space consisting of the rotor

angle δ, the rotor speed ω, and the q-axis transient voltage e′q
and the d-axis transient voltage. The exception is the generator

at bus 39 for which only a third-order model is used that does

not include the d-axis transient voltage as part of the state-

space. In addition, all the generators except generators at buses

34, 37 have automatic voltage regulators (AVRs), which are

represented by fourth-order models. The load models used in

the time domain simulation are exponential recovery dynamic

loads. The total dimension of the state space is 131. The

control variables include the shunt capacitors that are located

at buses 16, 20, 22, 23 and 34. Under normal conditions, none

of the shunt capacitors is in use.

2) Fault scenario: The contingency considered here is a

three-phase to ground fault at bus 21 at t = 1.0 second,

which is cleared at t = 1.1 seconds and by the tripping of

the transmission line between bus 21 and bus 22. The voltage

drops dramatically when the fault occurs as seen in Fig. 8.

After the fault is cleared at 1.1 seconds, the voltages recover

around 0.95 p.u, although some oscillations proceed. About 30

seconds later, the oscillations disappear, but all the voltages

start to decline very slowly. Then around 2 minutes later,

the voltages collapse. One reason for the voltage recovery is

the presence of generator automatic voltage regulators. When

the system voltage drops following the fault, AVRs start to

increase the generator excitation voltages so as to support the
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Fig. 8. Voltage behavior of New England system without MPC control
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Fig. 9. Voltage behavior of New England system with MPC control

TABLE II
THE RESULTING CONTROL STRATEGY FOR NEW ENGLAND SYSTEM

Time(second) 1.1 16.1 31.1 46.1 61.1

Capacitor at bus 16 (p.u.) 0 0 0 0 0

Capacitor at bus 20 (p.u.) 0 0 0 0 0

Capacitor at bus 22 (p.u.) 0 0 0 0 0

Capacitor at bus 23 (p.u.) 0 0 0 0 0

Capacitor at bus 34(p.u.) 0.1 0.0889 0.0896 0.1 0.0259

system voltage. However, AVRs have their upper limits. At the

same time, the exponential recovery of the loads during the

voltage disturbance worsen the operation of the system. The

system can not fully recover from the contingency considering

these two factors, which lead to the voltage collapse.

3) Simulation result: In this example, we have chosen pre-

diction horizon Tp to be 80 seconds (the time in which voltage

drops by nearly 10% at bus 20). Tc has been chosen to be 75

seconds. We found that a sample duration of Ts = 15 seconds

works well for this example, and so we have the number of

control steps: N = Tc

Ts
= 75

15 = 5. The control strategy is

determined by our model predictive control approach. The

system response with MPC in place is shown in Fig. 9. The

corresponding control strategy is shown in Table II. The first

control step happens right after the fault is cleared, i.e. 1.1

seconds. Since the sampling interval is 15 seconds, the second

control happens at 16.1 seconds. The third, fourth and fifth

control steps happen at 31.1 seconds, 46.1 seconds and 61.1

seconds respectively.

V. COMPARISON WITH TRADITIONAL LOCAL FEEDBACK

CONTROL

Shunt capacitors such as SVCs can also be used as in the

setting of traditional local feedback control. The mathematical

formulation of the local feedback control can be expressed as

follows.

Ḃ =
1

Tr

(Kr(Vref − V ) − B) (19)

where Kr is regulation gain, Vref is reference voltage, Tr

is regulation time constant. V is the voltage magnitude of the

regulated bus. B is the control amount. For the traditional local

feedback control, shunt capacitor adjusts its output based on

the voltage of the controlled bus.

Compared with traditional local feedback control, the pro-

posed control scheme is more effective since it involves global

state feedback and global control. The state of the entire

power system is taken into consideration in deciding the global

control. The WECC system discussed in Section IV can be

used to illustrate this point. Suppose there are two shunt

capacitors in the WECC system which are located at buses

5 and 6. Both SVCs have a capacity of 0.5 p.u.. The system

data and fault scenario are the same as in section IV. Under

no fault, the voltage magnitudes of buses 5 and 6 are 0.9819

p.u. and 0.9981 p.u. respectively. For local feedback control

we set these values as the reference voltages at buses 5 and 6

respectively. Therefore, when there is no fault, the outputs of

the shunt capacitors are zero. Suppose the regulation gain Kr

is 100 and the regulation time constant Tr is 0.5 second. After

the fault happens, Figure 10 depicts the dynamic behavior of

voltage magnitudes at buses 5 and 6. Although the voltage

at bus 6 is acceptable, the voltage at bus 5 is unsatisfactory

(< 0.95 p.u.). Figure 11 shows the outputs of the SVCs at

buses 5 and 6. Under no fault, the output of the SVCs are zero.

When fault happens, the voltage at bus 6 drops dramatically,

and the output of SVC at bus 6 increases immediately based

on the local feedback control to boost the voltage at bus 6.

However, after around 5 seconds, the output of the SVC returns

to zero since the voltage at bus 6 is greater than the reference

value. The output of the SVC at bus 5 reaches its maximum

value. Yet the voltage magnitude at bus 5 remains below the

desired value. From this simulation, we can see that local

feedback control based SVC only maintains the voltage of the

regulated bus. It doesn’t offer control for any unsatisfactory

voltage behavior at other buses.

For the case discussed above, we also use the proposed

MPC-based method to design control. The parameters for the
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MPC control are the same as in Section IV. The resulting

control strategy is described as follows. At time 1.2 seconds,

0.5 p.u. of SVC control is added at bus 5 and 0.123 p.u. of

SVC control is added at bus 6. At times 8.2 seconds and 15.2

seconds no control is added. At time 22.2 seconds, 0.0053 p.u.

control is added at bus 6. At time 29.2 seconds, another 0.005

p.u. of SVC control is added at bus 6. The voltage behaviors

at buses 5 and 6 under the MPC based control design are

shown in Figure 12. From this figure, we can see that voltage

behavior at bus 5 under the proposed method is better than that

under local feedback control. From this simulation, we can see

that the main difference between the proposed method and the

local feedback control is that the proposed method makes use

of all the available controls in the system to improve voltage

performance of all the buses. In contrast, the local feedback

control based method makes use of only the local controls.

(In the above example, control at bus 6 is not being used to
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Fig. 12. Voltage behavior of WECC system with MPC

compensate for performance at bus 5.)

VI. ROBUSTNESS STUDY

The impact of data uncertainty on the performance of model

based control methodologies is an important issue. In this

section, the designed control is tested for robustness over

different operating conditions using time domain simulation.

Our study is based on the 9-bus 3-generator WECC example

of Section IV for which the control scheme is as shown in

Table I. Since load plays an important role in voltage stability

problem, our robustness study mainly focuses on the effect

of load change, and consists of two parts. The first part is to

study the effect of base case load variation on the robustness

of the designed control. The second part studies the robustness

of the designed control when random disturbances happen on

the dynamic state variables of the load model.

A. Base case load increase

This part studies the robustness of the designed control

when the total base case load increases. Figure 13 shows the

voltage behavior of 1 % load increase. From this figure, we

can see that the control scheme is still valid under the small

load variation. Figure 14 indicates the voltage behavior of the

same system with 3 % load increase. Although the voltages are

stable, the voltage magnitude on bus 5 is lower than 0.95 p.u..

This study shows, under small load variation, the designed

control is still valid

B. Random disturbance on an individual load

Besides the base case load change, we also study the effect

of random disturbance on the dynamic state variable of an

individual load. Assume the random disturbance is represented

by a statistical variable with normal distribution whose mean

is zero and variance is 1. In our study, a Matlab function

Normrnd is used to generate the disturbance. The disturbance

is imposed to the active power recovery Pr of the load at bus
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Fig. 13. Voltage behavior with the designed control under 1% load increase
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Fig. 14. Voltage behavior with the designed control under 3% load increase

6 at control sampling point 3. The first disturbance generated

by the the Matlab program is 0.7258 increase of the dynamic

state variable of the exponential recovery load model at bus

6. The voltage behavior under such disturbance is shown in

Figure 15. The second disturbance is 0.5883 decrease of the

same dynamic state variable. Figure 16 indicates the dynamic

voltage behavior under the disturbance. These two figures

show that the designed control has a certain robustness against

random load disturbances.

VII. CONCLUSION AND DISCUSSION

This paper introduces a model predictive control based sys-

tem protection scheme for maintaining voltage stability under

contingencies. The stabilizing control is achieved through the

economic use of shunt capacitors. Trajectory sensitivity is

used to establish the relationship between the control systems

and the voltage recovery, which provides for a more accurate
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Fig. 15. Voltage behavior with the designed control with 0.7258 increase
for dynamic state variable 17
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Fig. 16. Voltage behavior with the designed control with 0.5883 decrease
for dynamic state variable 17

measurement of the influence of control. Further the feature

of model predictive control, that at each control instant im-

plements only the first step of the computed control sequence,

corrects the errors brought by the approximation of system

models. The WECC and New England systems are employed

to illustrate the effectiveness of the control strategies.

In the numerical simulation, maximum value for control

variables for each step is set as 0.1. This value is used only

for illustration. In fact our formulation allows arbitrary values

for the bounds, denoted Bmax, ∆Bmax in Equation (15) and

Equation (16). By solving the quadratic programming problem

of the formulation given by equations (14)-(18), an optimal

solution is always obtained.
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