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Abstract

Model Predictive Control for Autonomous and Semiautonomous Vehicles

by

Yiqi Gao

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Francesco Borrelli, Chair

In this thesis we consider the problem of designing and implementing Model Predictive Con-
trollers (MPC) for lane keeping and obstacle avoidance of autonomous or semi-autonomous
ground vehicles. Vehicle nonlinear dynamics, fast sampling time and limited computational
resources of embedded automotive hardware make it a challenging control design problem.
MPC is chosen because of its capability of systematically taking into account nonlinearities,
future predictions and operating constraints during the control design stage.

We start from comparing two different MPC based control architectures. With a given
trajectory representing the driver intent, the controller has to autonomously avoid obstacles
on the road while trying to track the desired trajectory by controlling front steering angle
and differential braking. The first approach solves a single nonlinear MPC problem for both
replanning and following of the obstacle free trajectories. While the second approach uses a
hierarchical scheme. At the high-level, new trajectories are computed on-line, in a receding
horizon fashion, based on a simplified point-mass vehicle model in order to avoid the obstacle.
At the low-level an MPC controller computes the vehicle inputs in order to best follow the
high level trajectory based on a higher fidelity nonlinear vehicle model. Experimental results
of both approaches on icy roads are shown. The experimental as well as simulation results
are used to compare the two approaches. We conclude that the hierarchical approach is more
promising for real-time implementation and yields better performance due to its ability of
having longer prediction horizon and faster sampling time at the same time.

Based on the hierarchical approach for autonomous drive, we propose a hierarchical
MPC framework for semi-autonomous obstacle avoidance, which decides the necessity of
control intervention based on the aggressiveness of the evasive maneuver necessary to avoid
collisions. The high level path planner plans obstacle avoiding maneuvers using a special
kind of curve, the clothoid. The usage of clothoids have a long history in highway design and
robotics control. By optimizing over a small number of parameters, the optimal clothoids
satisfying the safety constraints can be determined. The same parameters also indicate
the aggressiveness of the avoiding maneuver and thus can be used to decide whether a
control intervention is needed before its too late to avoid the obstacle. In the case of control
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intervention, the low level MPC with a nonlinear vehicle model will follow the planned
avoiding maneuver by taking over control of the steering and braking. The controller is
validated by both simulations and experimental tests on an icy track.

In the proposed autonomous hierarchical MPC where the point mass vehicle model is
used for high level path replanning, despite of its successful avoidance of the obstacle, the
controller’s performance can be largely improved. In the test, we observed big deviations of
the actual vehicle trajectory from the high level planned path. This is because the point mass
model is overly simplified and results in planned paths that are infeasible for the real vehicle
to track. To address this problem, we propose an improved hierarchical MPC framework
based on a special coordinate transformation in the high level MPC. The high level uses a
nonlinear bicycle vehicle model and utilizes a coordinate transformation which uses vehicle
position along a path as the independent variable. That produces high level planned paths
with smaller tracking error for the real vehicle while maintaining real-time feasibility. The
low level still uses an MPC with higher fidelity model to track the planned path. Simulations
show the method’s ability to safely avoid multiple obstacles while tracking the lane centerline.
Experimental tests on an autonomous passenger vehicle driving at high speed on an icy track
show the effectiveness of the approach.

In the last part, we propose a robust control framework which systematically handles the
system uncertainties, including the model mismatch, state estimation error, external distur-
bances and etc. The framework enforces robust constraint satisfaction under the presence
of the aforementioned uncertainties. The actual system is modeled by a nominal system
with an additive disturbance term which includes all the uncertainties. A “Tube-MPC”
approach is used, where a robust positively invariant set is used to contain all the possible
tracking errors of the real system to the planned path (called the “nominal path”). Thus
all the possible actual state trajectories in time lie in a tube centered at the nominal path.
A nominal NMPC controls the tube center to ensure constraint satisfaction for the whole
tube. A force-input nonlinear bicycle vehicle model is developed and used in the RNMPC
control design. The robust invariant set of the error system (nominal system vs. real system)
is computed based on the developed model, the associated uncertainties and a predefined
disturbance feedback gain. The computed invariant set is used to tighten the constraints in
the nominal NMPC to ensure robust constraint satisfaction. Simulations and experiments
on a test vehicle show the effectiveness of the proposed framework.
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experiment of Figure 5.14. The nominal and actual states are shown in dashed
black and solid blue lines respectively. The red dot-dashed lines indicate the
robust bounds on each state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.16 Experimental result: The steering and braking input to the vehicle during the
experiment of Figure 5.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.17 Experimental result: Avoiding a moving obstacle. Vehicle speed is 50 Kph, ob-
stacle moves at 18 Kph. The obstacle position at time t0, t1 and t3 during the
test are shown in dash red. The vehicle position at the corresponding times are
marked with blue circles. µ ≃ 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.18 Experimental result: A plot of 4 states of the vehicle, [ẏ, ψ̇, eψ, ey], during the
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Chapter 1

Introduction

1.1 Motivation and Background

Despite the development of numerous vehicular safety features over the past decades, the
traffic accidents still claim tens of thousands of lives on the roads in USA. Worldwide, there
was approximately 1.24 million deaths occurred on the roads in 2010. Table 1.1 reports the
motorists and non-motorists killed in traffic crashes in the US each year from 2009 to 2011
posted by the National Highway Traffic Safety Administration (NHTSA) under the Fatality
Analysis Reporting System (FARS) [50]. FARS is a nationwide census who provides NHTSA,
Congress and the American public yearly reports on fatal injuries suffered in motor vehicle
traffic crashes. As shown in Table 1.1, despite the small decrement over the past years, the
numbers are still impressive. By analyzing data from vehicles instrumented with cameras,
several studies have estimated that driver distraction contributes to 22− 50% of all crashes
[33, 58].

Table 1.1: U.S.A. Traffic Fatality Data Report

Year Fatal Crashes Fatality Vehicle Miles Traveled Fatality Rate 1

2011 29, 757 32, 367 2946 Billions 1.10
2009 30, 296 32, 999 2967 Billions 1.11
2008 30, 862 33, 883 2957 Billions 1.15

As an effort of making driving safer, the development of vehicle active safety systems
dates back to the eighties. Examples include the Anti-lock Braking System (ABS) [10], the
traction control (TC) system [42, 6], and the Electronic Stability Programm [39, 60](ESP,
also known under different acronyms such as VSC for Vehicle Stability Control and IVD for
Interactive Vehicle Dynamics). These “standard active safety systems” aim at assisting and

1Per 100 Million Vehicle Miles of Travel
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improving the driver’s control over the vehicle by avoiding undesired situations, such as wheel
locking in braking (ABS), tire slipping (TC), and lose of steering control (ESP). While these
systems’ effectiveness in general has been widely acknowledged, they can offer little help
when the driver is inattentive, which unfortunately contributes to 22 − 50% of all crashes
according to some studies[33, 58]. More recent developments in “advanced active safety
systems” introduce additional sensors such as onboard cameras, radars, infrared sensors
etc., and additional actuators such as active steering or active suspensions. Vehicles equipped
with these systems are able to identify obstacles on the road such as pedestrians as well as
the lane markers. They can perform emergency maneuvers (mostly emergency braking) to
avoid collisions or apply assist steering to avoid lane departures. An example of vehicle with
advanced active safety systems is the Volvo S60 equipped with cameras and radars in order to
implement a fully autonomous braking [11, 40]. An even more ambitious approach towards
driving safety is the development of autonomous driving systems. These systems aim at
driving the vehicle fully autonomously by controlling the steering, braking and throttling,
examples include the Darpa Grant Challenge Car [3, 48] and the Google Car [29, 38].

This thesis focuses on Model Predictive Control (MPC) of autonomous and semiau-
tonomous vehicles. MPC is the only control technology that can systematically take into
account the future predictions and system operating constraints in design stage [46, 49]. That
makes it a suitable choice for autonomous drive where the system faces dynamically changing
environment and has to satisfy crucial safety constraints (such as obstacle avoidance) as well
as actuator constraints.

In MPC, a model of the plant is used to predict the future evolution of the system. Based
on this prediction, at each time step t, a performance index is optimized under operating
constraints with respect to a sequence of future input moves. The first of such optimal moves
is the control action applied to the plant at time t. At time t +1, a new optimization is
solved over a shifted prediction horizon. In general, the following finite horizon optimization
problem is solved at each time step t:

min
Ut

JN(ξ̄t, Ut) =

t+Hp,hl−1
∑

k=t

Cost(ξk,t, uk,t) (1.1a)

subj. to ξk+1,t = f(ξk,t, uk,t) k = t, ..., t+N − 1, (1.1b)

ξk,t ∈ Ξt k = t, ..., t+N, (1.1c)

uk,t ∈ U k = t, ..., t+N − 1, (1.1d)

ξt,t = ξ(t), (1.1e)

where the symbol vk,t stands for “ the variable v at time k predicted at time t”, N is the
prediction horizon. ξ is the state of the system and in this thesis includes the lateral and
longitudinal vehicle velocities, yaw and yaw rate, and vehicle position. u is the control input
to the system and in this thesis includes the steering angle, braking torque and throttle.
The function f(ξ, u) in (1.1b) allows to predict the future system states based on the current
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states and control inputs. (1.1c) and (1.1d) are the state and input constraints the controller
has to respect. The cost in (1.1a) can be any performance index and in this thesis can include
penalties on state tracking error, penalties on inputs, penalties on input change rate and etc.

The earliest implementations of MPC were on “slow” plants such as those in process
industry [52, 12, 5], where the plant dynamics are sufficiently “slow” for the on-line com-
putation needed in implementation. Parallel advances in theory and computing systems
have enlarged the range of applications where real-time MPC can be applied [7, 8, 31, 22,
64, 13]. Yet, for a wide class of fast applications, the computational burden of Nonlinear
MPC (NMPC) is still a barrier. As an example, in [9] an NMPC has been implemented
on a passenger vehicle for path following via an Active Front Steering (AFS) system at 20
Hz, by using the state of the art optimization solvers and rapid prototyping systems. It is
shown that the real-time execution is limited to low vehicle speeds on icy roads, because of
its computational complexity.

This thesis focuses on developing nonlinear model predictive controllers for autonomous
and semiautonomous driving, particularly for obstacle avoidance and lane keeping. It will
show that by proper modeling and formulation, the autonomous and semiautonomous driving
can be achieved with NMPC on standard rapid prototyping platform with limited compu-
tational resource. In particular, the main contributions of this thesis include:

1. The design of a hierarchical MPC scheme for autonomous obstacle avoidance and lane
keeping. The autonomous driving problem is decomposed into two levels, a high level
path planner/replanner which uses an MPC with point mass vehicle model to plan
obstacle free paths with long prediction horizons, and a low level path follower which
uses an MPC with a higher fidelity vehicle model to follow the planned path with
short prediction horizons. The decomposition of the problem reduces the computa-
tional complexity compared to a single level MPC approach and results in improved
performance in real-time implementation.

2. The design of a hierarchical MPC scheme for a semi-autonomous active safety system
that is able to determine the time of intervention and avoid upcoming collisions with
obstacles. The high level MPC uses a special kind of curve, the clothoid, to plan obsta-
cle avoiding maneuvers. The use of clothoid makes it possible to plane feasible vehicle
trajectories with few parameters and thus with low computational burden. The pa-
rameters also give a measure to the necessary aggressiveness of the avoiding maneuver
and thus can be used to determine whether a control intervention is necessary. In the
case of intervention, the low level MPC with a higher fidelity vehicle model will follow
the high level planned path by controlling the steering and braking.

3. The design of a spatial predictive controller for autonomous obstacle avoidance and lane
keeping. It is an improved approach over the point mass model hierarchical MPC. The
hierarchical scheme as well as the low level path follower are kept the same. The high
level uses a nonlinear bicycle vehicle model and utilizes a coordinate transformation
which uses vehicle position along a path as the independent variable. That results in
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high level planned paths that are more trackable for the real vehicle while maintaining
real-time feasibility and thus improves the performance of overall system.

4. The design of a robust nonlinear predictive control framework based on the “Tube-
MPC” approach. The framework presents a systematic way of enforcing robust robust
constraint satisfaction under the presence of model mismatch and disturbances during
the MPC design stage. A force-input nonlinear bicycle vehicle model is developed
and used in the RNMPC control design. A robust invariant set is used to tighten the
constraints in order to guarantee that state and input constraints are satisfied in the
presence of disturbances and model error.

1.2 Thesis Layout

The remainder of this thesis is structured as follows:

• Chapter 2 describes the vehicle models used in control design and simulations for
autonomous and semiautonomous vehicles. The tire ground reaction forces are the
only external forces acting on the vehicle, if exclude the gravity force and the much
less significant aerodynamic forces. Unfortunately, the tire forces are highly nonlinear
in part of the operational region and the lateral and longitudinal tire dynamics are
highly coupled in the same region. That is the most important source of the nonlinear
behavior of vehicle dynamics and coupling of lateral and longitudinal vehicle dynamics.
Simplifications can be made at a cost of greater model mismatch and restrictions on
operation range. The proper choice over various models is an important aspect in the
MPC design.

Three tire models are introduced: 1, the Pacejka model, a complex nonlinear semi-
empirical tire model being able to describe the nonlinear and coupling behavior of tire
forces under wide operation range; 2, the modified Fiala model, a simplified nonlinear
tire model which also captures the nonlinear and coupling behavior; 3, the linear tire
model only for pure cornering or pure braking/throttling.

Using rigid body dynamics and the tire models, four vehicle models with various fideli-
ties and complexities are introduced: 1, the nonlinear four wheel vehicle model which
captures both lateral and longitudinal vehicle dynamics and models the tire forces from
each of the four tires using the Pacejka model; 2, the nonlinear bicycle model which
is simplified from the nonlinear four wheel model by lumping the left and right tires
together at the front and rear wheel axels; 3, the linear bicycle model which is further
simplified from the nonlinear bicycle model by assuming constant longitudinal velocity
and the use of linear tire model for pure cornering; 4, the simplest point mass model,
where the vehicle is treated as a point with a given mass and no tire model is used
expect a constraint that the tire forces being inside the friction circle.
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• Chapter 3 compares two approaches to the autonomous obstacle avoidance problem,
the one-level MPC approach and the hierarchical two-level MPC approach. In the
first approach, the problem is formulated in a single nonlinear MPC problem. In the
second approach, the controller design is decomposed into two levels. The high-level
NMPC uses a simplified point-mass vehicle model to replan the obstacle free path
with long prediction horizon. The planed trajectory is fed to the low-level NMPC
which uses the higher fidelity nonlinear four wheel model to follow the planed paths
with shorter prediction horizon. Simulation and experimental results on an icy-snow
handling track is used to compare the performance and computation time of both
approaches. Concludes are made that the hierarchical MPC is more promising for
real-time implementation and has better performance due to its lower computational
complexity.

Chapter 3 also proposes a hierarchical approach for semi-autonomous obstacle avoid-
ance. Where the high level path planner utilizes a special kind of curve, the clothoid,
to plan the smoothest path avoiding the obstacle. Very few parameters is needed to
determine the planned path, which is obstacle free and feasible for the vehicle to track.
That results in low computational complexity for the high level path planner. The
parameters also gives a measure of the aggressiveness of the avoiding maneuver, pro-
viding a suitable indication of whether an intervention from the controller is needed to
keep the vehicle safe. When intervention is decided, the low level NMPC path follower
takes control of the steering and braking to follow the planned avoiding maneuver.

• Chapter 4 proposes a spatial predictive control framework for autonomous obstacle
avoidance and lane keeping. It is an improved approach over the point mass model
hierarchical MPC. The hierarchical scheme as well as the low level path follower are
kept the same. The high level uses a nonlinear bicycle vehicle model and utilizes a
coordinate transformation which uses vehicle position along a path as the independent
variable. That results in high level planned paths that are more trackable for the real
vehicle while maintaining real-time feasibility and thus improves the performance of
overall system. The proposed frameworks is validated by experiments on the same
icy-snow handling track.

• Chapter 5 proposes a robust nonlinear predictive control framework based on the
“Tube-MPC” approach. The framework presents a systematic way of enforcing robust
robust constraint satisfaction under the presence of model mismatch and disturbances
during the MPC design stage. The basic idea is to use a control law of the form
u = ū + K(ξ − ξ̄) where ū and ξ̄ are the nominal control input and system states
trajectories determined by a nominal NMPC. For a given linear controller K, a ro-
bust invariant set is computed for the error system. The invariant is used to bound
the maximum deviation of the actual states from the nominal states under the linear
control action K. The nominal MPC optimises ū and ξ̄ with tightened state and in-
put constraints. The tightening is computed as a function of the bounds derived from
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the robust invariant set. A force-input nonlinear bicycle vehicle model is developed
and used in the RNMPC control design. The proposed robust NMPC framework is
validated by both simulation and experiments.
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Chapter 2

Vehicle Models

2.1 Introduction

In this chapter, we present several dynamic vehicle models used for control design and
simulation in this thesis. The modeling of vehicle dynamics has been extensively studied
in the past decades. A wide spectrum of vehicle models has appeared in the rich literature
[53] [32]. We present a set of models which is suitable for the proposed model based control
designs.

Figure 2.1 shows a sketch of vehicle body fixed frame of reference and the forces acting
on vehicle’s Center of Gravity (CoG). x, y and z are the vehicle’s longitudinal, lateral and
vertical axes, respectively. ẋ, ẏ and ψ̇ are the longitudinal, lateral velocities and yaw rate.
Fx, Fy andMz are the longitudinal, lateral forces acting on the vehicle CoG and the rotating
moment about z axes.

The rigid body dynamic equations are:

mẍ = mẏψ̇ + Fx, (2.1a)

mÿ = −mẋψ̇ + Fy, (2.1b)

Izψ̈ =Mz, (2.1c)

where m is the vehicle mass and I is the vehicle’s moment of inertia about z axis.
We use different choices of modeling vehicle’s position and orientation in inertial frames.

Figure 2.2 shows two commonly used setups for modeling the vehicle’s planner motion in
inertial frames.

Setup one (Figure 2.2(a)) uses a cartesian coordinate system (X-Y coordinate) for the
inertial frame of reference. In Figure 2.2(a), x and y axes are the body fixed coordinate
system same as in Figure 2.1. The angle ψ is the vehicle’s heading angle, or yaw angle, in
the inertial frame X − Y . ψ is defined positive counterclockwise with ψ = 0 when x axis
is aligned with X axis. The vehicle’s 2-D motion in X − Y coordinate can be modeled as
follows:
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Figure 2.1: Vehicle body fixed frame of reference.

Ẋ = ẋ cosψ − ẏ sinψ, (2.2a)

Ẏ = ẋ sinψ + ẏ cosψ. (2.2b)

Setup two (Figure 2.2(b)) uses a curve linear coordinate system s − ey to present the
vehicle’s position with respect to a given curve, usually a lane the vehicle is following. This
setup is particularly useful in environments such as highways and city streets [53]. As shown
in Figure 2.2(b), ey is the vehicle’s lateral deviation from the lane center and s is the vehicle’s
longitudinal position along the lane center. The angle eψ is the vehicle’s heading angle with
respect to the lane direction. eψ is defined positive counterclockwise with eψ = 0 when x
axis is aligned with the tangent of lane center. The vehicle’s 2-D motion in this setup is
modeled as follows:

ėψ = ψ̇ − ψ̇d, (2.3a)

ṡ =
1

1− κey
· (ẋcos(eψ)− ẏsin(eψ)), (2.3b)

ėy = ẋ sin(eψ) + ẏ cos(eψ), (2.3c)

where ψ̇ is the vehicle’s yaw rate. ψd is the angle of the tangent to the lane centerline in a
fixed coordinate frame. κ is the curvature of the lane and is defined positive counterclockwise.
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(b) Setup two: Track based coordinate system.

Figure 2.2: Two commonly used frameworks for modeling of vehicle’s position and orienta-
tion.
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Figure 2.3: Four wheel model notation.

In the following sections, we particularize the equations (2.1) to (2.3) to define different
vehicle models with various levels of details. In particular, section 2.2 presets a nonlinear
four wheel vehicle model where the tire forces from each of the four tires are modeled as
nonlinear functions of the vehicle states; Section 2.3 presents a nonlinear bicycle model which
is simplified from the nonlinear four wheel model by lumping the left and right tires together
at the front and rear wheel axels; Section 2.5 presents a linear bicycle model which is further
simplified from the nonlinear bicycle; Section 2.6 presents the simplest point mass model,
where the vehicle is treated as a point with a given mass and no tire model is used with the
exception of the tire forces being constrained inside the friction circle.

2.2 Nonlinear Four Wheel Model

In this section, we present a four wheel vehicle model whose dynamic equation is compactly
written as:

ξ̇(t) = f 4w(ξ(t), u(t)) (2.4)

where ξ(t) ∈ R
n is the state of the system and u(t) ∈ R

mr is the input, n = 10 is the
number of states and mr = 5 is the number of inputs. The ten states are lateral and
longitudinal velocities in the body frame, the yaw angle, yaw rate, lateral and longitudinal
vehicle coordinates in the inertial frame and the angular velocity on the four wheels. These
are denoted respectively as ξ = [ẏ, ẋ, ψ, ψ̇, Y,X, ωf,l, ωf,r, ωr,l, ωr,r]

′. Where ωf,l, ωf,r, ωr,l and
ωr,r denotes the angular velocity on the front left, front right, rear left and rear right wheels,
respectively. For the simplicity of notation, later we will use the subscript ⋆ ∈ {f, r} to
denote the front or rear axels and • ∈ {l, r} to denote the left or right side of the vehicle.
The five inputs are u = [δf , Tf,l, Tf,r, Tr,l, Tr,r]

′ where δf is the front steering angle and T⋆,•
are the braking and tractive torque on the four wheels. Positive T⋆,• denotes driving torque
while negative T⋆,• denotes braking torque.
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Figure 2.3 defines the notations of the four wheel model. In particular, Fc⋆,• and Fl⋆,•
are the lateral (cornering) and longitudinal tire forces in tire frame. Fy⋆,• and Fx⋆,• are the
components of the tire forces along the lateral and longitudinal vehicle axes. α⋆,• are the
wheel slip angles which are defined later in this section. δf is the front wheel steering angle.
a and b are the distances from the CoG to the front and rear axles and c is the distance from
the CoG to the left/right side at the wheels.

The dynamics in (2.4) can be derived by using the equations of motion about the vehicles
Center of Gravity (CoG) and coordinate transformations between the inertial frame and the
vehicle body frame:

mÿ = −mẋψ̇ + Fyf,l + Fyf,r + Fyr,l + Fyr,r , (2.5a)

mẍ = mẏψ̇ + Fxf,l + Fxf,r + Fxr,l + Fxr,r , (2.5b)

Iψ̈ = a(Fyf,l + Fyf,r)− b(Fyr,l + Fyr,r)+

+ c(−Fxf,l + Fxf,r − Fxr,l + Fxr,r), (2.5c)

Ẏ = ẋ sinψ + ẏ cosψ, (2.5d)

Ẋ = ẋ cosψ − ẏ sinψ, (2.5e)

Iwω̇f,l = −Flf,lrw + Tf,l − bwω̇f,l, (2.5f)

Iwω̇f,r = −Flf,rrw + Tf,r − bwω̇f,r, (2.5g)

Iwω̇r,l = −Flr,lrw + Tr,l − bwω̇r,l, (2.5h)

Iwω̇r,r = −Flr,rrw + Tr,r − bwω̇r,r, (2.5i)

where the constant m is the vehicle’s mass. I is the vehicle’s rotational inertia about the z
axis. Iw includes the wheel and driveline rotational inertias. rw is the radius of the wheel.
bw is the damping coefficient.

The x and y components of tire forces, Fx⋆,• and Fy⋆,• , are computed as follows:

Fy⋆,• = Fl⋆,• sin δ⋆ + Fc⋆,• cos δ⋆, (2.6a)

Fx⋆,• = Fl⋆,• cos δ⋆ − Fc⋆,• sin δ⋆. (2.6b)

Assumption 1 Only the steering angle at the front wheels can be controlled. Moreover, the
front left and front right wheel steering angles are assumed to be the same. i.e., δf,l = δf,r = δf
and δr,• = 0.

The lateral and longitudinal tire forces Fl⋆,• and Fc⋆,• , as shown in Figure 2.4, are given by:

Fc⋆,• = fc(α⋆,•, s⋆,•, µ, Fz⋆,•), (2.7a)

Fl⋆,• = fl(α⋆,•, s⋆,•, µ, Fz⋆,•), (2.7b)

where α is the slip angle of the tire, s is the slip ratio, µ is the friction coefficient and Fz
is the normal force. We use a Pacejka tire model [51] to model Fc and Fl in (2.7) at the
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Figure 2.4: Tire model notations.

four tires. This complex, semi-empirical model is able to describe the tire behavior over the
linear and nonlinear operating ranges of slip ratio, tire slip angle and friction coefficient.

As shown in Figure 2.4, the tire slip angle α⋆,• in (2.7) denotes the angle between the
tire velocity and its longitudinal direction. It can be expressed as:

α⋆,• = arctan
vc⋆,•
vl⋆,•

, (2.8)

where vc⋆,• and vl⋆,• are the lateral and longitudinal wheel velocities computed from:

vc⋆,• = vy⋆,• cos δ⋆ − vx⋆,• sin δ⋆, (2.9a)

vl⋆,• = vy⋆,• sin δ⋆ + vx⋆,• cos δ⋆, (2.9b)

vyf,• = ẏ + aψ̇ vx⋆,l = ẋ− cψ̇, (2.9c)

vyr,• = ẏ − bψ̇ vx⋆,r = ẋ+ cψ̇. (2.9d)

The slip ratio is defined as:

s⋆,• =















rω⋆,•

vl⋆,•
− 1 if vl⋆,• > rω⋆,•, v ̸= 0 for braking,

1−
vl⋆,•
rω⋆,•

if vl⋆,• < rω⋆,•, ω ̸= 0 for driving.

(2.10)

The friction coefficient µ is assumed to be a known constant and is the same at all four
wheels.
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We use the static weight distribution to estimate the normal force on the wheel, Fz⋆,• in
Equation (2.7). They are approximated as:

Fzf,• =
bmg

2(a+ b)
, Fzr,• =

amg

2(a+ b)
, (2.11)

where g is the gravitational acceleration.

Remark 1 For control purposes, the wheel dynamics (2.5f)-(2.5i) can be neglected. In this
case the wheel speed can be assumed to be measured at each sampling time and is kept constant
until the next available update.

Remark 2 The model (2.5) uses reference framework one (2.2) for position representation.
Note one can use the reference framework two (2.3) without affecting the dynamics. i.e.
(2.5d)-(2.5e) in (2.5) can be replaced by (2.3a)-(2.3c).

2.3 Nonlinear Bicycle Model

In this section, we present a reduced order model from the four wheel model (2.4), the single
track model or ”bicycle model” [41]. It is based on the following simplification:

Simplification 1 At the vehicle front and rear axels, the left and right wheels are lumped
together.

The dynamic equations of the bicycle model is compactly written as:

ξ̇(t) = fnb(ξ(t), u(t)) (2.12)

where the superscript “nb” stands for ”nonlinear bicycle”. ξ(t) ∈ R
n is the state of the

system and u(t) ∈ R
mr is the input, n = 6 is the number of states and mr = 3 is the number

of inputs. The six states are lateral and longitudinal velocities in the body frame, the yaw
angle, yaw rate, lateral and longitudinal vehicle coordinates in the inertial frame. These are
denoted respectively as ξ = [ẏ, ẋ, ψ, ψ̇, Y,X]′. The three inputs are u = [δf , Tf , Tr]

′ where δf
is the front steering angle and T⋆ is the braking and tractive torque on the wheel. Positive
T⋆ denotes tractive torque while negative T⋆ denotes braking torque.

Figure 2.5 shows the modeling notation of the bicycle model. In particular, Fc⋆ and Fl⋆
are the lateral (cornering) and longitudinal tire forces in the tire frame. Fy⋆ and Fx⋆ are the
components of the tire forces along the lateral and longitudinal vehicle axes. δf is the front
wheel steering angle, a and b are the distances from the CoG to the front and rear axles.
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Figure 2.5: Modelling notation depicting the forces in the vehicle body-fixed frame (Fx⋆ and
Fy⋆), the forces in the tire-fixed frame (Fl⋆ and Fc⋆), and the rotational and translational
velocities.

With Simplification 1, the dynamics in Equation (2.12) can be written as follows:

mẍ = mẏψ̇ + 2Fxf + 2Fxr, (2.13a)

mÿ = −mẋψ̇ + 2Fyf + 2Fyr, (2.13b)

Iψ̈ = 2aFyf − 2bFyr, (2.13c)

Ẏ = ẋ sinψ + ẏ cosψ, (2.13d)

Ẋ = ẋ cosψ − ẏ sinψ, (2.13e)

where m and I denote the vehicle mass and yaw inertia, respectively. ẋ and ẏ denote the
vehicle longitudinal and lateral velocities, respectively, and ψ̇ is the turning rate around a
vertical axis at the vehicle’s centre of gravity. s is the vehicle longitudinal position along the
desired path. Fyf and Fyr are front and rear tire forces acting along the vehicle lateral axis,
Fxf and Fxr forces acting along the vehicle longitudinal axis.

The longitudinal and lateral tire force components Fx⋆ and Fy⋆ in the vehicle body frame
are modeled as follows:

Fx⋆ = Fl⋆ cos(δ⋆)− Fc⋆ sin(δ⋆), (2.14a)

Fy⋆ = Fl⋆ sin(δ⋆) + Fc⋆ cos(δ⋆), ⋆ ∈ {f, r}, (2.14b)

where ⋆ denotes either f or r for front and rear tire, δ⋆ is the steering angle at wheel. We
introduce the following assumption on the steering angles.

Assumption 2 Only the steering angle at the front wheels can be controlled. i.e., δf = δ
and δr = 0.
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The longitudinal and lateral tire forces Fl⋆ and Fc⋆ are given by Pacejka’s model [51].
They are nonlinear functions of the tire slip angles α⋆, slip ratios σ⋆, normal forces Fz⋆ and
friction coefficient between the tire and road µ⋆:

Fl⋆ = fl(α⋆, σ⋆, Fz⋆, µ⋆), (2.15a)

Fc⋆ = fc(α⋆, σ⋆, Fz⋆, µ⋆). (2.15b)

The slip angles are defined as follows:

α⋆ = arctan vc⋆
vl⋆
, (2.16)

where the tire lateral and longitudinal velocity components vc⋆ and vl⋆ are computed from,

vc⋆ = vy⋆ cos δ⋆ − vx⋆ sin δ⋆, (2.17a)

vl⋆ = vy⋆ sin δ⋆ + vx⋆ cos δ⋆, (2.17b)

where the tire y and x velocity components vy⋆ and vx⋆ can be computed from,

vyf = ẏ + aψ̇, vxf = ẋ, (2.18a)

vyr = ẏ − bψ̇, vxr = ẋ. (2.18b)

The slip ratios s⋆ are approximated as follows:

s⋆ =















rω⋆

vl⋆
− 1 if vl⋆ > rω⋆, v ̸= 0 for braking,

1−
vl⋆
rω⋆

if vl⋆ < rω⋆, ω ̸= 0 for driving.

(2.19)

The friction coefficient µ is assumed to be a known constant and is the same at all four
wheels. We use the static weight distribution to estimate the normal force on the wheel, Fz⋆
in Equation (2.15). They are approximated as,

Fzf,• =
bmg

2(a+ b)
, Fzr,• =

amg

2(a+ b)
, (2.20)

where g is the gravitational acceleration.

Remark 3 The tire forces Fx⋆ and Fy⋆ (Fl⋆ and Fc⋆) are the forces generated by the contact
of a single wheel with the ground. Thus the normal forces Fz⋆ used in (2.15) are those acting
on one single tire instead of the lumped forces on the font and rear wheel axles.
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2.4 Tire Models

With the exception of aerodynamics force and gravity, tire ground reaction forces are the
only external force acting on the vehicle. The tire forces have highly nonlinear behavior when
slip ratio or slip angle is large. Thus it is of extreme importance to have a realistic nonlinear
tire force model for the vehicle dynamics when operating the vehicle in the tire nonlinear
region. In such situations, large slip ratio and slip angle can happen simultaneously and the
longitudinal and lateral dynamics of the vehicle is highly coupled and nonlinear due to the
nature of the tire forces. Similar situation can occur even with small inputs when the surface
friction coefficient µ is small.

When the slip ratio and slip angle are both small, both longitudinal and lateral tire
forces show linear behavior and are less coupled. This situation holds true when the vehicle
operates with moderate inputs on high µ surfaces. In such situations, linearized tire models
might serve well in control design, with proper constraints on the slip ratio and slip angle.

In this section, we will present three tire models that will be used in this thesis. From
a complex nonlinear semi-empirical model capturing the nonlinear and coupling behavior of
the tire forces, to a simplest linear model with no coupling between longitudinal and lateral
tire forces.

Pacejka tire model

This subsection gives more details on the Pacejka tire model [51] used in Section 2.2 and
2.3. It is a complex nonlinear semi-empirical model being able to describe the nonlinear
and coupled behavior of tire forces under wide operation range. Pacejka model describes
the tire forces as functions of the tire normal force, slip ratio, slip angle and surface friction
coefficient.

It uses a function of following form to fit the experiment data:

Y (X) = D sin(C arctan(BΘ(X))) + Sv, (2.21)

where Y is either the longitudinal or lateral tire force. X is the slip ratio when Y is the
longitudinal force and the slip angle when Y is the lateral force. B, C, D and Sv are the
parameters fit from the experimental data. Θ(X) is defined as follows:

Θ(X) = (1− E)(X + Sh) + (E/B) arctan(B(X + Sh)), (2.22)

where E and Sh are parameters fit from the experimental data.
Equation (2.21) and (2.22) only describe the tire forces at pure cornering (s = 0) or pure

braking/driving (α = 0). They are then modified to include the combined slip conditions as
presented in [51]. We will skip that part in this thesis.

We show some typical plots of tire forces from Pacejka tire model in Figure 2.7(a) to
2.8(b).

In particular, Figure 2.6 shows lateral and longitudinal tire forces at different values of
friction coefficient. 2.6(a) shows the lateral tire forces as functions of slip angle (α) in pure
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(a) Lateral tire forces in pure cornering (s = 0).
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(b) Longitudinal tire forces in pure braking/driving (α = 0).

Figure 2.6: Lateral and longitudinal tire forces at different values of friction coefficients.
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cornering, i.e. s = 0. 2.6(b) shows the longitudinal tire forces as functions of slip ratio (s)
in pure braking/driving, i.e. α = 0. We observe that the lateral and longitudinal tire forces
are linear functions of the slip angle and slip ratio, respectively, at small values of slip angle
and slip ratio, as we mentioned previously in this section. As the slip angle and slip ratio
increases, the tire forces become saturated at some point and the magnitude start to decrease
when the slip angle and slip ratio keep increasing. We refer the region before saturation as
the tire linear region.

Note that besides the saturation value of tire forces, the friction coefficient also affects
the width of the tire linear region. For instance, when the friction coefficient decreases from
0.9 (asphalt) to 0.1 (ice surface), the saturation slip angle for the lateral tire force decreases
from 8◦ to 0.9◦.

Figure 2.7 shows the longitudinal and lateral tire forces in combined cornering and brak-
ing/driving, with a friction coefficient of µ = 0.9. In particular, Figure 2.7(a) shows the
lateral forces as functions of slip angle at different values of slip ratio, while Figure 2.7(b)
shows the longitudinal forces as functions of slip ratio at different values of slip angle.

From Figure 2.7(a), we observe that when slip ratio increases, the maximum magnitude
of lateral force decreases. We also observe decreased slop in the linear region with increased
slip ratio. The similar can be observed in the longitudinal forces as shown in Figure 2.7(b),
i.e., the bigger the slip angle is, the smaller the maximum magnitude of longitudinal force
as well as the slop of the curve in the linear region are.

Figure 2.8 shows the lateral and longitudinal forces in 3-D plots, as functions of both slip
angle and slip ratio.

A modified Fiala tire model for combined cornering and
braking/driving

This subsection presents a simpler version of nonlinear tire model, a modified fiala model
[28], which can be used for modeling the tire lateral forces in combined cornering and brak-
ing/driving condition.

This model uses αsl to denote the saturation slip angle for the lateral force and assumes
the lateral force keeps the same beyond the saturation point. The lateral force is modeled
as:

fc =

{

−Cα tan(α) +
C2

α

3ηµFz
| tan(α)| tan(α)− C3

α

27η2µ2F 2
z
tan2(α), if|α| < αsl

−ηµFzsgn(α), if|α| ≥ αsl
(2.23)

where α denotes the slip angle, µ denotes the friction coefficient, and Fz denotes the tire
normal force. Cα is a constant presenting the slop of the curve at zero slip angle. η =
√

µ2F 2
z − f

2
l /(µFz), where fl is the longitudinal force and is treated as one of the input to

the model. The saturation slip angle is defined as follows:
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Figure 2.7: Lateral and longitudinal tire forces in combined cornering and braking/driving,
with µ = 0.9.
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(a) Lateral tire forces as a function of slip ratio and slip angle.

(b) Longitudinal tire forces as a function of slip ratio and slip angle.

Figure 2.8: Lateral and longitudinal tire forces as functions of slip ratio and slip angle in
combined cornering and braking/driving, with µ = 0.9.
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αsl = tan−1(
3ηµFz
Cα

). (2.24)

We use β = fl/Fz to denote the level of braking/driving, with β = 1 denoting the
maximum driving force and β = −1 denoting the maximum braking. Figure 2.9 shows the
lateral forces from this model at different levels of braking/driving. Similar to the Pacejka
model, the lateral forces show linear behavior at small values of slip angle and the maximum
lateral force decreases as the braking/driving level increases. The Fiala model is less accurate
than the Pacejka model, nevertheless it captures one of the most important feature of the
lateral tire dynamics, the saturation of lateral force.
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Figure 2.9: Lateral tire forces from the modified Fiala tire model at different levels of brak-
ing/driving.

Linear tire model

This subsection presents a linear tire model, which can be used for modeling lateral tire force
inside the linear region. This model is only valid when both slip angle and slip ratio are
restricted to have small values.

With small α and s assumption, the lateral tire force is modeled as:

Fc = Cα(µ, Fz)α, (2.25)

where Cα is called the tire’s cornering stiffness coefficient and is a function of the friction
coefficient µ and normal force Fz.

Figure 2.10 compares the lateral tire forces computed from the linear tire model and the
Pacejka model. The linear tire model is the simplest tire model we can possibly get and
should be implemented only with small slip angles, i.e. inside the tire linear region.
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Figure 2.10: Linearized lateral tire forces in small slip angle region compared to Pacejka
model, with s = 0 and µ = 0.9.

2.5 Linear Bicycle Model

In this section we present a linear bicycle model derived from the model (2.13). The model
is based on a linear tire model, small angle assumption and constant velocity assumption.
This model is useful for some cases of lateral dynamics control during which the changes
of the vehicle’s longitudinal velocity is small and not critical. We first make the following
assumption:

Assumption 3 The vehicle travels at a constant longitudinal velocity. i.e. ẍ = 0.

The linear tire model presented in the previous section is used to model the lateral tire
force:

Fc⋆ = C⋆(µ, Fz⋆) · α⋆, (2.26)

where C⋆ is the tire’s cornering stiffness coefficient and is a function of the friction coefficient
µ and normal force Fz⋆ . We assume µ is a know constant and use (2.20) to estimate the
normal force. The constant C⋆ then can be estimated according to the Pacejka tire model
with the given µ and normal force.

To derive a linear model of the y component of tire force Fy, consider the Equations
(2.14b) (2.16) and (2.18). With small angle assumption (δ⋆ < 10◦), we approximate sin δ⋆
and cos δ⋆ using their first order Taylor expansion:

sin δ⋆ ≃ δ⋆, cos δ⋆ ≃ 1. (2.27)

Combining Equations (2.16) (2.17) and (2.27), we can express the slip angle α⋆ as:
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α⋆ ≃
vy⋆ − vx⋆δ⋆
vy⋆δ⋆ + vx⋆

, (2.28)

Assuming vy ≪ vx (i.e. small side slip angle), Equation (2.28) can be approximated as:

α⋆ ≃
vy⋆
vx⋆
− δ⋆. (2.29)

With the assumption δr = 0 and equation (2.18), we have:

αf ≃
vy + aψ̇

vx
− δf , (2.30a)

αr ≃
vy − bψ̇

vx
. (2.30b)

Combining Equations (2.26) and (2.30), the lateral tire forces are computed as:

Fcf ≃ Cf · (
vy + aψ̇

vx
− δf ), (2.31a)

Fcr ≃ Cr · (
vy − bψ̇

vx
). (2.31b)

With the linear tire model (2.26) and small angle assumption, we approximate Equation
(2.14b) as:

Fy⋆ = Fl⋆δ⋆ + Fc⋆ ≃ Fc⋆ . (2.32a)

Substitute (2.32) into (2.13) and neglect longitudinal dynamics ẍ, we have the following
linear dynamic equations:

mÿ = −mẋψ̇ + 2[Cf (
vy + aψ̇

vx
− δf ) + Cr

vy − bψ̇

vx
], (2.33a)

Iψ̈ = 2aCf (
vy + aψ̇

vx
− δf )− 2bCr(

vy − bψ̇

vx
), (2.33b)

ėψ = ψ̇ − ψ̇d, (2.33c)

ṡ = ẋ, (2.33d)

ėy = ẋ(eψ) + ẏ. (2.33e)

Note that we used the reference framework two as in (2.3) and assumed ẋ to be a constant.
This model is compactly written as:

ξ̇(t) = f lin(ξ(t), u(t)) (2.34)

where the state and input vectors are ξ = [ẏ, ψ̇, eψ, s, ey]
′ and u = [δf ], respectively.
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2.6 Point Mass Model

This section presents the most simplified model for the vehicle dynamics, the point mass
model. It is based on the following simplification:

Simplification 2 The vehicle is treated as a point with a given mass. The yaw dynamics
are neglected since there is no vehicle orientation can be defined. x and y direction are set
to be the same as X and Y direction. The front and rear tire forces are treated together and
presented by forces in x and y directions, Fx and Fy.

With Simplification 2, the point mass model dynamic equations can be given as follows:

mẍ = Fx, (2.35a)

mÿ = Fy, (2.35b)

Ẋ = ẋ, (2.35c)

Ẏ = ẏ. (2.35d)

The maximum tire forces can be constrained by the friction circle:

F 2
x + F 2

y ≤ (µmg)2, (2.36a)

where µ is assumed a known constant, m is the vehicle’s mass and g is the gravitational
acceleration.

The dynamics in (2.35) is compactly written as:

ξ̇(t) = fPM(ξ(t), u(t)) (2.37)

where the state and input vectors are ξ = [ẏ, ẋ, Y,X]′ and u = [Fx, Fy]
′, respectively.

The point mass model is oversimplified. Besides its incapability of capturing the yaw
dynamics and vehicle orientation, it also fails to capture the state dependant nature of the
tire forces. For instance, when starting a turn from zero yaw rate and side slip, the rear tire
lateral forces need time to build up with the increase of the yaw rate and side slip. This
coupling of tire forces and vehicle states is not modeled in the point mass model.

Remark 4 The point mass model given by (2.35) and (2.36) is an oversimplification of the
models presented previously in this Chapter. Nevertheless, the constraint (2.36) captures one
of the most important features of the tire forces that can be generated with a given surface
and normal force.

2.7 Concluding Remarks

Different vehicle models and tire models are presented in this Chapter, from a relatively
complex four wheel model with Pacejka tire model to the simplest point mass model with
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no tire model but only a friction circle constraint on tire forces. These models vary in
their accuracy and complexity and poses one important trade off in the model based vehicle
controller design as will be shown later in this thesis. Higher fidelity models usually limit
the prediction horizon and sampling time of the MPC controller which limits the controller
performance. Low fidelity models, on the other hand, allow large prediction horizon with
small sampling time but can exhibit poor controller performance due to their large model
mismatch.
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Chapter 3

Hierarchical Model Predictive Control

3.1 Introduction

Parallel advances in theory and computing systems have enlarged the range of applications
where real-time MPC can be applied [7, 8, 31, 22, 64, 13]. Yet, for a wide class of fast
applications, the computational burden of Nonlinear MPC (NMPC) is still a barrier. In [9]
an NMPC has been implemented on a passenger vehicle for path following via an Active
Front Steering (AFS) system at 20 Hz, by using the state of the art optimization solvers
and rapid prototyping systems. It is shown that the real-time execution is limited to low
vehicle speeds on icy roads, because of its computational complexity. In order to decrease the
computational complexity, in [15, 20] a Linear Time Varying MPC approach is presented to
tackle the same problem. Experimental results [20, 21, 14, 16] demonstrated the capability
of the controller to stabilize the vehicle and follow a reference trajectory at higher speeds.

Following the previous works, in this chapter, we will first compare two approaches to
the autonomous obstacle avoidance problem. In the first approach, we use the formulation
in [19] and modify the cost function by adding a distance-based cost term which increases
as the vehicle gets closer to the obstacle. In the second approach, the controller design is
decomposed into two levels. The high-level uses a simplified point-mass vehicle model and
replans the path based on information about the current position of the obstacle. This is
done in a receding horizon fashion with an NMPC controller. The trajectory is fed to the
low-level controller which is formulated as the one in [19]. We compare performance and
computation time of both approaches by using simulation and experimental results.

After concluding that the hierarchical approach is more promising and suitable for real-
time implementation, we then propose a hierarchical approach for semi-autonomous obstacle
avoidance. The high level path planner utilizes a special kind of curve, the clothoid, to
plan the smoothest path avoiding the obstacle. A few parameters is used to determine the
planned path, which is obstacle free and feasible for the vehicle to track. That results in
low computational complexity for the high level path planner. The parameters also gives a
measure of the aggressiveness of the avoiding maneuver, providing a suitable indication of
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whether an intervention from the controller is needed to keep the vehicle safe.
This chapter is structured as follows. First, we briefly summarize the dynamics models

used in the controller, then outline the control architecture of the two approaches. We then
discuss about the MPC formulation of the two approaches and explain how we formulate the
cost term associated with obstacle avoidance. Simulation and experimental results are then
presented, followed by discussion on the comparisons between the two approaches. At the
last part, the clothoid based semi-autonomous hierarchical controller is proposed, including
the introduction of clothoid, the controller formulation and the simulation and experimental
results.

3.2 Vehicle Model Summary

In this chapter, two vehicle models from Chapter 2 will be used: the Four Wheel Model
and the Point-Mass Model. The ten state nonlinear four wheel model (2.4) which includes
the longitudinal and lateral vehicle dynamics as well as wheel rotating dynamics is used for
simulating the vehicle dynamics in close loop simulations. In controller design, a six state
four wheel vehicle model is used instead, where the wheel dynamics are neglected.

Four wheel model

We use the six state four wheel vehicle model:

mÿ = −mẋψ̇ + Fyf,l + Fyf,r + Fyr,l + Fyr,r (3.1a)

mẍ = mẏψ̇ + Fxf,l + Fxf,r + Fxr,l + Fxr,r (3.1b)

Iψ̈ = a(Fyf,l + Fyf,r)− b(Fyr,l + Fyr,r)+

+ c(−Fxf,l + Fxf,r − Fxr,l + Fxr,r) (3.1c)

Ẏ = ẋ sinψ + ẏ cosψ (3.1d)

Ẋ = ẋ cosψ − ẏ sinψ (3.1e)

Details of the model can be found in Chapter 2. Note that the wheel dynamics are neglected
as discussed in Remark 1. The model is compactly written as:

ξ̇(t) = f 4ws(ξ(t), u(t)) (3.2)

where the superscript 4ws stands for “four wheel simplified”. The state and input vectors
are ξ = [ẏ, ẋ, ψ̇, ψ, Y,X] and u = [δf , Tf,l, Tf,r, Tr,l, Tr,r].

Point-mass model

Consider the point mass model (2.37) and assume that the longitudinal velocity of the vehicle
to be constant. We define the point mass model as follows:

ÿ = ay (3.3a)
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ẍ = 0 (3.3b)

ψ̇ =
ay
ẋ

(3.3c)

Ẏ = ẋ sinψ + ẏ cosψ (3.3d)

Ẋ = ẋ cosψ − ẏ sinψ (3.3e)

|ay| < µg (3.3f)

where ψ is defined as the direction of vehicle speed and the maximum lateral acceleration
ay is bounded by µg. The dynamics of the point-mass model are compactly written as,

ξ̇(t) = f pm(ξ(t), u(t)) (3.4a)

|u(t)| < µg (3.4b)

where ξ = [ẏ, ẋ, ψ, Y, X]′ and u = ay.

3.3 MPC Control Architectures for An Obstacle

Avoiding Path Replanner on Slippery Surface

Control goal

In the next few sections we explore two different control architectures for an obstacle avoiding
path replan controller. The controller follows a predefined double lane change maneuver and
at the same time avoids a pop up obstacle on its way by replanning the path around the
obstacle. Figure 3.3 shows the reference trajectory for Y and ψ. The goal is to replan and
execute the obstacle avoiding maneuver at high speed on low friction snow tracks.

The Y and ψ references in Figure 3.3 is generated by the following equations as functions
of X:

Yref (X) =
dy1
2
(1 + tanh(z1))−

dy2
2
(1 + tanh(z2)), (3.5a)

ψref (X) = arctan(dy1(
1

cosh(z1)
)2(

1.2

dx1
)− dy2(

1

cosh(z2)
)2(

1.2

dx2
)), (3.5b)

where z1 = 2.4
25
(X − 27.19) − 1.2, z2 = 2.4

21.95
(X − 56.46) − 1.2, dx1 = 25, dx2 = 21.95,

dy1 = 4.05, dy2 = 5.7.

Control architectures

We compare two control architectures in this chapter. The first one is shown in Figure 3.2(a),
and is referred to as one-level MPC. It uses the four wheel model presented in previous
section. The desired trajectory [ẋref , ψref (X), ψ̇ref (X), Yref (X)] along with the obstacle
position are fed to the control algorithm. The predictive control scheme computes the
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Figure 3.1: Reference state trajectory of the double lane change path to be followed.

optimal inputs to safely avoid the obstacle while trying to track the desired trajectory. Note
that the forces Tbl and Tbr computed by the MPC are distributed to the braking torques,
Tb⋆,• , on the four wheels by using a braking logic. Details about the braking logic can be
found in [19].

The second approach is shown in Figure 3.2(b), and is referred to as two-level MPC.
It is based on a hierarchical decomposition to the control problem. The desired trajec-
tory [Yref (X), ẋref ] and obstacle position are fed to the high-level path replanner. The
path replanner replans a path which avoids the obstacle and tracks the reference, using
the point-mass model presented in Section Point-Mass Model. The replanned path
[ẋref , ψrepl(X), ψ̇repl(X), Yrepl(X)] is then passed to a low-level path follower. The path fol-
lower computes the optimal input to follow the new trajectory, using the four wheel vehicle
model presented in section Four Wheel Model. The same braking logic as in the one-
level MPC is used here. Both controllers are NMPCs and are described in detail in the next
section.
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Figure 3.2: Two different architectures of controller design.

3.4 MPC Controller Formulation

General NMPC formulation

To formulate the MPC controller as a finite dimensional optimization problem, we discretize
the vehicle dynamics ξ̇ = f ∗(ξ, u) with a sampling time Ts:

ξ(k + 1) = f ⋆d (ξ(k), u(k)), (3.6a)

u(k) = u(k − 1) + ∆u(k), (3.6b)

where f ∗ can be any continuous vehicle dynamics. Note we will use the change rate of
inputs ∆u as optimization variable.
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The MPC controller can be formulated as a general optimization problem:

min
∆Ut

JN(ξ̄t, Ut,∆Ut) (3.7a)

subj. to ξk+1,t = f(ξk,t, uk,t) k = t, ..., t+Hp − 1, (3.7b)

∆uk+1,t = uk+1,t − uk,t k = t, ..., t+Hc − 1, (3.7c)

∆u(k) = 0 k = t+Hc + 1, ..., t+Hp − 1, (3.7d)

ξk,t ∈ Ξ k = t+ 1, ..., t+Hp − 1, (3.7e)

uk,t ∈ U k = t, ..., t+Hp − 1, (3.7f)

∆uk,t ∈ ∆U k = t+ 1, ..., t+Hp − 1, (3.7g)

ξt,t = ξ(t), (3.7h)

where ξ̄t = [ξt,t , ξt+1,t , ..., ξt+Hp−1,t] is the sequence of states ξ̄t ∈ R
nHp over the prediction

horizon Hp predicted at time t, and updated according to the discretized dynamics of the
vehicle model (3.7b), and uk,t and ∆uk,t ∈ R

mr is the kth vector of the input sequence
Ut ∈ R

mrHp and ∆Ut ∈ R
mr(Hp−1) respectively,

Ut = [u′t,t , u
′
t+1,t , ..., u

′
t+Hc−1,t , u

′
t+Hc,t

, ..., u′t+Hp−1,t]
′ (3.8a)

∆Ut = [∆u′t+1,t, ...,∆u
′
t+Hc−1,t,∆u

′
t+Hc,t

, ...,∆u′t+Hp−1,t]
′ (3.8b)

We reduce the computational complexity of the MPC problem by holding the last Hp −Hc

input vectors in Ut constant and equal to the vector ut+Hc−1,t. With this assumption, only
the first Hc input vectors constitutes the optimization variables. We refer to Hp as the
prediction horizon and Hc as the control horizon.

At each time step t, the performance index JN(ξ̄t, Ut,∆Ut) is optimized under the con-
straints (3.7c)-(3.7g) starting from the state ξt,t = ξ(t) to obtain an optimal control sequence,
U∗
t = [u∗t,t

′, ..., u∗t+Hp−1,t
′]′. The first of such optimal moves u∗t,t is the control action applied

to the vehicle at time t. At time t+1, a new optimization is solved over a shifted prediction
horizon starting from the new measured state ξt+1,t+1 = ξ(t+1). The time interval between
time step t+ 1 and and time step t is the sampling time Ts.

Obstacle avoidance cost

The cost for obstacle avoidance is based on the distance between the front of the vehicle
and the obstacle [62]. Assuming information on the position of the obstacle is given at
time t as a collection of N discretized points, the position of the jth point is denoted as
Pt,j = (pXt,j

, pYt,j), j = 1, 2, ..., N . If these points are given in the inertial frame, they are
transformed to the vehicle body frame by,

pxk,t,j = (pYt,j − Yk,t) sinψk,t + (pXt,j
−Xk,t) cosψk,t (3.9a)

pyk,t,j = (pYt,j − Yk,t) cosψk,t − (pXt,j
−Xk,t) sinψk,t (3.9b)
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Figure 3.3: Graphical representation of dk,t,j, pxt,j and pyt,j .

The cost at time k associated to the distance predicted at time t between the vehicle and
an obstacle is denoted as Jobsk,t :

Jobsk,t =
Kobsvk,t
dmink,t

+ ϵ
(3.10)

where v2k,t = ẋ2k,t + ẏ2k,t is the speed of the vehicle at time k predicted at time t, ϵ is a small
number, Kobs is the collision weight and dmink,t

= minj dk,t,j is the minimum distance to all
N obstacle points, with dk,t,j defined as,

dk,t,j =











pxk,t,j − a if pyk,t,j ∈ [−c, c] and pxk,t,j > a

0 if pyk,t,j ∈ [−c, c] and pxk,t,j ∈ [−b, a]

M otherwise

∀ j = 1, 2, ..., N

(3.11)

where a, b and c are the vehicle dimensions, dk,t,j = 0 indicates a collision occurrence, and
M is a constant big enough to disregard obstacles that do not lie within the vehicle’s line of
sight.

Note, the obstacle is discretized at a resolution which ensures that the vehicle cannot
drive right through the obstacle without containing at least one point within its frame. The
obstacle bounds are also enlarged to conservatively consider the width and length of the
vehicle since the controller only controls the vehicle’s center of gravity. More sophisticated
constraints can be introduced to consider the vehicle size if the constraints are tight.

One-Level MPC

The one-level MPC uses the four wheel vehicle mode, i.e., equation (3.7b) is a discrete time
version of the model 3.2. It is formulated as follows:
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min
∆Ut

JN(ξ̄t, Ut,∆Ut) =
t+Htr−1
∑

k=t

(∥ηk,t − ηrefk,t∥
2
Q + ∥uk,t∥

2
R + ∥∆uk,t∥

2
S) +

t+Hp−1
∑

k=t

Jobsk,t

(3.12a)

subj. to ξk+1,t = f 4ws
d (ξk,t, uk,t) k = t, ..., t+Hp − 1, (3.12b)

∆uk+1,t = uk+1,t − uk,t k = t, ..., t+Hc − 1, (3.12c)

∆u(k) = 0 k = t+Hc + 1, ..., t+Hp − 1, (3.12d)

uk,t ∈ U k = t, ..., t+Hp − 1, (3.12e)

∆uk,t ∈ ∆U k = t+ 1, ..., t+Hp − 1, (3.12f)

ξt,t = ξ(t), (3.12g)

The cost function JN considers both the reference tracking and obstacle avoidance, where
the first term penalizes the deviations of the tracking state ηk,t = [ẋk,t, ψk,t, ψ̇k,t, Yk,t]

′ from
the state reference, ηrefk,t = [ẋrefk,t , ψrefk,t , ψ̇refk,t , Yrefk,t ]

′, with weighting Q; the second term
penalizes the control input with weighting R; the third term penalizes the change in control
input with weighting S; the fourth term gives the obstacle avoidance cost.

Notice that predicted state trajectories are penalized over the interval k ∈ [t, t+Htr−1],
where Htr is the tracking horizon, Htr < Hp. The obstacle avoidance cost term is penalized
over the entire prediction horizon. In addition we use two different sampling times: Ts1 for
k ∈ [t, t+Htr−1] and Ts2 for k ∈ [t+Htr, t+Hp−1] with Ts1 < Ts2. Both constructions are
fundamental for obtaining a scheme that is real-time implementable on the vehicle hardware.

The inputs vector uk,t = [δf , Tbl , Tbr ]
′ consists of the steering angle δf , left braking force Frl

and right braking force Fbr . The braking logic in [19] is used to distribute the corresponding
torques at the four wheels.

Two-Level MPC

Two MPC problems are formulated for the high-level path replanning and for the low-level
path following. They can have different setup in sampling time, prediction and etc.

The low-level MPC is similar to the one-level MPC: the vehicle model, the inputs and
their constraints are the same. The difference is that the cost function neglects the obstacle
avoidance term and the tracking reference is the obstacle free replanned path from the high
level, ηreplk,t = [ẋreplk,t , ψreplk,t , ψ̇replk,t , Yreplk,t ]

′. The cost function of low level MPC is given
as:

JLLN (ξ̄t, Ut,∆Ut) =

t+Hp,ll−1
∑

k=t

∥ηk,t − ηreplk,t∥
2
Q + ∥uk,t∥

2
R + ∥∆uk,t∥

2
S (3.13)

The sampling time and prediction horizon of the low level are denoted as Ts,ll and Hp,ll

respectively.
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The high-level MPC uses the point-mass model (3.4), i.e. equation (3.7b) is a discrete
time version of the model (3.4): ξ̇(t) = f pm(ξ(t), u(t)). The optimization problem is formu-
lated as follows:

min
∆Ut

JHLN (ξ̄t, Ut) =

t+Hp,hl−1
∑

k=t

∥Yk,t − Yrefk,t∥
2
Q + ∥ayk,t∥

2
R + Jobsk,t (3.14a)

subj. to ξk+1,t = f pmd (ξk,t, uk,t) k = t, ..., t+Hp − 1, (3.14b)

uk,t = ut+Hc,t k = t+Hc + 1, ..., t+Hp − 1, (3.14c)

|uk,t| < µg k = t, ..., t+Hp − 1, (3.14d)

ξt,t = ξ(t), (3.14e)

The cost function JHLN weights the deviations from the lateral reference Yrefk,t , the lateral
acceleration input ayk,t and the obstacle avoidance term:

JLHN (ξ̄t, Ut) =

t+Hp,hl−1
∑

k=t

∥Yk,t − Yrefk,t∥
2
Q + ∥ayk,t∥

2
R + Jobsk,t (3.15)

The sampling time and prediction horizon of the high level are denoted as Ts,hl and Hp,hl

respectively.

3.5 Simulation and Experimental Results

To test the performance of the two approaches, a series of double lane change maneuvers
at different entry speeds have been simulated and experimentally tested. The goal is to
follow the double lane change as closely as possible while avoiding obstacles. The desired
path is described in terms of lateral position Yref and yaw angle ψref as a function of the
longitudinal position X, as described in section 3.3.

Simulation setup description

We use Matlabr to simulate the close loop systems. The MPC optimization problem has
been implemented as a C-coded s-Function. The commercial NPSOL software package [25] is
used for solving the nonlinear programming problem (3.7). The first element of the optimized
control sequence is passed to another external block which uses the ten state four wheel model
(2.4) to simulate the dynamics of the vehicle, and feeds the current state of the vehicle back
to the controller.We simulate results using this procedure to compare the computation loads
for the two different approaches.

Experimental setup description

The two approaches presented before have been tested through experiments on slippery
surfaces. The experiments have been performed at a test center equipped with icy and
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snowy handling tracks. The MPC controllers have been tested on a passenger car, with a
mass of 2050 Kg and an inertia of 3344 Kg/m2. The controllers were run in a dSPACE
Autobox system, equipped with a DS1005 processor board and a DS2210 I/O board.

We used an Oxford Technical Solution (OTS) RT3002 sensing system to measure the
position and the orientation of the vehicle in the inertial frame and the vehicle velocities
in the vehicle body frame. The OTS RT3002, is housed in a small package that contains a
Differential Global Positioning System (DGPS) receiver, Inertial Measurement Unit (IMU),
and a Digital Signal Processor (DSP). It is equipped with a single antenna to receive GPS
information. The IMU includes three accelerometers and three angular rate sensors. The
DSP receives both the measurements from the IMU and the DGPS, utilizes a Kalman filter
for sensor fusion, and calculate the position, orientation and other states of the vehicle such
as longitudinal and lateral velocities. Compared to a dual antenna setup, a single antenna
system has to learn the vehicle orientation and/or coordinate during vehicle motion. This
might cause the presence of a small offset in the orientation measurement. In dual antenna
systems the vehicle orientation can be easily set even if the vehicle is not moving.

The car was equipped with an Active Front Steering (AFS) and Differential Braking
system which utilizes an electric drive motor to change the relation between the hand steering
wheel and road wheel angles. This is done independently from the hand wheel position, thus
the front road wheel angle is obtained by summing the driver hand wheel position and the
actuator angular movement. Both the hand wheel position and the angular relation between
hand and road wheels are measured.

This steering actuator can operate in two modes: with and without the intervention of
the controller. In the first mode the steering commands of the controller and the driver
overlap and the overall steering action is the results of the contributions from the driver and
the controller. In the second mode there is not controller intervention and the steering angle
is completely decided by the driver through the steering wheel. We used the second mode,
and the driver action represents an input disturbance. The sensor, the dSPACE Autobox
and the actuators communicate through a CAN bus.

The test is initiated by the driver with a button. When the button is pushed, the inertial
frame in Figure 2.2(a) is initialized as follows: the origin is the current vehicle position, the
axes X and Y are directed as the current longitudinal and lateral vehicle axes, respectively.
Such inertial frame becomes also the desired path coordinate system. Once the initialization
procedure is concluded, the vehicle executes the double lane change and obstacle avoidance
maneuver.

Note that, noise may affect the yaw angle measurement due to the single antenna sensor
setup. Compared to a dual antenna setup, a single antenna system has to learn the vehicle
orientation and/or coordinate during vehicle motion. When the vehicle stands still the yaw
angle is computed by integrating the yaw rate measurement from the IMU. This might cause
the presence of a small offset in the orientation measurement, while traveling at low speed
or being still.

A photo of the test vehicle is shown in Figure 3.4.



CHAPTER 3. HIERARCHICAL MODEL PREDICTIVE CONTROL 36

Figure 3.4: The test vehicle.

Figure 3.5: Experimental result: Test results of the one-level MPC at vehicle speed 40 Kph.
The red box represents the obstacle.

Figure 3.6: Experimental result: Test results of the two-level MPC at vehicle speed 45 Kph.
The red bos represents the obstacle.

Experimental results

In this section, we compare the two approaches presented before, the one-level and the two-
level MPC controller. Shown in Figure 3.5, 3.6 and 3.7 are the experimental results obtained
with the vehicle travelling on icy roads (µ ≃ 0.3) at different entry speeds. The controllers
parameters are reported next.
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Figure 3.7: Experimental result: Test results of the two-level MPC at vehicle speed 55 Kph.
The red box represents the obstacle.

Figure 3.8: Experimental result: Replanned paths from the high-level path replanner in
two-level MPC. Vehicle speed is 55 Kph.

Tuning 1A One-level MPC: Nonlinear MPC (3.12) with model (3.2) and cost (3.12a) and
with the following parameters

• Ts1 = 0.1s, Ts2 = 0.3s, Hp = 10, Hc = 2, Htr = 5

• δf ∈ [−10 ◦, 10 ◦], ∆δf ∈ [−17 ◦, 17 ◦]× Ts1

• Fb• ∈ [−1500, 0], ∆Fb• ∈ [−1000, 1000]× Ts1

• Q = diag(10−2, 1, 1, 30), R = diag(10, 1, 1)
S = diag(10−2, 1, 1), Kobs = 1

Tuning 2HL Hierarchical MPC High-level: Nonlinear MPC (3.14) with model (3.4) and
cost (3.14a) and with the following parameters.

• Ts,hl = 0.1s, Hp,hl = 15; Hc = 2

• ay ∈ [−µg, µg]

• Q = 10, R = 12, Kobs = 1
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Figure 3.9: Experimental result: Replanned paths from high-level when the communication
from high-level to low-level is cut off. Vehicle speed is 55 Kph.

Tuning 2LL Hierarchical MPC Low-level: Nonlinear MPC (3.7) with model (3.2) and cost
(3.13) and with the following parameters

• Ts,ll = 0.05s, Hp,ll = 15, Hc = 2

• δf ∈ [−10 ◦, 10 ◦], ∆δf ∈ [−17 ◦, 17 ◦]× Ts,ll

• Fb• ∈ [−1500, 0], ∆Fb• ∈ [−1000, 1000]× Ts,ll

• Q = diag(0, 10, 1, 30), R = diag(1, 10, 10)
S = diag(1, 4, 4)

The road friction coefficient µ is set to be a constant 0.3 even if the road conditions were
changing during each experiment depending on the weather conditions (ice, snow, fresh snow
on top of packed snow). Also, during the experiments, the maximum iteration number in
NPSOL has been limited in order to guarantee real-time computation.

For the one-level MPC, successful tests were obtained only at 40kph (Figure 3.5). The
two-level MPC was able to run at higher speeds of 45 and 55kph (Figure 3.6 and 3.7). In
Figure 3.5 to 3.7, the dotted black line represents the double-lane reference trajectory for
Yref and ψref and the solid red line represents the test results. There is also a red rectangular
box drawn to illustrate the position of the obstacle.

In Figure 3.8 the replanned trajectories at the high-level are shown along with the actual
vehicle trajectory. Substantial deviation of the actual trajectory from the replanned paths
can be observed. This is due to the model mismatch of the point mass model used in the
high level path replanner. The over simplification of the vehicle dynamics causes infeasible
replanned paths for the real vehicle.

In order to better understand the role of the path replanner, in Figure 3.9 we present
a test where the communication from the high-level to the low-level controller is cut off.
Therefore the low-level controller tries to follow the desired path regardless of the obstacle
position and the replanned trajectory. We observe that before passing the obstacle, the
high-level replans paths that avoid the obstacle by turning left at beginning and then by
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Table 3.1: Comutation Time of One-level and Two-level MPC at Vehicle Speed of 40 Kph.

One-lvl MPC Comp.time Two-lvl MPC Comp.time
[ms] [ms]

Tuning 1A Tuning 1B High-lvl Low-lvl
Mean 10 ± 1 23 ± 3 0.5 ± 0.2 3.6 ± 1.4
Max 15 36 1.8 8.2

turning right when driver insists staying to the right. After passing the obstacle, the path
replanner plans paths that converge to the reference.

Computation time

The average and maximum computation times for the one-level and the two-level MPC
are summarized in Table 3.1. In order to test the one-level MPC for longer horizons (not
implementable in real-time on the experimental platform), the results have been obtained
in simulation with a 3.0 GHz Intelr Core(TM)2Duo desktop running Matlab 7.5, with the
vehicle speed set to 40kph, and obstacle position as shown in Figure 3.7.

The computation load is measured in terms of Floating Point Operations (FLOP), Ncomp,
NPSOL takes at each iteration. Using the conversion, Tcomp = Ncomp/(3 × 106), the results
summarized in Table 3.1 are the actual running times on the given processor.

For the two-level MPC, the computation time in Table 3.1 is obtained with Tuning
2HL and Tuning 2LL. For the one-level MPC, Tuning 1A and Tuning 1B is used,
where Tuning 1B is similar to Tuning 1A with these parameters changed: Ts1 = 0.05s, Ts2 =
0.1s,Hp = 23, Hc = 2, Htr = 16.

Notice that, with the one-level MPC set at Tuning 1B, the prediction horizon is now
comparable to the two-level MPC. The tracking horizon is, Hp,llTs,ll ≃ HtrTs1 = 0.8s and
the prediction horizon with Jobsk,t is, Hp,hlTs,hl = HtrTs1 + (Hp −Htr)Ts2 = 1.5s.

With Tuning 1B, the one-level MPC is not able to run in real-time on the experimental
platform. As shown in Table 3.1, the computation time of two-level MPC is 39% less
than that of one-level MPC at (Tuning 1A). The one-level MPC suffers from the heavy
computational burden and is only able to run in real time with compromised horizon and
sampling time, which limits the performance (Figure 3.5). The two-level MPC, on the other
hand, reduces the computation complexity by a hierarchical decomposition to the problem
and is able to obtain good performance (Figure 3.6 and 3.7).

Stability and obstacle avoidance

Consider the one-level MPC. From Figure 3.10, we observe that once the vehicle deviates
too far from the reference, the controller can no longer pull the system back to the reference
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Figure 3.10: Simulation results: At speed of 70Kph, the one-level MPC becomes unstable
even if given enough computation time. While the two-level MPC is able to stabilize the
vehicle in the same situation.

trajectory and the system becomes uncontrollable. This means that the vehicle state is out-
side the region of attraction of the equilibrium trajectory associated to the desired reference.
When the vehicle is travelling at high speeds, this region of attraction becomes smaller, and
the reference trajectory becomes harder to follow. In addition, when obstacle avoidance is
combined with trajectory following, the controller will force the vehicle to deviate from the
reference in order to avoid the obstacle. This often causes the system to become unstable
for the one-level controller running at high speeds. We remark that this type of behavior is
induced by tire saturation and cannot be observed with a simple point-mass model.

However, for the two-level controller, this issue is significantly resolved, since the path
replanner always replans a path starting from the current state of the vehicle, and there-
fore, ensures that the low-level reference is close to current state. This explains why the
performance of the two-level approach is better than the one-level approach.

Figure 3.10 shows the comparison between simulations for the two approaches at 70kph.
Both controllers tried to avoid the obstacle by steering to the right, forcing the vehicle away
from the reference trajectory. The one-level MPC becomes unstable while the two-level MPC
avoids the obstacle and is still able to return to the reference trajectory. We can improve the
performance of the one-level MPC by extending the prediction horizon and control horizon,
however, this is done at the expenses of computation time, and generates runtime error on
the described experimental platform.

If the one-level MPC is properly designed (for example, by using an invariant set as a
terminal constraint [46]), then persistent feasibility is guaranteed for all initial feasible states
(note that the obstacle position becomes a state of the system). For the current two-level
MPC design, even if the high-level path replanner computes a path that avoids the obstacle,
collision may still occur due to errors in the path following at the low-level. By adding a
safety distance to the obstacle (i.e. enlarge the obstacle) and a constraint to the maximum
tracking error in the low-level controller, obstacle avoidance can be guaranteed (for all initial
conditions for which the low-level controller is persistently feasible).



CHAPTER 3. HIERARCHICAL MODEL PREDICTIVE CONTROL 41

3.6 Concluding Remarks on Control Architecture

Comparison

We have presented two MPC approaches for trajectory following for autonomous ground ve-
hicles with obstacle avoidance. The one-level approach combines both requirements into one
large finite horizon optimization problem, while the two-level approach breaks this problem
into a high-level path replanner and a low-level path follower. The experiments show suc-
cessful results from the two level approach with entering speeds up to 55kph on icy surfaces.

For the one-level approach, the computation time increases at higher speeds and there-
fore real-time implementation presents an issue. The high computational complexity also
limits the prediction horizon and sampling time in the one-level approach, which limits the
controller performance. The two-level approach shows promise in this aspect with its much
lower computational burden. However, the point mass model used in the high level is over
simplified. That results in infeasible replanned path for the real vehicle. As can be seen in
Figure 3.8, the actual vehicle trajectory is not able to follow the replanned path closely.

To address the model over simplification problem in the two-level approach, we will
propose an improved approach in the next chapter.

3.7 Clothoid Based Semi-Autonomous Hierarchical

MPC for Obstacle Avoidance

In this section, we propose a hierarchical MPC with the same structure of the two-level
MPC in section 3.3. The low level is the same NMPC as in the point mass two-level con-
troller. The high level is a path planner using a special curve, clothoid, to plan obstacle free
paths. Clothoids are parameterized curves suitable for constructing lane change trajectories.
Later we will show its usefulness in obtaining a semi-autonomous vehicle with adjustable
degrees of autonomy.

Parameterized clothoids

A clothoid is a curve with a curvature that changes linearly with the curve length. It is
widely used in railway and high way engineering for curvature transition. Also, its use in
road design and robot path planning has a long history. Relevant references include [57, 56,
37]. In a clothoid, at a given curve length s the curvature K(s) is determined by the linear
function K(s) = 2a2 · s, where a is the curvature change rate. The clothoid is expressed by
the Fresnel integral [57] as:

X(s) =
1

a

∫ aL

0

cos(s2)ds, (3.16a)
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Figure 3.11: Lane change paths with different aggressiveness. Each is generated by connect-
ing four pieces of clothoids. The upper figure shows the shapes of the paths in global frame.
The lower figure shows the piecewise affine relation between curvature and curve length for
each path.

Y (s) =
1

a

∫ aL

0

sin(s2)ds, (3.16b)

where X and Y are the global coordinates and L is the maximum curve length. In numerical
computation schemes, the integrals in Equation (3.16) are approximated by their Taylor
expansion:

∫ aL

0

cos(s2)ds = aL−
(aL)5

5× 2!
+

(aL)9

9× 4!
−

(aL)13

13× 6!
+ ..., (3.17a)

∫ aL

0

sin(s2)ds =
(aL)3

3
−

(aL)7

7× 3!
+

(aL)11

11× 5!
−

(aL)15

15× 7!
+ ..., (3.17b)

By varying the parameters a and L, different clothoids are generated. A lane-change
maneuver is built by connecting 4 pieces of clothoids together, as shown in Figure 3.11. The
maximum curvature of the clothoid defined by Equation (3.16) is 2a2L. Thus, the maximum
lateral force needed to track the clothoid is mẋ2 · 2a2L. Thus, by constraining a and L we
can guarantee that the required lateral force is feasible.

For a point-mass model, the upper bound on lateral force is µmg. Thus, the constraint
on curvature for a point-mass model is 2a2L ≤ µg

ẋ2
. For the four-wheel model described in
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section 3.2, the maximum achievable lateral force depends on the current vehicle states. At
the beginning of a turn where lateral velocity ẏ and yaw rate ψ̇ are both zero, the lateral
force at the rear tires are zero, therefore the only source of lateral force at that instant are
the front tires. We use sampling and extensive simulations of our vehicle model to determine
the maximum available lateral force at the beginning of a turn (0.46µmg). After the turn
begins, ẏ and ψ̇ increase and more lateral force will become available. For a conservative
approximation, the value 0.46µmg is taken as the upper bound of lateral force along the
turn. The constraint on a and L for the clothoid becomes:

2a2L ≤
0.46µg

ẋ2
(3.18a)

where µ is the friction coefficient and ẋ is the body-fixed longitudinal velocity.

Obstacle and safety constraints

We use scenario based ad-hoc constraints for the obstacle avoidance. Figure 3.12 shows one
scenario where the vehicle takes a left lane change to avoid the obstacle which is presented
by the red box. The lane change maneuver is composed of four clothoids, indicated by 1, 2,
3 and 4 in the figure. We assume 1 and 2 have the same parameters [a1, L1] and 3, 4 share
the same parameters [a2, L2]. The final heading angle at point B is assumed to be zero for
simplification. The optimization variables for the high level are chosen to be P = [Xa, Xb, Yb].
With a given P and the initial point [X0, Y0, ψ0], the parameters [a1, L1, a2, L2] as well as
the whole planned curve can be uniquely determined, including the coornidates (Xa, Xb, ψa)
and (Ya, Yb, ψb).

To guarantee obstacle avoidance, we apply the following constraints on P for the scenario
in Figure 3.12:

Xa ≤ Xc, (3.19a)

Xb ≥ Xc, (3.19b)

Yb ≥ Yc, (3.19c)

(Yc − Ya) ≤ (Yb − Ya) ·
Xc −Xa

Xb −Xa

, (3.19d)

where (3.19a) ensures point A is at the left side of the obstacle; (3.19b) ensures point B has
passed the left side of the obstacle; (3.19c) ensures point B is above the obstacle; (3.19d)
ensures point C is at the bottom right side of the line AB. Similar constraints can be
formulated under other scenarios.

The following constraints are also applied for safety:

YLB ≤ Yb ≤ YUB, (3.20a)

|ψa| ≤ π/4, (3.20b)
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Figure 3.12: Ad-hoc Clothoid parameters setup for obstacle constraints.

K1max
≤

0.46µg

ẋ
, (3.20c)

K2max
≤

0.46µg

ẋ
, (3.20d)

where (3.20a) represents the road bound constraint, with YLB and YUB being the lower and
upper bound of Y for the road bound, respectively; (3.20b) limits the maximum yaw angle of
the vehicle along the planed path; (3.20c) and (3.20d) constraints the maximum curvature of
the clothoids. K1max

and K2max
are functions of the optimization variable P = [Xa, Xb, Yb].

Equations (3.19) and (3.20) are compactly written as:

h(ξ0, P ) ≤ 0, (3.21a)

where 0 is the zero vector with appropriate dimension.

MPC formulation

The optimization problem for the high level path planner is formulated as follows:

min
Pt

JHLN (ξt,t, Pt) = K2
1max

+K2
2max

(3.22a)

subj. to h(ξt,t, Pt) ≤ 0, (3.22b)

ξt,t = ξ(t), (3.22c)

Once the optimal parameter vector P ∗ is determined, the optimal clothoid curves can
be computed and fed to the low level. The values K1max

and K2max
tells how aggressive the

maneuver has to be in order to avoid the obstacle. Based on that, The low level MPC can
determine whether or not to intervene by taking over control and following the planned path
from the high level.

A similar MPC is set up to take the vehicle back into the original lane.
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Figure 3.13: Simulation result: Various lane change maneuvers are compared. As the vehicle
approaches the obstacle the planned paths become more aggressive (high curvatures).

Simulation and experimental results

In this subsection we show the simulation and experimental results of the proposed hierar-
chical MPC. The simulation and experimental setups are the same as the ones described in
section 3.5. The experiments have been performed at a test center equipped with icy and
snowy handling tracks.

Figure 3.13 shows three different lane change maneuvers. They are generated from the
high-level path planner starting from X = 120, 140, and 160m. As the vehicle approaches
the obstacle, the planned paths become more aggressive, that is, the maximum curvature of
the planned clothoids approaches the limit at the given speed and friction coefficient. The
maneuver in red is the most aggressive maneuver the vehicle can handle at the given speed.
The simulations presented in Figure 3.14 use a binary driver model. The driver is either
attentive, as in the upper plot of Figure 3.14, and the low-level controller does not assume
control until the planned path becomes aggressive, or the driver is distracted, as in the lower
plot of Figure 3.14, and the low-level control begins tracking the planned path with a lower
degree of curvature.

Figure 3.15 and 3.16 show the experimental results of the semi-autonomous driving on a
snow track. In the experiments, Xb in (3.19b) is set to be equal to the X coordinate of the
obstacle center, for simplicity. In the first test shown in Figure 3.15 the driver was assumed
to be distracted and the path tracker assumed control early enough to track a smoothly
planned trajectory. In the second experiment in Figure 3.16 the driver was assumed to be
attentive and the controller did not take over until the planned path became aggressive.
Both experiments successfully avoided the obstacle.

Note that the low-level path follower might not be able to track the planned path perfectly
because of model mismatch and external disturbances. In some cases, the tracking error is
large enough that the maneuver becomes infeasible to track. The second experiment in
Figure 3.16 shows this interesting behavior. In the test, when infeasibility appeared, a
braking maneuver was invoked to reduce the velocity and thus enlarge the feasible region.
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Figure 3.14: Simulation result: In the upper plot an attentive driver is assumed. The low-
level control takes over when the planned path becomes aggressive. In the lower plot the
low-level control takes over for a distracted driver and the result is a smoother and safer
path.
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Figure 3.15: Experimental results: Vehicle successfully avoids the obstacle using maneuvers
based on clothoids.

In Fig 3.16 we can see that after a few seconds of braking the path planner is able to find a
feasible solution around the obstacle, braking is interrupted and the obstacle is successfully
avoided.
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Figure 3.16: Experimental result: Actual path of the vehicle deviates from the planned path
due to model mismatch and caused infeasibility of tracking. Braking was invoked to enlarge
the feasible region in that situation.

3.8 Concluding Remarks

In this Chapter, we first compared two control architectures for autonomous obstacle avoid-
ance, the one-level approach and the two-level hierarchical approach. The one-level ap-
proach is limited by its high computational complexity and is only able to control the vehi-
cle at low speeds with compromised performances. While the two-level approach is more
promising thanks to its low complexity due to the decomposition of the problem into a high
level path replanner and low level path follower. With a simple vehicle model, the high
level is able to plan over long prediction horizon at small sampling time. The higher fidelity
vehicle model used in the low level allows the low level path follower to stabilize the vehicle
around the planned path. However, due to the oversimplification of the point mass model,
the high level planned path is sometimes infeasible for the real vehicle to track. Thus in the
next chapter, We will propose an improved approach with the same two level hierarchical
architecture.

In the last part of this chapter, We proposed a semi-autonomous obstacle avoidance
hierarchical MPC based on a special kind of curve, the clothoid. Thanks to the properties
of clothoid, we are able to plan feasible paths with only few parameters. We can determine
the aggressiveness of the planned path from the optimal parameters and based on that
determine the right time to intervene the vehicle control. The clothoid based hierarchical
controller is fast for real-time computation and performs well. However, the use of ad-hoc
obstacle constraints makes it hard to be extended to more generic scenarios. There is some
study on the generic formulation utilizing the clothoids [26]. However, a mixed integer
nonlinear programming is required in that approach, which is not suitable for fast real-time
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implementation.
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Chapter 4

Spatial Model Predictive Control

4.1 Introduction

Real-time generation and tracking of feasible trajectories is a major barrier in autonomous
guidance systems when the vehicle travels at the limits of its handling capability. Trajec-
tories generated by using oversimplified models violate system constraints, while computing
trajectories using high-fidelity vehicle models and nonlinear optimization is computationally
demanding. Moreover, the presence of external disturbances and model uncertainties might
still prevent the vehicle from following the desired path.

The previous chapter proposed a hierarchical two-level NMPC scheme for the autonomous
and semiautonomous driving problem. The high-level path planner uses a simplified point-
mass vehicle model to generate an obstacle avoiding trajectory by using a NMPC controller.
The trajectory is fed to the low-level path follower designed by using a NMPC based on a
higher fidelity vehicle model. In [23] the proposed hierarchical framework has been imple-
mented on an autonomous ground vehicle driving at high speeds on an icy road. Although
this decomposition allows for real-time implementation, the trajectories generated by the
point-mass path planner are not always feasible. The lower level tracking performance dete-
riorates and obstacle collisions can be observed in conditions where the obstacle could have
been avoided.

In order to overcome this issue and still maintain real-time feasibility, the work in [27] uses
a motion primitive path planner at the high level. Although the high level trajectories from
the motion primitive planner are feasible for the high-fidelity model, the optimal trajectory
requires the online solution of a mixed-integer program or the offline computation of a
large look-up table. This prevents the use of such approach on current electronic control
units. In order to plan a feasible path in real-time this paper studies the use of spatial
predictive control at the high level. We follow the approach presented in [61, 30] and
transform time-dependent vehicle dynamics into spatial-dependent dynamics. By using this
approach obstacle constraints are translated into spatial constraints on the state vector.
Simulation and experimental results show the controller’s ability to avoid multiple obstacles
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while tracking a reference in the center of the lane. Real-time tests have been conducted
on a dSPACE platform in hardware-in-the-loop simulations. Furthermore, the hierarchical
controller has been implemented on a semi-autonomous vehicle driving high-speed on ice.

This chapter is structured as follows. Section 4.2 describes the vehicle models used in the
controller, including the nonlinear bicycle vehicle model and a spatial bicycle vehicle model.
Section 4.3 outlines the hierarchical architecture of the controller and the MPC formulation.
The simulation and experimental results are reported in section 4.4.

4.2 Vehicle model

This section introduces the vehicle models used for the control design. Section 4.2 describes
the six state nonlinear vehicle model. Section 4.2 explains the transformation from a time-
dependent bicycle model to a spatial-dependent model.

Four wheel model

As mentioned in Remark 1, we omit the wheel dynamics in the ten state four wheel model
for simplicity in control design. This results in the six state four wheel vehicle model:

mÿ = −mẋψ̇ + Fyf,l + Fyf,r + Fyr,l + Fyr,r (4.1a)

mẍ = mẏψ̇ + Fxf,l + Fxf,r + Fxr,l + Fxr,r (4.1b)

Iψ̈ = a(Fyf,l + Fyf,r)− b(Fyr,l + Fyr,r)+

+ c(−Fxf,l + Fxf,r − Fxr,l + Fxr,r) (4.1c)

Ẏ = ẋ sinψ + ẏ cosψ (4.1d)

Ẋ = ẋ cosψ − ẏ sinψ (4.1e)

Details of the model can be found in Chapter 2. This model is compactly written as:

ξ̇(t) = f 4ws(ξ(t), u(t)) (4.2)

where the superscript 4ws stands for “four wheel simplified”. The state and input vectors
are ξ = [ẏ, ẋ, ψ̇, ψ, Y,X] and u = [δf , Tf,l, Tf,r, Tr,l, Tr,r].

Spatial bicycle model

Figure 4.1 shows the curvilinear coordinate system used in the spatial model as well as the
states of the model. The solid curve represents the center line of the lane. The states of the
spatial vehicle model are defined as ξs = [ẏ, ẋ, ψ̇, eψ, ey]

T . Where ẏ, ẋ and ψ̇ are body
frame velocities, eψ and ey are the error of heading angle and lateral position with respect
to the center line of the lane.
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Figure 4.1: The curvilinear coordinate system. The dynamics are derived about a curve
defining the center-line of a track. The coordinate s defines the arc-length along the track.
The relative spatial coordinates ey and eψ are shown.

The following kinematic equations can be derived from Figure 4.1:

vs = (ρ− ey) · ψ̇s; vs = ẋ · cos(eψ)− ẏ · sin(eψ), (4.3)

where vs is the projected vehicle speed along direction of the lane center line, ρ and ψs are
the radius of curvature and the heading of the lane center line. ψ̇s is the time derivative of
ψs. The vehicle’s velocity along the path ṡ = ds

dt
is then given by

ṡ = ρ · ψ̇s =
ρ

ρ− ey
· (ẋ · cos(eψ)− ẏ · sin(eψ)) (4.4)

where s is the projected vehicle position along the lane center line. Using simple relationships
in the new curvilinear coordinate system and the fact that dξs

ds
= dξs

dt
· dt
ds

we can calculate the
derivative of ξs with respect to s as follows ((·)′ represents the derivative with respect to s):

ẏ′ = ÿ/ṡ; ẋ′ = ẍ/ṡ; ψ̇′ = ψ̈/ṡ; (4.5a)

e′ψ = (ψ − ψs)
′ = ψ̇/ṡ− ψ′

s; (4.5b)

e′y = ėy/ṡ = (ẋ · sin(eψ) + ẏ · cos(eψ))/ṡ (4.5c)

where ÿ, ẍ and ψ̈ are computed from the nonlinear bicycle model (2.12), a simplified version
of the four wheel model (4.1). The road information ψ′

s is assumed to be known. The spatial
vehicle dynamics then can be formulated as:

ξs
′

(s) = f s(ξs(s), us(s)). (4.6)

where the inputs are the front steering angle δf and the braking or throttle effort βr ∈ [−1 1]
with -1 corresponding to maximum braking and 1 corresponding to maximum throttle (us =
[δf , βr]). Note the time as function of s, t(s), can be retrieved by integrating t′ = 1/ṡ.
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4.3 MPC control architecture with obstacle avoidance
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Figure 4.2: Architecture of the two-level MPC. A spatial vehicle model is used for high-level
path planning. A four-wheel vehicle model is used for low-level path tracking.

A two level hierarchical control scheme [23] is used in this paper. As illustrated in Fig
4.2, the obstacle avoiding control problem is decomposed into two parts: a high level path
planner and a low level path follower. The road information is fed into the high level. The
high level plans an obstacle-free path using the nonlinear spatial vehicle model in section
2.24.2. The planned path (in spatial coordinates) is then fed to the low level path follower,
which uses the four-wheel vehicle model (section 2.14.2) to compute the optimal control
inputs in order to track the planned path. Each level solves a nonlinear MPC problem to
plan or follow the path.

MPC formulation

The MPC controller is formulated as a general optimization problem

min
Ut

JN (ξ̃t, Ut,∆Ut) (4.7a)

subj. to ξk+1,t = f(ξk,t, uk,t) k = t, ..., t+Hp − 1 (4.7b)

∆uk+1,t = uk+1,t − uk,t k = t, ..., t+Hp − 1 (4.7c)

ξk,t ∈ X k = t+ 1, ..., t+Hp − 1 (4.7d)

uk,t ∈ U k = t, ..., t+Hp − 1 (4.7e)

∆uk,t ∈ ∆U k = t+ 1, ..., t+Hp − 1 (4.7f)

ξt,t = ξ(t) (4.7g)

where ξ̃t = [ξt,t , ξt+1,t , ..., ξt+Hp−1,t] is the sequence of states ξ̃t ∈ R
nHp over the prediction

horizon Hp predicted at time t. Elements in ξ̃t are updated according to the discretized
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dynamics of the vehicle model (4.7b). uk,t and ∆uk,t ∈ R
mr is the kth vector of the input

sequence Ut ∈ R
mrHp and ∆Ut ∈ R

mr(Hp−1) respectively,

Ut = [uTt,t , u
T
t+1,t , ..., u

T
t+Hu−1,t , u

T
t+Hu,t

, ..., uTt+Hp−1,t]
T (4.8a)

∆Ut = [∆uTt+1,t, ...,∆u
T
t+Hu−1,t,∆u

T
t+Hu,t

, ...,∆uTt+Hp−1,t]
T (4.8b)

Note the time “t” in this section denotes the generalized time, the independent variable
with respect to which the system states are differentiated. Specifically, in the high level it is
the spatial coordinate “s” while in the low level it is the time t.

The computational complexity of the MPC problem is reduced by two means. One is to
hold the last Hp −Hu input vectors in Ut constant and equal to the vector ut+Hu−1,t. With
this assumption, only the first Hu input vectors constitutes the optimization variables. The
other one is to keep the input vectors constant for every iHu steps in the first Hu input
vectors (i.e., set ut+n·iHu+k,t = ut+n·iHu,t, ∀k = 1, 2...iHu). With this assumption, the number
of optimization variables is further reduced. We refer to Hp as the prediction horizon, Hu as
the control horizon and iHu as the input blocking factor.

At each time step t, the performance index JN(ξ̃t, Ut,∆Ut) is optimized under the con-
straints (4.7c)-(4.7f) starting from the state ξt,t = ξ(t) to obtain an optimal control sequence,
U∗
t = [u∗t,t

T , ..., u∗t+Hp−1,t
T ]T . The first of such optimal moves u∗t,t is the control action applied

to the vehicle at time t. At time t+1, a new optimization is solved over a shifted prediction
horizon starting from the new measured state ξt+1,t+1 = ξ(t+1). The time interval between
time step t+ 1 and time step t is the sampling time Ts.

High level path planner

The High level MPC uses the spatial bicycle vehicle model. Specifically, in equation (4.7b)
we use a discretized version of the equation 4.6.

The cost function considers the deviation of the tracking states ηhlk,s = [ẋk,s , ψ̇k,s, eψk,s
, eyk,s ]

T

with respect to the reference ηhlrefk,s = [ẋk,s , ψ̇k,s, eψk,s
, eyk,s ]

T , as well as the input and input
rate.

JN (ξ̃s, Us,∆Us) =

s+Hp,hl−1
∑

k=s

∥ηhlk,s − η
hl
refk,s

∥2Qhl
+

+∥uk,s∥
2
Rhl

+ ∥∆uk,s∥
2
Shl

(4.9)

Where the reference ẋrefk,s is a given constant, eψrefk,s
and eyrefk,s are zero, ψ̇refk,s is defined

as ψ′
s · ẋrefk,s . Qhl, Rhl and Shl are weighting matrices with proper dimensions. The index

for general time “t” is replaced by “s” here. The distance interval between step s+ 1 and
s is the sampling interval ds.

A spatial horizon allows one to formulate obstacle constraints as simple bounds on ey and
include them in the state constraints (4.7d). At each prediction step, the vehicle position
along the lane center is known to be (s + k · ds). According to the position and width
of the obstacle, one can determine the bounds on ey. With one obstacle, there are two
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disconnected regions of feasible ey, respectively corresponding to passing the obstacle from
left and right. In this paper, a simple heuristic based on the vehicle position and the size of
each feasible region is used to determine which side should the vehicle pass through. In the
case of multiple obstacles at the same coordinate “s”, a similar approach can still be used.

The optimal trajectory [ẋ∗(s), ψ̇∗(s), e∗ψ(s), e
∗
y(s), t

∗(s)] is computed by simulating the
vehicle model with the optimal inputs from the MPC problem and then passed to the low
level path follower. Note t∗(s) can be easily retrieved as described in section 2.24.2. In the
low level, this spatial trajectory is transformed back to a time-dependent trajectory [ẋ∗(t),
ψ̇∗(t), ψ∗(t), Y ∗(t), X∗(t)] by coordinate transformation and interpolation.

Low level path follower

The low level MPC uses the four wheel vehicle model from section 4.2. At each time step
t, the system dynamics are linearized around the equilibrium trajectory [ξk,t, uk,t], with
uk,t = ut,t ∀k = t, ..., t + Hp,ll and ξk+1,t = f 4w

d (ξk,t, uk,t), where f
4w
d is the discrete version

of the equation ξ̇(t) = f 4w(ξ(t), u(t)). The details of the linearizing process can be found in
[17].

The cost function again consists of the deviation of the tracking states ηllk,t = [ẋk,t, ψk,t,

ψ̇k,t, Yk,t]
T from the reference ηllrefk,t = [ẋrefk,t , ψrefk,t , ψ̇refk,t , Yrefk,t ]

T as well as the input and

input rate penalty.

JN (ξ̃t, Ut,∆Ut) =

s+Hp,ll−1
∑

k=t

∥ηllk,t − η
ll
refk,t

∥2Qll
+

∥uk,t∥
2
Rll

+ ∥∆uk,t∥
2
Sll

(4.10)

The inputs vector uk,t = [δf , Fbl , Fbr ]
T consists of the steering angle δf , left braking

force Frl and right braking force Fbr . The braking logic in [19] is used to distribute the
corresponding torques at the four wheels.

4.4 Simulation and experimental results

Simulation and experimental tests are conducted to evaluate the proposed controller. The
MPC problem has been implemented as a C-coded s-function where NPSOL [25] is used to
solve the high level optimization. At the low-level, the nonlinear program is solved by using
a sequential quadratic programming approach [18] and the quadratic program is solved using
the QP solver routine available in [59], which implements the Dantzig-Wolfe’s algorithm.

Simulation setup description

Real-time simulation of the controller is tested on a dSPACE rapid prototyping system
consisting of a MicroAutoBox and a DS1006 processor board with a DS2211 I/O board.



CHAPTER 4. SPATIAL MODEL PREDICTIVE CONTROL 55

The controller runs on the MicroAutoBox. The first element of the optimal control sequence
is passed to DS1006 board, which simulates the vehicle dynamics using a four wheel vehicle
model and Pacejka tire model [1], and then feeds the current vehicle state back to the
controller. The two components communicate through a CAN bus.

Experimental setup description

The experiments have been performed at a test center equipped with icy and snowy handling
tracks. The MPC controller has been tested on a passenger car, with a mass of 2050 Kg
and a yaw inertia of 3344 Kg/m2. The controllers were run in a dSPACE Autobox system,
equipped with a DS1005 processor board and a DS2210 I/O board.

We used an Oxford Technical Solution (OTS) RT3002 sensing system to measure the
vehicle position and orientation in the inertial frame and the vehicle velocities in the vehicle
body frame. The OTS RT3002 is housed in a small package that contains a differential GPS
receiver, Inertial Measurement Unit (IMU) and a DSP. The IMU includes three accelerom-
eters and three angular rate sensors. The DSP receives both the measurements from the
IMU and the GPS, utilizes a Kalman filter for sensor fusion, and calculates the position,
orientation and other states of the vehicle.

The car was equipped with an Active Front Steering (AFS) and Differential Braking
system which utilizes an electric drive motor to change the relation between the hand steering
wheel and road wheel angles. This is done independently from the hand wheel position, thus
the front road wheel angle is obtained by summing the driver hand wheel position and the
actuator angular movement.

The sensor, the dSPACE Autobox and the actuators communicate through a CAN bus.

Results and discussions

The controller is tested with the following tuning: Tuning HL Hierarchical MPC High-level:
Nonlinear MPC (4.7) with model (4.6) and cost (4.9) and with the following parameters.

• ds = 1.5m, Hp,hl = 15, Hu,hl = 12, iHu,hl = 3

• δf ∈ [−10 ◦, 10 ◦], ∆δf ∈ [−17 ◦, 17 ◦]× ds

• βr ∈ [−1, 1], ∆βr ∈ [−10, 10]× ds

• Qhl = diag(1, 1, 20, 1), Rhl = diag(50, 50)
Shl = diag(0.1, 0.1)

Tuning LL Hierarchical MPC Low-level: Nonlinear MPC (4.7) with model (4.2) and cost (4.10)
and with the following parameters

• Ts,ll = 0.05s, Hp,ll = 5, Hu,ll = 3, iHu,ll = 1

• δf ∈ [−10 ◦, 10 ◦], ∆δf ∈ [−17 ◦, 17 ◦]× Ts,ll
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Figure 4.3: Simulated result: The vehicle entered the maneuver at 50 kph. The green lines
are planned paths from the high-level which are updated every 200 ms. The black line is the
actual trajectory the vehicle traveled.

• Fb• ∈ [−1500, 0], ∆Fb• ∈ [−1000, 1000]× Ts,ll

• Q = diag(10, 20, 10, 50), R = diag(1, 0.5, 0.5)
S = diag(1, 0.1, 0.1)

The simulation and experimental results are summarized in Figures 4.3 to 4.6. In all tests,
the road friction coefficient is approximately 0.3. The high level path planner is invoked
every 200ms, and the low level every 50ms.

Since the obstacle constraint is formulated as hard constraints on the states, the high
level path planner will always plan a tight path passing the obstacle due to the tracking error
and input penalties, see the green line right below the obstacle in figure 4.3 as an example.
To avoid this problem, an unsafe zone around the obstacle is added in the tests. The unsafe
zones are shown in gray in figure 4.4 to 4.6.

Figure 4.3 and 4.4 are the simulation and experimental results of the vehicle avoiding
one obstacle on a slippery road. The two tests show consistent performance. Figure 4.5 and
4.6 show the experimental results for avoiding two obstacles with different distances between
them. In both cases the vehicle was able to avoid both obstacles and get back to the lane
center afterwards. In figure 4.6 when the distance between the two obstacles was large, the
vehicle was already trying to get back to the lane center before the second obstacle came
into the planning horizon.

Figure 4.7 compares the controller’s performance with a previously proposed controller
in [23], which uses a time-dependent point mass model at the high level. The blue dots in
the figures are the reference for the low level at each sampling time. We observe that the use
of a nonlinear bicycle model at the high level greatly improves the tracking performance.
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Figure 4.4: Experimental result: The vehicle entered the maneuver at 50 kph. Friction coef-
ficient of the ground was approximately 0.3. The vehicle avoided the obstacle and continued
to track the lane center. The green lines are planned paths from the high-level which were
updated every 200 ms. The black line is the actual trajectory the vehicle traveled.
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Figure 4.5: Experimental result: The vehicle entered the maneuver at 50 kph. Friction
coefficient of the ground was approximately 0.3. The vehicle avoided the two obstacles and
continued to track the lane center.
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Figure 4.6: Experimental result: The vehicle entered the maneuver at 50 kph. Friction
coefficient of the ground was approximately 0.3. The vehicle avoided the first obstacle and
continued to track the lane center until the second obstacle came into sight. It then turned
left to avoid the second obstacle.

The use of a spatial model at the high level makes the construction of obstacle constraints
straight forward as described in section 3.1 4.3. On the other hand, the hard constraint
formulation for obstacle is not trivial for general shaped obstacles in MPC formulation with
time-dependent models. Potential field approaches are a commonly used solution approach.
Of course, it is possible to find indicating functions whose level sets can be used to form
the obstacle constraints. This is usually not straight forward, especially if one wants the
indicating function to have nice properties, such as differentiability, in order to speed up the
optimization problem.

4.5 Concluding Remarks

In this chapter, a hierarchical design of a spatial MPC controller is presented for the obsta-
cle avoiding and lane keeping problem of a ground vehicle on a slippery road. The control
problem is decomposed into a high level path planner and a low level path follower. The
high level uses a simplified spatial model while the low level uses a higher fidelity model. Ex-
perimental results show the controller is real-time implementable and able to avoid multiple
obstacles at high speeds on slippery road.

Compared to the point mass model hierarchical MPC in the previous chapter, the tracking
of the vehicle trajectory to the planed trajectory is greatly improved by the use of the spatial
bicycle model. However, the high level planned path will never be tracked perfectly due
to the model mismatch, state estimation error and external disturbances. Thus collision
avoidance is not guaranteed even when the high level planned path is obstacle free. The
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(a) Simulation result of the controller in [23]. A time-dependent
point mass model is used for the high level. The vehicle turns early
because the high level uses a potential field approach for obstacle
avoidance.
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(b) Simulation result of the new controller. A spatial-dependent
bicycle model is used for the high level.

Figure 4.7: Simulation result comparison with the controller proposed in [23]. In both cases
the high levels replan every 200ms. The same low level path follower is used, which uses a
nonlinear four wheel model and runs every 50ms.
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next chapter approaches this issue by proposing a robust NMPC framework which enforces
robust constraint satisfaction under the presence of uncertainties.
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Chapter 5

Robust Nonlinear Model Predictive
Control

5.1 Introduction

Previous chapters have addressed the problem of autonomous and semiautonomous obstacle
avoidance and lane keeping, by an approach of hierarchical MPC scheme. Successful imple-
mentations of such MPC scheme on autonomous vehicle driving ar high speeds on slippery
icy-snow track have been reported in [23, 24, 27]. However, robust constraint satisfaction
is not guaranteed. Because uncertainties from a variety of sources might still prevent the
vehicle from following the desired path and satisfying the safety constraints. Such uncertain-
ties include measurement errors, friction coefficient estimation, driver behavior and model
mismatch.

This chapter presents a systematic way of enforcing robustness under the presence of
uncertainties during the MPC design stage. A robust nonlinear MPC framework [36, 43,
44, 55, 65, 2, 45, 63] is used in this chapter. In particular we follow the “Tube” approach
presented in [63] for nonlinear system where the inputs enter linearly in the state update
equations. The basic idea is to use a control law of the form u = ū+K(ξ − ξ̄) where ū and
ξ̄ are the nominal control input and system states trajectories. For a given linear controller
K, a robust invariant set is computed for the error system. The invariant is used to bound
the maximum deviation of the actual states from the nominal states under the linear control
action K. A nominal MPC optimizes ū and ξ̄ with tightened state and input constraints.
The tightening is computed as a function of the bounds derived from the robust invariant
set.

In the first part of the chapter we propose a force-input nonlinear bicycle vehicle model.
The model captures the main nonlinear vehicle dynamics and the input forces enter linearly
the system equations. In the second part we show how to compute the robust invariant
for the nonlinear system controlled in closed-loop by a linear state-feedback controller. The
invariant set is computed utilizing the lipschitz constant of the nonlinear systems. In the
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third part we use the robust invariant set computed off-line to tighten the state and input
constraints for a nominal nonlinear MPC problem which computes obstacle-free trajectories
and corresponding input sequences. Simulations and experiments in different scenarios show
the effectiveness of the proposed approach. In particular, in the last part of the chapter,
nominal MPC is compared with the proposed approach in terms of performance and constrain
satisfaction.

This chapter is structured as follows. In section 5.2 the definitions of invariant sets are
presented, the Robust MPC framework is outlined and the method used for computing the
robust invariant set is introduced. In section 5.3 the force-input nonlinear vehicle model
with additive uncertainty is developed. Section 5.4 details the robust invariant set computa-
tion. Section 5.5 presents the safety constraints and section 5.6 formulates the Robust MPC
problem. Finally, in section 5.7 and 5.8 we present the simulation and experimental results
showing the behavior of the proposed controller.

5.2 Invariant set and robust MPC

Background on set invariance theory

In this section several definitions are provided that will be important in developing the
Robust MPC later in this chapter.

We denote by fa the constrained, discrete time linear autonomous system perturbed by
a bounded, additive disturbance

ξk+1 = fa(ξk) + wk, (5.1)

where ξk and wk denote the state and the disturbance vectors. System (5.1) is subject to
the constraints

ξk ∈ Ξ ⊆ R
n, wk ∈ W ⊆ R

d, (5.2)

where Ξ and W are polyhedra that contain the origin in their interiors.

Definition 1 (Reachable Set for autonomous systems) Consider the autonomous system
(5.1)-(5.2). The one-step robust reachable set from a given set of states S is

Reachfa(S,W)
△
= {ξ ∈ R

n|

∃ ξ0 ∈ S, ∃ w ∈ W : ξ = fa(ξ0, w)}.
(5.3)

Similarly, for systems with inputs

ξk+1 = f(ξk, uk) + wk, (5.4)

subject to the constraints

ξk ∈ Ξ, uk ∈ U ⊆ R
m, wk ∈ W , (5.5)

we use the following definition of the one-step robust reachable set.
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Definition 2 (Reachable set for systems with external inputs) Consider the system (5.4)-
(5.5). The one-step robust reachable set from a given set of states S is

Reachf (S,W)
△
= {ξ ∈ R

n|

∃ ξ0 ∈ S, ∃ u ∈ U , ∃ w ∈ W : ξ = f(ξ0, u, w)}.
(5.6)

All states contained in S are mapped into the reachable set Reachfa under the map fa
for all disturbances w ∈ W , and under the map f for all inputs u ∈ U and all disturbances
w ∈ W . We will next define robust invariant sets.

Definition 3 (Robust Positively Invariant Set) A set Z ⊆ Ξ is said to be a robust positively
invariant set for the autonomous system (5.1) subject to the constraints in (5.2), if

ξ0 ∈ Z ⇒ ξk ∈ Z, ∀wk ∈ W , ∀k ∈ N
+. (5.7)

Definition 4 (Maximal Robust Positively Invariant Set) The set Z∞ ⊆ Ξ is the maximal
robust invariant set for the autonomous system (5.1) subject to the constraints in (5.2), if
Z∞ is a robust positively invariant set and Z∞ contains all robust positively invariant sets
contained in Ξ that contain the origin.

Two set operations will be used in this article: the Pontryagin difference and the Minkowski
sum. The Pontryagin difference of two polytopes P and Q is a polytope

P ⊖Q := {x ∈ R
n : x+ q ∈ P , ∀q ∈ Q}, (5.8)

and the Minkowski sum of two polytopes P and Q is a polytope

P ⊕Q := {x+ q ∈ R
n : x ∈ P , q ∈ Q}. (5.9)

The Multi-Parametric Toolbox (MPT) [35] can be used for the set computations.

Background on robust MPC

In this section we outline the framework used to develop the robust model predictive con-
troller in section 5.6. We follow a notation similar to [43]. Consider the system:

ξk+1 = Aξk + g(ξk) + Buk + wk. (5.10a)

s.t. ξk ∈ Ξ (5.10b)

uk ∈ U (5.10c)

Where g(·) : Rn 7→ Rn is a nonlinear Lipschitz function and wk ∈ W ⊂ R
n is an additive

disturbance. We assume that the matrix pair (A,B) is controllable.
The control problem is divided into two parts. First a feedforward control input is

computed for the system (5.10). System (5.10) with the computed feedforward input and
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a zero disturbance sequence will be called the “nominal system”. Then, we design a state
feedback controller which acts on the error between the actual state of system (5.10) and
the predicted state of the nominal system. Next we formalize the aforementioned ideas.

We denote the N -step control sequence and the N -step disturbance sequence for system
(5.10) as u = {u0, u1, ..., uN−1} and w = {w0, w1, ..., wN−1}, respectively. Let Φ(k, x,u,w)
denote the solution of (5.10) at time k controlled by u when x0 = x. Furthermore, let
Φ̄(k, x, ū) denote the solution of the nominal system:

ξ̄k+i+1 = Aξ̄k+i + g(ξ̄k+i) + Būk+i, ∀i = 0, 1, ..., N − 1. (5.11)

Let ek = ξk− ξ̄k be the error between the states of system (5.10) and the nominal system.
Let the input uk to system (5.10) be:

uk = ūk + û(ek), (5.12)

where û(ek) : R
n 7→ R

m. We define the error dynamics as:

ek+1 = Aek +Bû(ek) + (g(ξk)− g(ξ̄k)) + wk. (5.13)

The authors of [43] proved the following result.

Proposition 1 Suppose that Z is a Robust Positively Invariant Set of the error system
(5.13) with control law û(·). If ξk ∈ {ξ̄k} ⊕ Z, then ξk+i ∈ {ξ̄k+i} ⊕ Z for all i > 0 and all
admissible disturbance sequences wk+i ∈ W.

Proposition 1 states that if the state ξ0 of system (5.10) starts close to the nominal
state ξ̄0, the control law (5.12) will keep the state trajectory Φ(k, x,u,w) within the robust
positively invariant set Z centrex at the predicted nominal states Φ̄(k, x, ū) for all admissible
disturbance sequence w:

ξ0 ∈ {ξ̄0} ⊕ Z ⇒ ξk ∈ {ξ̄k} ⊕ Z ∀wk ∈ W , ∀k ≥ 0. (5.14)

Proposition 1 also suggests that if a feasible solution can always be found for the nominal
system (5.11) subject to the tightened constraints

Ξ̄ = Ξ⊖Z, Ū = U ⊖ û(Z), (5.15)

then the control law (5.12) will ensure constraint satisfaction for the controlled uncertain
system (5.10) [2].

Remark 5 For general nonlinear systems, the controller and invariant set pair (û(·), Z)
is usually hard to find. In the following section we will propose an algorithm for computing
(û(·), Z) for system in the form of (5.10), whose dynamics consist of a linear term Aξ+Bu
and a “small” nonlinear term g(ξ).
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Computation of the robust invariant set

In [63], the authors present a test criterion to determine if a given linear feedback controller,
u = Ke, and an ellipsoidal set of the system states form a valid controller-invariant set pair.
In this section we use a similar approach. In particular we use the Lipschitz constant of the
nonlinear term to compute a robust invariant set.

The main idea is to bound the nonlinear term (g(ξ)−g(ξ̄)) in (5.13) by using the Lipschitz
constant of g(·), and treat it as part of the disturbance. We use the 2-norm over Rn. The
nonlinear function g(ξ) is Lipschitz in the set Ξ with respect to ξ if ∃L > 0 such that

∥g(ξ1)− g(ξ2)∥2 ≤ L∥ξ1 − ξ2∥2, ∀ξ1, ξ2 ∈ Ξ. (5.16)

The smallest constant L satisfying (5.16) is called the Lipschitz constant.
Let L(Ξ) be the Lipschitz constant of g(·) over Ξ. From (5.16) we obtain

∀ξ, ξ̄ ∈ Ξ and e = (ξ − ξ̄) ∈ E , ∥g(ξ)− g(ξ̄)∥∞ ≤ L(Ξ)max
e∈E
∥e∥2, (5.17)

where E is a subset of Ξ containing {0}. The inequality in (5.17) defines a box B(E):

B(E) = {x ∈ R
n|∥x∥∞ ≤ L(Ξ)max

e∈E
∥e∥2} (5.18)

B(E) is used to bound the term (g(ξk)− g(ξ̄k)) in (5.13). Equation (5.13) is then written as:

ek+1 = Aek +Bû(ek) + w̃k, (5.19)

where w̃k ∈ W̃ =W ⊕B(E).

Proposition 2 For ξ̄, ξ ∈ Ξ, If Z is a robust positively invariant set for system (5.19) with
a control law û(·), then Z is a robust positively invariant set for system (5.13) with the same
control law û(·).

Proposition 2 is true because all possible values of (g(ξ)− g(ξ̄)) in (5.13) lies inside B(E).
Since we assumed the matrix pair (A,B) to be controllable, there exists a stabilizing

linear feedback gain K such that (A+BK) is Hurwitz. Algorithm 1 is used to compute the
minimal robust positively invariant set Z associated with the gain K.

If Algorithm 1 terminates in finitely many iterations it, then Z = Ωit is the minimal
positively invariant set for the uncertain system (5.19) [54]. The choice of K will determine
the size of Z, and also the size of KZ. Later in this chapter we will show that KZ is used
to tighten the input constraints for ensuring robust constraint satisfaction. A larger K will
result in a smaller Z, in general, but may lead to larger KZ and thus smaller input actions.
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Algorithm 1 Computation of the minimal positively invariant set Z

1: Ω0 ← {0}
2: W̃ ← W
3: i ← 0;
4: repeat
5: i = i+1
6: W̃ =W ⊕B(Ωi);
7: Ωi = Reachfa(Ωi−1, W̃) ∪ Ωi−1.
8: until Ωi == Ωi−1

9: Z ← Ωi

5.3 Modeling

In this section we present the mathematical models used for control design. The model is
based on a nonlinear bicycle model [13]. It is then simplified using the center of percussion
and linearizing of the rear tire model. The first subsection introduces the vehicle dynamics,
the second introduces the concept of the center of percussion, and the third subsection
introduces a further model simplification.

Bicycle vehicle model

Consider the vehicle sketch in Figure 5.1.

y

x

yfF

cfF

xfF

lfF

ye

yrF

xrF

crF
lrF

e

d

S

Desired path

Y

X

Figure 5.1: Modeling notation depicting the forces in the vehicle body-fixed frame (Fx⋆ and
Fy⋆), the forces in the tire-fixed frame (Fl⋆ and Fc⋆), and the rotational and translational
velocities. The relative coordinates ey and eψ are illustrated on the sketch of the road as
well as the road tangent ψd.
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We use the following set of differential equations to describe the vehicle motion within
the lane,

mẍ = mẏψ̇ + 2Fxf + 2Fxr, (5.20a)

mÿ = −mẋψ̇ + 2Fyf + 2Fyr, (5.20b)

Izψ̈ = 2aFyf − 2bFyr, (5.20c)

ėψ = ψ̇ − ψ̇d, (5.20d)

ėy = ẏ cos(eψ) + ẋ sin(eψ), (5.20e)

ṡ = ẋcos(eψ)− ẏsin(eψ), (5.20f)

where m and Iz denote the vehicle mass and yaw inertia, respectively, a and b denote the
distances from the vehicle center of gravity to the front and rear axles, respectively. ẋ and
ẏ denote the vehicle longitudinal and lateral velocities, respectively, and ψ̇ is the turning
rate around a vertical axis at the vehicle’s center of gravity. eψ and ey in Figure 5.1 denote
the vehicle orientation and lateral position, respectively, in a road aligned coordinate frame
and ψd is the angle of the tangent to the road centerline in a fix coordinate frame. s is the
vehicle longitudinal position along the desired path. Fyf and Fyr are front and rear tire forces
acting along the vehicle lateral axis, Fxf and Fxr forces acting along the vehicle longitudinal
axis

The longitudinal and lateral tire force components in the vehicle body frame are modeled
as

Fx⋆ = Fl⋆ cos(δ⋆)− Fc⋆ sin(δ⋆), (5.21a)

Fy⋆ = Fl⋆ sin(δ⋆) + Fc⋆ cos(δ⋆), ⋆ ∈ {f, r}, (5.21b)

where ⋆ denotes either f or r for front and rear tire, δ⋆ is the steering angle at wheel. We
introduce the following assumption on the steering angles.

Assumption 4 Only the steering angle at the front wheels can be controlled. i.e., δf = δ
and δr = 0.

The longitudinal and lateral tire forces Fl⋆ and Fc⋆ are given by Pacejka’s model [51].
They are nonlinear functions of the tire slip angles α⋆, slip ratios σ⋆, normal forces Fz⋆ and
friction coefficient between the tire and road µ⋆:

Fl⋆ = fl(α⋆, σ⋆, Fz⋆, µ⋆) (5.22a)

Fc⋆ = fc(α⋆, σ⋆, Fz⋆, µ⋆) (5.22b)

The slip ratios α⋆ are approximated as follows:

αf =
ẏ + aψ̇

ẋ
− δ, αr =

ẏ − bψ̇

ẋ
. (5.23)
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The nonlinear tire force model (5.21)-(5.22) increases the computational burden of real-
time model-based control techniques. We will approach this issue as follows. For the front
wheels, since both slip angle and slip ratio can be controlled, we will assume that any force
within the friction circle can be achieved. For this reason, we will use a model where the
front tire forces Fxf and Fyf are the inputs. A lower level controller will achieve the desired
forces. For the rear wheels, however, the slip angles are not directly controllable due to
Assumption 4 and are functions of the vehicle states. Thus the rear tire forces cannot be
treated in the same way as the front tire forces. In the following subsections we will discuss
how to simplify the rear tire force model.

Center of percussion

y

x

ye

e

d

S

Desired path

py

px

py
e

Figure 5.2: Illustration of center of percussion. p denotes the distance from CoG to CoP

In this section, the center of percussion (CoP) is introduced to eliminate the rear tire
lateral forces, Fyr, in (5.20b). The center of percussion (CoP) is a point along the vehicle
longitudinal axis, where the rear tire lateral forces do not affect its dynamic evolution ([47,
34]). As discussed in [34], the rear tire lateral forces have two effects on dynamics, a constant
lateral acceleration on the vehicle body and an angular acceleration around the CoG. At the
CoP these two effects cancel each other and thus ẏp is not influenced by the rear tire forces.
Figure 5.2 illustrates the concept of CoP. Note that ẋp = ẋ. To find the position of the CoP,
we refer to the following dynamic equations

ẏp = ẏ + pψ̇ (5.24a)

ÿp = ÿ + pψ̈ (5.24b)

By substituting (5.20b) and (5.20c) into (5.24b) we obtain

ÿp = −ẋψ̇ + (
2

m
+

2ap

Iz
)Fyf + (

2

m
−

2bp

Iz
)Fyr. (5.25)
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When p = Iz
mb

, the Fyr term in (5.25) vanishes.

Simplifying rear tire forces

The use of the CoP eliminates the rear tire force in ÿp. However, the rear tire forces are still
present in the longitudinal and yaw dynamics ẍp and ψ̈. We will use a linearized tire model
for these terms.
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Pacejka at βr ∈ [−0.5 0]
Linear Approximation
Bnd. of Linear Region

Figure 5.3: Lateral tire force. µ is 0.5 in Pacejka tire model. When βr varies moderately, Fc
behaves similar within the linear region.

Let βr denote the braking/throttle ratio of rear tire (Flr = βrµFzr), with βr=1 corre-
sponding to max throttle and -1 max braking. In moderate braking, the resultant lateral
tire force Fc as a function of slip angle α has small sensitivity with respect to βr, as shown
in Fig 5.3. Thus a constant linear gain can be used over β ∈ [−0.5 0] and over β ∈ [0 0.5].
The remaining rear tire forces in (5.20a) and (5.20c) are modeled as:

Flr = βrµFzr (5.26a)

Fcr = Crαr (5.26b)

Remark 6 The same linearization could be applied to the Fyr term in (5.20b). We decided
to use CoP to eliminate it (Section 5.3) to reduce the error introduced by the linearization.
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Force-input nonlinear bicycle model

In summary, the nominal vehicle model (5.20) used for control design is rewritten as:

ÿp =
2(a+ b)µFzfβxf

mb
− ψ̇ẋp, (5.27a)

ẍp =
2µFzfβxf

m
+

2µFzrβr
m

+ ψ̇ẏp − ψ̇
2p, (5.27b)

ψ̈ =
2aµFzfβyf

Iz
−

2bCrẏp
Izẋp

+
2bCr(b+ p)ψ̇

Izẋp
, (5.27c)

ėψ = ψ̇ − ψ̇d, (5.27d)

ėy = ẏp + ẋpeψ, (5.27e)

ṡ = ẋp (5.27f)

where the state is ξ = [ẏp, ẋp, ψ̇, eψ, ey, s]
T ∈ R

6×1, and the input is u = [βxf , βyf , βr]
T ∈ R

3.
βxf and βyf are the normalized longitudinal and lateral tire forces on the front wheels.

The following assumptions are used in (5.27):

Assumption 5 The vehicle orientation error with respect to the road orientation, eψ, is
small and thus sin(eψ) ≃ eψ, cos(eψ) ≃ 1. The vehicle side slip angle is assumed to be
small, i.e. ẏ ≪ ẋ and ẏp ≪ ẋp.

Assumption 6 The normal forces Fz⋆ are assumed constant and determined by the vehicle’s
steady state weight distribution when no acceleration is applied

Assumption 7 The signal ψ̇d is assumed to be known and at every time instant an estimate
of ψ̇d is available over a finite time horizon. See [4] for an overview of sensing technologies
that can be used to obtain this signal.

5.4 Invariant set computation

The objective of the robust MPC is to safely navigate the vehicle to avoid obstacles and
stay on the road, in the presence of uncertainties. Uncertainties include measurement er-
rors, friction coefficient estimation, driver behavior and model mismatch. In this section
we derive the robust control law defined in (5.12) for the system (5.28), and provide the
details of computing the robust positively invariant set used to guarantee robust constraint
satisfactions.

Model reformulation

Equation (5.27) can be written in a similar form of (5.10):

ξ̇ = Aξ + g(ξ) + Bu+G+ w, (5.28)
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where all nonlinear terms are collected in g(·) : Rn 7→ Rn. The matrices in (5.28) are

A =

















0 0 −¯̇xp 0 0
0 0 0 0 0

−2bCr

I ¯̇xp
0 2bCr(p+b)

I ¯̇xp
0 0

0 0 1 0 0
1 0 0 ¯̇xp 0
0 1 0 0 0

















,

g(ξ) =



















−∆ẋpψ̇

ψ̇ẏp − ψ̇
2p

2bCr(ẏp∆ẋp−(p+b)ψ̇∆ẋp)

Iz ¯̇xp(¯̇xp+∆ẋp)

0
∆ẋpeψ

0



















, (5.29a)

B =



















0
2µFzf

m
+

2aµFzf

mb
0

2µFzf

m
0 2µFzr

m

0
2aµFzf

Iz
0

0 0 0
0 0 0
0 0 0



















, G =

















0
0
0

−ψ̇d
0
0

















, (5.29b)

Note ẋp is rewritten as ẋp = ¯̇xp+∆ẋp. The signal w represents an additive disturbance. We
follow the approach described in section 5.2 to compute the minimal positively invariant set
Z (also called the tube). The algorithm requires an error model, a linear feedback gain and a
description of potential disturbance bounds. We use the model (5.28) and (5.29) to compute
the error model and the lipschitz constant as described in section 5.2. The selection of the
gain is described in section 5.4, and the computation of the disturbance bounds in section
5.4.

Choice of linear stabilising gain

We choose the stabilising state feedback gain K for the error system as the infinite horizon
LQR solution K∞

LQR for system (A,B). Therefore the controller (5.12) becomes:

uk = ūk +K∞

LQR(ξk − ξ̄k). (5.30)

The controller K is used in the computation of the robust invariant set Z. Z is computed
off-line using Algorithm 1 and a sampled version of (5.28) with a sampling time of 50ms.
Specifically, for our system described in (5.28), the linear part of the dynamics are separated
into two parts: the longitudinal part includes the states [ẋp, s] and inputs [βxf , βr]; and
the lateral part includes the states [ẏp, ψ̇, eψ, ey] and the input βyf . The corresponding
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Figure 5.4: One-step model prediction error (equation (5.31)) of 47 testing trials.

invariant sets Zlongitudianl and Zlateral in the reduced state spaces are computed separately.
This reduces the computational complexity of the invariant set computation.

Disturbance bound

The bounded disturbance w is identified using experimental data from a test vehicle. The
test vehicle is described in detail in section 5.8. We compare the one-step state prediction of
model (5.28), discretized with a sampling time of 50 ms, with the measured vehicle states:

epk = ξk+1 − f
d(uk, ξk), (5.31)

where fd denotes the discretized model, ξk denotes the measured vehicle state at time step
k, and uk the measured input command. Figure 5.4 shows ep for 47 testing trials. In
each trial, the vehicle takes maneuvers that typically appears in normal and evasive driving
situations, such as driving straight, double lane change and slalom. We use a simple bound
|w| ≤ [0.2, 0.2, 0.2, 0.005, 0.05, 0.05] to conservatively estimate the disturbance bound.

Remark 7 One can notice biases in some of the state errors. They arise both from the
simplified model and from state estimation. For instance the bias in the state s is caused
by the approximation cos(eψ) ≃ 1; the bias in the state ey is caused by a negative error on
vehicle yaw angle estimation; the bias of state error on ẋ derives from the driver’s throttle
input during the test.

Remark 8 The model mismatch and disturbance identification is not the focus of this the-
sis and it is simple and very conservative here. More sophisticated method may be worth
investigating in the future.
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5.5 Safety constraints

The main objective of the safety system proposed in this chapter is to keep the vehicle on
the road while avoiding obstacles. In this section, we detail the constraints imposed on the
vehicle states and inputs to guarantees safe maneuvers.

Road boundary constraint: we constrain the CoG of the vehicle and shrink the road
bounds to take the vehicle width into account. The road boundary constraints are written
as

ēymin
≤ ey ≤ ēymax

, (5.32)

where ēymin
and ēymax

are obtained from the tightened state constraint Ξ̄.
Obstacle avoiding constraint: consider ellipsoidal obstacles in the form ( s−sobs

aobs
)2+( ey−yobs

bobs
)2 ≤

1. The obstacle avoiding constraints are written as

(
|s− sobs| − sZ

aobs
)2 + (

|ey − yobs| − yZ
bobs

)2 ≥ 1, (5.33)

where sZ and yZ are the projection of the invariant set onto s and ey axes.
Slip angle constraint: we constraint the vehicle to operates in a space where a non-skilled

driver can easily handle the vehicle. In particular, we constrain the tire slip angles to belong
to the linear region of the tire forces.

αmin ≤ α⋆ ≤ αmax. (5.34)

The constraints (5.32)-(5.34) are compactly written as,

h(ξ, u, w) ≤ 0, (5.35)

where 0 is the zero vector with appropriate dimension.

5.6 Robust predictive control design

In this section we formulate the lane keeping and obstacle avoiding problem as a Model
Predictive Control Problem (MPC). At each sampling time instant an optimal input sequence
is computed by solving a constrained finite time optimal control problem. The computed
optimal control input sequence as well as the corresponding predicted vehicle state trajectory
are stored as the nominal input and state trajectories, ξ̄ and ū. At the next time step
the optimal control problem is solved staring from new state measurements. An algorithm
computes the augmented input u = ū+Ke at sampling time. The MPC and the computation
of u can be executed at different sampling times.

We discretize the system (5.28) with a fixed sampling time Ts to obtain,

x̄k+1 = fn(x̄k, ūk), (5.36)
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and formulate the nominal optimization problem with tightened constraints as

min
∆ū,ε

Hp−1
∑

k=0

||ξ̄t+k,t − ξref ||
2
Q + ||ūt+k,t||

2
R + ||∆ūt+k,t||

2
S + λε (5.37a)

s.t. ξ̄t+k+1,t = fn(ξ̄t+k,t, ūt+k,t), (5.37b)

k = 0, 1, ..., Hp − 1

ht(ξ̄t+k,t, ūt+k,t) ≤ 1ε, k = 1, ..., Hp (5.37c)

ε ≥ 0, (5.37d)

ūt+k,t = ∆ūt+k,t + ūt+k−1,t, (5.37e)

ūt+k,t ∈ Ū , k = 0, 1, ..., Hc − 1 (5.37f)

∆ūt+k,t ∈ ∆Ū , k = 0, 1, ..., Hc − 1 (5.37g)

∆ūt+k,t = 0, k = Hc, ..., Hp (5.37h)

ūt−1,t = ū(t− 1), (5.37i)

ξ̄t,t = ξ̄(t), (5.37j)

where t denotes the current time instant and ξ̄t+k,t denotes the predicted state at time t+ k
obtained by applying the control sequence ū = {ūt,t, . . . , ūt+k,t} to the system (5.36) with
ξ̄t,t = ξ̄(t). Hp and Hc denote the prediction horizon and control horizon, respectively. We
denote by Hi the input blocking factor to hold the ∆ūk constant for a length of Hi. This
reduces the number of optimization variable which is useful in real-time implementation.
The safety constraints (5.35) have been imposed as soft constraints, by introducing the slack
variable ε in (5.37a) and (5.37c). Q, R, S and λ are weights of appropriate dimension
penalizing state tracking error, control action, change rate of control, and violation of the
soft constraints, respectively.

Remark 9 Because of the system nonlinearities and time varying constraints, it is difficult
to guarantee the feasibility of the nominal nonlinear MPC under all possible scenarios. How-
ever, if the nominal MPC is feasible, the vehicle is guaranteed to keep the nominal trajectory
within the robust bounds under any admissible disturbance.

5.7 Simulation results

In this section simulations results are presented. The model predictive control problem is
solved using NPSOL [25] at each time step. The off-line computation of robust invariant
sets through Algorithm 1 was run in Matlab R⃝ using the MPT Toolbox [35]. Table 5.1 lists
the parameters used in the simulations. The controller is connected in closed loop with a
higher fidelity nonlinear four-wheel vehicle model.

Figure 5.5 shows a simulation where the vehicle is controlled to successfully avoid two
obstacles on the road and return to the road center. The actual trajectory is very close to the
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Figure 5.5: Simulation result: The vehicle enters the maneuver at 50Kph. The dashed black
line and blue line are the nominal and actual vehicle trajectories respectively. The green dot-
dashed lines indicate the robust bounds around the nominal trajectory. The actual vehicle
path is seen to be very close to the nominal one and within the robust bounds.

nominal trajectory due to fast replanning. The dot-dashed lines show the projection of the ey
bounds of robust invariant set, Projey(Z). The actual trajectory is within the robust bounds.
Figure 5.6 shows the control input to the vehicle during the simulation. Note these inputs
are converted from the desired force input from the MPC by a force controller. The vehicle
brakes when encountering the obstacles to reduce the speed and hence the aggressiveness of
the maneuver, it then throttles to get back to the reference speed.

Table 5.1: Simulation Parameters

Param. Value Units Param. Value Units
m 2050 kg ūmax [0.5, 0.5, 0.5] -
Iz 3344 kgm2 ūmin −[0.5, 0.5, 0.5] -
Cα 65000 N ∆ūmax [1, 1, 1] -
µ 0.5 - ∆ūmin −[1, 1, 1] -
Ts 50 ms αmax 4 deg
Hp 16 - αmin −4 deg
Hc 16 - Q [0, 0.1, 1, 1, 5, 0] -
Hi 2 - R [1, 1, 1] -
ēymax

3.5 m S [1, 1, 1] -
ēymin

−3.5 m λ 10000 -
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Figure 5.6: Simulation result: Control inputs during the simulation in figure 5.5. βf is
the braking/throttle ratio for the front wheels and βr for the rear wheels. We enable both
braking and throttle on the wheels in simulation.

Robustness in the presence of disturbance

In this section we show the effectiveness of the controller under large disturbances. The
approach in this chapter does not use information on the disturbance distribution. It only
needs the knowledge of the bounded support in order to enforce robust constraint satisfac-
tion for all admissible disturbances. In this section we use a random disturbance with a
uniform distribution over the bound |w|max = [0.2, 0.2, 0.2, 0.005, 0.05, 0.05]T and add it in
the simulation model at each sampling time. The result is compared to a nominal MPC with
the same parameters but without robustness guarantees, i.e. u = ū instead of u = ū +Ke.
50 trials are run for each controller with random realizations of disturbances. Figure 5.7
shows the performance of the nominal MPC. The trajectories are scattered over a large area
and four trials fail to avoid the obstacle. In Figure 5.8 the robust MPC is implemented un-
der the same realizations of disturbances. One can notice that the range of the closed-loop
trajectories is much tighter and all of the trials successfully avoid the obstacle.

Performance with uncertain friction coefficients

The robust MPC formulation can incorporate disturbances from various sources, as long
as they can be formulated as a bounded additive disturbance in Equation (5.28). In this
section we simulate the scenario where the tire road friction coefficient is uncertain and
changing constantly. This simulates the typical situation on a snow-ice track, where the
surface condition changes constantly along the track. The friction coefficient µ is set to a
random value from a uniform distribution over [0.3, 0.7] and changes every 0.1 seconds. The
controller is only using the nominal friction coefficient µ̄ = 0.5 with bounds |∆µ|max = 0.2.
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Figure 5.7: Simulation result: Trajectories of nominal MPC controlled system under a ran-
dom external disturbance.
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Figure 5.8: Simulation result: Trajectories of RNMPC controlled system under a random
external disturbance.

Figure 5.9 shows 20 trials of such simulation. In all trials the vehicle successfully avoids the
obstacles and remain on the road.

5.8 Experimental results

The experiments have been performed at a test center equipped with icy and snowy handling
tracks. The MPC controller has been tested on a passenger car, with a mass of 2050 Kg and
a yaw inertia of 3344 Kg/m2. The controllers were run in a dSPACE R⃝ Autobox R⃝ system,
equipped with a DS1005 processor board and a DS2210 I/O board.

We used an Oxford Technical Solution R⃝ (OTS) RT3002 sensing system to measure the
vehicle position and orientation in the inertial frame and the vehicle velocities in the vehicle
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Figure 5.9: Simulation result: Trajectories of RNMPC controlled system under unknown
and constantly changing tire road friction coefficients.

body frame. The OTS RT3002 is housed in a small package that contains a differential GPS
receiver, Inertial Measurement Unit (IMU) and a DSP. The IMU includes three accelerom-
eters and three angular rate sensors. The DSP receives both the measurements from the
IMU and the GPS, utilizes a Kalman filter for sensor fusion, and calculates the position,
orientation and other states of the vehicle.

The car was equipped with an Active Front Steering (AFS) and Differential Braking
system which utilizes an electric drive motor to change the relation between the hand steering
wheel and road wheel angles. This is done independently from the hand wheel position, thus
the front road wheel angle is obtained by summing the driver hand wheel position and the
actuator angular movement. The sensor, the dSPACE R⃝ Autobox R⃝, and the actuators
communicate through a CAN bus. Figure 5.10 shows the test vehicle on the test track.

The parameters used in the experiments are summarized in Table 5.2.

Table 5.2: Real-Time Design Parameters for Experimental Test

Param. Value Units Param. Value Units
umax [0, 0.5, 0] [−] Hp 12 -
umin −[0.5, 0.5, 0] [−] Hc 8 -
∆umax [20, 20, 20] [−]/sec Hi 2 -
∆umin −[20, 20, 20] [−]/sec Ts 100 ms
Q (1, 20, 5, 10) - eymax

4.5 m
R (1, 1, 1) - eymin

−4.5 m
S (1, 1, 1) -

Note the controller does not have access to the throttle of the test vehicle, the upper
limit for inputs βxf and βr are set to zero. During the test, the driver uses throttle to keep
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Figure 5.10: The test vehicle.

the vehicle at high speed.

Avoiding still and moving obstacle at high speed

In this section we show the controller’s ability to control the vehicle to avoid an obstacle
on the snow track at high speeds. Figure 5.11 show the trajectory of the vehicle, where
the entering speed is 50kph. The dot-dashed lines denotes the bounds of the invariant set.
The vehicle successfully avoids the obstacle and returns back to the lane center. The actual
vehicle trajectory shown in blue closely follows the nominal trajectory shown in dashed
black. Figure 5.12 shows the tracked states together with the corresponding tube bounds
projected from the invariant set. The actual states are observed to be inside the tube all
the time. Figure 5.13 shows the input from the controller in the same trial. The steering
input is saturated between the time 20 an 24 seconds. The small oscillations in the steering
command during saturation are due to the augmentation input ū. We also observe a brief
braking at the beginning of the maneuver to decrease the vehicle speed.

Figure 5.14 shows a trial where the vehicle enters at 80 kph, and still avoids the obstacle.
It takes longer for the vehicle to return to the center due to the high speed. Figure 5.15
shows all tracked states and their projected robust bounds. We see that all the actual states
stay inside the invariant set. The inputs from the controller are reported in Figure 5.16.
Compared to the inputs at lower speed in the previous test (Figure 5.13), smaller steering
inputs are used to avoid tire slipping at the high speed.

Figure 5.17 to 5.19 show a trail where the test vehicle avoids a moving obstacle ahead.
The test vehicle enters at a speed around 50 Kph while the obstacle moves at a speed of 18
Kph in X direction, started around 30 meters ahead of the test vehicle. Three screen shots
of the obstacle position during the test are shown in Figure 5.17, along with the test vehicle
position a the corresponding time. There is an aborted attempt of returning to the lane-
center occurred around X = 70m, where the test vehicle turns left for a brief time before
it quickly realizes that the obstacle is not clear yet. This is due to the controller’s limited
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Figure 5.11: Experimental result: The vehicle enters the maneuver at 50Kph. The dashed
black line and blue line are the nominal and actual vehicle trajectories respectively. The
green dot-dashed lines indicate the robust bounds around the nominal trajectory. The actual
vehicle path is seen to be very close to the nominal one and within the robust bounds.
µ ≃ 0.3.
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Figure 5.12: Experimental result: A plot of 4 states of the vehicle, [ẏ, ψ̇, eψ, ey], during the
experiment of Figure 5.11. The nominal and actual states are shown in dashed black and
solid blue lines respectively. The red dot-dashed lines indicate the robust bounds on each
state.
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Figure 5.13: Experimental result: The steering and braking input to the vehicle during the
experiment of Figure 5.11. The braking is applied by the controller at the beginning of the
maneuver to reduce the speed so that the avoiding maneuver can be more smooth.
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Figure 5.14: Experimental result: The vehicle enters the maneuver at 80Kph. The dashed
black line and blue line are the nominal and actual vehicle trajectories respectively. The
green dot-dashed lines indicate the robust bounds around the nominal trajectory. The actual
vehicle path is seen to be very close to the nominal one and within the robust bounds.
µ ≃ 0.3.
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ẏ
[m

/
se
c]

 

 

6 8 10 12 14 16

−10

0

10

20

ψ̇
[d
eg

/
se
c]

6 8 10 12 14 16
−10

−5

0

5

ψ
[d
eg

]

T ime [s]
6 8 10 12 14 16

−3

−2

−1

0

e y
[m

]
T ime [s]

 Actual

 Reference

 Robust Bnd

Figure 5.15: Experimental result: A plot of 4 states of the vehicle, [ẏ, ψ̇, eψ, ey], during the
experiment of Figure 5.14. The nominal and actual states are shown in dashed black and
solid blue lines respectively. The red dot-dashed lines indicate the robust bounds on each
state.
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Figure 5.16: Experimental result: The steering and braking input to the vehicle during the
experiment of Figure 5.14.
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Figure 5.17: Experimental result: Avoiding a moving obstacle. Vehicle speed is 50 Kph,
obstacle moves at 18 Kph. The obstacle position at time t0, t1 and t3 during the test are
shown in dash red. The vehicle position at the corresponding times are marked with blue
circles. µ ≃ 0.3.

prediction horizon. Figure 5.18 and 5.19 show the states and inputs during that same trail.
There was no braking applied by the controller in this trail.

Avoiding multiple obstacles

In this section the controller controls the vehicle to avoid two obstacles in line on the track.
Figure 5.20 and 5.22 show the trajectory and input of the vehicle. The vehicle enters the
maneuver at 50 kph, and it successfully avoids both obstacles and stays inside the road.

Robust performance against friction coefficient

In this section we test the vehicle on an ice track with a tire-road friction coefficient around
0.1. The controller is set up for a nominal µ of 0.3, as it is on a snow track. The vehicle is
able to avoid the obstacle and track the center line at a speed of 35 kph. Figure 5.23 shows
the trajectory of the vehicle during the maneuver and Figure 5.25 shows the inputs.

Computational time of the controller

One advantage of the proposed controller is its low computational burden compared to other
robust approaches we have tried in our lab. Since the invariant set was computed off-line,
the on-line computational burden of the robust controller is almost the same as the nominal
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Figure 5.18: Experimental result: A plot of 4 states of the vehicle, [ẏ, ψ̇, eψ, ey], during the
experiment of Figure 5.19. The nominal and actual states are shown in dashed black and
solid blue lines respectively. The red dot-dashed lines indicate the robust bounds on each
state.
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Figure 5.19: Experimental result: The steering and braking input to the vehicle during the
experiment of Figure 5.19.
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Figure 5.20: Experimental result: Vehicle trajectory. The vehicle enters the maneuver at
50Kph. µ ≃ 0.3.
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Figure 5.21: Experimental resultA plot of 4 states of the vehicle, [ẏ, ψ̇, eψ, ey], during the
experiment of Figure 5.20. The nominal and actual states are shown in dashed black and
solid blue lines respectively. The red dot-dashed lines indicate the robust bounds on each
state.
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Figure 5.22: Experimental result: The steering and braking input to the vehicle during the
experiment of Figure 5.20.
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Figure 5.23: Experimental result: Vehicle trajectory on an ice track. The vehicle enters the
maneuver at 35Kph. The actual µ on the track is 0.1, while the controller is set up for
µ̄ = 0.3 on snow track.
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Figure 5.24: Experimental result: A plot of 4 states of the vehicle, [ẏ, ψ̇, eψ, ey], during the
experiment of Figure 5.23. The nominal and actual states are shown in dashed black and
solid blue lines respectively. The red dot-dashed lines indicate the robust bounds on each
state.
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Figure 5.25: Experimental result: The steering and braking input to the vehicle during the
experiment of Figure 5.23.
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MPC. For the four tests reported previously, the average processing time was 59.6 ms and
the maximum was 71.6 ms, both below the sampling time of 100ms.

5.9 Conclusions

This chapter presents a robust control framework for lane keeping and obstacle avoidance.
The framework formulates the problem as a nonlinear model predictive control problem. A
force-input nonlinear bicycle model is developed and used in the control design. A robust
positively invariant set is computed for a given control law and a Robust NMPC is used
with tightened input and state constraints to ensure constraint satisfaction in the presence
of unknown disturbances. Multiple simulations with different scenarios have been run where
the vehicle approaches multiple obstacles. The results show the effectiveness of the controller
in the presence of uncertainty. The framework has been implemented on a test vehicle and
the successful experimental results show the utility of this approach.
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