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Abstract

This paper reviews model predictive control (MPC) and its wide applications to both single and multiple autonomous
ground vehicles (AGVs). On one hand, MPC is a well-established optimal control method, which uses the predicted
future information to optimize the control actions while explicitly considering constraints. On the other hand, AGVs
are able to make forecasts and adapt their decisions in uncertain environments. Therefore, because of the nature of
MPC and the requirements of AGVs, it is intuitive to apply MPC algorithms to AGVs. AGVs are interesting not only for
considering them alone, which requires centralized control approaches, but also as groups of AGVs that interact and
communicate with each other and have their own controller onboard. This calls for distributed control solutions. First,
a short introduction into the basic theoretical background of centralized and distributed MPC is given. Then, it
comprehensively reviews MPC applications for both single and multiple AGVs. Finally, the paper highlights existing
issues and future research directions, which will promote the development of MPC schemes with high performance in
AGVs.
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1 Introduction
Autonomous intelligent systems (AISs) are a series of sys-

tems that act or react to the environment independently of

human control, e.g., autonomous ground vehicles (AGVs)

or unmanned aerial vehicles (UAVs). An AIS generally

consists of the following main functions: acquire sensory

inputs, identify the current situation, choose an objective,

construct a plan according to experience, act as planned,

receive the resulting rewards, and learn from experience

[1]. AISs need to be able to make safe and rational deci-

sions in unknown environments. Their decision making

or actions should be understandable to guarantee the

necessary trust by human users or collaborators.

AIS has become a field of intense research within

the robotics and control community, wherein unmanned

ground/aerial/underwater vehicles applies from the civil

to the military sector, such as logistics, mine detection,
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intruder detection and attacking. New technologies and

application domains increase the need for research and

development resulting in new challenges to be overcome

in order to apply AIS in a reliable and user-independent

way.

AGVs, as one of the most representative AISs, have

attracted considerable attention from academia, indus-

try and governments around the world for their great

significance in reducing road injuries, increasing traffic

efficiency, and saving energy. Thanks to the tremendous

progress of computer science, control science, commu-

nication technology and engineering, as well as the pro-

motion of new policies and laws, AGVs are experiencing

explosive development and leading a deep revolution in

automobile and transportation industries [2].

Model predictive control (MPC) is one of the most

widely used advanced control methods. MPC has grad-

ually matured both in application and theory and a vast

amount of literature has been published, see, e.g., [3, 4] for

a thorough discussion of the basics of MPC.
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In AGVs, autonomous refers to the ability to percept,

predict, and act in an unknown environment. Since MPC

is an established control methodology that systematically

uses forecasts, application of MPC to AGVs is sensible,

effective and computational realizable. For this reason,

MPC has been extensively applied to AGVs, however,

there is no comprehensive survey of these applications so

far. This paper comprehensively reviews the application of

MPC to AGVs and summarizes the current challenges and

opportunities for these applications.

This paper is organized as follows: the next section

briefly presents the basic theoretical knowledge of MPC

with a focus on distributed MPC. Then, applications of

MPC to single AGVs are reviewed, followed by appli-

cations to multiple AGVs. In addition, some existing

challenges and future trends are highlighted. Finally, the

contribution of this paper is summarized.

2 Basis of MPC
Because of the extensive attention MPC received dur-

ing the past years, and subsequently the expansive body

of contributions that have been published, only a brief

overview over the basic idea of MPC with a focus on dis-

tributed MPC is given. For more details about MPC, the

interested reader is referred to one of the many available

reviews or books specifically about MPC, e.g. [3–5].

In the following, an AGV is represented by a discrete-

time, nonlinear dynamical system

x(t + 1) = f (x(t),u(t)), x(0) = x0 (1)

with time step t ∈ N
0, state x(t) ∈ X ⊆ R

n and control

input u(t) ∈ U ⊆ R
m at time t, f : X × U → X, and

initial condition x0 ∈ X. The state and input are subject

to point-wise-in-time constraints (x(t),u(t)) ∈ Z ⊂ X ×

U. As part of the MPC law, at each time step t, the state

x(t) is measured and the following finite-horizon optimal

control problem is solved

minimize
u(·|t)

N−1
∑

k=0

ℓ(x(k|t),u(k|t)) + V f(x(N |t)) (2a)

s. t. x(0|t) = x(t), (2b)

x(k + 1|t) = f (x(k|t),u(k|t)), ∀k = 0, . . . ,N − 1,

(2c)

(x(k|t),u(k|t)) ∈ Z , ∀k = 0, . . . ,N − 1, (2d)

x(N |t) ∈ X
f, (2e)

where u(·|t) = (u(0|t), . . . ,u(N − 1|t)) and x(·|t) =

(x(0|t), . . . , x(N |t)) are the predicted input and state

sequences at time t with the prediction horizon N ∈

N. The constraints (2b) and (2c) ensure that the pre-

dicted state and input sequences satisfy the system’smodel

and (2d) safeguards constraint satisfaction. The terminal

cost V f : Xf → R and terminal constraint (2e) are typi-

cally designed to guarantee closed-loop properties and are

commented on momentarily.

For simplicity, it is assumed that the optimization prob-

lem (2) is well defined, i.e., a minimizing control input

exists which is denoted by u
∗(·|t). In general, recursive

feasibility of (2), i.e., if a solution exists at t0, then there

exists a solution for all t ≥ t0, is an important property in

MPC, that has to be established.

A standard MPC scheme for a discrete-time system is

then given by the following algorithm.

Algorithm 1. Measure the state x(t) of system (1) at each

time step t. Then, solve the optimization problem (2) and

apply the control input uMPC(t) = u∗(0|t). Repeat for the

next time step t + 1.

If the MPC scheme is applied, then the closed-loop

system is given by

x(t + 1) = f (x(t),u∗(0|t)), x(0) = x0.

In many cases, the design of MPC schemes is concerned

with stabilizing a set-point of (1) as the control objec-

tive. For this reason, the stage cost ℓ is usually chosen to

be positive definite with respect to this set-point. Even in

this case, additional assumptions are, in general, needed

to establish closed-loop stability. One possible approach

is to design suitable terminal ingredients, i.e., a terminal

cost V f and terminal set Xf [3, 5–7]. Another approach is

so-called unconstrained MPC, i.e., MPC without terminal

constraints, usually requiring an additional controllability

assumption [8–10].

Because in reality systems are subject to disturbances

and (model) uncertainties, inherent robustness of nomi-

nal MPC has been studied [11, 12], as well as the design of

robust MPC schemes [13–18].

Furthermore, besides set-point stabilization, more gen-

eral control objectives like tracking or path following have

been considered [19–24]. In addition, minimization of

a more general economical cost that is not necessarily

positive definite with respect to a set-point or reference

trajectory is studied in economic MPC [25, 26].

Recently, data-driven MPC, where collected input-

output data are directly used in the optimization instead

of a model, have received increasing attention [27, 28].

Large-scale systems which comprise a large number

of interconnected subsystems, as, e.g., power grids [29],

transportation networks [30], and large scale irrigation

systems [31], lead to complex, high-dimensional models.

A centralized controller, e.g., as shown in Fig. 1, may not

be desirable for these systems, due to a large required

communication overhead, it being susceptible to single-

point failure, or because the centralized MPC problem (2)

is computationally intractable. In these cases, the develop-

ment of suitable distributed MPC schemes is of interest.
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Fig. 1 Centralized MPC structure

2.1 Distributed MPC

In a distributed setting, a large-scale (global) system is

decomposed into smaller subsystems that are connected

in some way to a subset of other subsystems, called neigh-

bors, of the global system. Possible connections may be

due to dynamic coupling, i.e., the dynamics of neighboring

subsystems are coupled, cost coupling, e.g., when a coop-

erative objective should be achieved, and constraint cou-

pling, for example, a certain minimum distance between

subsystems or because a shared resource is used.

More formally, considerM ∈ N subsystems, e.g., AGVs,

where the i-th subsystem is a nonlinear, discrete time

system

xi(t + 1) = fi(xi(t),ui(t), xNi(t)), xi(0) = xi,0 (3)

with the local state and input xi(t) ∈ Xi ⊆ R
ni and

ui(t) ∈ Ui ⊆ R
mi , the states of system i’s neighbors

xNi(t) ∈ XNi ⊆ R
nNi , fi : Xi×Ui×XNi → X, and the local

initial condition xi,0. For simplicity, a possible dependence

of fi on the input of the neighbors is omitted.

The global system (1) may then be written as

x(t + 1)=

⎡

⎢

⎢

⎣

x1(t + 1)

.

.

.

xM(t + 1)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

f1(x1(t),u1(t), xN1 (t))

.

.

.

fi(xM(t),uM(t), xNM (t))

⎤

⎥

⎥

⎦

= f (x(t),u(t))

where the state and input of the subsystems are sim-

ply stacked in a vector. It is assumed, that the global

stage cost can be separated into local parts, i.e., ℓ(x,u) =
∑M

i=1 ℓ
(

xi,ui, xNi

)

, and each subsystem is equipped with

a local controller that has access to only the information

of its neighbors. In DMPC, this information often has the

form of predicted state and input trajectories. Depending

on the choice of terminal cost and terminal constraints, it

may then be possible to divide the centralized optimiza-

tion problem (2) and distribute it among the subsystems,

each now solving a smaller sub-problem. An example for

the resulting structure in DMPC is given in Fig. 2.

Main challenges in DMPC include the coordina-

tion of (coupling) constraints, i.e., maintaining recursive

feasibility and guaranteeing closed-loop stability of the

global system or the fulfillment of a more general cooper-

ative task.

In the following, two different approaches to DMPC

are considered: iterative MPC schemes and non-iterative

MPC schemes.

In most iterative MPC schemes, the centralized MPC

optimization problem (2) is solved using a variant of a dis-

tributed optimization algorithm, for example, using the

alternating directionmethod ofmultipliers (ADMM) [32–

34], or a Jacobi-type iteration [35, 36]. That is, each sub-

system solves its optimization problem while iteratively

exchanging the current solution candidate with its neigh-

bors. Although iterative algorithms generally may require

much communication, they can also recover the solution

to the centralized problem in the limit, as, e.g., in [35].

As pointed out before, designing a suitable terminal cost

and terminal constraint is one possible way to achieve a

stabilizing MPC. In [37] a distributed synthesis approach

is presented, which makes the terminal cost and con-

straint amenable to distributed optimization, i.e., iterative

DMPC.

In sequential MPC, an example of a non-iterative

scheme, the subsystems solve their optimization prob-

lem sequentially instead of iteratively. After all subsys-

tems communicated a predicted candidate sequences to

neighbors, one system after the other solves its local

optimization problem while other subsystems keep their

trajectories fixed. MPC schemes for stabilization and

other cooperative control task are, for example, proposed

in [38–41]. Other non-iterative MPC schemes include

approaches based on robustness considerations, [42–44],
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Fig. 2 Distributed MPC structure

and using additional constraints that force subsystems to

be consistent with what they communicated before [45].

Another classification of DMPC schemes, which is also

taken in [46], is based on the view-point on the struc-

ture of the large-scale global system. On one hand, a large

number of subsystems, possibly dynamically decoupled as

in the multi-agent case, can make up the global system,

providing a bottom-up perspective. Multiple AGVs that

form a large-scale system often fall into this category. On

the other hand, a large-scale sytem, e.g., a power network

or chemical plant, might be divided into smaller subsys-

tems by the control engineer in order to apply distributed

control schemes. This constitutes a top-down view. For

an extensive collection of DMPC schemes presented in

a unified notation and sorted into both categories, the

interested reader is referred to [46].

Due to many different types of large-scale systems

and requirements in their control, many different DMPC

schemes exist. Reviewing them goes beyond the scope of

this work and the reader is referred to reviews of DMPC,

e.g., [47–49].

In the case of multiple AGVs interacting with each other,

the goal is often to achieve a cooperative task. As the

consensus problem is a simple but important example of

such a cooperative task, a brief review on some results in

using DMPC for consensus, which could be applied in the

control of AGVs, is given.

2.1.1 DMPC for consensus

In the context of dynamical (sub-)systems, the consensus

problem is to reach an agreement in a common variable,

e.g., the subsystems’ outputs [50]. Consensus problems

are found in many applications including, e.g., forma-

tion control, distributed sensor fusion, and multi-vehicle

platooning.

In [51], a contractive constraint is imposed on the

systems’ states in the proposed DMPC scheme and con-

sensus is guaranteed for systems with double integrator

dynamics and input constraints, where the communica-

tion network is time-varying. In [52], a weighted-average

consensus protocol for a single integrator multi-agent sys-

tem is designed based on a DMPC approach. After each

subsystem solved its optimization problem, the average

of the computed optimal inputs of neighboring systems

is applied. Convergence to a weighted-average consensus

point is proven for a fixed and time-varying communica-

tion topology. In [53], an iterative DMPC approach that

includes an auxiliary consensus state as a decision vari-

able in the optimization is proposed for single and double

integrator systems.

In [54], a consensus protocol for linear homogeneous

systems is developed based on the explicit solution of a

DMPC optimization problem, where no constraints are

considered. In [55], a similar approach is used to show

consensus of a double-integratormulti-agent systems sub-

ject to input constraints that are active a finite number of

times.

In [56], a DMPC problem for linear systems subject to

state and input constraints is formulated and solved using

the alternating direction method of multipliers (ADMM).

Zhan et al. propose a non-iterative DMPC algorithm

where each agent obtains a candidate state sequence of

the neighbors for the optimization and an additional con-

sistency constraint is added to the individual optimiza-

tion problems in order to achieve consensus of homo-

geneous linear systems [57]. In addition, the DMPC is

extended to be self-triggered, i.e., the DMPC problem is

only solved at self-selected time instants. In [58], the non-

iterative DMPC algorithm is extended using a constraint-

tightening approach to provide practical consensus if an

additive bounded disturbance affects the agent.

In [59], a robust min-max DMPC scheme is proposed

to achieve practical consensus in tracking the same refer-

ence for homogeneous linear systems subject to additive

disturbances and time-varying communication delays.

Copp et al. propose a combinedmin-maxmoving-horizon
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estimate and MPC problem to drive a system of lin-

ear additively disturbed agents to practical consensus

using output feedback [60]. The resulting centralized opti-

mization problem is solved iteratively using a distributed

implementation.

In [61], a distributed optimization scheme is developed

to negotiate an optimal consensus point of a multi-agent

system with heterogeneous linear dynamics, which can

be used as a set-point in an MPC formulation. In [62],

the negotiation and the set-point tracking MPC scheme

are combined and convergence to a common consensus

point is proven both if in each time step the negotiations

about the consensus point have converged and if they have

been terminated before convergence. Shi et al. present a

different distributed optimization method to compute a

consensus point which is then used in a DMPC scheme

for output consensus of a linear, heterogeneous multi-

agent system [63]. In [64], a suitable consensus protocol

is used to generate a trajectory towards consensus for a

linear, homogeneous multi-agent system. This trajectory

is then tracked using a tracking MPC scheme which can

satisfy input and state constraints. In [65], a sequential

DMPC scheme for output consensus of a linear, hetero-

geneous multi-agent system subject to state and input

constraints is presented. In each individual optimization

problem, an auxiliary output is chosen and simultane-

ously tracked. Online, only the auxiliary outputs need to

be shared between agents.

In [40], a sequential DMPC framework for general coop-

erative control tasks, which include consensus as a special

case, is proposed. It is shown that the cooperative control

task is achieved for multi-agent systems with nonlinear

dynamics that are subject to (possibly coupled) state and

input constraints if the terminal ingredients are suitably

designed, which is done for the special case of consen-

sus. In [41], a sequential DMPC scheme for coordination

of self-interested interacting linear systems with cou-

pling constraints is proposed. The goal, which the scheme

accomplishes, is to asymptotically achieve a cooperative

objective, e.g., consensus or sensor coverage, where the

agents may act in self-interest with respect to an individ-

ual objective while negotiating the cooperative solution.

3 MPC for individual AGVs
Due to the nature of MPC, it is readily applicable in

motion control, i.e., tracking of a planned trajectory

with a vehicle. In a fast changing driving environment,

the planned trajectory is sometimes dynamically infea-

sible and thus unable to be tracked. To handle this,

some works consider the vehicle’s dynamics as a con-

straints in trajectory planning to compute a dynami-

cally feasible trajectory. However, considering the con-

straints both in trajectory planning and motion con-

trol makes the algorithm computationally complex. Thus,

recent works attempt to combine trajectory planning

and motion control in an integrated framework, which

directly receives the driving behavior command from

decision-making and produces the corresponding control

variables.

3.1 Motion control of single AGVs using MPC

As aforementioned, motion control is a main component

of autonomous driving. The aim is that the algorithm

drives the vehicle to follow a preplanned trajectory by

considering the dynamics of the AGV. When MPC is

used, researchers usually design algorithms by consider-

ing aspects such as, e.g., hard constraints, chance con-

straints, multi-objectives, robustness, and computational

complexity.

In [66], the authors propose a collision-free trajectory

planning method based on an artificial potential field,

followed by a multiple constrained MPC to track the tra-

jectory. In [67] an MPC-based path tracking method for

autonomous ground vehicles is presented, which consid-

ers two model predictive controllers in a cascade struc-

ture. The upper layer controller is based on a vehicle

kinematic model, and the lower layer controller utilizes

a vehicle dynamic model, in which longitudinal and lat-

eral motion control are separately considered to achieve a

lower computational complexity.

In [68], an MPC-based motion controller for marine

vessels is developed and compared to a two-layer control

structure, that is typically used in this case. Furthermore,

the MPC-based approach appears to provide promising

advantages. In [69], an optimization algorithm for pre-

dictive motion control is developed that addresses both

hybrid car dynamics and a hybrid minimization criterion

by using the Hamiltonian-switching hybrid nonlinear pre-

dictive control algorithm and several adaptive prediction

horizon approaches.

In [70], an adaptive model predictive controller for

motion control is developed, in which a weights adap-

tation strategy is designed to improve the controller’s

capabilities in different driving scenarios, and a multi-

model adaptive rule is proposed to deal with the uncer-

tainties of the tire cornering stiffness. In [71], an MPC-

based motion control method is proposed, in which the

appropriate MPC cost function weights can be automat-

ically determined through a logistic function. In [72],

MPC-based controllers for driving autonomous vehicles

in dangerous situations, as for example lane changes in

order to avoid an obstacle, are proposed and evaluated.

In [73], an MPC-based simultaneous trajectory planning

and tracking approach for obstacle avoidance of an intel-

ligent vehicle is proposed, where the reference trajectory

is determined by both the lateral position and velocity of

the intelligent vehicle and the velocity and yaw angle of the

obstacle vehicle.
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In [74], an MPC-based motion controller considering

the cut-in behavior of other vehicles is proposed, pre-

dicting it using long short-term memory, in addition, the

lateral velocity is estimated through a moving horizon

estimator. In [75], the cut-in behavior is predicted through

a rule-based method and an MPC is used for trajectory

tracking under different cut-in scenarios.

In [76], a set-theoretic MPC is proposed to deal with

disturbances and constraints in an uncertain dynamic

driving environment. In [77, 78], a motion controller

to track designated waypoints based on robust nonlin-

ear MPC (NMPC) with constrained workspace is pro-

posed, which guarantees the robustness of the system

against model uncertainties. In [79], the authors pro-

pose a motion control method using an integrated MPC

and PID controller to deal with the changing velocity

effects, in which a radial basis function-extreme learn-

ing machine (RBF-ELM) neural network is designed for

high-accuracy prediction and an RBF neural network is

used to tune the PID controller. In [80], a learning MPC-

based motion controller for a racing car is proposed,

which incorporates a safe set construction module, an

objective function approximation module and an affine

time-varying prediction module. In [81], an MPC-based

motion control method considering the varying veloc-

ity and parameter uncertainties is presented to improve

the control accuracy and robustness. A polytope with

finite vertices is designed to describe the varying velocity.

The controller is solved through linear matrix inequal-

ities and worst-case infinite horizon minimization. A

novel robust MPC with a finite time horizon is pro-

posed in [82] to develop a motion controller, which is

able to handle the time-varying and uncertain vehicle

dynamics as well as the external disturbance. A lin-

ear parameter varying model with polytopic vertices is

established taking the uncertain cornering stiffness and

the varying velocity into account, and the proposed

scheme is then utilized to solve a min-max optimiza-

tion problem in real time. The study [83] considers a

random network delay in the transmission of the steer-

ing angle and proposes a motion controller based on

adaptive MPC for an uncertain model which predicts

the next control variable and reduces the steering angle

discontinuity.

The authors in [84, 85] develop a linear MPC based

motion tracking controller using differential flatness the-

ory, which has less model linearization errors and better

performance than traditional linear MPC. The authors

in [86] develop two MPC-based motion controllers

with a nonlinear vehicle model and a successive-online-

linearized vehicle model, respectively. Furthermore, the

computational complexity and control performance are

analyzed. A Takagi-Sugeno MPC method to design a

motion controller is proposed in [87], which is able to

convert a nonlinear problem into a linear form and greatly

reduce the computation burden.

3.2 Motion planning by MPC for a single AGV

Since recently MPC algorithms are also used for trajec-

tory planning, this section mainly focuses on MPC-based

motion planning and decision making aspects of single

AGVs.

Potential field is an effective method to model the

dynamics of the vehicle and describe its interaction with

surrounding obstacles. In [88], a human-like decision

making framework for autonomous vehicles is proposed,

where the potential field method and MPC are used to

plan the collision-avoidance path and provide predicted

motion states for the human-like decision making mod-

ule. An integrated framework to deal with the decision

making and motion planning is presented in [89] for lane-

change maneuvers, while considering social behaviors of

surrounding traffic participants. In [90, 91], an integrated

decision-making and motion planning module is pro-

posed in an MPC framework which incorporates the lane

selection and a potential field in the objective function to

improve comfortability.

A separated longitudinal and lateral motion plan-

ning framework based on MPC and a vehicle point-

mass model is proposed in [92] to reduce the com-

plexity of optimization and thus improve the computa-

tional efficiency. The feasibility of MPC is investigated

in [93] for autonomous vehicle motion planning, where

a linearization-convexification and a brute-force search

approach are presented to determine control invariant

sets in order to ensure the recursive feasibility. In [94],

an MPC formulation for motion planning is built, which

incorporates actuator dynamics in the underlying opti-

mization and improves the computational efficiency com-

pared with the joint formulation that simultaneously opti-

mizes linear velocities and angular accelerations.

In [95], a coordinated longitudinal collision avoidance

and lateral stability control method is proposed, in which

an MPC motion planner is developed to provide the

desired deceleration and additional yaw moment. In [96],

a trajectory planner based on NMPC is developed, which

considers the vehicle dynamics and the constraints from

obstacles, surrounding vehicles, velocity limits and road

boundaries. A longitudinal motion planning method is

proposed in [97] for car following in a chance-constrained

MPC framework, in which the predicted probability dis-

tribution of the front vehicle position is determined

through a Markov chain and maximum likelihood motion

predictor in order to provide longitudinal constraints for

the MPC.

A longitudinal motion planning method based on MPC

is presented in [98], which incorporates a responsibility-

sensitive safety model to evaluate the safety performance.
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AnMPC-basedmotion planningmethod for uncontrolled

intersections is proposed in [99], which determines the

desired acceleration while ensuring safety based on a risk

management module. A motion planning method based

on robust MPC is presented in [100]. The safe area is first

determined through potential field and reachable sets, and

then a tube-based robust MPC is designed to generate

integrated lateral and longitudinal motions.

3.3 MPC for combinedmotion planning and control of an

individual AGV

MPC applications in AGVs are extended to include more

tasks recently. For example, based on what has been men-

tioned in the previous two subsections, MPC can easily

combine the planning and control in a unified framework.

In addition, AGVs with MPC can achieve better quality by

considering behaviors of surrounding traffic participants,

incorporating more future information and integrating

efficient prediction methods.

An integrated motion planning and tracking (IMPT)

method based on adaptive tube-based NMPC is devel-

oped in [101], where a fixed nominal model and a separate

adaptive model are utilized. In addition, a Newton or

generalized minimum residual method (GMRES) solver

is adopted to guarantee a real-time implementation. A

longitudinal IMPT method in an MPC framework is pro-

posed in [102], in which a robust invariant terminal set is

computed in real time to ensure the safety and can handle

the road grade and the motion prediction uncertainties of

the front vehicle. An MPC-based framework incorporat-

ing a multi-target tracking method and a motion planning

method is proposed in [103], which can handle unreliable

detections and uncertain changes of surrounding vehicles.

An IMPTmethod formaximizing lateral clearance against

a construction zone is proposed in [104], in which a bias

penalty function of the construction area is added in the

total cost function.

A lateral IMPT scheme for emergency collision avoid-

ance based on MPC is presented in [105], in which the

lateral motion prediction is constrained in a safe area

determined by road boundaries and obstacles positions.

Furthermore, differential braking is employed to achieve

fast maneuvers and to maintain vehicle stability. The con-

cept of torque vectoring is to control the traction and

braking torque of each wheel to generate a direct yaw

moment. An MPC-based IMPT scheme is developed in

[106] for high-speed emergency collision avoidance under

low road friction and heavy crosswinds driving condi-

tions, in which the forward and the rear safe areas are

shaped linearly to constrain the predicted states, and the

torque vectoring controller is applied to ensure lateral-

yaw stability. An integrated motion planning and con-

trol method based on MPC is proposed in [107] to deal

with emergency situations where collision is inevitable by

generating a path to mitigate the crash as much as possi-

ble. A longitudinal IMPT controller considering the road

slope is developed in [108], where the nonlinear power-

train dynamics and the collision-avoiding constraint from

the front vehicle are considered in order to improve the

tracking accuracy and reduce the fuel consumption. The

constraints that are unrelated to safety are slacked to

improve the feasibility of MPC, and the pseudospectral

discretization technique is adopted to achieve high com-

puting accuracy with much less collocation. An IMPT

controller based on MPC is developed in [109], in which

a bundle adjustment algorithm is used to detect obstacles

and compute a sparse representation of the environment.

Furthermore, this sparse representation is added as addi-

tional safety constraints to the optimization problem in

the MPC.

AnMPC-based longitudinal IMPTmethod is presented

in [110] for energy-saving control of internal combus-

tion engine vehicles, which optimizes the speed and the

gears to minimize the fuel consumption. The optimal

control problem is formulated and simplified to a mixed

integer programming problem with a convex quadratic

objective function and linear constraints. A computation-

ally efficient nonlinear control for autonomous overtaking

is proposed in [111], which conducts sampling in rela-

tive distance to the leading vehicle, replaces velocity state

with its inverse, and utilizes a nonlinear change of con-

trol variables. These three steps achieve a computationally

efficient nonlinear control problem that can be solved

using sequential quadratic programming.

An IMPT controller based on game theoretic MPC is

proposed in [112] which uses game theory to interact with

surrounding vehicles to evaluate lane-change options. In

addition, a four-stage hybrid MPC is used for longitu-

dinal position and lane decision. An IMPT method for

mandatory lane change using game theoretic MPC with

aggressiveness estimation of human drivers is proposed in

[113]. The scheme is able to maintain a good balance of

driving safety and intelligent decision-making.

An IMPT framework using MPC is proposed in [114]

to achieve a personalized and safe control. A random for-

est classifier is first designed to assess the driving risk

while learning the personal desired velocities, and then

the safety-focused MPC and the personalized MPC are

conducted to ensure safety in risky situations, and to per-

form personal driving in risky-free situations, respectively.

A shared control problem based onMPC is investigated in

[115, 116], in which a lane-following, a left turn and a right

turn MPC controllers are respectively designed as can-

didates to match the driver’s intended behavior, and the

control authority allocation can be dynamically adapted

with respect to the driver’s authority intention.

Ethical decision-making during inevitable crashes, espe-

cially when humans are involved, has become a big and
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sensitive roadblock autonomous vehicles. The authors in

[117] proposed a lexicographic optimization based MPC

framework for ethical decision-making in autonomous

driving using rational ethics, where obstacle and con-

straints are prioritized.

4 MPC for multi-AGVs
In recent years, autonomous ground vehicle platooning

has received considerable attention [118–120]. This is

mainly related to its potential benefits for road trans-

port, including improved traffic organization, improved

road welfare, and reduced fuel consumption [121, 122].

The vehicle platoon uses a longitudinal steering strategy

to force each vehicle to move in a lane. It is achieved

by changing the driver of the vehicle schedule dispatcher,

which forces the vehicles to follow each other and move at

the same velocity while keeping a chosen formation shape

or geometry, which is started by a desired inter-vehicle

spacing tactics [118, 123–125].

At present, the coordinated control of a vehicle pla-

toon has become the key technology of automobile man-

ufacturers’ competition. These projects aim to study

how to realize the safety and fuel-saving of the whole

fleet through the coordinated control of a vehicle

platoon.

a The research of vehicle platoon cooperative control

first started in the United States in 1986. Partners for

advanced transportation technology (PATH) aims to

alleviate traffic congestion, improve road capacity and

safety, and promote energy conservation and emission

reduction [126].

- Through heavy truck simulation and real vehicle tests,

the PATH project shows that the vehicle platoon can

improve the transportation capacity when the vehicle

spacing is controlled at 3 to 4 m. The leader vehicle

can save 10% fuel, and the following vehicles can save

10% to 15% fuel [127].

b The research of vehicle platoon cooperative control

in Japan started the energy intelligent transportation

systems (ITS) project in 2008.

- Through this project, three full-automatic trucks were

tested. The test results show that the energy consump-

tion can be reduced by 15% when the vehicle runs at

80 km/h and maintains a distance of 10 m [128].

c The European Union started the safe road trains for

the environment (SARTRE) project in 2009, focus-

ing on the platoon driving technology of hybrid

vehicles (e.g., cars, commercial vehicles) [129, 130].

This project aims to realize the safety, environmen-

tal protection, and energy-saving of vehicle platoon

driving through the collaborative control of vehicle

platooning.

- Besides the SARTRE project, Europe has launched

SCANIA-platooning and grand cooperative driving

challenge (GCDC) projects [131, 132].

Next, the framework, control objective and topology of

vehicle platoons are introduced, respectively.

Platoon Framework

The purpose of a vehicle platoon is to manipulate the

individual vehicle to move at a consistent speed while

maintaining adequate space between vehicles. The pla-

toon has a leader vehicle (LV, indicated by P0) and the

following vehicles (FVs, indicated by P1, · · · , PN ). As

shown in Fig. 3, the platoon system can be viewed as a

combination of four main components:

- Node dynamics, which describes the behavior of the

involved vehicles [134–137];

- Information flow topology, which defines how infor-

mation is exchanged between nodes [138];

- Distributed controller, which uses information about

neighbors to achieve feedback control [139–141];

- Formation geometry, which defines the distance

between vehicles required to form a platoon

[142, 143].

Note that, in Fig. 3, the i-th vehicle in the platoon is

marked as i, and i = P0 is the leading one, i = P1, · · · ,PN
are the followers. The term ui is the control signal of i-th

vehicle,C is the controller. Denote pi and vi as the position

and speed of the Pi vehicle.

Control Objective for Platoons

Multi-vehicle platoon collaborative driving is one of

the important research directions in intelligent connected

vehicle systems. Its main task is to combine several indi-

vidual vehicles to form a hybrid flexible formation, accord-

ing to different road conditions, based on wireless and ad

hoc networks, through interactive cooperation.

For a vehicle platoon system, the control goal is that the

vehicles in a platoon keep the same speed as the leader

vehicle, and a safe distance to the former vehicle. The

mathematical description of the control objective is

{

lim
t→∞

‖vi(t) − v0(t)‖ = 0

lim
t→∞

∥

∥pi−1(t) − pi(t) − di−1,i(t)
∥

∥ = 0
(4)

where di−1,i(t) is the desired distance between adjacent

vehicles.

Topologies

In a system consisting of several vehicles, one key prob-

lem is how to exchange information with other vehicles.

The communication topology in a platoon can be mod-

eled by a directed graph G = {V ,E}, where V =

{0, 1, 2, · · · ,N} is the set of nodes, and E ⊆ V × V is the

set of connected edges [144, 145].
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Fig. 3 Distributed controllers in the platoon framework [133]

The properties of the graph G can be described by three

matrices, namely the adjacency matrix A, the Laplacian

matrix L, and the Pinning matrix P.

Topologies define the communication process, which

defines how the vehicles in the platoon exchange data with

each other. Figure 4 shows some leader-follower topolo-

gies, where (a) is a predecessor-following topology [147],

(b) is a predecessor-leader following topology [142], (c) is

a bidirectional topology [148], (d) is a bidirectional-leader

topology [146], (e) is a topology of two-predecessor fol-

lowing topology, and (f ) shows a two-predecessor-leader

following topology [138].

Note that these topologies are used for grouping in

one line. Several platoons may interact with each other

during a platoon operation or lose communication with

the present topology. So, a dynamic or switching topol-

ogy should be considered to balance string stability and

flexibility of the topology.

4.1 DMPC strategy for vehicle platoons

The vehicle platoon features, namely the chain structure

of the involved sub-systems (vehicles), are suitable for an

application of DMPC.

In DMPC, a large-scale system (the entire vehicle pla-

toon) can be divided into separate sub-systems which

are dynamically linked through state and inputs [149].

The local controller configures each sub-system (vehi-

cle) using nearby available information and associated

data gained through communication between neighbor-

ing agents. DMPC can improve the system control perfor-

mance [139–141, 150] by explicitly predicting the future

control input and state sequences, and effectively estimat-

ing the interaction among sub-systems.

At present, many scholars have focused on collabora-

tive control of vehicle platoons, i.e., designing distributed

control strategies according to different performance

requirements, with the consideration of coupling con-

straints, and analyzing stability, safety, i.e., protection

against uncertainties, and feasibility [151–153]. In [145],

a distributed control method is proposed for heteroge-

neous commercial vehicle formation to achieve a con-

sistent speed and keep gap difference between adjacent

vehicles. In [154], a two-layer control strategy is used

for vehicle platoons, where the lower control is used to

counteract the system’s nonlinear characteristics and the

upper control uses a linear DMPC method to optimize

the minimum tracking error, fuel consumption, and car-

following characteristics. In [155], for the case where the

speed of the leader vehicle in the platoon is constant and

only longitudinal characteristic are considered, a DMPC

scheme is adopted to realize consistency and string stabil-

ity of heterogeneous vehicle platoons. In [156], an NMPC

is designed which can smoothly switch between adaptive

cruise control and cruise control. Furthermore, in terms

of the state of the front vehicle, it can predict the reference

trajectory according to the expected speed and distance.

A formation controller based on DMPC is designed in

[157] to achieve consistency and string stability of hetero-

geneous vehicle platoons. In [158], an MPC algorithm for

a vehicle platoon is designed which can ensure the named

gain stability (a new concept proposed in [158], which

is an extension of platoon staring stability). In [159], a

new DMPC strategy with guaranteed fuel economy is pro-

posed, which can guarantee trajectory convergence and

minimize fuel consumption [127]. A distributed economy

MPC approach is presented in [160] to solve the prob-

lem of the vehicle platoon, where the string stability of the

platoon is guaranteed.

4.2 Plug in or out maneuvers

The vehicle platoon plug in or out strategy refers to

the formation of a hybrid flexible platoon through
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Fig. 4 Leader follower topologies [146]

interaction and cooperation according to different road

environments and a wireless self-organizing network.

This strategy increases traffic flow due to improved pla-

toon system flexibility.

Control of plug in and out maneuvers of vehicle pla-

toons mainly focuses on two aspects:

1 The control strategy for calculating the vehicles’ speed

and position takes the influence of multiple lanes, sev-

eral vehicle types, different destinations, and traffic

density into account [161].

2 According to the upper decision-making information

of vehicle speed and position, vehicle speed and path

tracking control strategies are designed for vehicle

stability and platoon security.

A distributed control strategy to select lanes for pla-

toons using inter-vehicle communication is proposed in

[162] to enhance traffic safety and increase lane capacities.

While cooperating control for single vehicle lane assign-

ments already leads to decrease travel times, implement-

ing a cooperative lane assignment for platooning vehicles

leads to an even greater reduction of travel times. Seeing

the leader-follower platoon and the overtaking maneuver,

a decentralized PID control approach is proposed, where

the control inputs for each vehicle are the traction force

and steering angle [163]. Considering all practical limita-

tions and constraints, workspace geometry, and steering

specifications, a nonlinear time-invariant motion planner

is proposed that guarantees collision-free lane changing,

merging and overtaking maneuvers. The motion planner
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derived from the Lyapunov-based control scheme works

within an overarching leader-follower scheme [164]. In

view of the problem of vehicles plugging in and out at dif-

ferent speeds, two adaptive lateral trajectory generation

techniques are proposed and compared. This scheme can

effectively avoid high lateral acceleration [165]. In [166], a

scheme is proposed that guides and controls the vehicles’

longitudinal motion, which considers the entry of vehi-

cles onto automated highways, e.g., an on-ramp vehicle is

to rendezvous with a designated space on the highway at

a merging point; or a vehicle in the transition lane is to

pursue a target space in the automated lane and intercept

it smoothly at an automated highway entry gate. Algo-

rithms for merging control of vehicles using the concept

of a virtual vehicle, and inter-vehicle communication for

the control are presented in [167], which greatly increased

safety and decreased traffic congestion. A decentralized

merging assistant is proposed for mixed traffic situations

to increase traffic flow by minimizing the conflict and

limiting speed changes [168].

Research has been carried out on controlling vehicle

platoon plug in or out maneuvers in traffic flow charac-

teristics. DMPC has been, however, not yet implemented

in the plug in or out scenario. Since DMPC has the

advantages of a simple structure and the ability to deal

with constraints, it is likely to become a popular research

topic with respect to vehicle platoon plug in and out

maneuvers.

5 Current challenges and prospects in usingMPC

for AGVs
Despite the widely existing applications of MPC in AGVs,

some open challenges in theoretical and implementation

aspects still exist. Thus, in this section, the current chal-

lenges in the aforementioned topic areas are reviewed and

some indications for future developments are provided.

5.1 MPC applications in individual AGVs

The following is the main challenges for future study.

1 Integration of decision making, trajectory planning

and motion control in an MPC framework: Vehicle

dynamics directly determine the vehicle’s motion and

thus have crucial effects on vehicle stability, safety

and comfortability. To achieve safe and comfortable

autonomous driving, traditional MPCs consider the

vehicle dynamics mainly in motion control and recent

work further extends the vehicle dynamics to trajec-

tory planning. However, the vehicle dynamics are still

ignored in decision making which directly affects the

trajectory planning, further are the motion control

and the vehicle motion. Especially in high-speed or

low-friction scenarios, decision making without vehi-

cle dynamics may lead the vehicle to uncontrollable

modes from the very beginning before trajectory plan-

ning and motion control, and thus seriously deteri-

orates the stability, safety and comfort of AGVs. It

is still an open challenge, how the decision making,

trajectory planning andmotion control based on vehi-

cle dynamics can be integrated into a unifying MPC

framework.
2 Balancing of model accuracy, prediction horizon and

control performance: The MPC-based AGV con-

trollers are full of trade-offs. Simple vehicle models

are not enough in MPC. However, the more complex

the vehicle model is, the heavier the computational

complexity becomes. Furthermore, too short predic-

tion horizon will cause the AGVs short-sighted, but

too long horizons will bring prediction inaccuracy.
Thus, the challenge is how the model accuracy,

the prediction horizon and the control performance

according to different driving scenarios, different

accuracy demands and on-board computational lim-

its can be balanced.
3 Ensuring recursive feasibility of MPC in AGVs:

Recursive feasibility is of the greatest significance

since it ensures sensible control inputs to the vehicle.

Feasibility has very close relationship with the objec-

tive function, the references errors, the weights, and

the state and control constraints. How to systemati-

cally describe the characteristics of the driving behav-

ior together with the above four factors to achieve

recursive feasibility is still challenging.
4 Considering uncertainties: In real driving, the vehi-

cle model and the motion of traffic participants are

inevitably uncertain, which may deteriorate the pre-

diction accuracy and the control performance of the

model predictive controllers. How to deal with the

uncertainties of the model, the constraints and the

objective function for AGV controllers in the MPC

framework is still a challenge.
5 Adaption to every scenario in a unifying MPC frame-

work: Current MPC-based trajectory planning and

motion control only consider typical driving behav-

iors in sample scenarios such as lane keeping, lane

change, etc., which is however far from implemen-

tation in real complex traffic. Thus, the design of an

MPC framework that can adapt to every scenario by

adapting the objective function and having flexible

constraints is still a challenge.
6 Human-and-passengers-like model predictive con-

troller: Current research pays more attention on func-

tion while the experience of drivers and passengers

is ignored, which makes the AGVs just a rigid robot
that might lose the human trust. How to finely design
the weights, the constraints as well as the objective
function of the model predictive controller to make it
more human-like and passengers-acceptable is still a

challenge.
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7 On limited working conditions: Limited working con-

ditions, such as icy roads, dramatically increase the

risk of vehicle instability. How to figure out the insta-

bility boundary and incorporate the highly nonlinear

vehicle dynamics from a predicted perspective in an

MPC framework is of great significance and still an

open challenge.

5.2 MPC applications in multi-AGVs

Several technical and practical challenges are listed here,

which play a vital role in the cooperation between multi-

autonomous ground vehicles in platoons.

1 Data transfer: Wireless communication is a key fea-

ture in the process of vehicle platooning. Typically,

a vehicle will send information including speed-

data, sensor-readings, and current-position to the

other vehicles. Communication is completed through

broadcast or multicast transmission with a handshake

protocol. Communication problems between vehi-

cles in a platoon include loss of information, error

messages, spam, communication equipment failure,

and transmission delays. The communication topol-

ogy must be able to connect in lousy weather or

insufficient bandwidth access.
2 Cybercrime security: A vehicle platoon is a collection

of networked sensors and computers wirelessly linked

to other vehicles and frames; therefore, the system

must be secure from network attacks by hackers or

invaders.
3 Platooning: Formation control of platoons is essen-

tial when autonomous vehicles need to keep distance

between themselves and their neighbors. Dynamic

platoons must determine the target by solving the

following scenarios:

- If a vehicle wants to leave a platoon or links with

another platoon, the other vehicles must reorder

their positions to fill the platoon space.

- If the leader leaves the platoon, the direct fol-

lower in the platoon must take the leader’s role

instead.
- There is a limit on the number of vehicles for

platoon formation; if the number is exceeded, a

new platoon for autonomous vehicles should be

generated.
- The demand for “fast” control of information

transmission and “long” forecast time for the

vehicle. Thus, feasibility of high dimensional

complex nonlinear optimization problems [147]

has to be considered.

4 Plug in or out: In an uncoordinated traffic environ-

ment, vehicle mergers and lane changes are another

key target area requiring inter-vehicle interaction. For

these operations, assessing the intentions of other

vehicles and sharing information between them are

vital.

5 Emergency response: Providing access to emergency

vehicles such as ambulances and police cars is an

additional challenge requiring the development of

dedicated controllers for vehicle platooning. Cur-

rently, human drivers park on the side of the road

and provide a way to ambulances. A similar behavior

needs to be implemented for autonomous vehicles in

platoons.

Although DMPC has been widely applied to AGVs,

most of the studies are still in the laboratory stage. The

critical problem is the conflict between low-cost hard-

ware and the tremendous computational complexity in

solving the optimization problem. This is especially worth

addressing in energy-efficient control with a longer pre-

diction horizon, for instance, velocity trajectory optimiza-

tion in eco-driving systems. To address this problem,

[169–171] used the indirect shooting method in energy

management systems and a lateral stability control system

to realize real-time control under a low-cost microcon-

troller. Although the prediction step is up to 80-100,

by combing Pontryagin’s Minimum Principle and prior

knowledge of a specific AGV, the optimization problem

can be solved at the millisecond level. However, the issue

that remains to be solved is to find a first estimate of

the adjoint variables for high-order systems. In real-world

control tasks, it is not unusual for the numerical inte-

gration to produce infeasible trajectories in the state or

adjoint space with poor initial guesses.

6 Conclusions
This paper reviews theoretical aspects of centralized

and distributed MPC. Distributed MPC can handle

complex systems with the price of requiring coor-

dinated communication between subsystems. Then,

the related MPC algorithms in autonomous ground

vehicles are reviewed when operating as individuals

and as multiple (cooperating) systems. The conclu-

sion is that MPC can be used in such systems in

terms of different scenarios, functions and missions.

Finally, some open challenges are highlighted for future

research to improve the performance of MPC for

AGVs.
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stochastically forced consensus networks. IEEE Trans. Autom. Control.
59(7), 1789–1802 (2014)

144. F. L. Lewis, H. Zhang, K. Hengster-Movric, A. Das, Cooperative Control of
Multi-agent Systems: Optimal and Adaptive Design Approaches. (Springer,
2013)

145. Y. Zheng, S. E. Li, K. Li, F. Borrelli, J. K. Hedrick, Distributedmodel predictive
control for heterogeneous vehicle platoons under unidirectional
topologies. IEEE Trans. Control Syst. Technol. 25(3), 899–910 (2016)

146. Y. Zheng, S. E. Li, J. Wang, D. Cao, K. Li, Stability and scalability of
homogeneous vehicular platoon: Study on the influence of information
flow topologies. IEEE Trans. Intell. Transp. Syst. 17(1), 14–26 (2015)

147. A. Ghasemi, S. Rouhi, A safe stable directional vehicular platoon. Proc.
Inst. Mech. Eng. D J. Automob. Eng. 229(8), 1083–1093 (2015)

148. S. Knorn, A. Donaire, J. C. Agüero, R. H. Middleton, Passivity-based control
for multi-vehicle systems subject to string constraints. Automatica.
50(12), 3224–3230 (2014)

149. A. Maxim, C. M. Ionescu, C. F. Caruntu, C. Lazar, R. De Keyser, Reference
tracking using a non-cooperative distributed model predictive control
algorithm. IFAC-PapersOnLine. 49(7), 1079–1084 (2016)

150. M.-F. Ge, Z.-H. Guan, B. Hu, D.-X. He, R.-Q. Liao, Distributed
controller–estimator for target tracking of networked robotic systems
under sampled interaction. Automatica. 69, 410–417 (2016)

151. X. Guo, J. Wang, F. Liao, R. S. H. Teo, Distributed adaptive
integrated-sliding-mode controller synthesis for string stability of
vehicle platoons. IEEE Trans. Intell. Transp. Syst. 17(9), 2419–2429 (2016)

152. R. Kianfar, P. Falcone, J. Fredriksson, in 2011 14th International IEEE

Conference on Intelligent Transportation Systems (ITSC). A receding
horizon approach to string stable cooperative adaptive cruise control
(IEEE, Washington, 2011), pp. 734–739

153. J. Ploeg, D. P. Shukla, N. van de Wouw, H. Nijmeijer, Controller synthesis
for string stability of vehicle platoons. IEEE Trans. Intell. Transp. Syst.
15(2), 854–865 (2013)

154. S. Li, K. Li, R. Rajamani, J. Wang, Model predictive multi-objective
vehicular adaptive cruise control. IEEE Trans. Control Syst. Technol. 19(3),
556–566 (2010)

155. W. B. Dunbar, D. S. Caveney, Distributed receding horizon control of
vehicle platoons: Stability and string stability. IEEE Trans. Autom. Control.
57(3), 620–633 (2011)

156. P. Shakouri, A. Ordys, Nonlinear model predictive control approach in
design of adaptive cruise control with automated switching to cruise
control. Control. Eng. Pract. 26, 160–177 (2014)

157. J. A. Fax, R. M. Murray, Information flow and cooperative control of
vehicle formations. IEEE Trans. Autom. Control. 49(9), 1465–1476 (2004)

158. H. Li, Y. Shi, W. Yan, Distributed receding horizon control of constrained
nonlinear vehicle formations with guaranteed γ -gain stability.
Automatica. 68, 148–154 (2016)

https://escholarship.org/uc/item/29v570mm
https://escholarship.org/uc/item/29v570mm
https://doi.org/10.1109/TVT.2017.2723881


Yu et al. Autonomous Intelligent Systems             (2021) 1:4 Page 17 of 17

159. L. Lu, X. Song, D. He, Q. Chen, in 2018 37th Chinese Control Conference

(CCC). Stability and fuel economy of nonlinear vehicle platoons: A
distributed economic MPC approach (IEEE, Wuhan, 2018), pp. 7678–7683

160. D. He, T. Qiu, R. Luo, Fuel efficiency-oriented platooning control of
connected nonlinear vehicles: A distributed economic MPC approach.
Asian J. Control. 22(4), 1628–1638 (2020)

161. L. Alvarez, R. Horowitz, C. V. Toy, Multi-destination traffic flow control in
automated highway systems. Transp. Res. C Emerg. Technol. 11(1), 1–28
(2003)

162. T. Dao, C. M. Clark, J. P. Huissoon, in 2008 IEEE Intelligent Vehicles

Symposium. Distributed platoon assignment and lane selection for traffic
flow optimization (IEEE, Eindhoven, 2008), pp. 739–744

163. P. Xavier, Y.-J. Pan, in Proceedings of the 48h IEEE Conference on Decision

and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference.
A practical PID-based scheme for the collaborative driving of automated
vehicles (IEEE, Shanghai, 2009), pp. 966–971

164. R. Rai, B. Sharma, J. Vanualailai, in 2015 2nd Asia-Pacific World Congress on

Computer Science and Engineering (APWC on CSE). Real and virtual
leader-follower strategies in lane changing, merging and overtaking
maneuvers (IEEE, Nadi, 2015), pp. 1–12

165. M. Goli, A. Eskandarian, in 2014 International Conference on Connected

Vehicles and Expo (ICCVE). Evaluation of lateral trajectories with different
controllers for multi-vehicle merging in platoon (IEEE, Vienna, 2014),
pp. 673–678

166. C. Yang, K. Kurami, in Proceedings of 32nd IEEE Conference on Decision and

Control. Longitudinal guidance and control for the entry of vehicles onto
automated highways (IEEE, San Antonio, 1993), pp. 1891–1896

167. A. Uno, T. Sakaguchi, S. Tsugawa, in Proceedings 199 IEEE/IEEJ/JSAI

International Conference on Intelligent Transportation Systems (Cat. No.

99TH8383). A merging control algorithm based on inter-vehicle
communication (IEEE, Tokyo, 1999), pp. 783–787

168. R. Pueboobpaphan, F. Liu, B. van Arem, in 13th International IEEE

Conference on Intelligent Transportation Systems. The impacts of a
communication based merging assistant on traffic flows of manual and
equipped vehicles at an on-ramp using traffic flow simulation (IEEE,
Funchal, 2010), pp. 1468–1473

169. H. Chen, L. Guo, H. Ding, Y. Li, B. Gao, Real-time predictive cruise control
for eco-driving taking into account traffic constraints. IEEE Trans. Intell.
Transp. Syst. 20(8), 2858–2868 (2018)

170. H. Chu, L. Guo, B. Gao, H. Chen, N. Bian, J. Zhou, Predictive cruise control
using high-definition map and real vehicle implementation. IEEE Trans.
Veh. Technol. 67(12), 11377–11389 (2018)

171. P. Wang, H. Liu, L. Guo, L. Zhang, H. Ding, H. Chen, Design and
experimental verification of real-time nonlinear predictive controller for
improving the stability of production vehicles. IEEE Trans. Control Syst.
Technol. (2020)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Abstract
	Keywords

	Introduction
	Basis of MPC
	Distributed MPC
	DMPC for consensus


	MPC for individual AGVs
	Motion control of single AGVs using MPC
	Motion planning by MPC for a single AGV
	MPC for combined motion planning and control of an individual AGV

	MPC for multi-AGVs
	DMPC strategy for vehicle platoons
	Plug in or out maneuvers

	Current challenges and prospects in using MPC for AGVs
	MPC applications in individual AGVs
	MPC applications in multi-AGVs

	Conclusions
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Code availability
	Competing interests
	Author details
	References
	Publisher's Note

