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Abstract— A model predictive control (MPC) approach for
freeway traffic control using discrete signals for the activation of
variable speed limit panels is proposed. The discrete character-
istics of the panels and some necessary constraints for their real
operation are usually underestimated in the literature, so first
we propose a way to include them using the macroscopic traffic
model METANET within an MPC framework. For obtaining
practical discrete signals, the MPC controller has to solve
a highly non-linear optimization problem, including mixed-
integer variables. Since solving such a problem is complex and
difficult to execute in real-time, we propose some methods to
obtain reasonable control actions in a limited computation time.
The methods consist of first relaxing the discrete constraints
for the inputs; and then, based on this continuous solution
and together with different search methods, to find discrete
speed limit signals that provide the best performance, keeping
the number of simulations reduced. The proposed methods are
tested by simulation, showing not only a good performance but
also keeping the computational time reduced.

I. INTRODUCTION

Traffic congestion on freeways is a critical problem due
to its negative impact on the environment and many other
important consequences (higher delays, waste of fuel, a
higher accident risk probability, etc.) It has been reported
in the literature under different conditions and particularities
that dynamic traffic control is a good solution to decrease
congestion [1] [2] [3]. In general, dynamic traffic control
uses measurements of the traffic conditions over time and
computes dynamic control signals to influence the behavior
of the drivers and then to generate a response in such a way
that the performance of the network is improved, by reducing
for example the delays, emissions, etc.

Variable speed limits (VSL), ramp metering, and route
guidance are most used examples of measures that can be
used to dynamically control traffic. These measures have
been already successfully implemented in USA, Germany,
Spain, Netherlands and other countries [4]. When selecting
the control signals, among the available options described in
the literature, the methods based on the use of advanced
control techniques like Model Predictive Control (MPC)

*The research leading to these results has received funding from the
European Union Seventh Framework Programme [FP7/2007-2013] under
grant agreement 257462 HYCON2 Network of excellence.

1J.R.D. Frejo and E.F. Camacho are with the Dept. de Ingenierı́a de
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[5] have by simulation proved to substantially improve the
performance of the controlled traffic system [6] [2]. In this
paper, we focus on control using variable speed limits (VSL)
panels. In most of the works about VSL computed with
MPC, the VSL signals are assumed to have continuous
values, meaning that the real VSL panels implemented in the
network should display to the driver those values [2], [6], [1],
[7], [8]. However, in real implementations of VSL panels,
the displayed signals are just allowed to take a limited set of
discrete values. Moreover, some extra constraints should be
considered like a limited variation in time (for each panel)
and space (consecutive panels) so to avoid drastic changes in
speed for safety reasons. As a real implementation example,
in [3] a method to reduce the effect of shock waves in the
Dutch freeway A12 using VSL panels is reported, where the
signals of the panels were just allowed to take values in the
set {60, 80, 100}[km/h].

A few works have tried to deal with discrete VSL. In
[9], a traffic model with variable length segments is used to
compute a simple best-effort controller that reduces conges-
tion considering VSL signals that can only be decreased or
increased by steps of 10[km/h]. A discrete VSL controller
based on shock wave theory is proposed and tested in [3].
Both controllers, [9] and [3], use simple control laws that
are not explicitly designed to optimize a performance index
of the network. In [10] and [11] the VSL are discretized
(by rounding, ceiling or flooring) after computing them in
a continuous way. These papers conclude that the perfor-
mance of the discrete safety-constrained speed limits was
comparable with the continuous case. However, those results
are dependent of the network configuration and the demand
conditions, as in our case study we found some important
loss of performance due to the discretization.

In this paper, we consider explicitly the effects of using
discrete signals for the VSL panels in an MPC framework.
After the formulation of the control problem in Section II,
III and IV, methods to obtain discrete signals for the VSL
panels are presented in Section V. The first algorithm eval-
uates all the feasible discrete solutions near the continuous
solution provided by the relaxed MPC controller. The second
algorithm evaluates a subset of the feasible discrete solutions
using a genetic algorithm. Finally, in Section IV, numerical
results are presented and discussed.

II. MODEL PREDICTIVE CONTROL

The main concepts behind a MPC strategy are the use
of a prediction model to obtain the trajectories of relevant
variables of the system, the optimization of a dynamic
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objective function to determine the best sequence of control
actions for the system, and the application of the rolling
horizon procedure, so from the best sequence of control
actions only the first component is applied to the system
and in the next instant the initial conditions are updated and
the procedure is repeated again [5]. Since MPC is based
in an optimization procedure, in the case of systems with
discrete control actions we can include that characteristic
as a constraint, and obtain suitable control laws by using a
proper mixed-integer optimization algorithm.

To formalize all these concepts, consider the discrete-time
non-linear system whose dynamic evolution is described by
the following state space model:

x(k + 1) = f(x(k), u(k), d(k)) (1)

with x(k) the state, u(k) the discrete and continuous input
vector, and d(k) the non-controllable input vector, usually
demands profiles and other exogenous variables.

In an MPC controller, the core is the optimization of a cost
function J(xt(k), ut(k), dt(k)), which is used to measure
the performance of the system. The vectors xt(k) and dt(k)
are the state and non-controllable input predictions along
the prediction horizon Np and ut is the control sequence
along the control horizon Nu. As the formulation is based
on the solution of an optimization problem, it is possible to
explicitly include constraints. Assume that the feasible values
of the states and the inputs are given by the following generic
constraints x(k) ∈ X, uc(k) ∈ U, and ud(k) ∈ S for all
k, representing explicitly physical or operational constraints
of the system. When considering the case of discrete inputs,
the MPC problem can be formulated as the following mixed-
integer non-linear optimization problem:

min
ut(k)

J(ut(k), xt(k), dt(k)) (2)

subject to:
x(k + ℓ+ 1) = f(x(k + ℓ), u(k + ℓ), d(k + ℓ)),

x(k) = xk x(k + ℓ+ 1) ∈ X,
uc(k + ℓ) ∈ U, ud(k + ℓ) ∈ S,
for ℓ = 0, 1, ..., Np − 1,

with S the set of possible control values S = {u1, u2, ..., uM}
for the corresponding feasible discrete input components (in
our case, the VSL). Using the rolling horizon procedure,
only the first control action u(k) of the optimal sequence is
applied to the system, and in the next time step the initial
conditions are updated and the procedure is repeated.

For this formulation, the main disadvantage is the com-
putation time needed to solve the optimization problem. In
cases when the problem can be recast into a linear one,
well-known optimization methods are efficient and many
software/toolboxes are available to solve them. However, in
the case of traffic systems, the problem is intrinsically non-
linear and any simplification of the model may lead to non-
acceptable predictions, which are incapable of incorporating
the real behavior of traffic. As a way to deal with the com-
plexity, and to include the discrete characteristic explicitly in

the solution, we propose first to reduce the search space of
possible solutions by including some operational constraints
that are actually very necessary for safety reasons, and then
to use some fast heuristic methods to find a good solution
within that limited space.

III. TRAFFIC MODEL METANET

In this paper, we have selected the traffic model
METANET [12]. However, the methods we propose are inde-
pendent of the traffic model used, so they can be equivalently
applied using other macroscopic traffic models, if they are
capable to include the effect of VSL in its formulation (like
some versions of the CTM [13]).

The METANET model is a macroscopic second-order traf-
fic model that provides a good trade-off between simulation
speed and accuracy. The METANET model is deterministic
and can be adapted to motorway networks of arbitrary
topology and characteristics, including motorway stretches,
bifurcations, on-ramps and off-ramps, and the effects of con-
trol actions such as ramp metering, route guidance, and VSL
panels. This model discretizes the freeway in consecutive
sections in segments of length Li and uses density ρi(k) and
speed vi(k) as state variables. For simplicity, in this paper
the authors do not differentiate between links and segments.
The model is as follows:
- Density equation:

ρi(k + 1) = ρi(k)+ (3)

+
T

λiLi
(qi−1(k)− qi(k) + qr,i(k)− βi(k)qi−1(k))

where λi is the number of lanes, βi(k) is the split ratio for
an off ramp on segment i βi(k) = 0 for a segment without
an off-ramp), T is the model sample time, qi(k) is the flow
leaving segment i and qr,i(k) is flow entering by an on-ramp
on segment i (qr,i(k) = 0 for a segment without an on-ramp).
- Speed equation:

vi(k + 1) = vi(k) +
T

τi
(V (ρi(k))− vi(k))+ (4)

+
T

Li
vi(k)(vi−1(k)− vi(k))−

µiT

τiLi

ρi(k + 1)− ρi(k)

ρi(k) +K

− δiTqr,i(k)vi(k)

Liλi(ρi(k) +K)

where Ki, τi, δi and µi are model parameters and V (ρi(k))
is the speed desired for the drivers. As proposed in [1], the
model can take different values for µi, depending on whether
the downstream density is higher or lower than the density
in the corresponding segment.
- Desired speed equation:

V (ρi(k)) = (5)

min

(
vf,i exp

(
− 1

ai

(
ρi(k)

ρc,i

)ai
)
, (1 + αi)Vc,i(k)

)
where ai, αi are model parameters, ρc,i is the critical density,
vf,i is the free flow speed and Vc,i is the variable speed limit.
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- Ramp flow equation:

qr,i(k) = (6)

= min

(
ri(k)Cr,i, Di(k) +

wi(k)

T
,Cr,i

ρm,i − ρi(k)

ρm,i − ρc,i

)
where Cr,i is the ramp capacity, Di(k) is the ramp demand,
wi(k) is the ramp queue, ρm,i is the maximum density, and
ri(k) is the ramp metering rate.
- Flow equation:

qi(k) = λiρi(k)vi(k) (7)

- Queue length equation:

wi(km + 1) = wi(km) + Tm · (Di(km)− qr,i(km)) (8)

For the sake of simplicity, merge and join nodes, and other
extensions are not considered in this paper (See [12], [1],
[14] for further details).

In [12], VSLs are included in the model rendering the
three parameters of the fundamental diagram ρc,i, vf,i and ai.
However, in this paper, the VSL are included by a minimum
term in the desired speed equation (5) as proposed in [1]. the
effect of VSLs on aggregate traffic flow behavior is studied
in [15] on the basis of traffic data comparing the equation
used in this paper (5) with other options.

IV. VSL IMPLEMENTATION ISSUES
In the majority of the references about VSL computed by

MPC, the variable speed limits are considered to be imple-
mented in the network without any operational constraints.
Hereafter, we will assume the MPC controllers will have to
consider the following constraints:

A. Temporal constraint

In real implementations, the VSL cannot change abruptly
due to driver safety and comfort. In this section, it is
supposed that the VSLs are just allowed to change γ km/h as
maximum in a controller sample. Therefore, it is necessary
to recompute the control inputs in order to have a feasible
solution including the following hard constraint in the MPC
approach:

|Vc,i(k + l)− Vc,i(k + l − 1)| ≤ γ (9)
for i with a VSL and

for l = 0, 1, ...Nu − 1

Hereafter, the MPC proposed with VSL temporally con-
strained will be denoted by T-MPC. In this paper, a value of
γ = 10 will be used.

B. Spatial and temporal constrained case

Moreover, in real implementations it is necessary to limit
the difference between the VSLs of two adjacent segments.
This can be done by including the following constraint:

|Vc,i(k + l)− Vc,i(k + l − 1)| ≤ γ (10)
|Vc,i+1(k + l)− Vc,i(k + l)| ≤ ζ

for [i+ 1, i] with VSL and

for l = 0, 1, ...Nu − 1

Hereafter, the MPC proposed with VSL spatially and tempo-
rally constrained will be denoted by ST-MPC. In this paper,
a value of ζ = 10 will be used.

C. Discrete case

Even with MPC constrained spatially and temporally for
the VSLs, the solution obtained cannot be implemented in
practice since the freeway signs are only allowed to show a
limited set of speed limits. However, the MPC controller is
considering the VSL as continuous signal and, therefore, is
providing real numbers for implementation. In practical case,
it is necessary to approximate this decimal control inputs by
an allowed VSL value. Some methods for this discretization
will be proposed in the following section. In the following
sections, it will be assumed that the set of allowed VSL is
S = {20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120}, ζ = 10,
and γ = 10.

V. VSL DISCRETIZATION

A. Rounding discretization

The easiest and most used way to do the discretization is
by rounding to the closest available value for the VSLs:

Vc,i(k) = argmins∈S(|VcST,i(k)− s|) (11)

where VcST,i(k) is the VSL of segment i computed by ST-
MPC controller explained in the previous section IV.B. In
[1] the discretization is also done by ceiling and flooring
obtaining a slightly better performance for the ceiling case
and a worse performance for the flooring case. In the rest
of this section alternative methods for the discretization step
will be proposed in order to decrease the loss of performance
due to the quantization.

B. Search tree

During the discretization process, it is desirable to choose
the discrete control input profile that minimizes the cost func-
tion. This can be done by solving the following optimization
problem:

min
Vc

J(k) (12)

s.t : |Vc,i(k + l)− Vc,i(k + l − 1)| ≤ 10

|Vc,i+1(k + l)− Vc,i(k + l)| ≤ 10

20 ≤ Vc,i+1(k + l) ≤ 120

for l = 0, 1, ...Nu − 1

with Vc ∈ S

where Vc is the discrete control input profile:
[Vc,1(k), ..., Vc,1(k+Nu−1), ..., Vc,NVSL(k), ..., Vc,NVSL(k+
Nu − 1)]T and NVSL is the number of VSL.

Most of the model predictive control approaches for hybrid
large-scale systems do not have a standard strategy to relax
the problem in order to obtain an acceptable good solution
in a reasonable amount of computation time. Limiting the
number of feasible nodes in the mixed integer optimization
problem is a strategy that has been used before in the
context of MPC for sewer networks [16], as a way to reduce
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the combinatorial explosion related to the search tree of
binary solutions at the expense of a suboptimal solution. In
this paper, this limitation will be done by including a new
constraint in the optimization problem making use of the
ST-MPC solution VcST,i(k):

|Vc,i(k + l)− VcST,i(k + l)| ≤ θ (13)

where θ is a tuning parameter. If the parameter θ is chosen to
be 10, we are allowing that the VSLs take the closest upper
or the closest lower value with respect to the continuous
optimum VcST,i(k):

Vc,i(k) = ⌊VcST,i(k)

10
⌋, ⌈VcST,i(k)

10
⌉ (14)

The feasible VSL set can be represented by a search tree.
In Fig. 1 an example of a search tree with Nu = 2, Vc(k) =
[40, 50]T , VcST(k) = [43, 53]T , VcST(k) = [52, 61]T and
θ = 10 is shown. It is supposed that there are only VSL
on segments 3 and 4, as in the scenario in section IV.
In this case, the constraints reduce the number possible
combinations of discrete VSL from 81 to only 6.

v
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(k+1)=61

v
cST,3

(k+1)=52

v
c,4

(k−1)=50

k
v

cST,3
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50
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60

50

60

60

60

60

60
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k+1
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60

60

v
cST,4

(k)=53

Fig. 1. Search tree example with Nu=2

For higher horizons the number of feasible VSL profiles
is increased exponentially. However, it is still possible to
significantly reduce this number by eliminating the non-
feasible solutions. For example, in one of the simulation
done in this paper (with Nu = 5 and θ = 10) the search
tree is reduced from 59049 points to an average number of
700 points. If θ is chosen to be 14, the average number of
points in the reduced tree is 5850.

C. Explicit enumeration

The easiest way to solve problem (12) with constraint (14)
is to evaluate the cost function for all the feasible points in
the reduced search tree. The main problem is the computation
time needed for the evaluation of such a large possible
combinations of discrete VSL. Therefore, this solution is
just available for small networks with small horizons. In
order to be able to solve the problem for higher networks
and horizons with a limited computational time available, a
genetic algorithm is proposed in the following section.

D. Genetic discretization

In order to determine a good discrete VSL within the lim-
ited time available, a genetic algorithm (GA) is proposed. It

has been reported that genetic algorithms can efficiently cope
with the optimization of mixed integer nonlinear problems
[17] in the context of model predictive control applications
[18]. The main advantages of this method are that the gradi-
ent of the objective function does not need to be calculated
and that by fixing few parameters it is possible to limit the
number of function evaluations and iterations so as to obtain
near optimal results within a fixed sampling time.

A candidate solution in the genetic algorithm is called an
individual, and each individual has a fixed number of genes
(emulating a chromosome). Each gene, in the context of the
control of the VSL panels, will represent a possible input
during the control horizon. The individual can be seen then
as a candidate control action sequence:

Individual1 = (15)
= [u1(k), ..., u1(k +Nu − 1), u2(k), ..., um(k +Nu − 1)]

where an element ui(k + j − 1) ∈ S, j ∈ {1, Nu − 1} is a
gene, i denotes the control actions related with the ith VSL,
and the individual length corresponds to the control horizon
Nu times the number of VSL m.

In genetic algorithm the idea is to find the fittest individ-
uals (solutions with good objective function value) within a
generation, to apply genetic operators for the recombination
of those individuals, and to generate a good offspring [17].
For the selection, a roulette method is applied, having the
best individuals more chances to be selected for recombina-
tion. For the recombination, two fundamental operators are
used: crossover and mutation. For the crossover, portions of
the chromosomes of two individuals are exchanged with a
given probability pc; and the mutation operator modify each
gene randomly with a given probability pm.

In the case a solution does not satisfy a constraint, we
will penalize with a high objective function value. We have
to point out that due to the limited time reaching the global
optimum is not guaranteed. Since for traffic control the
optimization is a complex mixed integer and nonlinear prob-
lem, using the GA optimization is justified. Many different
approaches and adaptations of genetic algorithms have been
proposed in the literature [19] in order to deal with many
issues like constraint handling, diversity of the solutions,
combination with classical optimization methods to assure a
local convergence, etc. The algorithm we used for the traffic
application is the simplest one [18].

VI. SIMULATION

A. Particularities of the MPC controllers used in this paper

This subsection explains the main particularities of the
MPC controllers used in this paper, as in [20]:
–The MPC controller uses an objective function containing
one term for the Total Time Spent (TTS) and two terms that
penalize abrupt variations in the ramp metering and VSL.
–The controlled system is subject to constraints on the
maximum and minimum values of densities, speeds, queues,
ramp metering rates and VSL.
– The constraints on speed, density, and queue are made soft
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by including them as penalization terms in the overall cost
function.
–The optimization is computed by SQP optimization tech-
niques by the Matlab function fmincon with a control and
prediction horizon of Nu = 5 and Np = 10, respectively.
—In order to try to avoid that the algorithm ends up in a local
minimum, the algorithm runs an evaluation procedure before
the optimization. During the procedure, the TTS is evaluated
for a grid of control values. The best control values obtained
are taken as initial values for the optimizations.

B. Set-up and scenario

VSL 1 VSL 2

60 50

Ramp
metering

Fig. 2. Strech used as example.

In order to simulate the analyzed controllers, the bench-
mark network in Fig. 3 has been used. The network has
been taken from [1]. The freeway has N = 6 segments with
a longitude of Li = 1000 m and with λ = 2 lanes. There
are 3 control signals: two VSL (for segments 3 and 4) and a
ramp metering. Thirteen variables (density and speed of each
segment and queue of the ramp) are supposed to be measured
at each controller sample step and used for the computation
of the control signals. The simulation time chosen is two
and half hour corresponding to 75 controller sample steps
(Tc = 120s) and 900 simulation steps (T = 10s). See [1]
[20] for further details about the chosen benchmark including
the model parameters. The set of allowed VSL is supposed
to be: S = {20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120}.

C. Continuous MPC controllers results
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Temporally Constrained MPC
Spatially and Temporally Constrained MPC
Rounding Discretization

Fig. 3. VSL of segment 3 and 4 for continuous MPC and rounding
discretization

The results of the closed-loop simulations for the VSL
computed by each continuous MPC controller and the round-
ing discretization of the ST-MPC can be seen on Fig. 3. It can

be seen that VSL1 of unconstrained MPC suddenly change
from 73 km/h to 20 km/h at minute 12. However, this change
is done at a rate of ten kms/h for the T-MPC. Moreover, the
difference between VSL1 and VSL2 is around 50 km/h for
unconstrained MPC and T-MPC during a long period of time.
When this difference is constrained in ST-MPC, the value of
the VSL2 is strongly decreased in order to obtain a difference
of 10 kilometers/hour with the VSL1 (which is also slightly
increased). Finally, the discrete case is just a quantization of
ST-MPC.

TABLE I
MPC PERFORMANCES

TTS Reduction (%)
Uncontrolled System 0
Unconstrained MPC 12.66

Temporally contrained MPC 11.92
Spatially and temporally constrained MPC 8.10

Rounding discretization 4.99

The numerical results can be seen on Table I. It can
be seen how the VSL that could be really implemented
(the discrete ones) have a TTS reduction that is the 39.5%
of the corresponding to the unconstrained MPC (12.66%
versus 4.99%). This shows that the supposition done in many
previous of paper about the continuous implementation of the
VSL entails a large loss of performance for the controlled
system.

D. Discretization results
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Fig. 4. VSL discretization of segment 3 and 4.

The VSL discretization of ST-MPC and the continuous ST-
MPC solution are shown on Fig. 4. The numerical results
can be seen on Table II where it can be seen that θ is
a key parameter in the performance of the discretization.
The explicit enumeration with θ = 10 is only a 6.5% better
than the rounding discretization (5.28% versus 4.96% in the
TTS reduction). However, choosing θ = 14, the explicit
enumeration is a 44% better than the rounding case (7.14%
versus 4.96%). In this benchmark, values of θ higher than
14 do not bring much increase in the performance of the
controlled system as can be seen in TTS reduction of the
case with θ = 18.
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TABLE II
DISCRETIZATION PERFORMANCES

TTS Reduction (%)
Rounding discretization 4.96

Explicit enumeration with θ = 10 5.28
Explicit enumeration with θ = 14 7.14
Explicit enumeration with θ = 18 7.15
Genetic discretization with θ = 10 5.20
Genetic discretization with θ = 14 7.06

Finally, it can be seen than the genetic algorithm gives a
solution that is very close to the explicit one but with a lower
computational times (5.20% versus 5.28% for θ = 10 and
7.06% versus 7.14% for θ = 14).

In fact, the computation times show that the proposed
genetic algorithm reduces substantially the computational
load with respect to the explicit enumeration: For θ = 10,
the average computational time needed for the discretization
is 25.69 s for the explicit case and 2.52 s for the genetic
algorithm and, for θ = 14, the computation time is 170.65 s
and 9.38 s, respectively.

VII. CONCLUSIONS

Firstly, this paper has analyzed the effect of converting
the continuous unconstrained Variable Speed Limits (VSL)
signal to an implementable VSL signal. In the network
simulated, the performance is reduced with respect to ideal
case (i.e. the case with continuous VSL) in a 60.5% (12.66%
versus 4.99%). Therefore, it can be concluded that the
supposition about the continuous implementation of the VSL
entails in some cases a large loss of performance for the
controlled system. Since the majority of the literature makes
this supposition, the authors propose two methods to reduce
part of this loss of performance.

The first algorithm (explicit enumeration) evaluates all the
feasible discrete solutions around the solution provided by
the continuous MPC optimization problem using a search
tree. This method is able to improve the solution in a 44% for
the simulation analyzed. Unfortunately, this method usually
entails unacceptable computation times.

The second algorithm (genetic discretization) relaxes
the previous algorithm using a genetic algorithm. The
algorithm is able to closely approximate the behavior of the
explicit enumeration (A total time spent reduction of 7.06%
versus 7.14% for explicit enumeration). However, with the
genetic discretization, the computation time is acceptable
(9.38 seconds of average computational time versus 170.65
seconds for the explicit case). Moreover, the trade-off
between simulation speed and accuracy can be adapted
online to the available time in each controller sample time
making the algorithm very useful for the application in
practical cases.
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