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Abstract Model predictive control (MPC) has been
successfully applied to many transportation systems.

For the control of overhead cranes, existing MPC ap-

proaches mainly focus on improving the regulation per-

formance, such as tracking error or steady-state error.

In this paper, energy efficiency as well as safety is newly
considered in our proposed MPC approach. Based on

the system model designed, the MPC approach is ap-

plied to minimize an objective function that is formu-

lated as the integration of energy consumption and swing
angle. In our approach, promising results in terms of

low energy consumption and small swing angle can be

found, whilst the solutions obtained can satisfy all prac-

tical constraints. Our test results indicate that the MPC

approach can ensure stability and robustness of improv-
ing energy efficiency and safety.
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open-loop control; anti swing; energy efficiency

1 Introduction

Overhead cranes are widely used to transport heavy or

hazardous loads in factories and harbors. For a trans-
portation task, the crane is expected to arrive the end

quickly with acceptably small swing. However it is dif-

ficult to meet such requirements of time efficiency and

safety in crane control, as the crane is an underactuated
system with one control input (actuating force) but two

degrees of freedom (motion of the trolley and swing of
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the payload). Positioning accuracy and anti-swing are
two basic requirements, which are highly correlated in

the crane operation. Researchers in the communities of

mechatronics and control have made a lot of efforts on

designing effective and efficient control methods for the

underactuated crane [3,15,18,32]. The difficulty of con-
trol arises from the strong state coupling between mo-

tion of the trolley and swing of the payload. The swing

not only affects operational efficiency, but also brings

potential risks of damaging the payload or surrounding
objects. Therefore, the first task in crane control is to

analyze such kinematic coupling behavior. Researchers

often separate the design of controller into an anti-swing

part and a positioning part, and then combine the two

parts for achieving required performance.

Many previous works have considered improving reg-

ulation performances of overhead cranes. Existing strate-

gies can be generally grouped into three categories: op-

timal control, input shaping and feedback control. Op-
timal control was first proposed as an open-loop strat-

egy to design the optimal sequence of control. Motion

trajectories obtained are optimal in terms of some pre-

ferred objectives, such as the steady-state error or trans-

portation time [17,23], while satisfying practical and
physical constraints. Input shaping is a command gen-

eration method that aims to limit residual swing [8].

The swing induced by the first part of the command

is canceled by the swing induced by the following part
of the command. Input shaping is implemented in real

time by convolving the command signal with an im-

pulse sequence [26]. Note that optimal control and in-

put shaping are not suitable for some applications with

large system uncertainties and external disturbances as
they do not have closed-loop mechanisms.

For the third category, feedback control is the most

commonly used strategy for underactuated systems. Based
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on real-time measured information, such as position, ve-

locity and swing angle, the control input is adjusted to

reduce the error between actual and referenced states.

Proportional derivative (PD) control [4,6], sliding-mode

control [19,31,21], fuzzy control [13,2] and adaptive
control [34] have all been applied to overhead cranes

in the fold of feedback strategies. Generally, feedback

strategies can be divided into two types, tracking and

non-tracking strategies. Firstly, trajectories are designed
to maximize operation efficiency under some physical

constraints[28]. Then feedback control is employed to

track the planned trajectories in the environment with

uncertainties and disturbances [5,22,16]. In these track-

ing strategies, additional residual swing will be caused
during the tracking process even though the planned

trajectories are optimally designed to suppress resid-

ual swing. Secondly, non-tracking strategies have been

proposed to regulate the control performance in real
time [34,27,12,30]. These methods skip the step of tra-

jectory planning but still achieve positioning accuracy

and Lyapunov stabilization. Due to lack of planning

mechanisms, it is difficult to optimize operational effi-

ciency for this type of feedback strategies. To overcome
these weakness aforementioned, a model predictive con-

trol approach is proposed as a feedback strategy.

In this paper, model predictive control (MPC) is de-

veloped for crane control, in which trajectory planning

is not required but operational efficiency (in terms of
energy and safety) can be optimized. MPC has emerged

since the early 1970s, and MPC has been successfully

applied particularly in the process control. MPC is a

feedback control strategy that uses an explicit model of
plant to predict the future response of plant over a finite

horizon. The goal of MPC is to compute a future control

sequence in the defined horizon by minimizing a cost

function, which is subject to a set of constraints both

in the control actions and the plant outputs [7,33]. Only
“the first part” of the sequence is applied to control at

the next state. Theoretical properties such as stabil-

ity and robustness of MPC have been studied by many

authors since the early work [11]. Up to the present,
MPC has become one of the most popular multivari-

able control algorithms in various industries, including

chemical engineering, food processing, aerospace appli-

cation and recently in power systems [24,33,20]. This

is due to its facility of handling constraints, its abil-
ity of using simple models, and its closed-loop stability

and inherent robustness in many applications. In the

transportation field, MPC has been employed to solve

the path-tracking problems of terrestrial autonomous
vehicles [25] and heavy-haul trains [35]. Researchers

have also applied MPC to boom cranes [1] and gauntry

cranes [10] for tracking and anti-swing. However, exist-

ing MPC approaches for cranes only consider minimiz-

ing tracking error and steady-state error. They have

neglected two important issues, i.e., energy efficiency

and safety, which turn out to be significantly urgent

when a large number of cranes have been equipped in
some international industrial fields. To the best of our

knowledge, little work has been done to minimize the

swing risk while most work only considered the swing

as a constraint of control. Besides the swing risk, the
control sequence is also related to the profile of power,

as well as the total energy consumption. However, as

such relation is not clear yet, energy consumption has

seldom been considered in crane control.

In this paper, two objectives, energy efficiency and
safety, are evaluated in our proposed MPC approach.

The contributions of this paper include the following

four aspects. Firstly, in our MPC approach the two ob-

jectives have been integrated based on a discrete-time
model of crane. Our approach can deliver promising

performance in terms of minimal energy consumption

and swing. Secondly, our MPC approach does not re-

quire a reference trajectory, which reduces the workload

of controller. Thirdly, most practical and physical con-
straints, such as zero residual swing, maximal velocity

and acceleration, are satisfied in our MPC approach.

Fourthly, due to the closed-loop structure of MPC, the

proposed approach has good robustness when the crane
system experiences disturbances. The proposed MPC

approach has been compared with the open-loop con-

trol approach in the simulation part. The comparative

study is shown that our MPC approach can deliver bet-

ter control performance than the open-loop control, in
terms of energy consumption, swing and robustness.

The rest of this paper is organized as follows. Section

II presents the dynamical model of overhead cranes.

The discrete-time model of overhead cranes is deduced
in Section III. The proposed MPC approach to optimize

the energy efficiency and the safety is given in Section

IV. The comparative results are shown in Section V.

Section VI concludes this paper.

2 Dynamic Model of Overhead Cranes

The structure of an overhead crane can be illustrated

as shown in Figure 1, where the trolley moves on the

horizontal bridge and the payload is connected with a
constant-length rope. Let p(t), θ(t) and F (t) denote the

trolley’s position, the payload’s swing angle and overall

force on the trolley respectively. In this paper, bridge

deformation, air resistance as well as stiffness and mass
of the rope is neglected, and the load is considered as

a point mass. Moreover, as this study only focuses on

the control of horizontal transportation, hoisting and



Model Predictive Control for Improving Operational Efficiency of Overhead Cranes 3

F

p

Trolley

Payload

Bridge

Fig. 1 Two-dimensional overhead crane system

lowering of the payload are not considered. Then the

overhead crane system with constant rope length can

be described as follows:

(M +m) p̈+ml cos θθ̈ −ml sin θθ̇2 = F, (1)

ml2θ̈ +ml cos θp̈+mgl sin θ = 0, (2)

where M and m denote masses of the trolley and the

payload, respectively. l is the length of the rope; g is
the gravitational acceleration. The overall force F is

composed of the actuating force Fa, the friction Fr and

the disturbance d as

F = Fa − Fr + d, (3)

Motivated by the friction models in [14,29,9], this

paper employs a similar nonlinear friction model as

Fr = fr0 tanh (ṗ/ξ) + kpṗ+ kr|ṗ|ṗ, (4)

where fr0, kp and kr ∈ R are friction-related parame-

ters and ξ ∈ R is a static friction coefficient, which can

be obtained from off-line experimental analysis. In the

righthand side, the first component is the Coulomb fric-

tion, the second one is the damping effect of the trolley,
and the third part is an approximation of other effects.

Note that the small friction caused by the payload’s

swing is neglected in the above model.

The crane dynamics consist of the actuated part

(Eq. (1)) and the underactuated part (Eq. (2)). The lat-
ter part is the system kinematics that defines the cou-

pling behavior between the trolley’s acceleration ẍ(t)

and the payload’s swing angle θ(t). The main difficulty

in controlling the overhead crane lies in the handling of
such coupling behavior. When the swing angle is small

enough (θ(t) < 5◦), the kinematic equation (2) can be

linearized with the approximations of cos θ ≃ 1 and

sinθ ≃ θ. The approximated linear kinematics can be

obtained as

lθ̈ + ẍ+ gθ = 0. (5)

In the evaluated time interval [0, T ], the crane is

required to arrive at the destination without residual
swing. Therefore, several principles must be satisfied

according to the physical and practical situations in

crane control.

Principle 1 : The trolley reaches the desired location pd
at the end of the period. The final states must ensure
that the trolley is static with no swing and that it can

be lowered immediately as

p(T ) = pd, ṗ(t) = 0, θ(T ) = 0, θ̇(T ) = 0. (6)

Principle 2 : During the horizontal transportation, the

velocity and acceleration of the trolley must be limited
in certain ranges as

{
0 ≤ ṗ(t) ≤ vm, t ≤ T

|p̈(t)| ≤ am, t ≤ T
, (7)

where vm and am are the permitted maximum of ve-

locity and acceleration, respectively.

Principle 3 : The payload swing during the transporta-

tion must be limited within a safe range as

|θ(t)| ≤ θm, t ≤ T, (8)

where θm is the permitted maximum of swing ampli-

tude.

In the approach of control system, the dynamic model

of overhead crane can be rewritten as a multiple input
multiple output (MIMO) state-space model. Denote the

system state as x , [p− pd, ṗ, θ, θ̇], the system input as

the acceleration u , p̈, the system output as y , x. Ac-

cording to Eq. (5), the linear state-space equation can
be expressed as







ẋ =







0 1 0 0

0 0 0 0

0 0 0 1
0 0 −w2

n 0
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0

1

0
− 1

l






u

y = x

, (9)

where wn =
√

g/l is the natural frequency of system.
Note that the continuous steady-space models have been

used in many linear control methods [5,12], in which the

system has been proven controllable and stable.
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3 Discrete-time Model of Overhead Cranes

Many control approaches are implemented on discrete

systems, where at each sampling instant MPC uses the

current state of plant to compute the input for the next

control period. Therefore, the continuous system is first

discretized by a sampling period t0, and N = T/t0 is
the total number of samples. The discrete-time model

of cranes can be formulated as Eq. (10) and (11).

(M +m) a(n) +ml cos θ(n)θ̈(n)

−ml sin θ(n)θ̇(n)
2
= F (n)

, (10)

ml2θ̈(n) +ml cos θ(n)p̈(n) +mgl sin θ(n) = 0, (11)

where n = 1, . . . , N ; p̈(n) and F (n) represent acceler-
ation and overall force at the nth sample respectively.

θ(n), θ̇(n) and θ̈(n) are measured swing angle, swing ve-

locity and swing acceleration at the nth sample respec-

tively. At the period [n − 1, n), the overall force F (n)
is composed of the actuating force Fa(n), the friction

Fr(n) and the disturbance d(n) as

F (n) = Fa(n)− Fr(n) + d(n). (12)

In Eq. (12), Fr(n) is the friction at the nth sample,

which can be formulated similarly with Eq. (4) as

Fr(n) = fr0(tanh v(n)/ξ)+ kpv(n)+ kr|v(n)|v(n), (13)

where v(n) = ṗ(n) is the velocity of trolley at the nth

sample.

Note that the discrete-time model is nonlinear. For
applying our proposed linear MPC approach, a linear

discrete steady-space model is required. Based on con-

tinuous steady-space model Eq. (9), the discrete state-

space equation can be deduced using basic control the-

ory as
{
x(n+ 1) = Gx(n) +Hu(n)

y(n) = x(n)
, (14)

where x(n) , [p(n)− pd, ṗ(n), θ(n) and u(n) , p̈(n). G

and H are the system matrix and input matrix in the

state-space as

G =







1 t0 0 0
0 1 0 0

0 0 coswnt0
sinwnt0

wn

0 0 −wn sinwnt0 coswnt0






, (15)

H =

[

0.5t20, t0,
coswnt0 − 1

lw2
n

,−
sinwnt0
lwn

]T

. (16)

Note that the countability matrix [H GH G2H G3H ]

has full rank. There exists optimal design of controller

that ensures system stable at x = 0.

In the discrete model, we denote the vector of accel-

eration as a (a(n) = p̈(n)), and denote the state vector
of velocity as v (v(n) = ṗ(n)). Suppose that the initial

position is p(0), the initial velocity is v(0), the initial

acceleration is a(0), the initial swing angle is θ(0), and

the initial swing velocity is θ̇(0). Given an acceleration
vector a , from Eq. (14) the velocity v and the displace-

ment p can be expressed as
{
p = p0 +Bv(0)t0 +Apat

2
0

v = v0 +Avat0
, (17)

where







p = [p(1), ..., p(N)]T

v = [v(1), ..., v(N)]T

a = [a(1), ..., a(N)]T
(18)

p0 = [

N
︷ ︸︸ ︷

p(0), ..., p(0)]T , v0 = [

N
︷ ︸︸ ︷

v(0), ..., v(0)]T , (19)

B = [1, 2, . . . , N ]T , (20)

Ap =










0.5 0 0 . . . 0

1.5 0.5 0 . . . 0

2.5 1.5 0.5 . . . 0
...

...
...

...
...

N − 0.5 N − 1.5 N − 2.5 . . . 0.5










N×N

, (21)

Av =










1 0 0 . . . 0

1 1 0 . . . 0
1 1 1 . . . 0
...
...
...

...
...

1 1 1 . . . 1










N×N

. (22)

According to Eq. (14), the swing angle θ(n) can be

formulated as

θ(n) = θ(0)cos(nwnt0) +
θ̇(0)

wn

sin(nwnt0) +Aθa , (23)

where

Aθ =
1

lw2
n












cosNwnt0 − cos (N − 1)wnt0
cos (N − 1)wnt0 − cos (N − 2)wnt0
cos (N − 2)wnt0 − cos (N − 3)wnt0

...

cos 2wnt0 − cos 3wnt0
coswnt0 − 1












T

.
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(24)

In Eq. (23), the first two components at the right

hand side is the initial-condition response and the third

component is the forced response. It can be noticed that
Eq. (17) and Eq. (23) show calculation to predict state

variables from the initial time. From the kth sample,

x(k + i), 1 ≤ i ≤ N − k has similar expression with

Eq. (17) and Eq. (23) according to the discrete state-
space equation.

In our proposed MPC, the input sequence is the
actuating force over the transportation period. In the

above discrete model, when acceleration is determined,

force and velocity can be determined at the same time.

Therefore, for the cranes with actuating motors working
in the force or velocity control mode, the discrete model

can be used. In other words, acceleration is equivalent

with force and velocity using simple transformations

according to equations (10) and (17). Based on this

discrete model, the procedure of the MPC approach is
given at the following section. Note that the discrete

model is still useful in other control strategies, such as

optimal control, proportional integral derivative (PID)

control, and some closed-loop control methods.

4 Model Predictive Control Approach

Before introducing the MPC approach, the new objec-

tive function in terms of energy efficiency and safety

must be formulated. Note that the control period tc is

usually same or larger than the sampling period t0 in
the MPC. For the interval [k,K) (where K = T/tc and

0 ≤ k < K is the current instant), energy consumption

can be expressed as

E =

∫ T

ktc

Faẋdt =
K∑

i=k+1

Fa(i)v(i)tc, (25)

where E is energy consumption of the motor; Fa(i) and

v(i) are the actuating force and the velocity at the con-

trol period [i−1, i). Substituting Eq. (10) into Eq. (12),

Fa(n) can be expressed by a(n).

For the interval [k,N), safety can be evaluated by

the maximal swing angle as

θs = max
i∈{k+1,...,K}

θ(i), (26)

where S is the maximal swing angle in the future inter-

val. According to Eq. (23), the swing angle can also be

expressed by a(i).

The proposed objective function has integrated en-

ergy consumption and safety as

J = α

K∑

i=k+1

Fa(i)v(i)tc + (1− α) max
i∈{k+1,...,K}

θ(i), (27)

where α is the weighting parameter for integration. As

energy efficiency and safety can be expressed by accel-

eration, the objective function value is only determined
by a(i).

The control input a(i) must be bounded by the max-

imal acceleration am as

a(i) ∈ [−am, am], i = 1, . . . , K. (28)

There are many equality and inequality constraints
for the objective function. Equality constraints include

final states of displacement, velocity, and swing angle.

Inequality constraints include limitation of the maxi-

mal velocity, the maximal acceleration, and the maxi-
mal swing. Therefore, the objective function (27) must

be subject to a set of constraints as







p(K) = pd
v(K) = 0

θ(K) = 0
θ(K − 1) = 0

|a(i)| ≤ am, i = k + 1, . . . , K

0 ≤ v(i) ≤ vm, i = k + 1, . . . , K

|θ(i)| ≤ θm, i = k + 1, . . . , K

. (29)

MPC is employed to solve this optimal control prob-

lem at each control period tc, but not in each sampling

period t0 (t0 << tc) for saving computational cost.
In the proposed MPC approach, the optimal control

problem in the prediction horizon [k,K) is repeatedly

solved (k = 0, 1, . . . , K). The input is applied to the

system based on the obtained optimal solution. The
optimal control problem, including the objective func-

tion and the set of constraints, has been defined in

Eq. (27) and (29). The optimization variable is the

sequence of the acceleration for each control period.

At the kth sample, an optimal solution of acceleration
[a(k+1), a(k+2), . . . , a(K)]T can be obtained after solv-

ing the optimal problem. According to the first part of

solution, the actuating force F (k+ 1) is computed and

applied to the system in the next control period tc, i.e.,
[ktc, ktc+ tc). The procedure of the MPC approach can

be illustrated as Algorithm 1.

It can be noticed that in the MPC approach ref-

erence trajectories are not required, and extra compu-
tation of planning trajectory is skipped. At each sam-

pling instant, the horizon of the optimal control prob-

lem will be decreased by one when approaching the end.
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1 Set k = 0;
2 while k < K do

3 Measure state variables x(k), v(k), θ(k), θ̇(k);
4 Solve the optimal control problem Eq. (27) subject

to Eq. (29);
5 For the optimal solution

[a(k + 1), a(k + 2), . . . , a(K)]T , compute F (k + 1)
and apply it to the system at [ktc, ktc + tc), where
tc is the control period;

6 k = k + 1;

7 end

Algorithm 1: The proposed MPC approach for

crane control

At the beginning of each control period, displacement,

velocity, swing angle and swing velocity are measured.

If there are disturbances in the previous periods, they

can be detected. The optimal MPC controller will make
the compensation and correction automatically. For this

reason, the closed-loop nature of the MPC controller

comes with an inherent property of robustness.

5 Numerical Simulation

The overhead crane system described in [28] is used to
test our proposed MPC approach. The physical param-

eters of the system are listed as follows

m = 1.025kg,M = 7kg, l = 0.75m, g = 9.8m/s2. (30)

The desired location of trolley in simulation is set

as pd = 0.6m, and the practical constraints are given as

vm = 0.4m/s, am = 0.2m/s2, θm = 5◦. (31)

The parameters for the friction model Eq. (4) are
referred from the offline regression results in [29] as

fr0 = 4.4, kp = 0.05; kr = 0.45, ξ = 0.01. (32)

For comparisons, we also evaluate the open-loop op-

timal control method on the tested crane. The open-

loop optimal controller utilizes the optimal trajectory

in terms of energy consumption and safety, which is
planned before start.

In this simulation section, zeros initial conditions

are assumed as p(0) = 0, ṗ(0) = 0, p̈(0) = 0, θ̇(0) =

0, θ̈(0) = 0. The MPC approach is implemented as the
block diagram shown in Fig. 2. At each sampling pe-

riod, the optimal acceleration a(k) is obtained by min-

imizing the objective (27) based on states x(k), v(k),

θ(k), and θ̇(k). Note that these states variables can be
measured by sensors in practical applications. Here the

state variables are calculated based on the system simu-

lation when the disturbance d(k) is assumed known. In

the following simulation, the evaluated control period

is 7s; the sampling period t is 0.0005s; and the control

period is 0.1s. In the MPC and the open-loop control,

the optimization algorithm for minimizing the objective

function is chosen as fmincon function in the Matlab
software. In the fmincon function, the algorithm type

is set as ”active-set” and the maximum function eval-

uation times are 7000. In this simulation, we will vali-

date stability and robustness of the MPC approach in
the presence of different types of disturbances, includ-

ing the random disturbances, the impulse disturbances,

the periodical sine-wave disturbances. The disturbances

are added to the actuating force between 1s and 3s as

shown in Fig. 3.
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Fig. 3 Three types of disturbances

5.1 Tests on energy efficiency (α = 1)

When α = 1 is used in Eq. (27), energy consump-

tion will only be considered over the evaluation time.

When there exists no disturbance, the results of open-
loop control and MPC have been shown in Fig. 4. For

the open-loop control, energy consumption is 2.6381 J.

For the MPC, energy consumption is 2.6378 J. Fig. 4

shows profiles of acceleration and state variables (dis-

placement, velocity and swing). It can be noticed that
these profiles obtained by the MPC and the open-loop

control are close to each other when no disturbance ex-

ists.

For the random disturbances, energy consumption

obtained in the MPC is 2.6593 J; energy consumption
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Fig. 4 Comparison between the MPC and the open-loop
control with no disturbance (α = 1)

obtained in the open-loop control is 5.8463 J. The MPC

is more energy efficient than the open-loop control. Fig.

5 gives profiles of state variables of these two approaches

between 5 s and 7 s with the random disturbances.

Nominal profiles which represent optimal profiles under
the assumption of no disturbance are also given in the

figure. It is worth noting that the final displacement,

velocity and swing in the open-loop control violate the

practical constraints. The results of the MPC approach
can satisfy the constraints, such as zero velocity and

zero swing. The MPC profiles can converge to the nom-

inal profiles at the end of transportation period.

For the impulse disturbances, energy consumption

obtained in the MPC is 2.6584 J; energy consumption

obtained in the open-loop control is 2.8834 J. Energy
consumed in the open-loop approach is more than en-

ergy consumption in the MPC due to the impulse dis-

turbances. Fig. 6 gives profiles of state variables of the
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Fig. 5 State variables of the MPC and the open-loop control
with the random disturbance (α = 1)

MPC and open-loop approaches between 5 s and 7 s. In

the open-loop approach, the final displacement, veloc-
ity and swing violate the practical constraints. In the

MPC, the results obtained can satisfy the constraints,

such as zero velocity and zero swing. The MPC profiles

are more closer to the nominal profiles and converge at

the end.

For the sine-wave disturbances, energy consumption
obtained in the MPC is also 2.7394 J; energy consump-

tion obtained in the open-loop control is 3.4252 J. The

open-loop approach has less energy consumption than

the MPC due to the periodic disturbances. Fig. 7 shows

their profiles of state variables between 5 s and 7 s with
the sine-wave disturbance. The same conclusion can be

drawn in the open-loop control that final displacement,

velocity and swing violate the practical constraints. The

results obtained by the MPC can satisfy the constraints,
such as zero final velocity and zero final swing.

It can be concluded that for different kinds of dis-

turbances the MPC can reduce energy consumption of

crane to an acceptable extent while the practical con-
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Fig. 6 State variables of the MPC and the open-loop control
with the impulse disturbance (α = 1)
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Fig. 7 State variables of the MPC and the open-loop control
with the sine-wave disturbance (α = 1)

straints can all be satisfied. As mentioned before, in the

MPC as the constraints are satisfied, the payload can

be lowered immediately without any adjustment. For
the open-loop control, the required adjustment asks for

extra energy and time, which can be saved in our pro-

posed MPC approach.

5.2 Tests on safety (α = 0)

When α = 0, safety is considered in the objective func-

tion for minimizing the maximal swing angle. When

there exists no disturbance, the solutions obtained in

the open loop control and the MPC have the same
maximal swing angles 0.0062 rad. Besides the maxi-

mal swing angle, the residual swing angle is another

important metric to evaluate the oscillation of the pay-

load. In this paper, the residual swing is defined as the
average swing angle in the last R seconds (R = 2 is

used here). The residual swing in the open-loop con-

trol is 0.0062 rad; the residual swing in the MPC is

0.0057 rad. The MPC approach can obtain less resid-

ual swing angle than the optimal solution. The reason
is that when the crane is approaching the destination,

each optimal control problem in the MPC is to mini-

mize the residual oscillation at each control period. Fig.

8 gives profiles obtained by the MPC and the open-loop
control in this case. It can be noticed that the maximal

swing angles in the MPC and the open-loop control are

the same. For reducing the residual swing, accelerations

in the last 2 s have large differences between the MPC

and the open-loop control.

For the three kinds of disturbances, the maximal

and residual swing angles obtained in the MPC and

open-loop approaches are listed in Table 1. The Results
of the MPC are better than those of the open-loop con-

trol in terms of small maximal and residual swing. For

the random disturbances, the average of maximal and

residual swing is 0.0077 rad for the MPC and 0.0131
rad for the open-loop control. For the impulse distur-

bances, the maximal swing 0.0141 rad and the residual

swing 0.0068 rad are obtained in the MPC. The aver-

age of them is smaller than the average obtained by the

open-loop control. The same conclusion can be found
in the case of the sine-wave disturbances. Fig. 9, 10 and

11 give the profiles of displacement, velocity and swing

between 5 s and 7 s for the three kinds of disturbances

respectively. Figures indicate the practical constraints
can be satisfied in the MPC approach and the MPC

profiles can converge to the nominal profiles.

It can be concluded that for different kinds of dis-

turbances the safety of operation is enhanced in the
MPC by minimizing the maximal and residual swing

while all the practical constraints are satisfied. Com-

pared with the open-loop control, the MPC does not

need extra energy and time to adjust the violated con-
straints. Furthermore, the MPC approach aims to min-

imize the maximal swing, but due to its specific struc-

ture it reduces the residual swing as well.
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Table 1 Swing comparisons of different disturbances (α = 0)

Random Impulse Sine-wave
MPC open-loop MPC open-loop MPC open-loop

Maximal swing (rad) 0.0097 0.0203 0.0141 0.0413 0.0513 0.0610
Residual swing (rad) 0.0056 0.0084 0.0068 0.0238 0.0148 0.0245

Average (rad) 0.0077 0.0131 0.0104 0.0326 0.0330 0.0427

Table 2 General comparisons of different disturbance (α = 0.01)

Random Impulse Sine-wave
MPC open-loop MPC open-loop MPC open-loop

Objective value 0.0364 0.0787 0.0400 0.0698 0.0793 0.0946
Energy consumption (J) 2.6839 5.8530 2.6818 2.8920 2.8483 3.4267
Maximal swing (rad) 0.0096 0.0204 0.0133 0.0413 0.0513 0.0610
Residual swing (rad) 0.0057 0.0085 0.0068 0.0238 0.0148 0.0245
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Fig. 8 Comparison between the MPC and the open-loop
control with no disturbance (α = 0)

5.3 Tests on energy efficiency and safety (α = 0.01)

When α = 0.01, both energy efficiency and safety have

been considered in the control objective. If no distur-

bance exists, the optimal solution obtained in the MPC

has J = 0.0324 (E = 2.6412, S = 0.0060), while the

solution obtained in the open-loop control has J =
0.0326 (E = 2.6437, S = 0.0063). It can be noticed that

the MPC is slightly better than the open-loop control

in terms of energy consumption and safety.

For the three kinds of disturbances, we have com-
pared the MPC with the open-loop control on the same

crane system. Table 2 gives their results in terms of ob-

jective value, energy consumption, maximal swing, and
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Fig. 9 State variables of the MPC and the open-loop with
the random disturbance (α = 0)

residual swing. For the random, impulse and sine-wave
disturbances, it can be noticed that the MPC performs

much better than the open-loop control in terms of en-

ergy consumption and swing. Especially, the MPC is

suitable to reduce the residual swing. Fig. 12, 13 and
14 are the profiles of displacement, velocity and swing

between 5 s and 7 s when each kind of disturbances

exist. As shown in figures, the open-loop control can-

not ensure all practical constraints satisfied, but results

obtained in the MPC can satisfy all constraints.

In addition, to validate the robustness of the pro-

posed MPC approach against parameter variations, we

examine the following tow extreme cases during the
transportation process.

(1) The rope length is changed from 0.75m to 1m abruptly

at t = 1s.
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Fig. 10 State variables of the MPC and the open-loop con-
trol with the implulse disturbance (α = 0)
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Fig. 11 State variables of the MPC and the open-loop con-
trol with the sine-wave disturbance (α = 0)

(2) The payload mass is increased from 1.025kg to 1.2kg

abruptly at t = 4s.

Note that abrupt changes of parameter are much

tougher situations than time variation of parameter. In
these two cases, the crane can be controlled to arrive the

end without violation of terminate constraints. In Case

1, the energy consumption is 2.6488 J, and the maximal

swing is 0.0060 rad. In Case 2, the energy consumption
will be increased due to the payload mass change. The

energy consumption is 2.6494 J, and the maximal swing

is 0.0060 rad. The profiles resulted from constant pa-
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Fig. 12 State variables of the MPC and open-loop ap-
proaches with the random disturbance (α = 0.01)
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Fig. 13 State variables of the MPC and open-loop ap-
proaches with the impluse disturbance (α = 0.01)

rameters and changed parameters have been given in

Fig. 15 and 16. In Case 1, the acceleration profile has

been adapted according to the change of rope length

after 1 s. In Case 2, the acceleration profile has been
adapted according to the change of mass after 4 s. It

can be concluded that under different situations of var-

ied parameters the MPC approach is useful to achieve

the transportation task with good operational perfor-
mance. The trolley accurately reaches the destination

with zero final swing. During the transportation, the en-

ergy consumption is optimized, and the maximal swing
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Fig. 14 State variables of the MPC and open-loop ap-
proaches with the sine-wave disturbance (α = 0.01)

as well as the residual swing has been suppressed within

an acceptable range.
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Fig. 15 Case 1: profiles obtained in the MPC when the rope
length is changed in comparison with constant length

It can be concluded that the MPC can minimize the
energy consumption and maximize the operation safety

at the same time in our proposed approach. Whether

disturbances exist or not, the MPC can be used to find
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Fig. 16 Case 2: profiles obtained in the MPC when the pay-
load mass is changed in comparison with the constant mass

the close-optimal results. The practical constraints are

reliably satisfied over the control horizon.

5.4 Comparison with other control methods

To validate whether the performance improvement of

the proposed approach is significant, some commonly

used crane control methods have been selected in the
comparison study. They all belong to energy-based feed-

back control, in which the highly coupled and compli-

cated underactuated system dynamics can be conven-

tional analyzed via the system energy to achieve satis-
factory control performances. A series of energy-based

controller, including E2 controller [6], trolley/gantry ki-

netic energy (TKE) controller [4] and End-Effect Mo-

tion (EEM) based controller [27], have been proposed

with similar forms of proportional-derivative (PD) con-
trol. The expressions of these controllers are simply il-

lustrated as follows. More details can be referred from

their original publications.

(1) E2 control law:

FE2 =
−(kpe+ kdẋ)m(θ) − kvm sin θ(lθ̇2 + g cos θ)

kEm(θ)E(t) + kv
,

(33)
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Table 3 Control performance comparison

Controllers pf (m) θs(◦) θres(◦) ts (s) Fmax
a (N)

E2 controller 0.601 4.86 1.59 14.10 23.10
TKE controller 0.597 3.70 1.40 11.68 14.67
EEM controller 0.599 3.19 0.25 4.18 11.32
MPC controller 0.6 0.344 0 7 1.363

where e = p− pd is the displacement error, E(t) is the

system mechanical energy and m(θ) = M + m sin2 θ.

kp, kd, kE , kv are control gains of the E2 controller.

(2) TKE control law:

FTKE =
−kpe− kdẋ+ kv

[

ζ(θ, θ̇)−m sin θ cos θθ̇ẋ
]

kE + kv
,

(34)

where ζ(θ, θ̇) = −m sin θ(lθ̇2+g cos θ), and kp, kd, kE , kv
are control gains of the TKE controller.

(3) EEM control law:

FEEM = −kp(e− ka sin θ)− kd(ė − kaθ̇ cos θ), (35)

where kp, kd, ka are control gains of the EEM controller.

These three controllers are implemented on the same

crane system mentioned before. For these controllers,

parameter settings are following the settings given in

[27]. The proposed MPC controller has been compared
with the three controllers. For each controller, the per-

formance is evaluated in terms of the final displacement

pf , the maximal swing θs, the residual swing θres, the

arriving time ts and the maximal actuating force Fmax
a .

Table 3 lists experimental results of E2, TKE, EEM and

the proposed MPC approaches for crane control. In the

MPC, a constraint optimization problem is solved in

each receding horizon. Therefore, more terminal con-

straints can be satisfied in the MPC approach than in
the compared control methods. For example, the final

displacement obtained in the MPC is pd = 0.6 and

the residential swing in the MPC is zero. As shown

in the table, the MPC performs the best in terms of
zero residual swing, the smallest maximum swing and

the smallest actuating force. Although the EEM con-

troller can achieve the shortest arriving time with great

time efficiency, it cannot strictly follow constants con-

sidered in this paper, such as constraints of maximal
swing, maximal acceleration and velocity. When the

maximal actuating force is small, the actuating mo-

tor works with smoothly accelerating or decelerating,

which means that motor oscillation as well as energy
consumption can be reduced. The smallest actuating

force obtained in the MPC indicates some reason of the

resulted energy efficiency.

6 Conclusion

For overhead cranes, energy consumption and safety

have been modeled to achieve the control performance

improvement. Using the model predictive control (MPC)
approach, the crane can be controlled to arrive the des-

tination with good performance of energy efficiency and

safety, because energy consumption and maximal swing

angle have been minimized during the horizontal trans-

portation. To simulate real world applications with dis-
turbances, three kinds of disturbances (random, im-

pulse and sine-wave) have been tested in the proposed

MPC approach. From numerical results obtained, it has

been shown that the MPC approach is stable and robust
to find the close-optimal solutions when disturbances

exist.

The MPC approach is suitable to solve the process

control of transportation systems. For crane control, the
MPC utilizes the information of current displacement,

velocity, and swing angle for predicting the following

control sequence (acceleration or force). As only the

first sample of the sequence is applied, any disturbance
that occurred in the system can be detected before the

next control period. The MPC can correct the control

variable accordingly for the next period. This is why the

MPC can obtain accurate and robust results in crane

control.

In this paper, the crane system is simplified as a

deterministic model without consideration of system

uncertainties, such as bridge deformation, time-varying
rope length and payload weight. For complicated sys-

tem with such uncertainties, the proposed approach still

can be employed to pursuit minimal energy consump-

tion and maximal safety if some stochastic MPC is cho-

sen instead of the standard MPC and uncertainties can
be detected or approximated. Due to the length limi-

tation of this paper, the stochastic model has not been

included in the proposed approach. Future work may

evaluate the stochastic or nonlinear MPC on compli-
cated crane systems with uncertainties.
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