
Nigerian Journal of Technology (NIJOTECH)
Vol. 31, No. 2, July, 2012, pp. 139–148.
Copyright©2012 Faculty of Engineering,

University of Nigeria. ISSN 1115-8443

MODEL PREDICTIVE CONTROL FUNDAMENTALS

P.E. Orukpe

aDepartment of Electrical/Electronic Engineering, University of Benin, Nigeria.
Email: patience.orukpe01@imperial.ac.uk

Abstract

Model Predictive Control (MPC) has developed considerably over the last two decades, both within
the research control community and in industries. MPC strategy involves the optimization of a
performance index with respect to some future control sequence, using predictions of the output
signal based on a process model, coping with constraints on inputs and outputs/states. In this
paper, we will present an introduction to the theory and application of MPC with Matlab codes
written to simulate an example of a randomly generated system. This paper can serve as tutorial
to anyone interested in this area of research.
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1. Introduction

Model Predictive Control (MPC), also known as
Moving Horizon Control (MHC) or Receding Horizon
Control (RHC), is a popular technique for the con-
trol of slow dynamical systems, such as those encoun-
tered in chemical process control in the petrochemi-
cal, pulp and paper industries, gas pipeline control,
waste heat boiler [1], and active vibration control of
railway vehicle [2]. Using the definition of Lee and
Marcus 1967 - MPC is one technique for obtaining a
feedback controller synthesis from knowledge of open-
loop controllers to measure the current processes state
and then compute very rapidly for this open-loop con-
trol function. The first portion of this function is then
used during a short interval, after which a new value
of the function is computed for this measurement.

The name MPC stems from the idea of employing
an explicit model of the plant to be controlled which
is used to predict the future output behavior. This
prediction capability allows solving optimal control
problems on line, where tracking error, namely the
dierence between the predicted output and the desired
reference, is minimized over a future horizon, possibly
subject to constraints on the manipulated inputs, out-
puts and states. When the model is linear, then the
optimization problem is quadratic if the performance
index is expressed through the `1- norm, or linear if
expressed through the `1/`∞ - norm [3]. The result
of the optimization is applied according to the reced-
ing horizon philosophy: At time t only the first input
of the optimal command sequence is actually applied

to the plant. The remaining optimal inputs are dis-
carded, and a new control problem is solved at time
t + 1. As new measurements are collected from the
plant at each time t, the receding horizon mechanism
provides the controller with the desired feedback char-
acteristics [4].

MPC has been successful, as it can handle con-
straints on the manipulated and controlled variables
in a systematic manner, handles multivariable control
problems naturally, it is an easy to tune method, it
is a totally open methodology based on certain ba-
sic principles which allow for future extensions [5], [6].
Discussions on some of the design techniques based on
MPC and their properties can be found in the review
article [3]. Stability of MPC has been achieved by the
use of terminal cost function, a terminal constraint
set innite horizon, fake algebraic riccati equation and
a local controller [7], [8]. An overview of commer-
cially available Model Predictive Control technology
as given by vendors for both linear and non-linear
MPC is presented in a survey [9].

Although MPC has been successful in industries
with slow processes, computational issues with respect
to fast processes are still open to further research. In
this paper, we will shed light on the basics of MPC
with or without constraint and this work was moti-
vated by the work in [10]. This paper is organized
as follows: section 2 describes what MPC involves;
section 3 presents the problem formulation, section 4
outlines ways of solving predictive control problems,
section 5 presents the simulation results and section 6
provides conclusion.
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2. What is in MPC?

In this section, we will look at what MPC involves.

2.1. MPC Components

All the MPC algorithms possess common elements
and different options can be chosen for each element
giving rise to different algorithms. These elements are:

� Predictive model (i.e. process model and distur-
bance model),

� Objective function and

� Obtaining the control law.

The basic structure of MPC is as shown in figure 1.
The model is the cornerstone of MPC and can be

either process model or disturbance model. Process
model is of the following form:

� impulse response – used mostly in the industry

� step response

� transfer function – midway between industry and
academic community

� state space – used mostly in the academic re-
search community

while the disturbance model commonly used is Con-
trolled AutoRegressive and Integrated Moving Aver-
age (CARIMA).

2.2. What makes MPC successful in industry?

Some of the features that have contributed to the
widespread and successful use of MPC in industries
are listed below:

� It handles multivariable control problems natu-
rally.

� It can take account of actuator limitations.

� It allows operation closer to constraints, hence
increased profit.

� It handles structural changes.

� It has plenty of time for on-line computations.

� It can handle non-minimal phase and unstable
processes.

� It is an easy to tune method.

2.3. Characteristics of MPC

In this section, we will state the ideas that are used
in MPC. The ideas, appearing in MPC are basically:
1. Moving horizon implementation
2. Performance oriented time domain formulation
3. Incorporation of constraints
4. Explicit system model used to predict future plant

dynamics.

2.4. Types of MPC

There are two main classes of MPCs:

Linear MPC

1. Uses linear model: ẋ = Ax+Bu
2. Quadratic cost function: F = xTQx+ uTRu
3. Linear constraints: Hx+Gu < 0
4. Quadratic program.

Nonlinear MPC

1. Nonlinear model: ẋ = f(x, u)
2. Cost function can be nonquadratic: F = (x, u)
3. Nonlinear constraints: h(x, u) < 0
4. Nonlinear program

2.5. Variations of MPC

In this section, we will state other classes of MPC.
Other classes of MPCs include:

� Robust MPC – guarantees feasibility and stabil-
ity,

� Feedback MPC – mitigate shrinkage of feasible
region,

� Pre-computed MPC – Piecewise-linear solution
stored in database or solved off-line using para-
metric (linear or quadratic) programming, and

� Decentralized MPC as used in autonomous air
vehicle – speed up computation

2.6. Basics of MPC

MPC consist of the following three ideas [5]:-
1. Explicit use of a model to predict the process out-

put along a future time horizon
2. Calculation of a control sequence to optimize a per-

formance index
3. A receding horizon strategy, so that at each instant

the horizon is moved towards the future, which in-
volves the application of the first control signal of
the sequence calculated at each step.
The methodology of all the controllers belonging

to the MPC family is characterized by the following
strategy represented in Figure 2:

Step 1: The predictive future outputs ŷ(t +
k|t), k = 1, . . . , N , for the prediction horizon are
calculated at each instant t using the process model.
These depend upon the known values up to instance t
(past inputs and outputs), including the current out-
put (initial condition) y(t) and on the future control
signals u(t+ k|t), k = 0, . . . , N − 1, to be calculated.

Step 2: The sequence of future control signals is
computed to optimize a performance criterion, often
to minimize the error between a reference trajectory
and the predicted process output. Usually the control
effort is included in the performance criterion.
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Figure 1: Basic structure of MPC.

Step 3: Only the current control signal u(t|t) is
transmitted to the process. At the next sampling in-
stant y(t+ 1) is measured and step 1 is repeated and
all sequences brought up to date. Thus u(t+ 1|t+ 1)
is then calculated using the receding horizon concept,
since the prediction horizon remains of the length as
before, but slides along by one sampling interval at
each step.

With the aid of increase speed in computer hard-
ware MPC can now be applied to ‘fast’ processes in-
stead of the confinement to slow processes. MPC can
be tuned easily apart from the fact that it handles
constraints properly. Constraints can be either on the
output of the controlled processes (control variable)
or on the control signals that is inputs to the process
(manipulated variables). These constraints are in the
form of saturation characteristics e.g. valves with a fi-
nite range of adjustment, control surface with limited
deflection angles etc. Input constraints also appear in
the form of rate constraints: valves and other actua-
tors with limited slew rates.

3. Problem Formulation

In this section, we describe the type of system model
used in this work, and give a brief formulation of the
MPC problem. In this work a different method of
formulation is used as opposed to that used in [11].

3.1. State space model

MPC can be used on any model, all that is needed
to know is the step response at the coincidence points
and to be able to compute the ‘free response’ at the

coincidence points – i.e. one must have a simulation
model capable of running faster than real time.

Model of the plant in state space is of the form

x(k + 1) = Ax(k) +Bu(k) (1)

y(k) = Cyx(k) (2)

z(k) = Czx(k) (3)

where x ∈ Rn, u ∈ Rl, y ∈ Rmy , z ∈ Rmz

x is the state vector, u is the input vector, y is the
measured outputs and z is the vector of outputs which
are to be controlled, either to particular set-points, or
to satisfy some constraints, or both.

The type of system model used in this paper can be
of the following types:

� Linear model, nonlinear plant – The plant in re-
ality behaves in some complicated nonlinear fash-
ion.

� First principles model and identification – The
linearized model (1) – (3) used in predictive con-
trol can be obtained by performing test on the
plant, which involves injecting known signals,
such as steps, multi-sines, pseudo random, at the
plant inputs, and recording the resulting outputs.
Linearized models can then be obtained by us-
ing the techniques of system identification, which
range from simple curve-fitting to sophisticated
statistically based methods. A model in which
the equations are obtained from a knowledge of
the underlying physical, chemical and thermody-
namic processes is available in nonlinear model
of the plant. This is done for the purpose of

Nigerian Journal of Technology Vol. 31, No. 2, July 2012.



142 P.E. ORUKPE

�

�

�

Figure 2: Model predictive control strategy.

operator training or safety certification. This is
done by applying perturbations to the nonlinear
model, and estimating the Jacobian matrices nu-
merically. Another very effective way is to use the
nonlinear model to generate simulation data for
particular conditions, and then to apply system
identification techniques to this data, as if it has
been obtained from the plant itself [7].

3.2. A basic formulation

A formulation is done on the assumption that the
plant model is linear, time invariant, the cost function
is quadratic and the constraints are in the form of lin-
ear inequalities. The cost function does not penalize
particular values of the input vector u(k), but only
changes of the input vector ∆u(k).

3.2.1. Cost function

The cost function V penalizes deviations of the pre-
dicted control outputs ẑ(k+ i \ k) from a (vector) ref-
erence trajectory r̂(k + i \ k).

The reference trajectory defines an important as-
pect of closed-loop behaviour of a controlled plant
and it is frequently assumed that the reference trajec-
tory approaches the set-point exponentially from the
current output value, with the ‘time constant’ of the
exponential, which shall be denoted Tref . Sampling
interval is denoted as Ts.

r̂(k + i \ k) = s(k + i)− ε(k + i) = s(k + i)− eiTs/Tref ε(k)

= s(k + i)− λiε(k) =⇒ ε(k) = s(k)− y(k)

where ε = current error and s = set-point.

V (k) =

Hp∑
i=Hw

||ẑ(k + i \ k)− r(k + i \ k)||2Q(i)

+

Hu−1∑
i=0

||∆û(k + i \ k)||2R(i)

(4)

Hp - prediction horizon, Hu - control horizon and Hw

- window parameter and is assumed to be one, Hu ≤
Hp, ∆û(k + i \ k) = 0 for i = Hu, thus û(k + i \ k) =
û(k +Hu − 1) for all i ≥ Hu.

The form of the cost function (4) implies that the
error vector ẑ(k+i\k)−r(k+i\k) is penalized at every
point in the prediction horizon, in the range Hw ≤
i ≤ Hp. This is indeed the most common situation in
predictive control.

The tuning parameters Hp, Hu, Hw, Q(i) and R(i)
affects the behaviour of the closed-loop combination of
the plant and predictive controller, which are adjusted
to give satisfactory dynamic performance.

3.2.2. Constraints and MPC

One of the major selling points of MPC is its abil-
ity to do on-line constraint handling in a systematic
way, hopefully retaining to some extent the stability
margins and performance of the unconstrained law.
The algorithm does this by optimizing predicted per-
formance subject to constraint satisfaction. There are
various types of constraints on input, output or state,
namely:

� Band constraints

� Overshoot constraints
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� Monotonic behaviour

� Nonminimal phase behaviour

� Actuator nonlinearities

� Terminal state equality constraints and

� Terminal set constraints.

Constraints on the input are typically hard con-
straints, since they represent limitations on process
equipment (such as valve saturation), and as such can-
not be relaxed or softened. Constraints on the output
(i.e. performance goals), are mainly due to safety rea-
sons and must be controlled in advance because out-
put variables are affected by process dynamics, and it
is usually only required to make ymax and yi,max as
small as possible, subject to the input constraints.

Constraints of the following form hold over the con-
trol and prediction horizons where vec(0) denotes a
column vector of elements zero.

E vec (∆û(k \ k), . . . ,∆û(k+Hu− 1 \ k), 1) ≤ vec (0)
(5)

F vec (û(k\k), . . . , û(k+Hu−1\k), 1) ≤ vec (0) (6)

G vec (ẑ(k+Hw \k), . . . , ẑ(k+Hp−1\k), 1) ≤ vec (0)
(7)

E, F and G are matrices of suitable dimensions and
the constraints represent actuator slew rates, actua-
tor ranges and controlled variable constraints respec-
tively.

3.3. Predictions

To solve the MPC problem, we must have a way
of computing the predicted values of the control vari-
ables, ẑ(k + i \ k) from our best estimate of the cur-
rent state x̂(k \ k), and the assumed future inputs, or
equivalently, the latest input u(k−1) and the assumed
future input changes, ∆û(k + i \ k). The choice of
prediction is another ‘tuning parameter’, it has great
effect on the performance of the closed-loop system.

The prediction of any system can be done base on
the following:

1. No disturbance, full state measurement. In which
(1) – (3) are iterated

2. Using an observer. In this case the state of the
plant is unknown i.e. one cannot measure the full
state vector. The use of Kalman filter come into
play when the output of the plant is subjected
to white noise disturbances with known covari-
ance matrices. The gain of the observer is a ‘tun-
ing’ parameter, which affects the behaviour of the
predictive controller – particularly its response to
disturbances, its stability margins etc [7].

3.4. Measured state, no disturbance

Assuming that the whole state is measured, so that
x̂(k \ k) = x(k) = y(k), so (Cy = I), and nothing is
known about the disturbance or measurement noise.
Prediction is made by iterating the model (1), as fol-
lows:

x̂(k + 1 \ k) = Ax(k) +Bû(k \ k) (8)

x̂(k + 2 \ k) = Ax̂(k + 1 \ k) + Bû(k + 1 \ k) (9)

= A2x(k) + ABû(k \ k) + Bû(k + 1 \ k) (10)

...

x̂(k+Hp \k) = Ax̂(k+Hp−1\k)+Bû(k+Hp−1\k)
(11)

= AHpx(k) +AHp−1û(k \ k), . . . , Bû(k +Hp − 1 \ k)
(12)

û(k \ k) was used instead of u(k \ k), because at the
time when we need to compute the predictions we do
not know what u(k) will be.

Assuming that the input will only change at times
k, k + 1, · · · , k + Hp − 1, and will remain constant
after that, so we have û(k+ i \ k) = û(k+Hu− 1) for
Hu ≤ i ≤ Hp − 1. Let the prediction be expressed in
terms of ∆û(k+ i\k) rather than û(k+ i\k), knowing
that ∆û(k+ i \ k) = û(k+ i \ k) + û(k+ i− 1 \ k) and
at the time k we already know u(k − 1). So we have

û(k \ k) = ∆û(k \ k) + u(k − 1) (13)

û(k+1\k) = ∆û(k+1\k)+∆û(k\k)+u(k−1) (14)

...

û(k+Hu−1\k) = ∆û(k+Hu−1\k)+. . .+∆û(k\k)+u(k−1)
(15)

Substituting (13) – (15) into (8) – (12) and rearrang-
ing, we obtain the following matrix-vector form:

x̂(k + 1 \ k)
...

x̂(k + Hu \ k)
x̂(k + Hu − 1 \ k)

...
x̂(k + Hp \ k)


=



A
...

AHu

AHu+1

...
AHp


x(k) +



B
...∑Hu−1

i=0 AiB∑Hu
i=0 A

iB
...∑Hp−1

i=0 AiB


u(k − 1)

︸ ︷︷ ︸
past

+



B · · · 0
AB + B · · · 0

...
. . .

...∑Hu−1
i=0 AiB · · · B∑Hu
i=0 A

iB · · · AB + B
... · · ·

...∑Hp−1
i=0 AiB · · ·

∑Hp−H−u
i=0 AiB



 ∆û(k \ k)
...

∆û(k + Hu − 1 \ k)



︸ ︷︷ ︸
future

(16)
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The predictions of z are now obtained simply as: ẑ(k + 1 \ k)
...

ẑ(k + Hp \ k)

 =

 Cz · · · 0
...

. . .
...

0 · · · Cz


 x̂(k + 1 \ k)

...
x̂(k + Hp \ k)


(17)

Table 1: Dimensions of matrices and vectors involved in com-
puting the optimal moves, (plant has l inputs, n states and m
controlled outputs).

Matrix Dimensions
Q m(Hp −Hw + 1)×m(Hp −Hw + 1)
R lHu × lHu

Ψ m(Hp −Hw + 1)× n
Υ m(Hp −Hw + 1)
Θ m(Hp −Hw + 1)× lHu

ε m(Hp −Hw + 1)× 1
G lHu × 1
H lHu × lHu

4. Solving Predictive Control Problems

In this section, we outline the solution of MPC prob-
lem for the unconstrained and constrained cases.

4.1. Unconstrained problems

In this section, we will look at measured state, no
disturbances. The cost function to be minimized is

V (k) =

Hp∑
i=Hw

||ẑ(k + i \ k)− r(k + i \ k)||2Q(i)

+

Hu−1∑
i=0

||∆û(k + i \ k)||2R(i)

(18)

This is rewritten as

V (k) = ||Z(k)− T (k)||2Q + ||∆U(k)||2R (19)

where

Z(k) =

 ẑ(k + Hw \ k)
...

ẑ(k + Hp \ k)

 ; T (k) =

 r̂(k + Hw \ k)
...

r̂(k + Hp \ k)

 ;

∆U(k) =

 ∆û(k \ k)
...

∆û(k + Hu − 1 \ k)


and the weighting matrices Q and R are given as

Q =


Q(Hw) · · · 0

.

.

.
. . .

.

.

.
0 · · · Q(Hp)

 ; R =


R(0) · · · 0

.

.

.
. . .

.

.

.
0 · · · R(Hu − 1)



Combining (16) and (17), we get


ẑ(k + 1 \ k)

.

.

.
ẑ(k + Hp \ k)

 =


Cz · · · 0

.

.

.
. . .

.

.

.
0 · · · Cz





A

.

.

.

AHu

AHu+1

.

.

.

AHp


x(k)

+


Cz · · · 0

.

.

.
. . .

.

.

.
0 · · · Cz





B

.

.

.∑Hu−1
i=0 AiB∑Hu
i=0 AiB

.

.

.∑Hp−1

i=0 AiB


u(k − 1)

+


Cz · · · 0

.

.

.
. . .

.

.

.
0 · · · Cz





B · · · 0
AB + B · · · 0

.

.

.
. . .

.

.

.∑Hu−1
i=0 AiB · · · B∑Hu
i=0 AiB · · · AB + B

.

.

. · · ·
.
.
.∑Hp−1

i=0 AiB · · ·
∑Hp−Hu

i=0 AiB



×


∆û(k \ k)

.

.

.
∆û(k + Hu − 1 \ k)


(20)

Equation (20) implies that

Z(k) = Ψx(k) + Υu(k − 1) + Θ∆U(k) (21)

defining

ε(k) = T (k)−Ψx(k)−Υu(k − 1) (22)

Making T the subject of the formula in (22) and
subtracting it from (21) gives

Z(k)− T (k) = Θ∆U(k)− ε(k)

Thus equation (19) is now in the form of

V (k) = ||Θ∆U(k)− ε(k)||2Q + ||∆U(k)||2R (23)

= [∆U(k)T ΘT−ε(k)T ]Q[∆U(k)Θ−ε(k)]+∆U(k)TR∆U(k)
(24)

= ε(k)TQε(k)−2∆U(k)T ΘTQε(k)+∆U(k)T (ΘTQΘ+R)∆U(k)
(25)

Equation (25) implies

V (k) = constant−∆U(k)TG + ∆U(k)TH∆U(k)

where G = 2ΘTQε(k) and H = ΘTQΘ+R which does
not depend on ∆U(k).

To get the optimal of ∆U(k), we find the gradient
of V (k) and set it to zero, so that the optimal is

∆U(k)opt = 0.5H−1G

If the number of plant inputs is l, then we just use
the first l rows of the vector ∆U(k)opt which is repre-
sented as

∆U(k)opt = [Il 0l · · · 0l]H−1ΘT ε(k) (26)

The only part of the solution which changes from time
to time is the ‘tracking error’ ε(k).
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4.2. Constrained problems

In this section, we look at the formulation of MPC
as a QP problem. Now for a system subject to con-
straints, we recall that these constraints are in the
form:

E

[
∆U(k)

1

]
≤ 0 (27)

F

[
U(k)

1

]
≤ 0 (28)

G

[
Z(k)

1

]
≤ 0 (29)

where U(k) = [û(k \ k)T , . . . , û(k + Hu − 1 \ k)T ]T is
defined analogously to ∆U(k). We have to express all
of these as constraints on ∆U(k). Suppose F has the
form F = [F1, F2, . . . , FHu , f ] where each Fi is of
size q ×m, and f has size q × 1, so that (28) can be
written as

Hu∑
i=1

Fiû(k + i− 1 \ k) + f ≤ 0

Since û(k+ i− 1 \k) = u(k− 1) +
∑i−1

j=0 ∆û(k+ j \k),
we can write (28) as

Hu∑
j=1

Fj∆û(k \ k) +

Hu∑
j=2

Fj∆û(k + 1 \ k) + · · ·

+ FHu∆û(k +Hu − 1 \ k)

+

Hu∑
j=1

Fju(k − 1) + f ≤ 0

Now we define F =
∑Hu

j=1 Fj and F =
[F1, · · · , FHu

]. Then (28) can be written as

F∆U(k) ≤ F1u(k − 1)− f (30)

Equation (28) has been converted into a linear in-
equality constraint on ∆U(k). Next, we transform
(29), assuming full state measurement, we can use (21)
to write (29) as

G

[
Ψx(k) + Υu(k − 1) + Θ∆U(k)

1

]
≤ 0

Now let G = [Γ, g], where g is the last column of
G, this is the same as

Γ[Ψx(k) + Υu(k − 1)] + ΓΘ∆U(k) + g ≤ 0

or

ΓΘ∆U(k)] ≤ −Γ[Ψx(k) + Υu(k − 1)]− g (31)

To convert equation (27) to an inequality form, let
E = [W,w] which will result in

W∆U(k) ≤ −w (32)

Then we assemble the inequalities (30), (31), and (32)
into a single inequality F

ΓΘ
W

 ≤
 −F1u(k − 1)− f
−Γ[Ψx(k) + Υu(k − 1)]− g

−w

 (33)

The constrained optimization problem to be solved
is

min ∆U(k)TH∆U(k)−GT ∆U(k) (34)

subject to the inequality (33) and this is a standard
optimization problem known as Quadratic Program-
ming.

The solution of the predictive controller is the same
as in the unconstrained case as long as the constraints
are inactive. However, if the constraints become active
then the controller becomes nonlinear.

4.3. Solving QP problems

Quadratic Programming (QP) methods are widely
used in applications of model predictive control. Most
applications require a linear model to represent the
process of interest over a moving time horizon with
a quadratic cost function to drive the controlled vari-
ables back to their setpoints. QP problems can be
solved using either active set method or interior point
method [12]. Active set method is the most common
method of solving QP problems. For details see [5].
While the Interior point method is becoming more
popular within MPC community, as the convergence
rates are far faster. For further details see [7], [13].

4.4. Softening the constraints

Feasibility is usually a term applied to optimiza-
tion problems and describes whether a solution ex-
ists. Sometimes, during the optimization stage, the
region defined in the decision variables by the set of
constraints is empty. In these conditions, the opti-
mization algorithm cannot find any solution and the
optimization problem is said to be infeasible. Also,
unobtainable control objectives that take the process
away from the operating point may cause infeasibil-
ity. An optimization problem is feasible when the cost
function is bounded and there are points in the space
of decision variables that satisfy all constraints.

A systematic way of dealing with infeasibility is to
soften the constraints. That is, rather than regard
the constraints as hard boundaries which can never
be crossed, to allow them to be crossed occasionally,
but only if really necessary.

There is an important distinction between input
and output constraints. Usually, input constraints
really are ‘hard’ constraints, and there is no way in
which they can be softened: valves, control surfaces,
and other actuators have limited ranges of action, and
limited slew rates. Once these have been reached there
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Figure 3: Cost function for unconstrained case.
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Figure 4: States for unconstrained case.
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Figure 5: Cost function for the constrained case.
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Figure 6: States for the constrained case.
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is no way of exceeding them, except for fitting more
powerful actuators. Thus input constraints are usu-
ally not softened.

A straightforward method of softening output con-
straints is to add new variables, slake variables that
are defined in such a way that they are non-zero only if
the constraints are violated. Then their non-zero val-
ues are heavily penalized in the cost function, so that
the optimizer has a strong incentive to keep them at
zero if possible. For further details see [13].

5. Simulation Results

To illustrate the algorithm described in previous
section, we present an example. A randomly gener-
ated system has state space model parameters:

A =


−0.1267 −0.3357 0.0958 −0.1723
−0.4877 0.3487 0.0511 0.6393

0.0367 0.3482 −0.0547 −0.0399
0.0842 −0.0110 0.2125 0.0334

 ;

B =


0.9501
0.2311
0.6068
0.4860

 ; C = Cz = [1 0 0 0]

with Hp = 5; Hu = 3; Hw = 1; Q > 0; R > 0. We use
the following constraints:

−10 ≤ u(k) ≤ 10

− ≤ ∆u(k) ≤ 2

−3 ≤ z(k) ≤ 5

with initial state x0 = [0.5 − 0.5 0.2 − 0.2]. The
MPC controller was implemented and simulated with
or without constraints using the methods outlined in
section 3 and 4. Figures 3, 4, 5, and 6 illustrate the
results. As can be seen from the figures, stability was
achieved using the principle underlying MPC. Fur-
thermore, in the presence of constraints, no violations
occurred. Thus the existence of a feasible solution en-
sures constraint satisfaction. The cost function was
decreasing with respect to time and is never less than
zero. The minimum performance index, that is V = 0,
is consistent with offset free tracking, as it implies that
both error is zero and control is unchanging.

6. Conclusion

The aim of this paper was to give insight into model
predictive control and run Matlab simulations to il-
lustrate some of the theory for linear systems using a
randomly generated system. MPC is popular due to
its ability to yield high performance control systems
capable of operating without expert intervention for

long periods of time and also its ability to handle con-
straints. In this work, we have presented the impor-
tance of MPC, components of MPC, and mentioned
some practical applications of MPC. MPC gives a con-
troller that stabilizes the system being controlled due
to the use of Lyapunov like function that ensures con-
vergence.
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