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Model Predictive Control of a Direct Fire Projectile Equipped with Canards

1. SYMBOLS

Air Density

CNA
Normal force aerodynamic coefficient

CMQ Pitch rate damping moment aerodynamic coefficient

Cxo: Aerodynamic drag coefficient in direction parallel to projectile motion

cr0, c0. Aerodynamic trim coefficients perpendicular to projectile axis of symmetry

C Roll moment from fin cant
DD

CYPA:
Magnus Force

CLP
Roll damping moment

D. Projectile Characteristic Diameter

'R
Projectile precesional and rotational inertia

Projectile mass

p. q, r: Angular velocity vector components expressed in the body fixed reference frame

tii, 0, q5 Euler yaw, pitch and roll angles

iSL: Stationline distance from the projectile center of pressure location to the CG

/SLm Stationline distance from the projectile Magnus force location to the CG

SL Stationline distance from the control canard location to the CC

u, v, w: Translation velocity components of the projectile center of mass resolved in the body
fixed reference frame

x, y, z: Position vector components of the projectile mass center expressed in the inertial
reference frame

v
:

Magnitude of the mass center velocity

L, M, N Total external applied moment on the rocket about the mass center expressed in the
rocket reference frame

X, Y, Z Total external applied force on the rocket expressed in the rocket reference frame

Prediction horizon used in model predictive controller

s: Dimensionless arc length



2. INTRODUCTION

Direct fire projectiles are fired by line-of-sight aiming, and are fired from ground based

platforms, helicopters, and fixed wing aircraft. A number of conditions can cause rounds to miss

an intended target. These conditions include manufacturing inaccuracies of the gun tube,

propellant, and projectile, along with variable atmospheric conditions, firing platform motion,

and aiming errors. With the advent of low cost, small, rugged, microelectromechanical systems,

dramatic reduction of dispersion for direct fire projectiles equipped with a relatively inexpensive

flight control system is possible. One design concept consists of a set of controllable canards

located near the nose of the projectile. This paper develops a unique flight control law tailored to

control of smart projectiles through the application of model predictive control and projectile

linear theory.

In model predictive control, a dynamic model of the plant is used to project the state into

the future and subsequently use the estimated future state to determine control action. It has

been found to be a practical and increasingly employed control technique.' Currently, model

predictive control is being applied to a wide variety of problems, spanning many different

industries. Mei, Kareem and Kantor2 studied vibration reduction of a tall building experiencing

wind excitation using model predictive control and linear quadratic guassian control strategies.

They found that the model predictive control scheme performed well and was robust to

uncertainty in building stiffness. Tsai and Huang' used a model reference adaptive predictive

controller for a variable-frequency oil-cooling machine used in concert with dynamically complex

machine tools. Kvaternik, Piatak, Nixon, Langston, Singleton, Bennett, and Brown4 developed a

generalized predictive controller for tiltrotor aeroelastic stability augmentation in airplane mode

of flight. Using the model predictive control strategy, significant increases in damping of aircraft

body vibration modes were achieved in a wind tunnel test. Slegers and Costello5 applied model

predictive control to a parafoil for autonomous delivery of a payload in battlefield conditions.



3

Burchett and Costello6 used a simplified form of model predictive control applied to a projectile

with lateral pulse jets. Their strategy was to use projectile linear theory to map the projected

impact point in the vertical target plane and base control action on projected miss distance and

direction. The key difference between their strategy and that detailed here is that the control

strategy employed by Burchett and Costello calculated errors only in the target plane, while the

control strategy used here considers error along the length of the trajectory. In addition, the

pulse jet control scheme used by Burchett and Costello is inherently discontinuous and can only

be applied at a discrete number of points. Canard control, as applied in this paper, is continuous

and is applied for the full flight duration.

Any model predictive control scheme is dependent upon the accuracy of the underlying

dynamic model representing the plant. Under most flight conditions, the equations of motion for

a projectile in atmospheric flight can be adequately represented by a 6 degree of freedom rigid

body model with externally applied aerodynamic forces and moments. The resulting differential

equations have been shown to provide an accurate representation of projectile flight

characteristics,7 though their inherent non-linearity prevents direct use in model predictive

control applications. However, a series of manipulations and simplifications of the equations of

motion allow closed form solution of the projectile trajectory under restricted flight conditions.

The simplified dynamic equations and their resulting solutions have become known as projectile

linear theory. Projectile linear theory has been extended by various authors to handle more

sophisticated aerodynamic models,8 asymmetric mass properties,9 fluid payloads,10'11 moving

internal parts,12'13 dual spin projectiles,14'15 ascending flight,16 and lateral force

impulses.17"8'19'20 Aerodynamic range reduction software used in spark range facilities utilizes

projectile linear theory in estimation of aerodynamic coefficients.

The work reported below employs model predictive control and projectile linear theory

for control of a direct fire projectile. The basic projectile configuration under consideration is fin

stabilized and the fins are slightly canted to provide moderate roll rates during flight. A set of
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controllable canards located near the nose of the projectile are used as the control mechanism.

The canards can be directed to provide swerve forces and pitch and yaw moments to the

projectile. The control law uses an approximate closed form solution of projectile motion to

predict the states of the projectile over a set distance known as the prediction horizon. Current

and future control actions are determined based on minimizing the estimated error of future

states. It is assumed that sensor feedback is provided by an onboard inertial measurement unit

(IMU). Simulation results to establish the utility of the new model predictive flight control

system design methodology are generated for an exemplar projectile. Parametric trade studies

are conducted that consider the effect of the cost function weighting matrices, prediction horizon

length, state estimation step size, and the model update interval on impact point dispersion.
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3. PROJECTILE DYNAMIC MODEL

The non-linear trajectory simulation used in this study is a standard 6 degree of freedom

model typically used in flight dynamic modeling of projectiles. A schematic of the projectile

configuration is shown in Figures 1 and 2.

Figure 1 Schematic of the position coordinates of a direct fire projectile.

V



Ji
K1

Figure 2 Schematic of the attitude coordinates of a direct fire projectile.

rds

'1

The 6 degrees of freedom are the three inertial components of the position vector from an

inertial frame to the projectile mass center and the three standard Euler orientation angles. The

equations of motion are provided in Equations 1 through 4. 21,22,23

c0c, s0s0cc0s,, U

= CGSJ;IJ SØS0SJ+CØCJ CØS9SJSØCJ V

-S0 S0C6, cøce w

(I)



1 S,;bte c0t6,

0=0 c0 s q

0 s0/c0 c0/c9 r

ii XIm 0 r q u

= Y/m r 0 p v
Zim q p 0 w

L 0 r q [p

'
=[i] M r 0 p {J]<q

N q p 0 [r

7

(2)

(3)

(4)

In Equations 1 and 2, the standard shorthand notation for trigonometric functions is used:

sin(a) s, cos(a) C and tan(a) t. The forces appearing in Equation 3 contain

contributions from weight (W), body aerodynamics (A), and the control canards (C).

x x XA X

Y = + +

Z Z ZA ZC

(5)

The dynamic equations are expressed in a body fixed reference frame, thus all forces acting on

the body are expressed in the projectile reference frame. The weight force is shown in Equation 6,

xw so
Y =mg 50C9

Z C0C9

(6)
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while the aerodynamic force acting at the center of pressure of the projectile is given by Equation

7.

XA C0+C2(v2+w2)/V2

4

=_Ipv2D2 CNAV IV (7)

ZA CNAWIV

The control forces are the aerodynamic drag forces created by the control canards in the

directions perpendicular to the axis of symmetry of the projectile.

xc 0

yc
=_Ipv2D2 C0 (8)

zc czo

The applied moments about the projectile mass center contains contributions from steady

aerodynamics (SA), unsteady aerodynamics (UA), and the control canards (C).

L LSA LUA

M=MSA +MUA +M (9)

N NSA NUA N

The moment components due to steady aerodynamic forces and control canard forces are

computed with a cross product between the distance vector from the mass center to the location

of the specific force and the force itself. The unsteady body aerodynamic moment provides a

damping source for projectile angular motion and is given by Equation 9.
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PDCLP1CDD+
2V

1?

qDCMQ
(10)=pv2D3

2V
NUA

[

rDCMQ

J
2V

The mass, mass center location, and inertial properties of the projectile are all assumed to be

constant throughout the duration of the flight. The center of pressure location and all

aerodynamic coefficients (Cr0, CYPA , CNA, CDD, CLP, CMQ) depend on local Mach number and are

computed during simulation using linear interpolation.

The dynamic equations given by Equations 1 to 4 are numerically integrated forward in

time using a 4th order, fixed step Runge-Kutta algorithm. Costello and Anderson7 present

correlation of this dynamic model against range data for a fin stabilized projectile.
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4. PROJECTILE LINEAR THEORY TRAJECTORY SOLUTION

The 6 degree of freedom rigid body projectile model shown above consists of 12 highly

non-linear differential equations for which a closed form solution has not been directly found.

Significant work has been performed to simplify the equations of motion such that an accurate

analytical solution can be determined. In order to arrive at a set of analytically solvable ordinary

linear differential equations, the following assumptions and simplifications are made:

1) Rather than employing a reference frame fixed to the projectile body, projectile linear

theory uses an intermediate reference frame which is aligned with the projectile axis of symmetry

but does not roll. Lateral translational and rotational velocity components described in this

frame, known as the no-roll frame or the fixed plane frame, are denoted with a superscript.

Components of the linear and angular body velocities in the fixed plane frame are computed

from body frame components of the same vector through a single axis rotation transformation.

For example, the body frame components of the projectile mass center velocity are transformed to

the fixed plane by

ü 100 u

= 0 c, S0 V (11)

ii:' 0 Sc6 C0 W

2) A change of variables is made from the velocity along the projectile axis of symmetry,

u, to the total velocity, V. Equations (11) and (12) relate V and u and their derivatives.

V=u2+v2+w2=u2+2+2 (12)

V V
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3) Dimensionless arc length, s, is used as the independent variable instead of time, t.

Equation (13) defines dimensionless arc length.

s = L JVdt

D0
(14)

Equations (14) and (15) relate time and arc length derivatives of a dummy variable . Dotted terms refer to

time derivatives and primed terms denote arc length derivatives:

(15)

(16)
v)

4) Euler pitch and yaw angles are assumed to be small so that

sin(8) 8 cos(8) 1

(17)

sin(t') ti cos(i') 1

5) Aerodynamic angles of attack are small so that

w Va fl-
V V

(18)

6) The projectile is mass balanced such that the center of gravity lies in the rotational axis

of symmetry:

Ixy = Ixz = Iyz = 0

=
'xx

'P = 'yy = '22

(19)

7) Quantities V and ç1 are large compared to 0, yt, v, w, q, and r such that products of

small quantities and their derivatives are negligible.
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A more detailed discussion of the development of projectile linear theory is provided by

McCoy.2' Application of the above stated assumptions leads to a set of coupled linear differential

equations, with the exception that the total velocity, V. the roll rate, p. and the pitch angle, 9,

appear in non-linear fashion in many of the equations. To remedy this, the assumption is made

that V changes slowly with respect to the other variables and is thus considered to be constant,

V = when it appears as a coefficient in all dynamic equations except its own. In addition, the

roll rate and pitch angle are held constant, p = p0 and 9 = 9, only when they appear in non-

linear fashion. The equation for the total velocity is shown as equation (17).

pD3c.
V

DgS9
(20)

8m V

The remaining 11 equations can be written as:

A 0 0 D 000000 0 VF

0 A D 0 000000 0 i WF

4' BID CID H -F 0 0 0 0 0 0 0 4 QF

F' CID BID F H 0 0 0 0 0 0 0 F Rr.

x' 0 0 0 0 000000 0 x D

y'=DIV0 0 0 0 00000 D 0 y+O
0 DIV0 0 0 0000-DO 0 z 0

0 0 0 0 00000 ODIV0q5 0

0' 0 0 DIV0 0 000000 0 0 0

vi' 0 0 0 DIkO000 00 0 yt 0

p' 0 0 0 0 000000 K

where:

(21)

(22)
8m
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7tPD5CypAPO1m
B=

16IV0
(23)

IZPD4CNAASL

8I
(24)

F IRDPO
(25)

Ipvo

2pD5CMQ
H=

1 6I
(26)

irpD5C
LPK=

161R

(27)

V _PD(cNA*_vcyo) (28)F
8m

gDC0 pD3
(CNA. -c0) (29)

F
8m

pD3 [_CNAASL_DCYP ALmV*
+CzoASLcJ (30)QF=

8I 2k

R
pD3

[_ CNAL
DCYPAPOASLm* VCASLJ (31)F

8I
*

2f'

izpV0D'C

81R

(32)

Closed form solutions to the above equations can be found, though the results are

omitted here. A more detailed treatment of the solutions to the projectile linear theory equations

can be found in [231.

The variables C,0 and C0 are aerodynamic trim forces perpendicular to the projectile

axis of symmetry which are created by movement of the control canards and are treated directly

as control inputs.
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In reality, the total velocity, V. does not remain constant for the duration of the flight.

Therefore, the total velocity must be periodically measured throughout the trajectory and

updated in the remaining equations. The center of pressure location and the aerodynamic

coefficients
(CO3 CYPA, CNA, CDD, CLP, CMQ), which all depend on local Mach number, must also

be recomputed each time V is updated. The effect of the length of the update interval on the

accuracy of the model was studied by Burchett, Peterson, and Costello.19
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5. MODEL PREDICTIVE FLIGHT CONTROL SYSTEM

The model predictive controller uses the linearized model of the system to propagate the

states forward in time over an interval known as the prediction horizon (Hr) 24 Control action

is based on comparison of the predicted states and a predetermined desired trajectory over the

prediction horizon. As the prediction step is marched forward, so too is the prediction horizon; a

process referred to as the "receeding horizon principle." The control action at each step is

determined by minimizing a quadratic cost function, defined as:

J=(w_)TQ(w1)+uTRu (33)

The matrix W contains the desired system outputs, w, over the length of the prediction horizon.

The desired system outputs, w, at each prediction step consists of the desired

x, y ,and z coordinates at that time instant. These values need to be loaded into the onboard

computer prior to projectile launch.

I Wk+l

IXk+i 1

W Y+ (34)

L
Zk+I j

t Wk+HP
J

The matrix V contains the predicted system outputs, 5, and the matrix U contains the

calculated system inputs, u, as follows:

[k1 U
1

Uk+IYk+2
U=

: (
(35)

[k+HPi [Uk+J,P_I j
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Q and R are diagonal, positive semi definite weighting matrices.

In order to develop an expression for the predicted system outputs over the prediction

horizon, the system is first cast in standard discrete state-space form

Xk+I = A(zs)xk + B(s)uk + F(zxs)
(36)

Yk = CXk

where the values within the matrices A, B, and F depend on the arc length step size(s).

The projectile linear theory expressions shown in the previous section are used to form the state

space matrices through a 14-step loop in the control algorithm. In the first step, all of the states

and controls are set to zero and the solutions are evaluated over one arc length step to determine

the values within the constant vector, F. In the next step, the first state, ü, is set equal to one,

with the remaining states and controls still equal to zero, and the expressions are re-evaluated.

By subtracting the values of the constants, F, the coefficients making up the first column of A

can be found. This process, consisting of setting a state variable equal to one, evaluating the

linear theory solutions, then subtracting the constant values, is repeated for each of the remaining

10 states to fully populate the state matrix A one column at a time. The control matrix, B, is

formed in exactly the same manner with all 11 states equal to zero and the controls, C,0 and

C,0 alternately set equal to one.

The desired outputs of the system are its center of mass position states (x, y, and z). The

matrix C is then simply

00001000000
C= 0 0 0 0 0 1 0 0 0 0 0 (37)

00000010000
A recursive formula can be found for YkJ" j H by substituting the expression for

Xk+/ into the expression for Yk+1 The result is



Or, in matrix form

where
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Yk+J = CA'Xk + CA'Buk+El + CA''F (38)

Y = KcAxk + KCABU + KCAF (39)

CA

CA2

KcA = C'A3 (40)

CAHP

CB 0 0 0

CAB CB 0

KCAB= CA2B CAB CR 0 (41)

0

CAHPIB CAB CAB CR

CF

CAF+CF

KCAF= CA2F+CAF+CF (42)

CAF++CAF+CF

The cost function, J, then becomes

J = (W KcAxk KCABU KCAF )TQ(W KcAxk KCABU KCAF) + UTRU (43)

The minimum of the cost function is determined by selecting the control input vector that forces

the gradient of the cost function to zero.
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U=K(WKCAxk KCAF) (44)

K = (KCABTQKCAB + R) KCABTQ (45)

It should be noted that U contains the optimal control inputs over the entire prediction

horizon. At each arc length step, k, only Uk is used, which is the first element of U. The first

element of U is

Uk =K(WKCAxkKCAF) (46)

where K1 consists only of the first M rows of K. Note that M is defined as the number of

control inputs which, in this application, is two (Cr0 and Cr0).

It is assumed that full state feedback is available for use in the control law, that is

x ,y,z, t',8, b,u, v,w,p,q, and r are sensed or estimated by the IMU. Furthermore, the weapon

that fires the projectile provides a desired trajectory leading to the target. At time 0, the

controller is provided with the full state of the projectile. The total velocity, V. is calculated from

the projectile mass center velocity states and set to V in the linear model. The linear model is

then used to propagate the remaining 11 states forward by ts. These values are used to

populate the A , B, and F matrices, which are sent to the MPC routine. The MPC routine

calculates the optimal control sequence over the length of the update interval. When the

projectile has covered the length of the first update interval, as well as every subsequent update

interval, the controller is provided with full state feedback and the process is repeated. The

control sequence calculated by the model predictive controller contains control inputs at

increments of s. Linear interpolation is applied to determine control inputs between

increments of s.

It is important to note that the controls resulting from the above calculations are

expressed in the fixed plane frame, as per assumption number I in the linear theory section of
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this paper. To be applied to the canards, the control inputs must be converted to the

conventional body fixed reference frame.

Each time Mach number is updated in the linear model, the matrices A, B, and F are

updated as well. This, in turn, requires updating of the gain matrices. The size of each of these

matrices, and hence the computational time required to calculate them, is governed by the length

of the prediction horizon. Obviously, frequent updates to the linear model and a long prediction

horizon provide greater accuracy in the predictor and more efficient control. These observations

are tempered with the need to limit the computational demand placed on the onboard processor.
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6. RESULTS

To establish the utility of the model predictive controller in a projectile application, a 4.5

ft long fin stabilized projectile is considered. The projectile has a total weight of 22.9748 lbf, a

center of gravity location of 2.5 ft from the base, and 4 tail mounted stabilization fins. The roll

and pitch inertia of the body are 0.0057 slug-ft2 and 1.35 slug-ft2. respectively. A set of

controllable canards, which alter the aerodynamic forces and moments, are located 4.25 ft from

the base of the projectile.

To model uncertainty in launch conditions, which is a primary cause of dispersion, the

initial pitch and yaw rates, pitch and yaw angles, and body velocities are all considered to be

normally distributed random numbers with means and standard deviations that are

representative of actual launch uncertainties. The values chosen are shown in Table 1.

Table 1 Initial condition uncertainty parameters for dispersion analysis

Initial Condition Mean Standard Deviation

Pitch Angle (0) 0.1 rad 0.01 rad

Yaw Angle (w) 0.0 rad 0.01 rad

Pitch Rate (g) -0.18 rad/s 2.0 rad/s

Yaw Rate (r) 0.0 rad/s 2.0 rad/s

x Body Velocity (u) 1143.3797 ft/s 15 ft/s

y Body Velocity (v) -0.00002502 ft/s 3 ft/s

z Body Velocity (w) 0.375346 ft/s 3 ft/s

The desired trajectory is chosen as that which the projectile would follow in the absence

of uncertainty with initial conditions of: x0, y0, z0, and r0 = 0, 00 = 0.1 rad, u0 =

1143.38 ft/s, v0 = -2.502x1ft5 ft/s, w0= 0.375 ft/s, p0 = 51.5 rad/s, and q0 = -0.18 rad/s. The

target location is chosen as x = 6216.613 ft. y = 0.261 ft. and z 0.0 ft. Figure 3 shows typical

dispersion results for 50 sample trajectories with no control applied and initial condition

perturbations as described above. The Circular Error Probable (CEP) shown in the figure is based
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on a 50% hit criterion, that is, the CEP is defined as the minimum radius of a circle centered at the

mean impact point and containing at least 50% of the shot impact points. With no control

applied, the CEP is 106 ft. For reference, a second CEP is shown which, instead of being centered

at the mean impact point, is instead centered at the target location. A 50% hit criterion is still

used. The second CEP has a radius of 113.5 ft.

150r

I CEP(

100

- 50
a)
U

a

a)

-50

-100

CEPCenteredat

-50 -100 -50 0 50 100 150

Cross Range Miss Distance (ft)

Figure 3 Uncontrolled dispersion
(CEP = 113.5 ft centered at mean impact point)

Figure 4 shows the dispersion results with model predictive control applied. The

prediction horizon, H, is chosen as 50. The error weighting matrix, Q, is chosen to be a

function of range as follows:



z

( S

t\ 1000J
0 0

o o 0
Q=q 1000)

o o

I
S

0 0
1000 )
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(47)

in which q is chosen, in this case, to be 0.5. By defining Q in this manner, the error weighting is

increased quadratically as the projectile flies downrange. This prevents the tendency for the

controller to attempt to force the projectile onto the desired trajectory immediately after launch,

leading to a large initial control input followed by subsequent control inputs of nearly zero. In

addition, the control weighting matrix, R, is defined to be

H 0 0 0 0

0 H-1 0 0 0

R=r 0 0 . (48)

0 0 ...20
0 0 ...01

where r is chosen as 2.0 in this case. By defining R in this manner, the current control value is

weighted H times heavier than the control value at the end of the prediction horizon. This

prevents large controls from being chosen at the beginning of an update interval, even if

significant error is present. The model update interval for the case shown in figure 2 is 1000 arc

lengths, and the arc length step size, s, is 20. These parameters provide a good baseline from

which to begin examining the performance of the model predictive controller. Figures 5 and 6

show a typical controlled and uncontrolled trajectory with the model predictive control

parameters set as listed above.
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Figure 4- Controlled dispersion
(CEP 0.02 ft centered at mean impact point)
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The model predictive controller provides a very significant reduction in the CEP; from

106 feet in the uncontrolled case to 0.02 ft. or less than 1/4 of an inch, with control applied. It

should also be noted that the mean impact point is almost 0.06 feet, or approximately 0.75 inches,

above the target location. In the cross-range direction, however, the mean impact point is only

0.0085 ft away from the target. This bias error in the z-direction can be attributed directly to

errors in the linear model used in the predictor. One of the primary assumptions upon which

projectile linear theory is based is that the projectile maintains a small angle of attack. As the

target is approached, the angle of attack of the projectile is forced to a small, non-zero number.

Though it isn't necessarily in violation of the small angle of attack assumption, it is enough to

cause a small deviation between the trajectory predicted with the linear model and that which is

arrived at by integrating the full six degree of freedom, non-linear equations. This error is

demonstrated by plotting the error between the validated, full, six degree of freedom, non-linear

trajectory, which is solved using a fixed step, fonrth order Runge-Kutta method, and the linear

theory trajectory solution. The linear solution is corrected to match the non-linear solution every

1000 arc lengths to mimic flight control system feedback. The control input is set equal to zero in

both cases and the initial conditions are set to match those used in creating the desired trajectory.

Figure 7 shows the linear theory error as a function of arc length in the x, y, and z directions.
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Figure 7- Error between linear and non-linear trajectory solutions

Note that the error is of the same order of magnitude near the end of the trajectory as the

variation of the mean impact point in the CEP plot. It should also be noted that the error is

greatest at the beginning and end of the flight, where the trajectory is furthest from horizontal.

At the midpoint of the trajectory, where the path of flight is nearly flat and the projectile angle of

attack is nearly zero, the error in all three spatial directions also becomes very close to zero.

Figure 8 shows the required control inputs for the trajectory shown in figures 3 and 4.

The magnitudes of the control inputs required to achieve the shown degree of tracking are

attainable for a set of nose-mounted canards.
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Figure 8 - Required control inputs for a typical trajectory

Great care must be taken when choosing the gain values, q and r, such that the control

values, C0 and Cr0, never exceed approximately one. Such large control inputs violate the

small angle of attack assumption upon which the linearized model is based. As a result, the

linear model no longer accurately approximates the true, non-linear system and the controller

loses its ability to accurately predict future states. When the system is provided with state

feedback from the IMU under these circumstances, there are very large errors and the controller

subsequently attempts to choose a large control value to compensate. Within one to two update

intervals, the error becomes large enough that control saturates.

Other applications of model predictive control, such as that discussed by Mei, Kareem

and Kantor2, use an iterative scheme to set a maximum control input value. In the application
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being discussed here, where speed of control computation is extremely critical, iteration is not

practical. If the processor is occupied by an iterative routine while the projectile continues to fly

downrange, control is lost. A second option is to simply clip the control values at the maximum

allowable value. This, too, presents problems as future controls are calculated under the

assumption that all previous controls were applied exactly as calculated. When this clipping

scheme is attempted, the control begins oscillating rapidly between both allowable extremes,

quickly resulting in instability.

The results discussed above assume perfect sensor feedback, which in reality can never

be achieved. In practice, sensors possess error created by both bias and noise. These are modeled

in the simulation by choosing normally distributed random numbers with means of zero and

standard deviations that are representative of commonly used IMU sensors. A bias value is

randomly chosen for each sensor at the start of every flight simulation and retained throughout

that particular simulation. In addition, a noise value is randomly chosen for each sensor every

time feedback is implemented. Both the bias and noise value are added to the sensor readings at

each update interval. The sensor bias and noise standard deviations used are summarized in

table 2. All subsequent results displayed in this paper employ sensor bias and noise applied in

this way.

Table 2 - Sensor noise and bias values

Sensor Function Bias Standard Deviation Noise Standard Deviation

x and y position 0.52 ft 0.52 ft

z position 1.18 ft 1.18 ft

x and y velocity 0.10 ft/s 0.08 ft/s

z velocity 0.16 ft/s 0.13 ft/s

roll, pitch and yaw angles 0.3 deg 0.3 deg

roll, pitch and yaw rates 0.05 deg/s 0.01 deg/s

Sensor noise and bias become the dominant sources of error when they are applied in

this application. As the standard deviation of the sensor noise remains constant throughout the
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projectile flight, it no longer makes sense to define the error weighting matrix as a function of

projectile range. Doing so, while keeping the value of q low enough to avoid violating the small

angle of attack assumption near the end of the trajectory, unnecessarily limits the control action

near the beginning of the trajectory. The error weighting matrix, Q, is instead defined simply as

the identity matrix multiplied by the constant gain value, q.

Figure 9 shows dispersion results with sensor noise and bias applied. The prediction

horizon, H. is again 50. The error gain, q, is set to 1. The control weighting matrix, R, is

defined as shown in equation 48 with the gain value, r, equal to 0.2. The update interval is 1000

arc lengths and the arc length step size, s, is 20. As a direct result of the sensor uncertainty, the

CEP radius is increased to 2.1 ft.
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Figure 9 - Controlled dispersion with sensor bias and noise applied

(CEP 2.1 ft centered at mean impact point)
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In figure 10, the effects of changing both the control gain, r, and the prediction horizon,

H. are shown. The model update interval is held constant at 1000 arc lengths and the arc

length step size is held constant at 20 arc lengths throughout all of the simulations shown in

figure 10. In addition, the error weighting matrix, Q, is defined as the identity matrix with the

error gain, q, equal to 1. The control weighting matrix, R, is again defined as shown in

equation 48. The control gain, r, is varied from 0.025 to 10 with the prediction horizon held

constant. The process is repeated four times with values of H = 25, H = 50, H, = 75, and

H = 100.
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Figure 10 - Controlled dispersion results as the control gain, r, is varied

As the value of r is increased, additional weight is given to the value of the control in

the cost function (equation 43). This in turn forces the magnitude of the chosen control values to

be smaller, which provides less control authority. As would be expected, figure 10 shows that
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larger values of r lead to increased dispersion. However, there is a value of r below which the

control values are allowed to be too large, leading to violation of the small angle of attack

assumption and loss of control. This minimum value of r varies depending on the length of the

prediction horizon. In figure 10, the lowest attempted values of r which resulted in a

controllable trajectory are shown as the first data point for each series.

It is also apparent from figure 10 that, for a given value of r, there is a direct relationship

between the length of the prediction horizon and the amount of impact point dispersion.

Allowing the controller to take into account an increased number of the predicted states, as a

longer prediction horizon does, leads to more intelligent control choices. It also significantly

increases the amount of computation required at each update interval, necessitating a more

expensive onboard processor.

A similar study was performed to investigate the effect of the length of the linear model

update interval on the dispersion radius. The error weighting matrix, Q, is again the identity

matrix with the error gain, q, set to one. The control weighting matrix, R, is defined as shown

in equation 48 with the gain value, r, equal to 0.5. The arc length step size is again 20 arc

lengths. The linear model update interval is varied from 100 to 2000 while holding the value of

the prediction horizon constant. As before, the process is repeated four times with prediction

horizon values of H = 25, H = 50, H = 75, and H = 100. The results are shown in

figure 11.
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Longer linear model update intervals lead to an increase in dispersion. This increase

becomes more apparent for update intervals greater than 1000 arc lengths. For prediction

horizon lengths of 25 and 50 arc length steps, update intervals greater than 1600 arc lengths led to

a loss of control. This results from the linearized model deviating too far from the true, non-

linear system. Upon update, the error becomes very large and a large control is chosen to

compensate, which in turn violates the small angle of attack assumption and causes further error

in the linear model. Reducing the error gain, q, or increasing the control gain, r, would prevent

this scenario from occurring. However, the tradeoff would be a reduction in control authority

and an increase in dispersion.
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The final study investigates the effects of the length of the step size, s, used by the

controller to propagate the linear model forward. The prediction horizon is held constant at 50

steps and the error weighting matrix is the identity matrix with the gain, q, equal to one. The

control weighting matrix is defined as shown in equation 48. Four values for the arc length step

size (As=5,s=1O,s=2O,ts=4O) are used while the control gain, r, is varied over the

range which provided suitable control inputs for each step size. The results can be seen in figure

12.
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Figure 12 - Controlled dispersion results as the arc length step size is varied

As with any discrete, linear model, the length of the step size has no effect on the

accuracy of the model itself. However, as evidenced by Figure 12, the length of the arc length

step size does have an effect on the overall accuracy of the controller. This results from an
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interplay between two competing effects. The prediction horizon length is measured in the

number of steps into the future that are used in the calculation of the optimal control. Therefore,

for a given prediction horizon length, increasing the arc length step size allows the predictor to

take into account state values farther into the future. However, control values are only calculated

at each step increment, with control values between calculation steps derived from linear

interpolation. A large step size can therefore lead to a decrease in resolution of the controller.

For arc length step sizes of 5, 10, and 20, these effects do little more than change the acceptable

range of gains, shifting the lines to the right on Figure 12 for increasing values of s. However,

at ts =40, the controller becomes unable to provide the necessary amount of oscillation and

dispersion is increased dramatically.
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7. CONCLUSION

This paper develops a method for applying model predictive control, a proven and

effective control technique, to a smart projectile application. The control law is shown to

dramatically reduce the impact point dispersion caused by launch disturbances. The method

uses full state feedback to create a linearized model of the projectile and quickly predict the

future states of the system. These calculations can be performed by a relatively inexpensive

onboard processor. As the predicted states depend on the states provided by the feedback loop,

sensor accuracy is very important to the performance of the system and was shown here to be the

limiting factor in dispersion reduction.

Considerable opportunities exist for the control system designer to tune the model

predictive controller based on the desired application. It was shown that the length of the

prediction horizon has a considerable effect on the dispersion radius, with a longer prediction

horizon leading to a decrease in dispersion. However, a longer prediction horizon increases the

size of the matrices used in the control calculation, which subsequently necessitates an increase in

the processing power required to perform control calculations in a sufficiently short period of

time. Shorter linear model update intervals lead to a decrease in dispersion as well, but with a

similar increase in the amount of onboard computation required. The length of the arc length

step size was shown to have little effect on dispersion as long as it remained below 20 arc lengths.

Control and error gains should be adjusted to allow sufficient control authority without violating

any of the assumptions upon which linear theory is based. No iterative scheme is built into the

controller to limit the size of the control inputs, so the control system designer should run a series

of simulations prior to launching a projectile to ensure that the control and error gains are

properly adjusted.
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