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Abstract: Wave power extraction algorithms for wave energy converters are normally designed

without taking system losses into account leading to suboptimal power extraction. In the current

work, a model predictive power extraction algorithm is designed for a discretized power take of

system. It is shown how the quantized nature of a discrete fluid power system may be included in

a new model predictive control algorithm leading to a significant increase in the harvested power.

A detailed investigation of the influence of the prediction horizon and the time step is reported.

Furthermore, it is shown how the inclusion of a loss model may increase the energy output. Based on

the presented results it is concluded that power extraction algorithms based on model predictive

control principles are both feasible and favorable for use in a discrete fluid power power take-off

system for point absorber wave energy converters.

Keywords: wave energy; model predictive control; discrete fluid power PTO; discrete displacement

cylinder; point absorber

1. Introduction

Energy produced by ocean waves has not yet become a commercially viable technology because

the cost of energy is too high. Therefore, research projects considering wave energy converters are

diversified into numerous topics regarding e.g., structural mooring, system controls, power electronics,

hydrology and fluid power technology—all with the aim of reducing the cost of energy as reviewed

in e.g., [1].

The heart of a Wave Energy Converter (WEC) is the Power Take-Off (PTO) system which converts

the ocean waves into energy. The focus of this paper is the Wave Power Extraction Algorithm (WPEA)

i.e., the algorithm that controls the PTO. In general, the WPEA’s objective is to harvest as much energy

as possible with a given PTO system. In this connection it is important to distinguish between the

mechanical energy absorbed by the PTO and the output energy (typically electrical) that is delivered

from the whole WEC system.

In the wide landscape of WEC converter topologies including e.g., overtopping, attenuators,

oscillating water columns, point absorbers, this work focuses on the latter: the point absorber WEC is

characterized by the float being small compared to the dominant wave length and in addition most

point absorber WEC’s are designed to exploit the heave motion of the float. Point absorber based

WEC’s come in numerous configurations: some have a single body moving relative to the sea bed

or a fixed structure while other absorbers have two floating bodies moving relative to each other.

Point absorber WEC’s are often designed for park installation in such a way that multiple absorbers

form an array of WEC’s that supply power to the same electrical grid which in turn smooths out the

power fluctuations from a single absorber.

Prior research has shown that the amount of absorbed energy depends a lot on the adopted

WPEA. A widely used WPEA for point absorbers is the reactive control principle which is both simple
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and casual. An energy-optimal reactive WPEA strategy for regular waves has been detailed in e.g., [2].

However, as ocean waves are random the reactive WPEA must be adapted to irregular waves. In [2]

the controller parameters in the reactive WPEA algorithm are updated based on the history of the

past wave series in order to adapt to the current sea state. In [3] the optimal discrete PTO force where

investigated for a much simplified WEC, however the method failed for irregular waves.

Recently, WPEA’s based on the idea of Model Predictive Control (MPC) have attained increasing

focus from the wave energy research community, see e.g., [4–11], and initial results are encouraging:

MPC may lead to increased energy output of a WEC compared to e.g., reactive control WPEA.

In the early work of [4,6,8], a linear MPC has been developed and simulated on ideal PTO systems

harvesting energy of point absorber WEC’s. These papers acknowledge that practical constraints

imposed by the PTO system must be studied to a greater extent. Similar conclusions are drawn by [11],

which demonstrates the potentials of MPC in a simulation study of a model-scale point absorber albeit

unrealistic performance requirements for the PTO system are obtained due to the simplicity of the

used PTO model. [10] reports a study of both a centralized MPC and decentralized MPCs applied to a

small array of three WECs and concludes that MPC can improve the energy absorption compared to a

linear fixed damping controller. In this work, the PTO force is assumed to be continuously controllable

within upper and lower bounds. In addition, PTO losses are not considered. In [7] the PTO system

model includes a friction term emulating the PTO energy losses—however, no actual PTO system

configuration is discussed.

Mainly based on simulation studies, the literature documents that MPC based WPEAs can

outperform the classical reactive WPEA with respect to the amount of absorbed energy using the

continuously controllable PTO system. To the knowledge of the authors, no investigations of MPC in

the context of WEC exist for discrete PTO systems. It may also be noted that the MPC concept allows

actuator constraints such as discrete force levels to be taken directly into account. In addition, limits on

maximum actuator motion may be included straightforwardly in the optimization problem formulation.

It is not clearly documented how this affects the amount of harvested energy.

This paper focuses on MPC applied to a discrete fluid power PTO system based on a secondary

controlled multi-chamber cylinder connected to a number of constant pressure lines. In [12], the

conversion efficiency of such a discrete and multi-chamber PTO system is shown to be significantly

higher than a conventional PTO system where a symmetrical cylinder feeds a variable displacement

motor [2,13]. However, such a technology shift from a continuous to a discrete force system necessitates

a WPEA capable of generating a control reference according to the quantized nature of such a system

and hence the objective of this paper is to develop and investigate the feasibility of a MPC-based

WPEA for a discrete PTO system used in a point absorbed WEC.

The paper is organized as follows: first, an overview of the studied system is given and then a

dynamic WEC system model (float and PTO) is presented together with models of the wave climate.

Next, the configuration of the MPC based WPEA is presented and it is detailed how the prediction

model is derived and how the optimization problem is solved. In addition, PTO system energy losses

are modeled and included in the optimization problem. Then, results of extensive calculations for

different WPEA’s are reported, documenting how the prediction horizon and time step influence the

output energy. Furhtermore, comparisons between MPC-based and a reactive algorithm WPEA are

reported.

2. Discrete Power Take-Off System

The power take-off topology studied in this paper was proposed for a multiple-point absorber

wave energy converter, see [12]. Each absorber is attached to an arm hinged at a fixed structure and

in overall terms energy is harvested by the relative motion between the absorber arm and the fixed

structure. Figure 1 illustrates the system. Each set of float arm, multi-chamber cylinder and valve

manifold constitutes a unit named a primary stage. As indicated in Figure 1, multiple primary stages

are connected to a common secondary stage consisting of three pressure lines each equipped with
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a number of accumulators, a fixed displacement fluid power motor, an electrical generator and a

frequency converter for grid connection.

A key advantage of such a topology is that inevitable (but phase shifted) variations in the power

production of the individual absorbers do not propagate directly into the secondary stage which in

turn leads to a more smooth operation of the fluid power motor and the generator.

It may be noted that the two ports of the fluid power motor are connected to the low (pL,1) and

high pressure (pL,3) lines, respectively. The intermediate pressure (pL,2) floats and as detailed in [12]

proper secondary control is needed to stabilize this pressure line.

✽✸
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✽✻
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✽✽
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✾✺
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Figure 1. WEC with multiple point absorbers based on a discrete PTO system.

3. Dynamic Modeling

As detailed below, three models are formulated to describe the interconnected dynamics of the

incoming wave, the float and the discrete PTO system. The models developed utilize the notation

of Figure 1.

3.1. Wave Model

The incoming wave is modeled by the commonly used Pierson-Moskowitz (PM) spectrum for

fully developed sea states as described in [14]. The spectrum SPM( f ) describing the power density

versus frequency f is defined by two quantities: the significant wave height, Hm, and the peak wave

period, Twp:

SPM( f ) =
A

f 5
exp

(−B

f 4

)

, where B =
5

4

1

T4
wp

and A =
1

4
BH2

m. (1)

Figure 2a illustrates the wave spectrum for three different sea states that are used for tests

throughout the paper.

In our study, the instantaneous wave height ηw is precomputed in the time domain by filtering

Gaussian white noise with unity variance by the PM spectrum as detailed in [12]. In addition,
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the excitation torque τext, defined as the torque applied by the wave on the float fixed in neutral

position, is precomputed by filtering the wave height by a force filter with the impulse response hext(t):

τext(t) =
∫ ∞

−∞
ηw(t

′)hext(t − t′)dt′ (2)

The response hext(t) may be found in [12] based on detailed analysis using the WAMIT tool.

For the sea state defined by Twp = 4.62 s and Hm = 1 m, Figure 2b shows examples of wave height

and absorber excitation torque.
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Figure 2. Sea state model: (a) Pierson-Moskowitz spectrum for three sea states and (b) example of

wave height and excitation torque in time domain for Twp = 4.62 s and Hm = 1 m.
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3.2. Float Model

Based on the work of [2], the float arm motion dynamics are modeled by

Jarm θ̈arm = τres + τrad + τext + τpto (3)

where Jarm is the mass inertia of the float and float arm combined, τres is the net restoring torque caused

by a combination of Archimedes and gravitational forces, respectively; τrad is the radiation torque

requested to oscillate the float in clam water and the excitation torque τext is the torque experienced by

the float when locked in neutral position and subjected to waves. Finally, τpto in (3) denotes the PTO

torque acting back on the float.

As explained in [2], the restoring torque may be formulated as τres = kresθarm, where kres is

constant. The model of the radiation torque is more complex:

τrad(t) = −Jadd,∞ θ̈arm −
∫ ∞

0
ωarm(t′)kr(t − t′)dt′

︸ ︷︷ ︸

τ∗rad(t)

(4)

Here, ωarm = θ̇arm and kr(t) is the impulse response for the radiation force which is represented

by its Laplace transform by a fifth order transfer function Kr(s) [2]:

Kr(s) =
τ∗

rad(s)

ωarm(s)
=

b5s5 + · · ·+ b1s + b0

a5s5 + · · ·+ a1s + a0
. (5)

The first term in (4) describes the torque requested to accelerate the water surrounding the float,

given as the added inertia Jadd,∞ accelerated. As indicated the added inertia is taken as infinite frequency.

In total, the float dynamics (3) may be represented by the block diagram in Figure 3 or by the

input-output transfer function

θarm(s)

τpto(s) + τext(s)
=

1

(Jarm + Jadd,∞)s2 + Kr(s)s + kres
, (6)

where the frequency response of the radiation gain Kr(s) is shown in Figure 4 for the system parameters

in Table 1. A bode diagram of the float model (6) is shown in Figure 5. Note the resonance peak at

0.285Hz indicating the float arm eigen frequency.

Table 1. Float model parameters.

Jarm 2.45 ×106 [kgm2]
Jadd,∞ 1.32 ×106 [kgm2]
Kres 14 ×106 [Nm/rad]
[b5, · · · , b0] [0.01, 1.44, 62.4, 816, 1310, 144]× 104

[a5, · · · , a0] [0.0010, 0.0906, 1.67, 6.31, 13.3, 9.18]

✶✶✼
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✶✶✾

✶✷✵
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✶✷✷
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✶✷✹

✶✷✺

✶✷✻

✶✷✼

✶✷✽

✶✷✾

✶✸✵

✶✸✶
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Figure 3. Block diagram of the float model.
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Figure 4. Bode diagram of the radiation damping term (5) normalized to 1 MNm/(rad/s).
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Figure 5. Bode diagram of the float dynamics (6) normalized to 1 rad/MNm.

3.3. Discrete PTO System Model

The PTO system consists of a multi chamber cylinder connected to three pressure lines through

on/off valves as shown earlier in Figure 1. Using such an arrangement implies that the 27 different

PTO force levels shown in Figure 6 can be realized when the configuration data listed in Table 2

are used.



Energies 2018, 11, 635 7 of 17

The PTO system model consists of a continuity Equation (7) and an orifice Equation (8) for each

cylinder chamber:

ṗi(t) =
β

Vi(xc(t))
(Qi(t) + Ai ẋc(t)) (7)

Qi(t) = Σ3
j=1kv,ixi,j

√

|pL,j − pi(t)| sign(pL,j − pi(t)) (8)

Here, pi(t) is the pressure in chamber i and the flow into the chamber is Qi. The ith piston

area and chamber volume are denoted by Ai and Vi, respectively. xc is the piston position. xi,j is

the normalised valve opening from the jth pressure line to the i’th cylinder chamber and kv,i is the

valve flow coefficient. pL,j is the jth line pressure. In the analysis, bulk modulus is set constant to

β = 8000 bar.

The valves are matched to the chambers they are connected to and by proper pairing the pressure

drop across the valves are 5 bar for a piston velocity of 0.5 m/s.

The total PTO force Fpto(t) then becomes:

Fpto(t) =
3

∑
i=1

Ai pi(t) (9)

Table 2. Discrete PTO system parameters. The sign of the areas indicates the force direction.

Chamber Areas Valve Flow Coef. Pressure Levels

A1 = −235 cm2 kv,1 = 705 l/min√
5 bar

pL,1 = 20 bar

A2 = +122 cm2 kv,2 = 366 l/min√
5 bar

pL,2 = 100 bar

A3 = +87 cm2 kv,3 = 261 l/min√
5 bar

pL,3 = 180 bar
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Figure 6. Applicable static force levels for the discrete PTO system.

4. Model Predictive Control of Discrete PTO System

In the context of a PTO system, the overall control problem is to maximize the energy output in

(varying) sea states by clever manipulation of the PTO force, which in our case must be selected from a

pool of 27 values. Traditionally, a controller is tuned off-line based on ideas such as reactive control [2]

and mapping techniques are used to accommodate quantization of the controller output [12].

As an alternative to such an indirect approach, to attack both the energy maximization problem

and the force level quantization problem, the variant of closed-loop control model known as either

receding horizon control or model predictive control has two appealing characteristics for use in

a WEC with a discrete PTO system: as detailed in [15], MPC allows direct handling of constraints
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such as actuator and state limitations—and also, due to the use of an on-line optimization strategy,

MPC should be able to address the energy maximization problem directly during runtime.

The overall idea of MPC is to compute the future controller outputs (i.e., the system inputs) by

solving an optimizing problem on each time step of duration TS. More specifically, the strategy for a

discrete-time MPC involves three steps:

1. Measure (or partially estimate) the full system state x(k) at the current sampling time t(k).
2. Find the N optimal future system inputs

Uk = [u(k), u(k + 1), · · · u(k + N − 1)] (10)

by solving an optimization problem over a finite time horizon TH = NTs by using a prediction

model to estimate the future system states

Xk = [x(k + 1), x(k + 2), · · · x(k + N)] (11)

based on the initial state x(k), the future inputs Uk besides a prior estimates of future disturbances
3. Apply only the first optimal controller output u(k) to the system and loop back to step 1 for the

next sampling instant.

Figure 7 illustrates the used notation and the MPC principle: at time t(k) the actual state x(k) is

available and an optimal future controller output vector Uk is determined as outline in Step 2 above.

Using Uk, the predicted future state becomes Xk as shown in the bottom part of Figure 7. The first

element u(k) is immediately applied to the system and as indicated the actual state trajectory may

deviate from the prediction leading to another initial state in the next sampling interval starting at

t(k + 1) = t(k) + Ts.

In the following subsections, the configuration of the MPC based WPEA is described in detail.

Figure 7. MPC notation and principles. (Top) controller output and (bottom) system states.
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4.1. Prediction Model

Denoting the total input as ũ = u + w , τpto + τext, the prediction model is the float model in (6)

represented in continuous-time state space as
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ẋkr,1
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ẋkr,3
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−1
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ũ

θ̇arm =
[

1 0 . . . 0
] [

θ̇arm θarm τrad,kr xkr,1 xkr,2 xkr,3 xkr,4

]T

(12)

It may be noted that the PTO system dynamics are not included in (12) i.e., infinitely fast force

development is assumed because the MPC sample time is significantly higher than the force rise time.

The prediction of future states are based on a discrete state space model of the float dynamics (12):

x(k + 1) = Ax(k) + Bũ(k)

= Ax(k) + B
(

u(k) + w(k)
)

y(k) = Cx(k),

(13)

where u(k) relates to controllable input (τpto) and w(k) is the uncontrollable disturbance (τext).

In addition, A, B and C are the discrete representation of the system matrices of (12) using a zero order

hold discretization with the sample time equal to TS. The angular velocity of the float arm is set to

be the system output. By using (13) recursively, the future states in the prediction horizon may be

expressed by the system matrices, the initial state and the future system inputs Uk and disturbances

Wk as:









x(k + 1)

x(k + 2)
...

x(k + N)









︸ ︷︷ ︸

Xk

=









A

A2

...

AN









︸ ︷︷ ︸

P

x(k) +









B 0 · · · 0
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...
. . .

...
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H









u(k)

u(k + 1)
...

u(k + N − 1)









︸ ︷︷ ︸

Uk

(14)

+









B 0 · · · 0

AB B · · · 0
...

...
. . .

...

AN−1B AN−2B · · · B

















w(k)

w(k + 1)
...

w(k + N − 1)









︸ ︷︷ ︸

Wk

The future system outputs Yk may be stated as:









y(k + 1)

y(k + 2)
...

y(k + N)









︸ ︷︷ ︸

Yk

=









C 0 · · · 0

0 C · · · 0
...

...
. . .

...

0 0 · · · C









︸ ︷︷ ︸

Cω

Xk (15)
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By decomposing the total system input into the excitation torque and the torque applied by the

PTO system, the future states may be reformulated as

Xk = Px(k) + HTk,ext + HTk,pto. (16)

Hence, (16) related the future states Xk to the initial state x(k) at time t(k) and to the controller

output vector Tk,pto under the assumption that the disturbance Tk,ext are known in the whole time

horizon TH.

4.2. MPC Objective Functions

The main task is to maximize the absorbed PTO energy. Using (15) and (16), the total energy Eabs

absorbed during the prediction horizon NTs may be approximated by backward Euler integration of

the instantaneous power:

Eabs =
∫ t(k)+NTs

t(k)
θ̇arm(t)τpto(t)dt ≈ Ts YT

k Tk,pto (17)

where it may be recalled that Yk is a function of Tk,pto. The objective function to be maximized is

defined as

J1 = Eabs (18)

and the optimization problem is then formulated as

max
Tk,pto

J1 (19)

subjected to the constraints that all elements in Tk,pto = [τpto(k), τpto(k + 1), · · · , τpto(k + N − 1)] must

belong to the set of 27 possible values dictated by the discrete PTO system. The optimization problem

is solved by a differential evolution algorithm originating from the work of [16] and refined in e.g., [17].

As part of the initial feasibility study of MPC for PTO systems, a force-continuous MPC version

has been studied, where the allowable forces are not constrained to a discrete set. Instead, a simple

bound τpto,min ≤ τpto(k) ≤ τpto,max for any k is adopted. In this continuous case the optimization

problem may be solved by standard quadratic methods, by rephrasing the absorbed power (17) into a

quadratic form:

Eabs(τpto) = −Ts

(

T T
k,ptoQ Tk,pto − f Tk,pto

)

, (20)

where Q = HTCT
ω and f = X T

k PTCT
ω + T T

k,extH
TCT

ω.

4.3. MPC Objective Functions—Included Losses

The problem (19) does not take the system losses into account which may lead to suboptimal

performance from an energy harvesting point of view. As elaborated in the next subsection, the two

main loss phenomena are (i) losses Eloss,s associated with shifting of the PTO force from one level to

another and (ii) throttling losses Eloss,t. Therefore, two alternative MPC strategies are investigated

based on the objective functions

J2 = Eabs − Eloss,s (21)

J3 = Eabs − Eloss,s − Eloss,t (22)
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The three outlined MPC strategies are compared in Section 5 once loss models have been

established below.

4.4. Loss Models

The losses in the primary stages of the PTO system may be separated into three parts: mechanical

friction in the PTO cylinder, loss associated with shifting the pressure inside each cylinder chamber and

throttling losses associated with the displacement flow. In the current work, the mechanical friction in

the PTO is neglected. The energy loss associated with shifting the chamber pressure from one value to

another by switching the chamber to a new pressure line through a valve was analyzed in [18] and this

work is used as a starting point for the loss models introduced below.

A pressure shift is performed by controlling the valve during the shifting time Tp = t f − t0 such a

third order chamber pressure profile appears as illustrated in Figure 8. The cylinder volume rate of

change is assumed constant during the pressure shifting time such that

V̇c(t) = V̇c(t0) for t0 ≤ t ≤ t f (23)

i.e., the piston velocity is assumed constant during the pressure shifting time Tp.

✶✺✽

✶✺✾

✶✻✵

✶✻✶

✶✻✷

✶✻✸
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✶✻✺

✶✻✻

✶✻✼

✶✻✽

✶✻✾

✶✼✵

Figure 8. Illustration of pressure shift in a single cylinder chamber.

The energy loss for a pressure shift of ∆p is in [18] shown to be:

E(∆p) =
1

2

(
∆p2

β
Vc(t0) + ∆pV̇c(t0)Tp

)

+
13

70

∆p2

β
V̇c(t0)Tp (24)

To include the shifting losses in the MPC objective functions it should be stated as a function of

the quantized force levels. Using (24) for all three chambers, the total shifting loss in the prediction

horizon NTs may then be stated as:

Eloss,s =
3

∑
i=1

N

∑
n=1

[

1

2

(

(pi,n − pi,n−1)
2

β
Vc,i,n + (pi,n − pi,n−1) V̇c,i,n Tp

)

(25)

+
13

70

(pi,n − pi,n−1)
2

β
V̇c,i,n Tp

]

,

where pi,n is the pressure in the i’th chamber at time instant n found using a lookup table mapping the

force level to corresponding chamber pressures. In addition, in (25) Vc,i,n is the ith chamber volume in

the nth prediction step. Vc,i,n relates geometrically to the arm angle θarm as seen in Figure 1.

To calculate the steady state throttle losses, it may be noted that for each chamber i ∈ {1, 2, 3},

three valves are used to connect to the low, medium, and high pressure lines, respectively. In practice

the three valves belonging to the same pressure chamber are identical i.e., these three valves all have the

same flow coefficient labeled kv,i. Knowing the flow into the ith chamber, the throttling power losses

associated with that flow is Q3
i /k2

v,i, independently of which pressure line the chamber is connected to.

The total throttle loss for all chambers may thus be expressed as
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Ploss,t =
3

∑
i=1

Q3
i

k2
v,i

= ẋ3
c

3

∑
i=1

A3
i

k2
v,i

, kt ẋ
3
c , (26)

where kt defines the total loss coefficient. Table 2 lists the chamber areas Ai and flow coefficients kv,i.

Using a backward Euler approximation, the total throttle energy loss in the whole prediction

horizon may now be calculated by

Eloss,t =
∫ t(k)+NTs

t(k)
kt ẋ

3
c dt ≈ ktTs

N

∑
n=1

ẋ3
c,n, (27)

where ẋc,n is the piston velocity in the nth prediction step. Note that ẋc,n may be calculated

straightforwardly once the arm angular velocity θ̇arm has been calculated by the prediction model

when the geometry (Figure 1) is known.

5. Results

As detailed in Section 4, three different MPC objective functions have been formulated for the

discrete PTO system described in Section 2. To establish a baseline for evaluation of these MPC strategies,

the reactive control algorithm described in the first subsection below is used. Next, to investigate the

impact of the MPC prediction horizon TH and the time step TS on the absorbed power, the force-continuous

version of MPC described in Section 4.2 is used for an initial analysis. Finally, a series of comparisons

between the three discrete MPC controllers are reported.

5.1. Discrete Reactive Control

For MPC benchmarking the reactive control algorithm developed in [12] is used. The PTO torque

controller is

τpto = Bθ̇arm + Kθarm, (28)

which basically imposes a PTO force in phase with the velocity of the absorber’s arm besides a damping

term. Equation (28) gives a continuous torque command, which is translated into one of the applicable

quantized force levels by the force shifting algorithm also described in [12]. This force shifting algorithm

is based on an off-line optimization where the force step associated with lowest energy loss is chosen

while restraining the force error imposed by the quantization of the PTO force. In addition, the controller

coefficients B and K in (28) are optimized for each sea state to maximize the absorbed energy. In total,

this reactive controller has proven to be quite efficient on a full-scale WEC [12].

5.2. Methodology

The assessment of the various WPEA strategies is based on post-processing of the time-domain

response of the wave energy converter using the dynamic models of the wave dynamics, the float and

PTO system described in Section 3.

Specifically, the benchmarking is based on calculation of the average absorbed power and average

harvested power during an observation interval T:

Pabs =
1

T

∫ T

0
θ̇arm(t)τpto(t)dt (29)

Phar =
1

T

∫ T

0

3

∑
j=1

pL,jQj(t)dt, (30)

where pL,j denotes the pressure on pressure line j.
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It may be noted that Phar is the net hydraulic power delivered from the primary stage to the

secondary stage. The PTO conversion efficiency is ηpto = Phar/Pabs.

Using the three wave conditions shown in Figure 2, Pabs, Phar and η are calculated for the different

control strategies.

5.3. MPC Time Step and Prediction Horizon Analysis

To investigate the overall influence of time step and prediction horizon, both parameters are

varied separately and the absorbed power is determined. Neglecting the PTO dynamics and losses,

and using the force-continuous MPC (Section 4.2), the results shown in Figures 9 and 10 are obtained

for the three different sea states.

Using a very small time step (Ts = 25 ms) , Figure 9 shows for all sea states that the average

absorbed power increases when the prediction horizon is increased. In addition, the results indicate

that the absorbed power flattens and nothing is gained by increasing the prediction horizon beyond 5 s.

Keeping the prediction horizon fixed at TH = 5 s, Figure 10 shows that the average absorbed power

decreases when increasing the time step leading to the conclusion that the time step should be as low

as possible. In addition, the lower sea states ideally require smaller time steps because the relative

change of Pabs versus Ts increases when the peak wave period is reduced.

✶✾✽

✶✾✾

✷✵✵

✷✵✶

✷✵✷

✷✵✸

✷✵✹

✷✵✺

✷✵✻

✷✵✼

✷✵✽

✷✵✾

✷✶✵

✷✶✶

✷✶✷

✷✶✸

✷✶✹

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time horizon[s]

0

5

10

15

20

25

30

35

40

45

50

A
v
e
ra

g
e
 a

b
s
o
rb

e
d
 p

o
w

e
r[

k
W

]

SS1

SS2

SS3

Figure 9. Average absorbed power versus prediction horizon for a 25 ms time step for three sea states.
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Figure 10. Average absorbed power versus time step for 5 s prediction horizon for three sea states.
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5.4. MPC and Reactive Control Performance Analysis

The three MPC objective functions for a discrete PTO system introduced in Sections 4.2 and 4.3

are labeled as

MPC1: J1 = Eabs (18)
MPC2: J2 = Eabs − Eloss,s (21)
MPC3: J3 = Eabs − Eloss,s − Eloss,t (22)

In addition, the label ’Reactive’ is used for the baseline controller discussed in Section 5.1.

To illustrate the time domain waveforms, Figure 11 shows the PTO force and the three chamber

pressures using MPC1 and MPC2, respectively. It is seen that MPC1 leads to many more pressure shifts

than MPC2 and as summarized later the many switchings associated with MPC1 reduces the harvested

power significantly.

In Figure 12 the average Pabs absorbed and harvested Phar power are shown for the three sea

states for each of the different controllers. These results have been computed using a 5 s prediction

horizon for three values of the sampling time i.e., Ts ∈ {200, 300, 400} ms. According to the preliminary

findings in Section 5.3, Ts should be as small as possible, but in the detailed analysis that includes

losses, it has been found that Ts = 200 ms is a good compromise that ensures that the pressure

dynamics associated with the switchings have time to settle before a shift to a new force level is

initialed. Referring to Section 4.4, the shifting time Tp may be in the order of 50 ms for the PTO system

used in this investigation [12].

In Table 3 the average absorbed power Pabs, the average harvested power Phar and the PTO

efficiency η in the three sea states are tabulated for MPC1, MPC2, and MPC3 using Ts = 200 ms besides

the reactive baseline controller. In general, the MPC controllers are seen to perform better than the

reactive WPEA. Furthermore, it may be seen that MPC2 inclusion of the shifting losses in the objective

function increases the harvested power significantly whereas MPC3 that also includes throttling losses

does not contribute to any gain in the harvested power.

When comparing the results in Table 3 for the MPC2 and the reactive WPEAs, it may be noted

that the PTO system efficiency is a poor performance indicator: these two controllers yield the same

efficiency in sea state 2, even though harvested power differs a lot. On the other hand, the efficiency

may indicate wear on the system as energy is dissipated in the PTO system.
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Figure 11. Examples of PTO force and chamber pressures for MPC1 and MPC2 using Ts = 200 ms.
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Table 3. Average absorbed power, harvested power and efficiency for three different sea states for

different WPEAs.

Absorbed Power (kW) Harvested Power (kW) Efficiency (-)

Sea State 1 2 3 1 2 3 1 2 3

MPC1 13.14 29.63 42.02 6.11 22.33 34.71 0.47 0.75 0.86
MPC2 12.48 29.53 42.00 9.10 25.39 37.43 0.73 0.86 0.89
MPC3 12.32 29.37 41.65 9.15 25.48 37.43 0.74 0.87 0.90

Reactive 11.23 25.41 36.36 8.68 21.86 32.52 0.77 0.86 0.89

(a) (b)

(c) (d)

✷✷✶

✷✷✷

✷✷✸

✷✷✹

✷✷✺

Figure 12. Average absorbed and harvested power versus sea states using different controllers.

(a) Ts = 400 ms; (b) Ts = 300 ms; (c) Ts = 200 ms; (d) Reactive controller versus MPC3.

6. Conclusions

The study presented in this paper clearly indicates that a MPC based WPEA is capable of

improving the energy output of a WEC using a discrete fluid power PTO system. Especially, it is

concluded that the inclusion of energy losses in the conversion system is of utmost importance because

the optimal PTO force depends highly on the PTO system losses.

Under the assumption that incoming wave is known, the MPC algorithm excels compared to the

reactive algorithm with its ability to adapt on-line to the incoming irregular waves and the inherent

inclusion of the quantized PTO system.
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The investigation points out that a step time as short as possible is preferable whereas a prediction

horizon above 5 s seems futile.

In conclusion, model predictive control based wave power extraction algorithms appear favorable

for wave energy converters utilizing discrete fluid power PTO system. Future research is directed

toward the practical real-time implementation of MPC, including studies of model complexity

reductions and optimization algorithm implementation. This will be investigated using the test

facility described in [19,20]. Furthermore, the required accuracy of the wave prediction algorithm is a

topic of great importance.
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