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Model Predictive Control of Central Chiller PlantWith

Thermal Energy Storage Via Dynamic Programming

and Mixed-Integer Linear Programming
Kun Deng, Member, IEEE, Yu Sun, Sisi Li, Student Member, IEEE, Yan Lu, Member, IEEE, Jack Brouwer,
Prashant G. Mehta, Member, IEEE, Meng Chu Zhou, Fellow, IEEE, and Amit Chakraborty, Member, IEEE

Abstract—This work considers the optimal scheduling problem

for a campus central plant equipped with a bank of multiple elec-

trical chillers and a thermal energy storage (TES). Typically, the

chillers are operated in ON/OFF modes to charge TES and supply

chilled water to satisfy the campus cooling demands. A bilinear

model is established to describe the system dynamics of the central

plant. A model predictive control (MPC) problem is formulated to

obtain optimal set-points to satisfy the campus cooling demands

and minimize daily electricity cost. At each time step, the MPC

problem is represented as a large-scale mixed-integer nonlinear

programming problem.We propose a heuristic algorithm to obtain

suboptimal solutions for it via dynamic programming (DP) and

mixed integer linear programming (MILP). The system dynamics

is linearized along the simulated trajectories of the system. The op-

timal TES operation profile is obtained by solving a DP problem at

every horizon, and the optimal chiller operations are obtained by

solving an MILP problem at every time step with a fixed TES op-

eration profile. Simulation results show desired performance and

computational tractability of the proposed algorithm.

Note to Practitioners—This work was motivated by the super-
visory control need for a campus central plant. Plant operators

have to decide a scheduling strategy to mix and match various

chillers with a thermal energy storage to satisfy the campus

cooling demands, while minimizing the operation cost. This work
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mathematically characterizes the system dynamics of a campus

central plant and establishes a linear model to predict campus

cooling load. It proposes a model predictive control (MPC)

strategy to optimally schedule the campus central plant based

on plant system dynamics and predicted campus cooling load. A

heuristic algorithm is proposed to obtain suboptimal solutions

for the MPC problem. The effectiveness and efficiency of the

proposed approach are well demonstrated for the central plant at

the University of California, Irvine.

Index Terms—Central chiller plant, dynamic programming,

heuristic algorithm, mixed integer linear programming, model

predictive control, supervisory control, thermal energy storage.

I. INTRODUCTION

B UILDINGS are one of the primary consumers of energy

in the United States. Buildings are responsible for 41%

of primary energy consumption in 2010, compared to 28% by

the industrial sector and 31% by the transportation sector [1].

Among all energy consumed by the buildings sector, residen-

tial buildings accounted for 54% and commercial buildings

accounted for 46%. Among all building energy consumers,

heating, ventilation, and air conditioning (HVAC) accounted

for the largest share, which represented close to half of all en-

ergy consumption [1]. Energy management of HVAC systems

becomes essentially important to improve the energy efficiency

and reduce the energy cost of buildings.

A central chiller plant is a commonly used HVAC system

for a campus with a large number of buildings [2]. The campus

cooling loads can be huge and vary in a large range depending

on the weather condition and number of buildings. A bank of

multiple chillers is usually installed to meet various cooling

demands with high operational flexibility. They may have

different performance characteristics and are often operated in

ON/OFF modes [3], that is, a chiller can be turned on with the

maximum mass flow rate of chilled water supply, or be turned

off with zero rate. Thermal energy storage (TES) can be used to

shape the campus cooling load and reduce the peak one [2]. In

the simplest case, TES is a large tank of chilled water. A typical

campus central plant with a chiller bank and a TES is depicted

in Fig. 1. The chiller bank can either supply chilled water

directly to the campus for cooling, or store some of chilled

water in TES for later use [4], [5]. Intuitively, TES is charged

by the chiller bank at night when electricity rates and cooling

demands are both low. During on-peak hours in daytime, it

1545-5955 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Systematic diagram of a typical campus central plant, where chilled

water is supplied by a bank of chillers and circulates through campus and

TES.

discharges the stored chilled water for campus cooling, thus

reducing the peak load of chillers.

A typical control system for the central plant has a two-level

control structure: supervisory and local ones [6]–[8]. The goal

of supervisory control is to optimize TES and chiller bank

operations for minimizing energy consumption or electricity

cost while satisfying campus cooling demands. The operation

set-points are obtained by taking into account of system level

characteristics and interactions among all subsystems. The local

control modulates individual components, e.g., a relay, valve,

or actuator, to track the set-points provided by the supervisory

control. A closed-loop feedback control, e.g., PID control, is

usually used to achieve the set-point tracking performance and

guarantee the robust operation of components. The overall

energy efficiency and control effectiveness of a central plant is

determined by the performance and coordination of controls in

both levels.

Well-designed control systems can help realize the full poten-

tial of both energy and cost savings for a central plant [8]–[11].

The focus of this paper is on the design of optimal supervisory

control using a model predictive control (MPC) scheme. The

main idea of MPC is to use the system model of a central plant

to predict its future evolution and obtain its optimal control in a

moving horizon basis. The objective is to find optimal set-points

by using anMPC scheme to minimize the operational cost while

satisfying campus cooling demands and system constraints. At

each time step, a model-based optimization problem is solved

over a finite horizon to obtain optimal set-points of operating

the TES and chiller bank. More details on MPC theory can be

found in [12].

For the supervisory control of a central chiller plant, MPC

techniques have been investigated since the late 1980s [13],

[14]. More early studies on modeling, prediction, and optimiza-

tion for building HVAC systems can be found in [6], [7], [15],

[16] and references therein. With the growing interests in op-

timal control, many new methods have recently been used to

develop MPC schemes for the central chiller plant with TES

[17]–[20]. For instance, the work [17] proposed a method by

using dynamic programming to solve the optimal chiller se-

quencing problem. The potential energy savings of the proposed

method was demonstrated with three example systems. But the

chiller considered in [17] was not equipped with a TES. In [18],

[20], the authors considered the MPC problem of a series of

chillers equipped with a water tank–a similar setup as this paper.

They validated the system model with experimental data and

performed closed-loop experimental tests for the proposed con-

trol method. To simplify the optimization problem for MPC,

they assumed that the mass flow rates of chilled water can be

continuously adjusted for chillers, and the charging/discharging

profile for TES is fixed or known in advance. Similar assump-

tions for chillers and TES have also been made.in [19].

However, in practice, the operation decisions for chillers

are often ON/OFF scheduling sequences and TES operation

profile varies depending on the actual cooling demands. The

optimization/control frameworks proposed in previous studies

do not directly apply for supervisory control of a central

chiller plant with TES under practical considerations. To

generate optimal ON/OFF decision sequences for chillers and

charging/discharging decisions for TES, a mixed-integer non-

linear programming (MINLP) problem can be formulated and

solved at each time step using an MPC scheme. The nonlinear

constraints result from the system dynamics and integer deci-

sion variables are due to the operational constraints for chillers

and TES. Since this MINLP problem involves considerable

nonlinearity and a large number of integer variables, finding

its global optimal solution is nontrivial and computationally

expensive [21], [22]. In practice, it is of interest to develop

efficient algorithms to approximately solve it.

In [23], we present a heuristic algorithm to search for the

suboptimal solutions of the MINLP problem by mixed-integer

linear programming (MILP). Its main idea is to explore the

special structure of the original problem and solve a set of

subproblems with reduced complexity. We formulate an MILP

problem to find optimal chiller operations by linearizing the

system dynamics with a fixed/given TES operation profile.

Compared with [23], we newly propose a dynamic program-

ming (DP)-based algorithm to find optimal TES operations.

Now the optimal TES and chiller operations are obtained in

two steps. In the first step, we generate an optimal TES oper-

ation profile for a fixed horizon via DP with system dynamics

approximated by a finite state machine. In the second step, we

fix the TES operation profile for a fixed future horizon, and

solve for the optimal chiller operations via a reformulated MPC

problem. The original MINLP problem is approximated by

the reformulated MPC problem with the linearized system dy-

namics and fixed TES operation profile, which leads to a mixed

integer linear program (MILP) at each time step. The nominal

trajectory for linearization is obtained by simulating the system

with the optimal predicted control trajectory calculated from

the last time step MPC problem. The major advantage of

the proposed algorithm is that both DP and MILP problems

can be solved very efficiently with guaranteed performance.

Moreover, the model mismatch due to the linearization can

be compensated by the moving horizon scheme used in the

MPC scheme. A description of the system model for a chiller

bank and TES is provided in Section II. The MPC problem is
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formulated in Section III. The DP-based heuristic algorithm

for obtaining the optimal TES operation profile is presented in

Section IV. The MILP-based heuristic algorithm for obtaining

optimal chiller operations is described in Section V. A case

study is provided in Section VI, and conclusions are drawn in

Section VII.

II. SYSTEM MODELING

The schematic diagram of a typical campus central plant is

depicted in Fig. 1, with all pumps being omitted.

A. Nomenclature

We use to denote the derivative of variable with re-

spect to time , and to denote a rate related input or constant,

e.g., chilled water mass flow rate. Time-varying variables are

indicated with appended.

Time index (s).

Density of water (kg/m ).

Specific heat capacity of water (kJ/kg K).

Ambient temperature (K).

Ambient humidity ratio.

Cross-layer area of TES tank (m ).

Chiller index.

Total number of chillers.

Coefficient of Performance of the th chiller.

Chilled water mass flow rate of chiller (kg/s).

Chilled water supply temperature of chiller (K).

Chilled water return temperature of chiller (K).

Electricity consumed by chiller (kW).

Cooling amount provided by chiller (kW).

Chilled water circulation through TES (kg/s).

Top layer ‘a’ temperature of TES (K).

Bottom layer ‘b’ temperature of TES (K).

Chilled water mass flow rate of chiller bank (kg/s).

Chilled water supply temp. of chiller bank (K).

Chilled water return temperature of chiller bank

(K).

Electricity consumed by chiller bank (kW).

Cooling amount provided by chiller bank (kW).

Cooling load of campus (kW).

Chilled water mass flow rate to campus (kg/s).

Chilled water supply temperature to campus (K).

Chilled water return temperature from campus (K).

B. Chiller Bank Model

A chiller bank is composed of electrical chillers operated

only in ON/OFF modes. When a chiller is ON, it supplies chilled

water at a fixed maximum mass flow rate and supply tempera-

ture; When OFF, it is shut down and supplies no chilled water.

For , the set-point of the th chiller is a binary

decision variable

if chiller is ON

if chiller is OFF.
(1)

The amount of cooling provided by chiller is

(2)

Note that both and are fixed constants, and varies

according to the system dynamics.

The total electricity consumed by a chiller depends on sev-

eral factors, e.g., supply water mass flow rate , generated

cooling amount , and circulated water temperature differ-

ence . Note that is a fixed constant when

chiller is on, and is a bilinear function of and

. Thus the chiller electricity consumption mainly depends

on temperature difference . Here, we simply use

a linear regression model to estimate the total electricity con-

sumption of a chiller as well as chilled water pump, condenser

water pump, and cooling tower fans. Following [19], the elec-

tricity consumption of the th chiller is modeled as

(3)

where coefficients and can be obtained by regression anal-

ysis of the actual measured chiller data. The Coefficient of Per-

formance (COP) is employed as a metric to quantify the energy

efficiency of a chiller as follows:

(4)

The total chilled water mass flow rate supplied by the chiller

bank is

(5)

The total power consumed by the chiller bank is

(6)

The total cooling amount provided by the chiller bank is

(7)

The supply and return temperatures of the chiller bank are de-

noted by and , respectively. All chillers are assumed to

have the same and , i.e., for ,

and (8)
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C. TES Model

We employ a stratified two-layer TES model developed in

[19], where the state of TES is captured by the top-layer water

temperature and the bottom-layer one . The model is fur-

ther simplified by ignoring the time delays of the TES tank

output. We also assume that the TES tank is always full, im-

plying that the mass flow rate entering the tank is equal to the

mass flow rate exiting the tank.

The TES tank operates in two modes. In the charging mode,

chilled water from the chiller bank is supplied to both the TES

and campus, as shown in Fig. 1, while in the discharging mode

chilled water from the TES and chiller is supplied to the campus

together. The mode is denoted by a binary variable

if

if .
(9)

When charging, i.e., , TES has the following dynamics:

(10a)

(10b)

(10c)

(10d)

(10e)

When discharging, i.e., , it has

(11a)

(11b)

(11c)

(11d)

(11e)

Parameters , , , and are time constant multipliers,

and and are inter-layer overall heat transfer coefficients,

which can be calibrated using the actually measured TES data.

D. Campus Load Model

The campus cooling load satisfies the following energy bal-

ance equation:

(12)

Note that , , and are taken as system variables, while

is taken as a given exogenous input to the system from a linear

regression model described in the Appendix.

E. Model Summary

By collecting system dynamic equations (1)–(12) and dis-

cretizing the system with the sampling time , we represent

the system dynamics in a state-space form as

(13a)

(13b)

(13c)

where the state variable of the system is denoted by

the intermediate variable is denoted by

the control variable is denoted by

and the input variable is denoted by

Equation (13a) corresponds to the TES dynamic equations

(10d), (10e), (11d), and (11e); (13b) corresponds to the TES

and campus balance equations (10a)–(10c), (11a)–(11c), and

(12); (13c) corresponds to the chiller balance equations (2)–(8).

Besides the system dynamics, we also impose the various

constraints on system variables, i.e., there exist bounded sets

, , and such that , , and . These con-

straints are either due to the equipment limitations, e.g., the al-

lowed minimum/maximum mass flow rates, or the constraints

to the operation decisions, e.g., the binary constraints for the

chiller and TES operation decisions.

III. MPC PROBLEM

A. Problem Formulation

The objective of the optimization is to obtain a real-time op-

timal scheduling strategy for a chiller bank and TES tominimize

the total electricity cost while satisfying the campus cooling de-

mands and system constraints. We formulate an MPC problem

to search for the optimal set points of the scheduling strategy.

The main idea of MPC is to use the system model of the central

plant to predict its future evolution and obtain its optimal con-

trol on a moving horizon basis.

At each time step , we are interested in solving the following

finite-horizon optimization problem regarding the state and con-

trol actions at time steps , where

is the prediction horizon of the MPC problem:

(14)

where denotes the state variable for the time step pre-

dicted at time step (similar notations also apply to other vari-

ables); ,

, and

denote the predicted state, intermediate, and control sequences

over the predicted horizon; electricity rate is assumed to

be known for all time and denotes the electricity power



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DENG et al.: MPC OF CENTRAL CHILLER PLANT WITH THERMAL ENERGY STORAGE VIA DYNAMIC PROGRAMMING AND MILP 5

consumed by the chiller bank; the cooling load is also

the known input from the forecasting model described in the

Appendix, i.e., ; denotes the actual state

of the TES at time ; and denotes the terminal constraint set

for the TES state, which is chosen to ensure stability and feasi-

bility of the MPC problem [12], [18].

By assuming that the maximum campus cooling load never

exceeds the maximum capacity of a chiller bank, there always

exist feasible solutions for problem (14). Among all feasible so-

lutions, let denote the optimal one for problem

(14). At time step , only the first element of is imple-

mented to the system, i.e., . At time step

, the horizon of interests moves one-step forward to

, and the optimization problem (14) is solved

again by changing index from to . The initial point of the

predicted state sequence is taken as ,

where denotes the newly measured state at time step

. This procedure is repeatedly implemented by moving for-

ward the horizon step by step, which yields a moving horizon

control strategy.

B. Conventional Approaches Based on MINLP

For the MPC optimization problem (14), at each time-step ,

there are in total decision variables to be computed,

of which there are binary on, and

real on. We also note that the constraints due to (13) have

nonconvex terms due to the bilinear system dynamics. Thus,

the optimization problem (14) is a nonconvex MINLP problem,

which is extremely difficult to solve [22].

There are many software packages that solve nonconvex

MINLP problems to proven optimality, such as ,

, and [22]. But they require many com-

puting resources and a large amount of computation time to

achieve a certain global optimality. On the other hand, many

convex-MINLP solvers can provide heuristic solutions to

nonconvex MINLP in a more efficient way, e.g., ,

, and [24]. But they suffer from the high sen-

sitivity to the initial starting point. All of these solvers can

therefore be used off-line to compute the optimal set points but

not suitable for real-time implementation of an MPC scheme.

C. Proposed Approach Based on DP and MILP

In this paper, we propose a heuristic algorithm to approach

the nonconvex problem (14) based on DP and MILP. Our idea

is to explore the special structure of the original problem and

solve a set of subproblems with less complexity. The goal is to

obtain suboptimal solutions to (14) in a time-efficient manner

with certain performance guarantee. The proposed algorithm is

described below.

� Generating optimal TES operation profiles using DP: We

search the optimal TES and chiller operations in two steps.

In the first step, we generate an optimal TES operation pro-

file for a fixed future horizon by using DP. The system dy-

namics is approximated by a finite state machine (FSM)

to reduce the computational complexity. Then, we fix the

TES operation profile for the fixed future horizon, and

solve for the optimal chiller operations by using a refor-

mulated MPC problem.

� Linearizing system dynamics: The system dynamics is lin-

earized along the predicted trajectory of state and control,

where the trajectory is generated by simulating the non-

linear system model. The linearized dynamics can well ap-

proximate nonlinear one around the operating points.

� Obtaining optimal chiller operations by solving an MILP

problem: In the second step, we reformulate the MPC

problem with the linearized system dynamics and fixed

TES operation profile, which leads to an MILP problem

at each time step. It can be solved very efficiently with

certain performance guarantee.

� Generating nominal trajectories for linearization: By sim-

ulating the nonlinear system model with the predicted con-

trol sequence obtained fromMILP, we obtain the predicted

trajectories of state and control for the next horizon. They

are then used as nominal values in the next time step to lin-

earize the system dynamics.

The conceptual framework of the proposed approach is shown

in Fig. 2 with its details to be provided next.

IV. DP-BASED ALGORITHM FOR OPTIMAL

TES OPERATION PROFILE

Here, we describe a DP-based algorithm that generates an op-

timal TES operation profile . In Section V, will be fixed

in the MPC problem (14) for a fixed future horizon to solve for

the optimal chiller operations. The basic idea is to quantize the

state variable pair ( ) and then approximate the differential

equation-based TES model with an FSM. Then we can obtain a

sub-optimal TES operation profile with drastically lower com-

putational complexity.

A. Approximating TES Dynamics by FSM

An FSM consists of a set of states including an initial state, an

input alphabet, and a transition function that maps input symbols

and current states to the next ones [25].We use the following no-

tation to define it: , where denotes the

set of states, denotes the input alphabet, also termed as “ac-

tions,” denotes the transition function of the

state dynamics, and denotes the initial state. If

is the current state and is the current action signal at

the th time step, then the next state .

To develop a simple FSM model to approximate the chiller and

TES system dynamics, we impose the following assumption

only in this section.

Assumption 1: Both chilled water supply temperature

and return one are constants.

In reality, Assumption 1 is approximately satisfied with small

fluctuations on and . This assumption helps develop a

simple FSM model to approximate chiller and TES dynamics.

The set of states in FSM is defined as the collection of

discretized states of TES: . Recall that a

TES state is denoted by , where is the

top layer water temperature and is the bottom

layer water temperature. By partitioning the interval

uniformly into levels, we obtain the discretized version of

and , denoted as and , respectively. We add a further

constraint that to be consistent with the reality. After

the discretization, the cardinality of set is . The
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Fig. 2. Conceptual framework of the proposed MPC approach based on DP and MILP.

action of FSM at time step is taken as , a -by-1

vector containing the ON/OFF set-points for chillers. The

action set is the -dimensional binary vector space with the

cardinality .

The transition function is a map that takes each pair

to some state . This map is obtained by approximating the

chiller and TES dynamics given by (10) –(11). The procedure

to obtain is described as follows: At time step , given the ac-

tion , variables , , and are completely

obtained via (2) –(7) under Assumption 1. Note that the campus

cooling load is a given/known exogenous input predicted

from a linear regression model (Appendix A). The TES oper-

ating mode is then obtained as

if

if .

Given the current FSM state , we then compute

variables , , , and . If , i.e., TES

is being charged, we compute these variables as follows:

If , i.e., TES is being discharged, we compute

The next FSM state is obtained by

evolving discretized TES dynamics (10d)–(10e) or (11d)–(11e)

one time-step forward with the above computed variables.

Algorithm 1: DP for Generating Optimal State-Action Pairs

Input: Input: , , , for .

Output: , , , for and

1: Initialize cost function:

2: Initialize feasible state set:

3: Initialize index:

4: while do

5:

6: for all do

7:

8: for all do

9:

10: if and satisfy

constraints then

11: add to

12:

13: if then

14: , ,

,

15: end if

16: end if
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17: end for

18: end for

19:

20: end while

21: return , , .

B. Optimal TES Operation Profile Generated Through DP

At time step , the electricity cost is given by ,

where denotes the electricity rate and

denotes the total electricity consumed by the chiller bank. A

terminal cost is introduced to penalize the deviation

from desired terminal state , where function is quadratic.

We consider a finite-horizon optimization problem:

1) Problem 1: At time step , given current state , opti-

mization horizon , and desired terminal state , com-

pute the optimal sequence of actions

such that, along the resulting state trajectory

, the campus cooling demands are

met, and the finite-horizon cost

is minimized.

Note that the campus cooling demands should be strictly sat-

isfied throughout optimization horizon . This constraint im-

plies that the set of acceptable control actions is time-varying.

We denote this set of acceptable control actions at time step as

. In fact, depends on both and . Similarly, not

all states can be reached from arbitrary given previous

states with action . Problem 1 is solved via DP

as presented in Algorithm 1. At time step , Algorithm 1 gener-

ates the following outputs: 1) the optimal action ; 2) the

next state obtained through FSM transition with action

; and 3) the minimal cost taking the system from

state at time to final state at time , where and

time .

Algorithm 1 starts from a terminal state, and searches the op-

timal state trajectory and corresponding actions backwards in

time. We use to denote the “feasible state set” at time step

, which is the set of states that can be brought to the desired

terminal state at time by a sequence of actions. The

algorithm begins with setting to . The cost at

time is set to be the terminal cost . At each

time step , all possible states and all possible actions

are evaluated through transition function . Those states

that can be brought to while satisfying all constraints are

marked as “feasible” ones. The most cost-effective action at

state is found and recorded in . The corresponding

cost value is computed and stored in . Based on the out-

puts generated from Algorithm 1, the optimal TES operation

profile can be easily derived.

This is achieved by traversing the optimal state-action pairs

for-

ward in time, starting from initial state . This procedure is

summarized in Algorithm 2.

Algorithm 2: Generate TES Operation Profile from DP result

Input: Input: , , , , , for

and .

Output: , for

1:

2:

3:

4: while do

5:

6:

7: if then

8:

9: else

10:

11: end if

12:

13: end while

14: return .

One major advantage of a DP-based approach to choose a

TES operation profile is that, unlike in [18], [19] where the TES

operation profiles are fixed as a priori, they are decided by an

optimization algorithm by taking the predicted campus cooling

load into consideration. The complexity of the DP-based algo-

rithm depends on the number of FSM quantization levels and

the number of chillers , i.e., the algorithmic complexity is of

the order . Note that the number

of chillers and the length of horizon are fixed here. With

more quantization levels, we can have a better approximation

of TES dynamics. By varying the number of quantization levels

, we can make a tradeoff between its complexity and accu-

racy to approximate the TES dynamics.

V. DECIDING OPTIMAL CHILLER OPERATIONS

Here, we present an MILP-based method to optimally op-

erate the chiller bank in real time. Its main idea is to reformulate

an MPC problem with linearized system dynamics and a fixed

TES operation profile. The latter is generated via the DP algo-

rithm. This formulation leads to an MILP problem, which can

be solved very efficiently at every time step.

A. Linearizing System Dynamics

It appears that the major difficulties of solving a nonconvex

MINLP problem are due to their non-convexity, which prevents

the implementation of efficient algorithms [22]. For problem

(14), nonconvexity mainly comes from the bilinear terms in the

dynamics of the chiller bank and TES.
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Let , , and denote the nominal values of the

state and control at the th time step. We approximate the bi-

linear dynamic equation (13a) by a set of linear dynamic equa-

tions

where matrices , , , and are obtained

through linearization of (13a) around nominal values ,

, and . Similarly, we approximate bilinear balance

equation (13b) by a set of linear balance equations

To remove the bilinear terms introduced by the product of a

binary valued variable and a real valued function, we employ an

equivalence modeling trick from [21]:

1) Property 1: Let be a real valued scalar function

defined on a bounded set such that for any

, be a binary valued scalar variable, and

be a real valued scalar variable. For any , we

have the following equivalence:

Note that all bilinear terms appearing in (13c) are in the form of

a binary valued variable and a real valued function. We apply

Property 1 to convert the bilinear equation (13c) equivalently to

a set of linear inequalities

B. Formulating an MILP Problem

Next, we define a simplified MPC optimization problem

with a linearized model. The TES operation profile is fixed as

a known input to reduce the computational complexity.

We fix the TES operation profile as , where the TES

operation profile is generated every time steps using DP

as described in Section IV. At time step , if ,

we set and generate

via Algorithm 1; otherwise, if , we use

generated before. In the simplified MPC formulation, is

then obtained at each time step as

At each time step , we choose a nominal trajectory of state

and control .

The linearized system dynamics for the predicted horizon

is obtained along the nominal trajectory

of the state and control. Then, we consider the following

optimization problem as an approximation to problem (14):

(15)

Problem (15) is an MILP problem, with binary vari-

ables and real on. Due to its convexity, it is much

easier to solve than the nonconvex MINLP problem in general.

Many software packages can efficiently solve anMILP problem

with certain performance guarantee, e.g., , , ,

and [24], [26].

C. Generating Nominal Trajectories for Linearization

Recall that, to solve problem (15) at each time step , we

require a nominal trajectory of the state and control for the pre-

dicted horizon . In this paper, we gen-

erate it through the simulation of the nonlinear system model

(13) with optimal predicted control computed from problem

(15). Let denote the optimal solution to (15) at

time step . For the next predicted horizon ,

we heuristically choose the following control sequence as the

nominal trajectory of control:

if

if .
(16)

Then, we apply the control sequence

to simulate the nonlinear system model (13) with

the predicted load input

and initial state . The simu-

lated state sequences and

are taken as the nominal tra-

jectory of states for the predicted horizon .

Note that the initial trajectory of the state and control at time

step 0 can be generated with any control sequence based on the

experience or other heuristics.

The MILP-based algorithm is described in Algorithm 3 to

compute suboptimal system control set-points of the chiller

bank. Note that the TES operation profile is determined via

Algorithm 1 for every horizon.

Algorithm 3: MILP-based Algorithm for Generating Optimal

System Set-points of the Chiller Bank

Input: System parameters, optimization horizon , sampling

time , total time steps , and performance gap .

Output: Optimal system control set points .
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1: Initialize nominal values and set

time step .

2: repeat

3: Measure the current state variable

.

4: Predict campus cooling loads by (17).

5: if then

6: Set the current horizon starting index .

7: Generate the TES operation profile

via Algorithms 2 and 1.

8: end if

9: Fix TES operation profile as known control input

.

10: Linearize system model (13) from time

step to around nominal values

.

11: Compute by

solving MILP problem (15) with performance gap and

fixed TES operation profile .

12: Determine the next horizon nominal control sequence

by (16).

13: Obtain by simulating

the system model (13) with .

14: Set time step .

15: until The final time step .

16: return System control set points .

VI. CASE STUDY

Here, we present a case study to demonstrate MPC of a

central chiller plant in summer time at the University of Cal-

ifornia, Irvine (UCI). We first use the measured data from the

UCI campus to calibrate the parameters of the system model

described in Section II. Then, the system model is built up in

the MATLAB environment. An MPC strategy is compared with

a baseline strategy through MATLAB simulations.

A. System Setup

The UCI central plant is depicted in Fig. 1. A bank of

chillers supplies chilled water to satisfy the campus cooling de-

mand. The supply water temperature of all chillers is the same

TABLE I

CALIBRATED PARAMETERS FOR CHILLER MODEL

Fig. 3. Plot of chiller COP for different return water temperature.

and maintained at a constant value 40 F.1 The return

water temperature is the same for all chillers, and varies ac-

cording to the system dynamics. For the MPC strategy consid-

ered below, we constrain the return water temperature in the

range of F to ensure all chillers to work with high effi-

ciency. They can only work in an ON/OFF mode, either with the

maximum or zero mass flow rate. The maximum ones are fixed

constant values and summarized in Table I. The parameters of

the chiller electricity model (3) are calibrated through the re-

gression analysis of the available measured data, which are also

summarized in Table I. We calculate COP of each chiller using

model (4) with parameters given in Table I. The calculated COP

is depicted in Fig. 3 versus return water temperature in the range

of interests. Intuitively, we observe that the seventh chiller has

the highest efficiency and the fifth chiller has the lowest one in

most range of return water temperature.

Chilled water supplied by the chiller bank can also be stored

in a water tank TES for shifting the campus cooling load. The

cross-layer area of TES is 564.95 m with a height of

30.48 m. At the initial time, TES is assumed to be fully

discharged with the uniform water temperature of 60 F. The

parameters of the TES model in (10) and (11) are calibrated

through the regression analysis of the available measured TES

data. The calibrated time-constant multipliers are ,

, , and . The cali-

brated inter-layer overall heat transfer coefficients are

0.0283 kW/(m K and 0.0197 kW/(m K .

1Temperature can be converted as .
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Fig. 4. Parameter training results of campus cooling load prediction model for the month of June 2009. The top plot compares predicted campus cooling load

(blue solid line) and actual campus cooling load (red dotted line). The bottom plot depicts the corresponding ambient temperature (blue solid line) and ambient

humidity ratio (green dashed line).

The campus cooling load is modeled and predicted using an

ARX (autoregressive exogenous) model, where the exogenous

inputs are taken as ambient temperature and humidity ratio (see

the Appendix for more information). The parameters used in

cooling load model (17) are trained using the actually measured

campus load and weather data in the month of June 2009. The

values of trained parameters are omitted here due to the space

limitation, while the training results are depicted in Fig. 4. We

observe that the actual cooling loads are well approximated by

the cooling load prediction model (17). In theMPC problem, we

employ the trained cooling load model (17) to predict the future

cooling load based on historical campus cooling load data and

weather forecast data. The electricity rate schedule for summer

hours are obtained from Pacific Gas and Electric Company and

summarized in Table II, for simplicity only the Time-Of-Use

(TOU) energy charge is used in the cost function and the demand

charge part is not included.

B. Two Scheduling Strategies

Here, we consider two strategies to schedule the operation of

TES and chiller bank. One is a greedy-search-based heuristic

approach which serves as a baseline strategy, and the other is

the proposed DP and MILP-based MPC strategy. To simplify

the comparison study, in both strategies, the TES charging/dis-

charging operation profile is generated by using Algorithms 1

and 2 with horizon and desired terminal state

58 F 58 F . The system dynamics are approximated by an

FSM quantized with levels. With the campus cooling

TABLE II

ELECTRICITY RATES FOR SUMMER HOURS

load shown in Fig. 5(a), the resulting TES operation profile

is given as

if

if .

This suggests that TES should be charged for the first 9 hours

and switched to a discharge mode thereafter.

1) Baseline: This strategy generates suboptimal chiller and

TES operations based on a greedy search algorithm. All possible

chiller ON/OFF modes are first ordered according to their ef-

ficiency. Then, under a given TES charging/discharging profile,

an initial feasible solution is obtained which requires more than

necessary chillers staged ON. Starting from this initial solution,

a greedy algorithm is applied to search for better chiller opera-

tion sequences that most drastically reduce the TOU-based cost

function, until some given constraints are violated. This strategy

has been tested with historical operation data and is shown to

achieve 30% saving over the plant operator’s heuristic opera-

tion in [19].

2) MPC: For the MPC strategy, we fist consider the MINLP

approach to solve the MPC problem (14) with 192 binary vari-

ables and 692 real variables at every time step. Due to the large
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Fig. 5. (a) Campus cooling loads and electricity rates. (b) Hourly electricity consumption by two strategies. (c) Hourly electricity cost by two strategies.

Fig. 6. (a) Chilled water temperature circulated through the campus. (b) Chilled water temperature circulated through the chiller bank. (c) Top-layer ( ) and

bottom-layer ( ) temperatures of TES.

number of variables and many nonlinear equations, the con-

ventional nonconvex MINLP solvers (e.g., ) can not

provide any feasible solution or does not converge in a reason-

able time frame (up to 5 h). The convex-MINLP solvers (e.g.,

) can always heuristically generate some feasible so-

lutions in around 20 min but always keep running without stop-

ping up to 5 h (this means it is still searching for better solu-

tions). For a comparison purpose, we record those solutions ob-

tained from software by stopping it when the compu-

tation time reaches one hour.

Then, we consider the proposed approach for solving the

MPC problem based on DP and MILP. As discussed above,

the optimal TES operation profile is generated using DP.

By fixing as a known input, we formulate an MILP-based

MPC problem (15) to solve for optimal chiller operations. The

MILP-based heuristical Algorithm 3 is employed to search

for the optimal set points of the system. The sampling time

1 h is used to discretize the system model. The predic-

tion horizon of the MPC scheme is taken as 24 h. At each

hour, the software package is employed to solve the MILP

problem (15) with performance gap . For the MILP

problem considered in this paper, it usually takes less than

10 minutes only to achieve the performance requirement. The

initial nominal trajectory used by Algorithm 3 is obtained by

simulating the system with the baseline strategy. By comparing

the solutions obtained using two approaches, it is found that

the solutions obtained through DP and MILP are always better

than the solutions obtained by convex-MINLP approach. In

Section VI-C, we will compare the baseline and MPC strategies

with the solution computed via DP and MILP approaches.

C. Comparison of Two Strategies

The performance of both strategies is compared through

MATLAB simulations with historical weather data for a spe-

cific day in June 2010. The total simulation time is 24 h.

The predicted campus cooling load profile is depicted in

Fig. 5(a) overlaid with the electricity rate for summer hours.

We duplicate the campus cooling load profile for the next day

to simulate the MPC scheme.

The controls computed from two strategies are applied to the

simulation model of the UCI central plant. The chilled water

temperature through the campus and the chiller bank are de-

picted in Fig. 6(a) and (b), respectively. The top and bottom

temperatures of TES are depicted in Fig. 6(c). We observe that

chilled water temperatures in the MPC strategy have larger vari-

ations than those in the baseline strategy. We also observe that

for the MPC strategy the top and bottom layers of TES reach

the almost same temperature at the end of day. But for the base-

line strategy the bottom layer has much lower temperature than
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Fig. 7. Comparison of scheduling results of baseline strategy (top plot) and MPC strategy (bottom plot): hourly cooling amount generated by individual chillers

and TES, where the negative cooling amount means that TES is in charging mode.

TABLE III

COMPARISON OF BASELINE AND MPC STRATEGIES

the top layer of TES, indicating that there is additional unused

cooling energy stored in TES.

For both strategies, the hourly cooling amount provided by

individual chillers and TES are illustrated in Fig. 7, where

the negative cooling amount means that TES is in a charging

mode. We observe that in both strategies chiller 5 is never

operated, and chillers 1, 2, and 7 are operated in most of time.

This makes sense since chiller 5 has the lowest COP while

chillers 1, 2, and 7 have almost highest COP in the range of

interests for the chilled water return temperature as shown

in Fig. 3. However, two strategies are different in the way to

charge/discharge TES. We observe that TES charges more

cooling amount in the baseline strategy than in MPC during the

off-peak hours. However, TES discharges less cooling in the

baseline strategy than in MPC during the on-peak hours. The

overcharge in off-peak hours and insufficiently discharge in

on-peak hours are the main causes of energy inefficiency under

the baseline strategy. The energy and economical inefficiency

can also be observed from electricity consumption and cost

plot in Fig. 5(b) and (c). We summarize the total electricity

consumption and cost in Table III. From it, the MPC-based

strategy performs better than the baseline by around 9.70%, in

terms of total electricity consumption, and by around 10.84%,

in terms of total electricity cost.

D. Discussion

1) Horizon Length: The horizon length has an important im-

pact on the performance of solutions and the computation time

of algorithms. For the case study presented in this paper, we

choose the horizon length as 24 h for the illustration of

simulation results. We have also tested different horizon values

for a comparison purpose. Generally speaking, by choosing a

longer horizon length (e.g., multiplies of 24 h), we obtain op-

timal solutions that take into consideration of the forecast infor-

mation and system dynamics in a long time range. But the com-

putation time for obtaining the solution increases a great deal as

the length of horizon increases. On the other hand, by choosing

a shorter horizon length, we obtain the solutions with much less

computation time. But the solutions may be only optimal for a

short time range and the performance of the MPC strategy can

be largely degraded. In practice, one can try a couple of horizon

lengths and choose the one that satisfies the performance and

computation time requirements.

2) Uncertainty Analysis: The simulation results presented

here are obtained under the assumption that the parameters are

accurate and chiller system models can perfectly represent the

real system. However, in reality, there usually exist uncertain-

ties in parameters and models. In this section, a simple Monte

Carlo uncertainty analysis is carried out to demonstrate how the

modeling uncertainty would affect the potential energy saving

of proposed MPC strategies [27]. Here, we consider the uncer-

tainties for somemajor parameters of the chiller system, namely,

(chilled water supply temperature), and , , , and

, and (fitted parameters of the TES model). We as-

sume the considered parameters all follow the normal distribu-
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tions with means equal to their nominal values and standard de-

viations equal to 5% of their nominal values. A sample matrix

is generated based on random sampling of the considered

parameters, where denotes the number of parameters and

denotes the sample size. Here we have 7 parameters and

we take as the sample size. Then we repeatedly apply

baseline and MPC strategies using the randomly generated pa-

rameter samples. The probabilistic distributions of energy sav-

ings (electricity consumption or cost) can be obtained via the nu-

merical approximations. For the case study considered here, the

standard deviations of energy savings are less than 2.3% com-

pared with around 10% energy savings for nominal values. The

results show that the fluctuation of energy savings caused by

parameter uncertainties is relatively small. Thus, the proposed

MPC strategy is not very sensitive to the modeling parameters

specified here.

VII. CONCLUSION

This work formulates an MPC problem to obtain optimal

set-points for supervisory control of a central chiller plant with

thermal energy storage (TES). It proposes an efficient heuristic

algorithm to solve the MPC problem based on dynamic

programming (DP) and mixed integer linear programming

(MILP). The optimal TES operation profile is obtained for

a fixed horizon by solving a DP problem, and then optimal

chiller operations are obtained at each time step by solving an

MILP problem with a fixed TES operation profile. Simulation

results show that both electricity consumption and cost can

be significantly reduced for the campus central plant at the

University of California, Irvine. Future research includes more

benchmark studies with other control methods [28], [29] and

using the optimization methods successfully used in other fields

to solve this problem [30]–[49].

APPENDIX

CAMPUS COOLING LOAD PREDICTION

For theMPC problem, we need to know the predicted campus

cooling load for the next hours, where is the prediction

horizon. In this paper, we employ a linear ARXmodel to predict

the campus cooling loads [50]. Mathematically, at each time

step , we predict the campus cooling loads for the next time

steps. For , we have

(17)

where , , and denote the predicted

cooling loads, ambient temperature, and ambient humidity ratio

for time step at the time step , respectively. The parameters

, , and can be obtained using historically measured

campus cooling load and weather data. Note that here we

only consider the ambient temperature and humidity ratio as

the inputs to the ARX model, which have most significant

correlation to the campus cooling loads. To further improve the

prediction accuracy, one could take more variables as the inputs

to the ARX model, e.g., ambient solar radiation and campus

occupancy information.

The past values of campus cooling loads are available on an

hourly basis from the campus plant management system. At

time step , we assume the knowledge of the actual values of

up to time step : , for all . The past in-

formation of ambient temperature and humidity ratio

are available from on-site measurement. The predicted weather

information (ambient temperature and ambient humidity

ratio for next few days) can be obtained fromNational Dig-

ital Database via NOAA’s National Weather Service. At time

step , we assume the knowledge of the actual values and

up to time step , and the predicted values of and

for future time steps:

if

if

if

if .
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