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Model Predictive Control of Energy Storage

Systems for Power Tracking and Shaving in

Distribution Grids
Alessandro Di Giorgio, Member, IEEE, Francesco Liberati, Member, IEEE, Andrea Lanna,

Antonio Pietrabissa, Francesco Delli Priscoli

Abstract—In this paper, a model predictive control (MPC)
strategy is proposed to control the energy flows in a distribution
network node (e.g. a distribution substation) equipped with an
electric storage system (ESS) and serving a portion of the grid
with high penetration of renewable energy sources (RES). The
aim is to make the power flow at node level more controllable in
spite of the presence of fluctuating distributed energy resources.
In particular, the proposed control strategy is such that the
controlled power flow at node level tracks the profile established
on a day-ahead basis for efficient operation of the grid. That is
achieved by letting the MPC controller decide the current storage
power setpoint based on the forecasts of the demand and of the
RES output. Theoretical results are reported on the stability of
the proposed control scheme in a simplified setting foreseeing
zero forecasting error. The performance of the system in the
general case is then evaluated on a simulation basis. Simulations
show the effectiveness in managing RES fluctuations in realistic
settings.

Index Terms—Energy Storage System; Model Predictive Con-
trol; Renewable Energy Sources; Smart Grid.

NOMENCLATURE

e
pv Difference between the short term RES forecast and the

day head one

P
l Bus active power demand

P
s Storage active power flow

P
pv Active power from photovoltaic plants

P
pv

da Day ahead forecast of P pv

P
pv
st Short term forecast of P pv

P
g Active power flow at HV/MV substation

P
g

da Day ahead forecast of P g

P
g
st Short term forecast of P g

x Storage state of charge
x̃ Difference between the state of charge and the reference

state of charge
T Sampling time
N Length of the MPC control window (time slots)
·̂ Symbol denoting the upper limit of a variable
·̌ Symbol denoting the lower limit of a variable

I. INTRODUCTION

THE increasing penetration of Renewable Energy Sources

(RES), especially at electric distribution network level,

is increasingly challenging the established network operations
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based on the traditional, centralized, and mono-directional

paradigm of the grid [1]. In particular, the increasing addition

of photovoltaic and wind plants at Low Voltage (LV) and

Medium Voltage (MV) levels is making the power profiles at

power grid nodes less predictable and controllable, resulting,

among the other effects, into the grid possibly working out

of the optimal operating points established on the day-ahead

basis. As a matter of fact, the traditional operation of today’s

power systems foresees, generally speaking, a day-ahead plan-

ning step, in which the consumption and generation balance

is planned, and one or more intraday balancing steps, which

put in place corrective actions during the real time operations,

in case a mismatch between generation and consumption is

observed. The uncertainty and drop in controllability intro-

duced by the massive adoption of RES technology has been

putting the research on real time balancing strategies and RES

forecasting under the spotlight. The storage technology as well

will more and more represent a promising factor for adding

flexibility to the grid, as it allows, up to the extent given by the

power and energy capacities of the storage devices, to break

the need for instantaneous balancing between generation and

consumption [2].

In the light of the above, this paper presents a Model

Predictive Control (MPC) strategy for controlling an Energy

Storage System (ESS) in a power distribution node, with the

objective of letting the controlled node power profile track the

curve established on the day ahead, while guaranteeing that

the RES fluctuations seen at node level are smoothed as much

as possible and the ESS state of charge evolution is kept within

the saturation limits. In this line of research, ESS control

has been the subject of a growing interest, and a number of

original contributions have appeared in the relevant literature.

An interesting paper based on the same methodology applied

here is [3], which presents an MPC framework for smoothing

the power output of a wind farm, based on the availability of

accurate wind power prediction data. Differently from [3], here

we are interested in both power profile smoothing and tracking

(thus increasing the effort requested to the ESS). Also, while

[3] provides qualitative arguments for proving the stability

of the adopted MPC approach, here we propose a rigorous

demonstration.

A contribution based on a similar reference scenario is

reported in [4], where the objective is that of smoothing the

output of a wind farm and tracking a properly generated

power reference for the wind farm. The ESS control scheme

proposed is simple and foresees that the ESS covers the

mismatch between the current power output of the farm and

the reference. Contrary to [4], the control strategy presented
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here is expected to guarantee superior performances by solving

an optimization problem over a prediction window into the

future, thus optimizing system’s performances not just in the

current time. Another interesting work is [5], which proposes

an optimization-based control scheme for an ESS installed

in a feeder hosting significant amount of RES. Differently

from this paper, the objective of the control scheme is to

maximize the economical efficiency of the ESS operations, by

properly controlling the charging/discharging frequency and

depth. Similarly, [6] presents three ESS control strategies to

steer the output of a wind farm (in terms of power or energy)

close to the values communicated in the day ahead. The

strategies are condition-based and account for, respectively,

a “greedy” compensation of the power imbalance, the post-

compensation of the energy imbalance and a more refined,

two-stages compensation including a forecast of the energy

imbalance.

Also storage applications to optimal power flow problems

at transmission level have been proposed. Reference [7] ad-

dresses the problem from a theoretical perspective, considering

a network with a single generator and a single load. Reference

[8] instead tackles the problem on a simulation base. Reference

[9] provides a proof of concept based on the IEEE 14 bus

system. In [10], the integration of ESS and RES is jointly

investigated and simulated. Many applied research projects

and demonstrators are as well producing efforts to test the

feasibility and sustainability of storage integration (see e.g.

GRID4EU [11], Energy@Home [12], [13]).

The distinctive feature of the methodology applied in this

work lays in the possibility of optimizing the chosen perfor-

mance indicators (power smoothing and tracking in this case)

not just in the current time but also considering the predicted

evolution of the system over a time window in the future. Also,

MPC allows to include in the formulation: (i) a model of the

system under control (the ESS), (ii) predictions of the variables

affecting system’s performance (RES output forecasts in this

case), (iii) the technical constraints impacting on the control

problem. MPC thus results in increased performances, with

intrinsic robustness provided by the continuous re-optimization

process (see Section III).

A model similar to the one presented here, but applied to a

different use case, is found in [14], where a distributed algo-

rithm for MPC of multiple ESSs in a network of residential

energy systems is proposed, with the aim of flattening the

power demand from the electricity grid, also making proper

comparisons with centralized and decentralized approaches.

The distributed algorithm is then theoretically investigated

in [15], where it is shown to achieve the performance of

a large-scale centralized optimization algorithm, having at

the same time the advantages coming from distributing the

computational effort. Differently from the present work, [15]

focuses on the efficient computation of a solution to the open-

loop optimal control problem solved at each MPC iteration,

rather than on the analysis of the closed loop properties of

the MPC algorithm. In addition, the formulation proposed in

the present work addresses also the requirement of keeping

the storage state of charge close to a desired reference, in

addition to that of controlling the power profile (this is a
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Figure 1. Reference scenario for the proposed ESS integration study.

specific requirement of the tackled use case).

Finally, the research reported in this paper is based on

the work in [16], by the same authors. The present work

significantly extends the previous work by: (i) modifying

the MPC formulation so as to enable the day-ahead power

reference tracking functionality; (ii) providing first theoretical

results on the stability of the proposed control system in a

simplified setting; (iii) performing more extended simulations,

by testing the system under real working conditions and in

presence of RES forecasting errors.

The remainder of the paper is organized as follows. Section

II presents the reference scenario for the proposed ESS integra-

tion study. Section III reports the formalization of the related

control problem and its theoretical analysis. In Section IV the

simulation results are presented. In Section V the conclusions

of this work are discussed and future works are outlined.

II. REFERENCE SCENARIO

The reference scenario at the basis of this study is depicted

in Fig. 1. An HV/MV substation is considered, connected to

the transmission network, modeled as an equivalent traditional

power plant. The MV feeders host consumption and distributed

generation. The reference scenario further considers an electric

ESS connected to the MV busbar of the substation, and

controlled by the Distribution System Operator (DSO), with

the objective of guaranteeing that the net substation power

profile is smooth and tracks the profile established on the day

ahead by the DSO and the Transmission System Operator

(TSO). Such a capability appears fundamental both in view

of the possibility of implementing local energy management

strategies, but also with reference to the task of extending

the traditional power flow calculation to the case of networks

with high penetration of renewables. As a matter of fact,

standard power flow calculations are based on the assumption

that substation nodes can be associated with highly predictable

(consumption) profiles. This assumption is challenged by the

increasing penetration of RES, but can be restored precisely

by the proposed control scheme.

The considered scenario can help addressing also similar

problems, as the one of controlling a stand-alone local power

system operated in islanding mode, where a large load is fed

by a real power station with the support of RES and ESS.

Finally, the proposed MPC control algorithm can be hosted
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Figure 2. Block diagram of the proposed control scheme.

either at the level of the DSO SCADA control centre, or locally

at the ESS level, with field data retrieved, respectively, through

a telecommunication infrastructure or through the DSO elec-

tric infrastructure (e.g. through Power Line Communications

(PLC) [17]).

III. ESS CONTROL SCHEME

This section details the proposed ESS control strategy,

starting from the control system modeling. Figure 2 reports

the block diagram of the controlled ESS. Two RES output

predictors are considered in the control scheme. A first pre-

dictor operates on a day-ahead basis, and the resulting forecast

is used to estimate the net node consumption to be traded on

the day-ahead markets. A second short-term predictor provides

the MPC controller with refined RES forecasts for increased

control performance, as discussed next. Two reference inputs

are considered (gray blocks in the figure): (i) xref , a reference

value for the storage state of charge operations, and (ii) P g
da,

the net node consumption planned on the day-ahead. The

remaining inputs to the controller are: (i) the day ahead RES

forecast P pv
da , (ii) the short term RES forecast P pv

st (potentially

updated at each control iteration), (iii) the measured ESS state

of charge. The output of the controller is the control profile for

the ESS. The control objective is to control the node power

exchange as to track in time the day-ahead reference P g
da,

while keeping the ESS state of charge evolution as much

as possible close to the reference value xref , in order to

guarantee controllability margins for intervention following a

grid contingency.

The control problem is tackled via discrete-time MPC [18].

According to this strategy, at each sampling time the current

ESS control is found by solving on-line a finite horizon open-

loop optimal control problem, using the current state of the

plant (i.e. the current measure of the ESS state of charge) as

the initial state of the optimization problem, then achieving a

closed-loop control system. The first sample of the computed

optimal control sequence is applied to the plant; the remaining

part of the control sequence is discarded. The mentioned open-

loop optimal control problem encodes the control objectives in

the target function, and includes proper constraints to account

for the limitations of the devices involved.

The detailed mathematical formulation of the open-loop

optimal control problem solved at the generic time k is detailed

in the next section. In the following, N ∈ N denotes the MPC

control horizon and T ∈ R the discretization step.

A. Objective Function

The selected target function aims at establishing a trade-off

between the need of tracking the net node power flow planned

the day-ahead, and that of avoiding large excursions in the

storage state of charge. The target function is denoted by VN ,

where N reminds that the problem is solved on an horizon of

N time steps ahead of the current time k.

VN (k) =
N
∑

i=1

{

α(i) [P g
da(k + i− 1)− P g

st(k + i− 1)]
2

+ β(i)
[

x(k + i− 1)− xref
]2

}

(1)

The first term of the objective function accounts for the

power tracking error along the control horizon, that is, the

mismatch between the net reference active power exchange

P g
da established in the day ahead (based on day-ahead forecasts

of the RES power), and a more accurate short-term estimate

P g
st of the same power exchange. Parameter α(i) weights the

power tracking error along the control horizon. The second

term of the target function is introduced to limit the excursion

of the ESS state of charge with respect to its defined reference

value (parameter β has a similar meaning as α). Parameters

α and β are non-negative.

B. Constraints

The constraints included in the generic MPC iteration are

detailed hereafter. First of all, an ESS system dynamics and

proper power balance equations have to be included in order to

explicitly write the two objective function’s terms in function

of the problem control variables (given by the ESS power

setpoint P s along the control horizon). Regarding the ESS

model, the following linear, first-order dynamics is introduced

x(i+ 1) = x(i)− TP s(i) ∀i ∈ [k, k +N − 1]

x(k) = xk

(2)

where xk denotes the feedback of the ESS state of charge

acquired at k. The following power balance equation can be

used to rewrite the first term of the objective function (variable

P g
st) as a function of the ESS control variable

P g(i)+P pv(i)+P s(i) = P l(i) ∀i ∈ [k, k+N − 1] (3)

From the above balance equation the short term forecast P g
st

of the power exchange at substation level easily follows

P g
st(i)+P pv

st (i)+P s(i) = P l(i) ∀i ∈ [k, k+N −1] (4)

On the day-ahead basis instead, P g
da is computed not taking

into account any contribution from the ESS.

P g
da(i) + P pv

da (i) = P l(i) ∀i ∈ [k, k +N − 1] (5)

Finally, proper box constraints are introduced in order to keep

physical variables within their acceptable operating ranges.
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The restrictions to be considered here are on the active power

exchange and the ESS state of charge, limited as follows

P̌ g
st ≤ P g

st(i) ≤ P̂ g
st

P̌ s ≤ P s(i) ≤ P̂ s ∀i ∈ [k, k +N − 1]

x̌ ≤ x(i+ 1) ≤ x̂

(6)

where symbols ·̌ and ·̂ denote lower and upper limits. The

above constraints ensure that the computed ESS control always

results in feasible ESS state of charge and power control

trajectories.

C. MPC Iteration

The generic MPC iteration can be stated as follows.

Problem 1 (ESS MPC iteration at generic time k). For

the given power substation with known demand P l, known

RES day-ahead forecast P pv
da , known RES short-term forecast

P pv
st (i), i ∈ [k, k +N − 1] and reference ESS state of charge

xref , find the optimal ESS control sequence P s(i), i ∈ [k, k+
N − 1] which minimizes (1) subject to the ESS dynamics (2)

- with initial ESS state of charge known from feedback -, the

balance constraints (4)-(5) and the bounds (6).

The above problem is a quadratic constrained programming

problem. By simple manipulations, it can be put in the

following form

min
u(k)

{V (k) =
1

2
u(k)T H(k)u(k) + fT (k)u(k)} (7)

Aineq(k)u(k) ≤ Bineq(k) (8)

Aeq(k)u(k) = Beq(k) (9)

umin ≤ u(k) ≤ umax (10)

where the column vector u(k) is the optimization vector given

by the collection of control variables P s over the control hori-

zon (u(k) = [P s(k), P s(k + 1), ..., P s(k +N − 1)]T ∈ R
N ).

In detail, (7) can be derived by re-writing (1) in matrix form,

by substituting P g
st(t) and P g

da(t) according to the equations

(4) and (5), and after having found the explicit solutions of

(2) (i.e. after writing x(k + i − 1), i ∈ [1, N ] in (1) as

function of the current state x(k) and of the control sequence

{P s(k), P s(k + 1), ..., P s(k + i − 1)}). In a similar way,

constraints (3)-(5) can be put in the form of the equality

constraints (9), while the set of bounds (6) can be put in the

form of the inequality constraints (8) and the box constraints

(10). H, f, Aineq , Bineq , Aeq , Beq are coefficient matrices and

vectors of proper dimensions and are updated at each iteration.

The above formulation is the one used for implementation

purpose. In this work, the algorithm used to solve Problem 1

is the barrier method [19] as implemented in Gurobi v. 6.0.4.

D. Stability Analysis

This section discusses the stability properties of the

proposed MPC control scheme. To this end, the MPC

optimization problem is rewritten as follows (time indices

are omitted whenever possible). By considering (4) and (5),

the term (P g
da − P g

st) in (1) is written as (u + epv), where

epv = P pv
st − P pv

da and u = P s denotes the control input

to the ESS. Also, by the suitable change of coordinates

x̃ := x − xref , the term (x − xref ) is simplified as x̃. Let

us further concisely denote by x̃(i + 1) = f(x̃(i), u(i)) the

difference equation (2), written in the new coordinates. The

objective function of the MPC scheme at the generic time k,

written as a function VN of the ESS state of charge x̃(k) and of

the control sequence u(k) = {u(k), u(k+1), ..., u(k+N−1)},

can be therefore written as VN (x̃, u, k) =
∑N

i=1

{

α(i)[u(k+i−1)+epv(k+i−1)]
2
+β(i)x̃(k+i−1)2

}

.

The analysis is restricted in the following to the

case of zero forecasting error (epv ≡ 0). Under that

assumption, the problem is time-invariant, in the sense that

VN (x̃, u, k) = VN (x̃, u, 1), that is, the open-loop problem

defined at time k starting from initial state x̃ is equal to the

problem defined at 1 starting from state x̃. Therefore, it is

possible to write

min
u

{

VN (x̃, u) =
N
∑

i=1

{

α(i)u(i)2 + β(i)x̃(i)2
}

=
N
∑

i=1

l(x̃(i), u(i), i)

}

(11)

s.t. x̃(i) ∈ X, u(i) ∈ U, i = 1, ..., N

x̃(i+ 1) = f(x̃(i), u(i)), i = 1, ..., N − 1

x̃(1) = x̃,

(12)

where we have concisely indicated with l the stage cost, and

the compact sets X and U are defined based on the box con-

straints in (6). x̃ is the initial state of the system (in the new co-

ordinates) and can be regarded as a constant when solving the

open loop control problem (note however that the state trajec-

tory evolves over time as a result of the application of the first

sample of the found optimal control sequence). The following

notation is further assumed. Let u0(x̃) ∈ R
N denote the opti-

mal solution of (11)-(12) (notice that the optimization problem

always admits an optimal solution, since all the involved

functions are continuous, the problem is convex and defined

over a compact set). Let u0(x̃, i) ∈ R denote the i-th sample

of u0(x̃) (i.e. u0(x̃) = {u0(x̃, 1), u0(x̃, 2), ..., u0(x̃, N)}). Let

V 0
N (x̃) ∈ R denote the value of the target function attained

in the minimizer u0(x̃), that is V 0
N (x̃) := VN (x̃, u0(x̃)). Let

x̃0(x̃, i) denote the state reached when the optimal sequence

{u0(x̃, 1), u0(x̃, 2), ..., u0(x̃, i − 1)} is applied to the system

starting from the initial state x̃. The MPC iteration implicitly

defines a feedback law K such that K(x̃) := u0(x̃, 1) (in fact,

recall that the MPC iteration consists in solving an open-

loop optimal control problem and then applying to the system

the first sample of the optimal control sequence). The aim of

this section is to assess the stability properties of the MPC-

controlled system x̃(k + 1) = f(x̃(k), K(x̃(k))), under the

case epv ≡ 0. It is shown next that x̃ = 0 (i.e. x = xref )

is a globally asymptotically stable equilibrium point for the

controlled system (that is, f(x̃(k), K(x̃(k))) → 0 as k → ∞,

for every value of the initial state). The following lemma is

instrumental to the main demonstration.

Lemma 1. Assuming epv ≡ 0, the inequality

l(f(x̃0(x̃, N), u0(x̃, N)), 0, N) − l(x̃, K(x̃), 1) ≤ −η(x̃)
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holds for the system at study, with η a continuous function

strictly positive definite (i.e. η(0) = 0 and η(·) > 0
elsewhere).

Proof. First of all, u0(x̃, N) = 0 and

f(x̃0(x̃, N), u0(x̃, N)) = x̃0(x̃, N) for the particular

system at study. u0(x̃, N) = 0 results from the fact that no

terms in the objective function refer to the state x̃(N + 1)
at the end of the control window, and thus the choice

u0(x̃, N) = 0 is both feasible and optimal (it is associated

to the least cost, since the target function is quadratic).

f(x̃0(x̃, N), 0) = x̃0(x̃, N) results from the fact that for the

system in question the dynamics x̃(k+ 1) = f(x̃(k), u(k)) is

linear and given by x̃(k + 1) = x̃(k)− Tu(k) (see (2)).

Given the structure of l for the problem in question (see

(11)), the lemma is proven if it is shown that |x̃0(x̃, N)| ≤
c|x̃| ∀x̃ 6= 0, with c < 1 a positive constant. In fact, direct

substitution shows that in this case the lemma holds true with

η = [β(1)−β(N)c2]x̃2 and provided β satisfies the additional

sufficient condition [β(1)− β(N)c2] ≥ 0.

Let us then consider the case x̃ > 0, that is, x ≥
xref (the case in which x̃ < 0 can be treated similarly).

For x̃ > 0, u0(x̃, i) ≥ 0 ∀i, and hence the sequence

x̃0(x̃, ·) is non increasing1. Similarly, it can be shown that

x̃0(x̃, i) ≥ 0 ∀i. By the dynamic programming principle2,

u0(x̃, N − 1) = argminu{β(N − 1)x̃0(x̃, N − 1)2 + α(N −
1)u2+β(N)[x̃0(x̃, N −1)−Tu]2} = argminu{[α(N −1)+
β(N)T 2]u2−2β(N)T x̃0(x̃, N−1)u}, subject to the constraint

u ≤ û, which yields u0(x̃, N − 1) = min{β(N)T x̃0(x,N −
1)/[α(N−1)+β(N)T 2], û}, with û = P̂ s. From the dynamic

equation x̃0(x̃, N) = x̃0(x̃, N − 1)−Tu0(x̃, N − 1) it can be

checked that both the possible values for u0(x̃, N − 1) result

in a feasible state x̃0(x̃, N) (in particular, x̃0(x̃, N − 1) ≥
x̃0(x̃, N) ≥ 0). Then, when u0(x̃, N−1) = β(N)T x̃0(x,N−
1)/[α(N − 1) + β(N)T 2], direct calculation shows that

x̃0(x̃, N)/x̃0(x̃, N−1) = α(N−1)/[α(N−1)+β(N)T 2] ≤ 1.

If instead u0(x̃, N − 1) = û (i.e., when the control saturation

condition β(N)T x̃0(x,N − 1)/[α(N − 1) + β(N)T 2] ≥ û
holds), we have x̃0(x̃, N)/x̃0(x̃, N − 1) = 1−T û/x̃0(x̃, N −
1) ≤ 1, since, from the saturation condition it is T û/x̃0(x̃, N−
1) ≤ β(N)T 2/[α(N − 1) + β(N)T 2] ≤ 1. Hence, it can

be concluded that (recall that the state trajectory is positive

and non-increasing) x̃0(x̃, N)/x̃ ≤ x̃0(x̃, N)/x̃0(x̃, N − 1) ≤
max{α(N − 1)/[α(N − 1) + β(N)T 2], 1 − T û/x̃0(x̃, N −
1)} ≤ max{α(N − 1)/[α(N − 1) + β(N)T 2], 1− T û/ˆ̃x}. In

conclusion, we have found that x̃0(x̃, N)/x̃ ≤ max{α(N −
1)/[α(N − 1) + β(N)T 2], 1 − T û/ˆ̃x} ≤ 1, and therefore

the lemma is proved with c = max{α(N − 1)/[α(N − 1) +
β(N)T 2], 1− T û/ˆ̃x} and η = [β(1)− β(N)c2]x̃2.

1In fact, if there were some i in the optimal control sequence for which
u0(x̃, i) ≤ 0, then the sequence with u0(x̃, i) = 0 for the same values of
i would be feasible and with a smaller cost associated (as it can be seen
considering the structure of l in (11) and the dynamics of the system (2)).

2Suppose we know the optimal sequence
{u0(x̃, 1), u0(x̃, 2), ..., u0(x̃, N − 2)}, the remaining optimal control
samples u0(x̃, N − 1) and u0(x̃, N) are the ones yielding the value
V 0

2
(x̃0(x̃, N − 1)). When solving the “truncated” optimization problem

{minu V2(x̃0(x̃, N − 1), u) subject to (12)}, x̃0(x̃, N − 1) can be treated
as a constant, and the fact that u0(x̃, N) = 0 can be exploited. Notice that
from (2) we can write x̃0(x̃, N) = x̃0(x̃, N − 1)− Tu.

Theorem 1. Assuming epv ≡ 0, x̃ = 0 (i.e. x = xref ) is

a globally (i.e., for all initial conditions in X) asymptotically

stable equilibrium point for the controlled system x̃(k+ 1) =
f(x̃(k), K(x̃(k))).

Proof. The state x̃ = 0 is an equilibrium point for the

controlled system, since K(0) = 0 and f(0, 0) = 0. Sta-

bility can be proven via the Lyapunov direct method (see

e.g. [18]). At time k + 1, the control sequence ũ(k +
1) = {u0(x̃, 2), u0(x̃, 3), ..., u0(x̃, N), 0} is feasible for the

MPC iteration (and hence the associated value of the tar-

get function is not lower than the optimal one). It fol-

lows that V 0
N (f(x̃, K(x̃))) ≤ VN (f(x̃, K(x̃)), ũ) = V 0

N (x̃) −
l(x̃, K(x), 1) + l(f(x̃0(x̃, N), u0(x̃, N)), 0, N). By the lemma

above, V 0
N (f(x̃, K(x̃)))−V 0

N (x̃) ≤ −η(x̃), with η a continuous

function strictly positive definite (i.e. η(0) = 0 and η(·) > 0
elsewhere). The sequence V 0

N is thus non-increasing, and

therefore convergent (V is lower bounded by zero). Hence it

follows that η(x̃) ≤ V 0
N (x̃)−V 0

N (f(x̃, K(x̃))) → 0 as k → ∞,

which proves the asymptotic global stability of the system,

since, due to the positive definiteness of η, η → 0 implies that

x → 0.

The case epv 6= 0 appears inherently more complex to

analyze, as it implies solving a state regulation problem and

a control tracking problem, something which is not typically

found in MPC theoretical studies. For this reason, the case

epv 6= 0 is demanded to future research and is addressed in

this work on a simulation basis.

IV. RESULTS

The proposed approach has been simulated in a specific

case study, which considers an HV/MV substation equipped

with two transformers, each one of 60 MVA. The substation

is connected to the transmission network, modeled as an

equivalent generator characterized by unlimited active power

capacity P g . On the MV side, the ESS is assumed directly

connected to the MV busbar, and has 12 MWh of storage

maximum capacity and P s = ±6 MW of nominal power. The

lower ESS state of charge limit is set to x̌ = 0 MWh. The

upper limit is set to x̂ = 12 MWh. An equivalent PV system

with P pv = 10 MW peak power models the set of RES plants

in the MV network. Finally, demand P l is modeled as an

aggregated power load. Regarding the controller parameters,

the considered sampling period T has been set to 5 minutes

and the control horizon N to an equivalent of 2 hours, unless

differently indicated. In all the simulations, the reference state

of charge of the ESS is set to half of the maximum ESS

energy capacity (xref = 6 MWh), for all the simulation

time, in order to provide equal energy injection and absorption

margins. In practice, the reference storage state of charge value

is decided by the system operator, and all the values between

the minimum and the maximum capacity can be chosen as

reference values.

Simulations have been performed using a Macbook 5.2,

Intel Core 2 Duo, 2.13 GHz, 5GB RAM computer, running

Apple OSX v. 10.11.1. The control framework has been built

in Matlab R2012a, and Gurobi v. 6.0.4 has been used to solve
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the MPC iterations. The average solving time was 0.059 s,

including the pre-processing and post-elaboration phases.

Three simulations have been performed for the assessment

of the control system performance at steady state and in

response to fluctuations in the power production from RES.

The first two simulations are intended to provide a numerical

proof of concept of the system; the third simulation refers to

the system working in real conditions, with real input data.

For each simulated scenario, performances vary depending

on the type of the information provided to the controller re-

garding the RES prediction P pv
st . Three cases are distinguished

in the following:

• Case 1: No short term RES predictions are available to

the controller. The controller works based uniquely on

the day-ahead prediction of the RES output (that is, P g
st

in (1) is computed assuming P pv
st = P pv

da in (4)). Results

from this configuration provide the baseline against which

the improvements brought by the proposed ESS control

system can be evaluated. As a matter of fact, notice from

(1), (4) and (5) that, if P pv
st = P pv

da , when the state of

charge is at the reference value, the control output is

identically zero, thus coinciding with the uncontrolled

case in which the storage is out of the control problem

and the node flow is governed uniquely by the balance

equation (3). For that reason, with a little abuse of

terminology, this case is referred to in the following also

as the uncontrolled case.

• Case 2: Perfect short term RES predictions are available

to the controller (P pv
st = P pv). This ideal configuration

results in the best possible performance achievable by the

system.

• Case 3: The controller works based on short term RES

predictions affected by a prediction error (P pv
st 6= P pv).

The prediction error has been chosen in line with that of

the current state of the art forecasting systems available in

literature [20], [21]. This configuration allows to evaluate

the expected performance of the system in a realistic

setting. Since the simulation outcome depends in this

case on the particular realization of the short term RES

prediction, a Monte Carlo approach has been adopted by

performing 1000 experiments for each simulation, each

experiment being characterized by a different realization

of the short term RES forecasting.

For the sake of clearness, we report in the following the

additional notation used throughout the simulation section:

• P g,1 is the MPC-controlled profile at the substation

achieved when no short term RES predictions are avail-

able to the controller (Case 1 above).

• P g,2 is the MPC-controlled profile at the substation

achieved when ideal short-term RES forecasting is as-

sumed (Case 2 above).

• P g,3 is the MPC-controlled profile at the substation

achieved when short-term predictions affected by errors

are available to the controller (Case 3 above).

• In a similar way, P s,1, P s,2 and P s,3 represent the stor-

age controlled power achieved when, respectively, only

day-ahead RES predictions (i.e. Case 1), ideal short term
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Figure 3. Simulation 1a: RES generation (a), traditional power plant (b),
storage active power flow (c) and storage state of charge (d) for increasing
values of the forecasting error.

predictions (i.e Case 2) or short term predictions affected

by errors (i.e. Case 3) are available to the controller.

• Finally, xs,1, xs,2 and xs,3 have similar meaning referred

to the storage state of charge. xref denotes the reference

storage state of charge.

In conclusion, please note that P g
st, P

g
da are predictions of the

node power flow (they derive from (4) and (5), respectively).

P g,1, P g,2 and P g,3 instead are actual node flows, derived

from (3) considering the particular storage control action P s

resulting from MPC. The control action varies depending on

the information provided to the controller about the RES

output (respectively, only day ahead forecast, perfect forecast

and forecast affected by error).

A. Simulation 1: fluctuation of the RES generation

The simulation carried out in the following is intended to

illustrate how the control system reacts to mismatches between

the day ahead RES forecast and the short term one. Ideal short

term RES forecasting is assumed here (the short term forecast

coincides with the real RES output, i.e. P pv
st = P pv). In this

simulation, P l is flat at 50 MW. The day ahead prediction P pv
da

for the RES output is flat as well, at 5 MW. Prediction mis-

matches are modeled as an additive Gaussian curve centered

at hour 7,00, with variance equal to 4 and varying amplitude

(Fig. 3a). The choice of a Gaussian curve here is motivated

only by the simplicity it offers to simulate a peak in RES

prediction mismatch, with tunable amplitude and duration (the
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Figure 4. Simulation 1b: RES generation (a), traditional power plant power
flow (b), storage active power flow (c) and storage state of charge (d) for
increasing values of the control horizon N .

third simulation detailed in the following will test the system

under realistic RES generation profiles and prediction errors).

In this simulation, the system starts from a fully discharged

ESS condition (see Fig.3d). The stability of the controlled

system in absence of forecast mismatches (i.e. before 6,00)

is confirmed by the simulation (see Fig. 3d), which shows

that the ESS state of charge converges towards the reference

state of charge. As soon as the forecast mismatch enters the

control horizon, the storage starts releasing energy (see Fig.

3d). Then, as the maximum of the RES generation peak is

reached by the control window, the storage comes back to

accumulate energy, reaching the minimum in correspondence

of the maximum of RES generation (Fig. 3a, hour 7,00). After

that, the ESS state of charge continues to increase for some

time, before finally recovering the steady-state value, ready

for new interventions. It is to remark that, in absence of the

controlled ESS, RES fluctuations (Fig. 3a) would be covered

by the traditional power plant. The proposed strategy instead

guarantees significant smoothing of P g fluctuations (Fig. 3b).

A second simulation is carried out next to evaluate the effect

of varying the control horizon N . For convenience of results

charting, the initial ESS state of charge is set to the reference

value. The profile of the forecasting mismatch assumed is

depicted in Fig. 4a. All the remaining simulation parameters

and values are kept unchanged. The control horizon is varied

between 5 minutes to two hours (5 minutes, 15 minutes, 30

minutes, one hour and two hours). Results show that small
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Figure 5. Simulation 2: RES generation (a), traditional power plant power
flow (b), storage active power flow (c) and storage state of charge (d).

control horizons are associated with large ESS control efforts,

resulting in good peak shaving performances (Fig. 4b), large

distance between the ESS state trajectory and the reference

value, and long ESS state settling times (Fig. 4d). The arrows

in the figure indicate increasing values of the control horizon.

B. Simulation 2: performance under RES forecasting errors

The second simulation aims at evaluating the impact of short

term prediction errors (while in the previous simulation perfect

short term forecasting was assumed). The simulation setup

is the same as the previous simulation, namely, flat active

power demand P l = 50 MW and RES power generation

characterized by a power base value of P pv = 5 MW with

superimposed a Gaussian profile. It is assumed that the day

ahead a flat RES output is predicted (P pv
da = 5 MW). Results

are presented in Fig. 5. Figure 5.a reports the real RES output

P pv , the flat day ahead RES forecast P pv
da , the 1000 different

realizations of the RES short term forecast P pv
st (gray lines

forming the gray band) and, finally, one particular realization

of the RES short term forecast (dark gray line). Figure 5.b

shows that, when the MPC controller works based on the

day ahead RES prediction, all the effort in matching the RES

fluctuation is demanded to the grid, with consequent large

fluctuation of the power exchanged at node level (see P g,1).

On the other hand, ideal short term forecasting results in the

best possible flattening performances, as the RES fluctuation is

smoothed by the storage action, with mitigated impact on the
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node power exchange (see P g,2 in Fig. 5.b). The same good

performance is observed in the 1000 experiments considering

the availability of real short term predictions affected by errors

(see the gray band P g,3 in Fig. 5.b), which significantly

outperform the uncontrolled case (see P g,1 in the figure).

Figure 5c-d report, respectively, the ESS control and state of

charge evolution.

Finally, the next simulations presented in Fig. 6 show how

the performance of the controlled system changes when acting

on the weights α(i) and β(i) in the objective function (1),

and on the length of the control horizon. To this end, we take

α(i) = α and β(i) = β = (1 − α) ∀i, with α ∈ [0, 1]. Five

batches of experiments are performed, one for each value of

the control horizon length, chosen in the set [1, 3, 6, 12, 24].
Results are shown in Fig. 6a-e, for increasing values of the

control horizon length. For each batch of experiments, the

same simulation as the one shown previously in this section

is run with the chosen length of the control horizon and

with parameter α varying from 0 to 1, with steps of 0.05.

Again, results are presented for the uncontrolled case (no short

term prediction available), for the case with ideal short term

prediction and the one with real short term predictions (1000
simulations). In each of the sub-figures, the x-axis reports

the storage tracking error (
∑

i(x(i)−xref)2), while the y-axis

reports the power tracking error (
∑

i(P
g
da(i)− P g

st(i))
2). It is

seen from the simulations that low values of the control hori-

zon length result in increased power tracking, at the expense

of the storage state of charge tracking. The opposite happens

when N increases. A balanced configuration, which allows to

fine control the storage/power reference tracking tradeoff with

uniform sensitivity along the tradeoff curve results from value

N = 3.

C. Simulation 3: real demand and RES generation profiles

In the third simulation, real bus demand (Fig. 7a) and

RES output profiles (Fig. 7b) have been considered. Figure 7

shows the results in the three cases (uncontrolled, perfect RES

forecasting and real short term forecasting). Results show that

the proposed controller effectively smoothens the power curve

in presence of RES fluctuations, always keeping ESS control

and state of charge evolution within the boundaries.

In this simulation, a large error has been considered between

the day ahead RES prediction P pv
da and the real final RES

output P pv (see Fig. 7b). In particular, far less RES energy

is produced than forecasted. As a result, Fig. 7c shows that

there is a gap between the planned day ahead substation power

profile P g
da and the actual one, both in the controlled cases

(compare P g
da with P g,3 and P g,2) and in the uncontrolled

one (compare P g
da with P g,1). Fig. 7c shows however that the

proposed controller is capable of significantly smoothing the

effect of the RES fluctuations on the substation flow (compare

P g,1 with P g,3 and P g,2). Also in this simulation, the gray

band in the figures results from 1000 experiments performed

considering real short-term RES forecast affected by statistical

error in line with the state of the art forecast techniques. All

of the results confirm the validity of the proposed approach.

Finally, Fig. 7d-e report, respectively, the ESS control and state
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Figure 6. Simulation 2b: performance of the controller for different combi-
nations of the target function weights and lengths of the control horizon.

of charge evolution, and show under realistic conditions that

the proposed control approach enures that the storage power
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Figure 7. Simulation 3: demand (a), RES generation (b), traditional power
plant power flow (c), storage active power flow (d) and storage state of charge
(e).

and state of charge limits are always respected.

V. CONCLUSIONS

This paper has presented a model predictive control strategy

for ESS integration in an HV/MV substation operations, with

the objective of controlling and smoothing the substation

net power profile exchanged with the grid, in presence of

high RES penetration. With the proposed control scheme,

the actual power flow at HV/MV substation level can thus

be controlled to track the profile agreed on the day ahead

basis, while guaranteeing feasible excursions of the ESS power

and state of charge. Theoretical guarantees on the stability

of the proposed control scheme have been provided in a

simplified setting, and a proof of the concept has been achieved

in simulation scenarios characterized by both artificial test

signals and real demand/generation patterns. Future works will

regard the further theoretical assessment of the impact of RES

imbalances on the control system performance, and the work

towards field testing.
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