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Summary

This thesis considers the stabilization and the robust stabilization of certain
classes of hybrid systems using model predictive control. Hybrid systems
represent a broad class of dynamical systems in which discrete behavior
(usually described by a finite state machine) and continuous behavior (usu-
ally described by differential or difference equations) interact. Examples of
hybrid dynamics can be found in many application domains and disciplines,
such as embedded systems, process control, automated traffic-management
systems, electrical circuits, mechanical and bio-mechanical systems, biologi-
cal and bio-medical systems and economics. These systems are inherently
nonlinear, discontinuous and multi-modal. As such, methodologies for stabi-
lity analysis and (robust) stabilizing controller synthesis developed for linear
or continuous nonlinear systems do not apply. This motivates the need for
a new controller design methodology that is able to cope with discontinuous
and multi-modal system dynamics, especially considering its wide practical
applicability.

Model predictive control (MPC) (also referred to as receding horizon con-
trol) is a control strategy that offers attractive solutions, already successfully
implemented in industry, for the regulation of constrained linear or nonli-
near systems. In this thesis, the MPC controller design methodology will
be employed for the regulation of constrained hybrid systems. One of the
reasons for the success of MPC algorithms is their ability to handle hard con-
straints on states/outputs and inputs. Stability and robustness are probably
the most studied properties of MPC controllers, as they are indispensable to
practical implementation. A complete theory on (robust) stability of MPC
has been developed for linear and continuous nonlinear systems. However,
these results do not carry over to hybrid systems easily. These challenges
will be taken up in this thesis.

As a starting point, in Chapter 2 of this thesis we build a theoretical
framework on stability and input-to-state stability that allows for disconti-
nuous and nonlinear system dynamics. These results act as the theoretical
foundation of the thesis, enabling us to establish stability and robust stabi-
lity results for hybrid systems in closed-loop with various model predictive
control schemes.

The (nominal) stability problem of hybrid systems in closed-loop with
MPC controllers is solved in its full generality in Chapter 3. The focus is
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on a particular class of hybrid systems, namely piecewise affine (PWA) sys-
tems. This class of hybrid systems is very appealing as it provides a simple
mathematical description on one hand, and a very high modeling power on
the other hand. For particular choices of MPC cost functions and constrai-
ned PWA systems as prediction models, novel algorithms for computing a
terminal cost and a local state-feedback controller that satisfy the develo-
ped stabilization conditions are presented. Algorithms for calculating low
complexity piecewise polyhedral invariant sets for PWA systems are also de-
veloped. These positively invariant sets are either polyhedral, or consist of
a union of a number of polyhedra that is equal to the number of affine sub-
systems of the PWA system. This is a significant reduction in complexity,
compared to piecewise polyhedral invariant sets for PWA systems obtained
via other existing algorithms. Hence, besides the study of the fundamental
property of stability, the aim is to create control algorithms of low complexity
to enable their on-line implementation.

Before addressing the robust stabilization of PWA systems using MPC
in Chapter 5, two interesting examples are presented in Chapter 4. These
examples feature two discontinuous PWA systems that both admit a discon-
tinuous piecewise quadratic Lyapunov function and are exponentially stable.
However, one of the PWA systems is non-robust to arbitrarily small per-
turbations, while the other one is globally input-to-state stable (ISS) with
respect to disturbance inputs. This indicates that one should be careful
in inferring robustness from nominal stability. Moreover, for the example
that is robust, the input-to-state stability property cannot be proven via
a continuous piecewise quadratic (PWQ) Lyapunov function. However, as
ISS can be established via a discontinuous PWQ Lyapunov function, the
conservatism of continuous PWQ Lyapunov functions is shown in this set-
ting. Therefore, this thesis provides a theoretical framework that can be
used to establish robustness in terms of ISS of discontinuous PWA systems
via discontinuous ISS Lyapunov functions. The sufficient conditions for ISS
of PWA systems are formulated as linear matrix inequalities, which can be
solved efficiently via semi-definite programming. These sufficient conditions
also serve as a tool for establishing robustness of nominally stable hybrid
MPC controllers a posteriori, after the MPC control law has been calcu-
lated explicitly as a PWA state-feedback. Furthermore, we also present a
technique based on linear matrix inequalities for synthesizing input-to-state
stabilizing state-feedback controllers for PWA systems.

In Chapter 5, the problem of robust stabilization of PWA systems using
MPC is considered. Previous solutions to this problem rely without excep-
tions on the assumption that the PWA system dynamics is a continuous
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function of the state. Clearly, this requirement is quite restrictive and arti-
ficial, as a continuous PWA system is in fact a Lipschitz continuous system.
In Chapter 5 we present an input-to-state stabilizing MPC scheme for PWA
systems based on tightened constraints that allows for discontinuous system
dynamics and discontinuous MPC value functions. The advantage of this
new approach, besides being the first robust stabilizing MPC scheme appli-
cable to discontinuous PWA systems, is that the resulting MPC optimization
problem can still be formulated as mixed integer linear programming pro-
blem, which is a standard optimization problem in hybrid MPC.

A min-max approach to the robust stabilization of perturbed nonlinear
systems using MPC is presented in Chapter 6. Min-max MPC, although
computationally more demanding, can provide feedback to the disturbance,
resulting in better performance when the controlled system is affected by
perturbations. We show that only input-to-state practical stability can be
ensured in general for perturbed nonlinear systems in closed-loop with min-
max MPC schemes. However, new sufficient conditions that guarantee input-
to-state stability of the min-max MPC closed-loop system are derived, via a
dual-mode approach. These conditions are formulated in terms of properties
that the terminal cost and a local state-feedback controller must satisfy.
New techniques for calculating the terminal cost and the local controller for
perturbed linear and PWA systems are also presented in Chapter 6.

The final part of the thesis focuses on the design of robustly stabilizing,
but computationally friendly, sub-optimal MPC algorithms for perturbed
nonlinear systems and hybrid systems. This goal is achieved via new, simpler
stabilizing constraints, that can be implemented as a finite number of linear
inequalities. These algorithms are attractive for real-life implementation,
when solvers usually provide a sub-optimal control action, rather than a
globally optimal one. The potential for practical applications is illustrated
via a case study on the control of DC-DC converters. Preliminary real-
time computational results are encouraging, as the MPC control action is
always computed within the allowed sampling interval, which is well below
one millisecond for the considered Buck-Boost DC-DC converter.

In conclusion, this thesis contains a complete framework on the synthesis
of model predictive controllers for hybrid systems that guarantees stable
and robust closed-loop systems. The latter properties are indispensable for
any application of these control algorithms in practice. In the set-ups of the
MPC algorithms, a clear focus was also on keeping the on-line computational
burden low via simpler stabilizing constraints. The example on the control of
DC-DC converters showed that the application to (very) fast systems comes
within reach. This opens up a completely new range of applications, next
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to the traditional process control for typically slow systems. Therefore, the
developed theory represents a fertile ground for future practical applications
and it opens many roads for future research in model predictive control and
stability of hybrid systems as well.
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Motto:

“Do not worry about your difficul-
ties in mathematics; I can assure you
that mine are still greater.”

- Albert Einstein
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1

Introduction

1.1 Hybrid systems
1.2 Model predictive control
1.3 Open problems in model

predictive control of
hybrid systems

1.4 Outline of the thesis
1.5 Summary of publications
1.6 Basic mathematical

notation and definitions

This thesis deals with the synthesis of stabilizing and robust controllers
for constrained discrete-time hybrid systems. Hybrid systems describe pro-
cesses that include both continuous and discrete dynamics. The large variety
of practical situations where hybrid systems are encountered (for example,
physical processes interacting with discrete embedded controllers) led over
the years to an increasing interest in various aspects of hybrid systems. An
appealing solution to the control of these systems is provided by the mo-
del predictive control methodology, due to its capability to a priori take
into account constraints when computing the control action. Also, since the
principles of model predictive control do not depend on the type of model
applied for prediction, this methodology can be employed to formulate con-
troller design set-ups for hybrid systems. However, the properties of such
control schemes and the feasibility of their implementation have to be re-
considered in the hybrid context. In this thesis we focus in particular on
stability and robustness.

1.1 Hybrid systems

Technological innovation pushes towards the consideration of systems of a
mixed continuous and discrete nature, which are sometimes called hybrid
systems. Hybrid systems arise, for instance, from the combination of an
analog continuous-time process and a digital time asynchronous controller.
Many consumer products (cars, micro-wave units, copy machines and so on)
are controlled through embedded software, rendering the overall process a
system with mixed dynamics. As a consequence, hybrid systems abound in
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our homes, probably more than we realize. Moreover, into the near future
the number of computer-controlled products in our homes will grow even
further. To support this evolution, new methodologies for the analysis and
synthesis of hybrid systems are needed. To guarantee the safety and proper
functionality, we have to improve our understanding of the interaction bet-
ween physical processes, digital controllers and software, as all three parts
influence the dynamic behavior of the overall process. Control theorists and
computer scientists (and others) are joining forces to approach the huge
challenges in this field (see Figure 1.1 for an illustrative picture).

Hybrid nature is not necessarily caused by human intervention in smooth
systems. Although many examples originate from adding digital controllers
to physical processes, the switching between dynamical regimes is naturally
present in a variety of systems. For instance in mechanics, one encounters
friction models that make a clear distinction between stick and slip phases.
Other examples include models describing the evolution of rigid bodies. In
this case the governing equations depend crucially on the fact whether a
contact is active or not. Indeed, the dynamics of a robot arm moving freely
in space is completely different from the situation in which it is striking
the surface of an object. Backlash in gears and dead zones in cog wheels
also result in multi-modal descriptions. It is not difficult to come up with
interesting applications in the mechanical area: control of robotic manipu-
lators driving nails or breaking objects (Brogliato et al., 1997), reduction of
rattling in gear boxes of cars, drilling machines (Pfeiffer and Glocker, 1996),
simulation of crash-tests, regulating landing maneuvers of aircraft, design
of juggling robots (Brogliato and Rio, 2000), and so on. Examples are not
only found in the mechanical domain. Nowadays switches like thyristors and
diodes are used in electrical networks for a great variety of applications in
both power engineering and signal processing. Examples include switched-
capacitor filters, modulators, analog-to-digital converters, switching power
converters, duty-ratio control, choppers, etc. In the ideal case, diodes are
considered as elements with two (discrete) modes: the blocking mode and
the conducting mode. Mode transitions for diodes or stick-slip friction are
governed by state events (sometimes also called internally induced events),
i.e., certain system variables (current or voltage) changing sign. In duty-
ratio control the duration of a switch being open and closed (or the ratio
between them in a fixed time interval) is determined by a control system
and hence, the transitions are triggered by time events (externally induced
events). Control design must take switching and impact phenomena into
account such that a desirable behavior of the closed-loop system is realized.
From the foregoing it is clear that systematic ways of designing controllers
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Figure 1.1: The control community shakes hands with the computer science
community to better understand the role and the benefits of hybrid systems.

for these type of hybrid systems are needed.
The simplest definition of a hybrid system1 is a system whose behavior

is characterized by several modes of operation. In each mode the evolution
of the continuous state of the system is described by its own difference or
differential equation. The system switches between the various modes when
a particular event occurs (see Figure 1.2 for an example, where the arrows
depict the events). These events can have different origins: they can be
caused by variables crossing specific thresholds (state events), by the elapsing
of certain time periods (time events), or by external inputs (input events). At
the switching time instant discontinuities may occur in the system variables,
so there may be a reset of the state. We will typically study hybrid systems
in which the continuous input will be designed and the mode transitions are
externally induced by state events.

There are several approaches to model hybrid systems. Hybrid automata
(Branicky et al., 1998) can model a large class of hybrid systems as they con-

1The term “hybrid systems” was originally introduced by Witsenhausen in 1966, for
describing the combination of continuous dynamical and discrete event systems (Witsen-
hausen, 1966).
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Figure 1.2: An example of a hybrid systems consisting of 5 modes. Its
behavior in each mode is described by a set of differential equations, while
the mode transitions can be triggered by state, input or time dependent
events.

sider a discrete event system where the continuous dynamics in each discrete
state are modeled by an arbitrary differential (difference) equation. Such
models are used in (Branicky et al., 1998) to formulate a general stability
analysis and controller synthesis framework for hybrid systems. Results for
modeling and stability analysis of hybrid systems have also been presented in
the more recent works (Lygeros et al., 2003), where dynamical properties of
hybrid automata are investigated, and (Goebel and Teel, 2006), where a new
formalism based on hybrid time domains is defined for hybrid systems and it
is employed to derive results on stability. These results are very important
because they provide a unified view on solution concepts and stability theory
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for general hybrid systems (see also (van der Schaft and Schumacher, 2000)
for a comprehensive overview).

However, a general model of hybrid systems, although it can capture
a lot of situations (high modeling power), usually leads to a high level of
complexity with respect to analysis and controller design techniques. Indeed,
for a particular instance, a high analytical and computational complexity
originates from the fact that the structure of particular classes of hybrid
systems is not exploited. Therefore, in each choice of modeling formalism
there is always the trade-off between the modeling power and the complexity
of the analysis. That is why the research in hybrid systems also focuses on
particular subclasses that have a simpler representation and more structure,
but still include a wide range of industrially relevant processes. The following
classes of hybrid systems are part of this category:

• Piecewise affine (PWA) systems (Sontag, 1981, 1996; Johansson and
Rantzer, 1998; Ferrari-Trecate et al., 2002);

• Switched systems (Liberzon, 2003);

• Mixed logical dynamical (MLD) systems (Bemporad and Morari, 1999;
Bemporad, 2004);

• Linear complementarity (LC) systems (van der Schaft and Schumacher,
1998; Heemels et al., 2000);

• Discrete event systems extended to include time driven dynamics (Cas-
sandras et al., 2001);

• Max-min-plus-scaling (MMPS) systems (De Schutter and van den Boom,
2001).

In particular, PWA systems have become popular due to their accessible
mathematical description on one hand, and their ability to model a broad
class of (hybrid) systems on the other hand: in (Heemels et al., 2001) it has
been proven that PWA systems are equivalent under certain mild assump-
tions with other relevant classes of hybrid systems, such as MLD systems,
LC systems and MMPS systems. Also, it is well known that PWA systems
can approximate nonlinear systems arbitrarily well (Sontag, 1981) and they
can arise from the interconnection of linear systems and automata (Sontag,
1996). The modeling power of PWA systems has already been shown in se-
veral applications, such as switched power converters (Leenaerts, 1996), op-
timal control of DC-DC converters and direct torque control of three-phase
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Figure 1.3: A constrained piecewise affine system: in each polyhedral region
a different affine dynamics is active. The system dynamics changes when the
state crosses the switching boundaries (denoted by dotted diagonal lines).

induction motors (Geyer et al., 2005), applications to automotive systems
(Bemporad et al., 2003a; Borrelli, 2003; Vasak et al., 2006) and systems bi-
ology (Musters and van Riel, 2004; Drulhe et al., 2006), to mention just a
few.

A significant part of this thesis focuses on discrete-time2 PWA systems
of the form:

xk+1 = Ajxk + Bjuk + fj if xk ∈ Ωj , j ∈ S,

where, k ≥ 0 denotes the discrete-time instant, xk ∈ Rn and uk ∈ Rm are
the state and the input, respectively, Aj ∈ Rn×n, Bj ∈ Rn×m, fj ∈ Rn,
Kj ∈ Rm×n, j ∈ S with S , {1, 2, . . . , s} a finite set of indices and s

denotes the number of discrete modes or affine sub-systems. The collection
{Ωj | j ∈ S} defines a partition of the state-space. A graphical description
of a PWA system is given in Figure 1.3.

The main difficulties in modeling and controlling hybrid systems arise
due to the interaction between discrete (discontinuous) actions (such as the

2We use the term “discrete-time systems” to denote systems described by difference
equations and the term “continuous-time systems” to denote systems described by dif-
ferential equations. This is different from the term “continuous systems” or “continuous

dynamics”, which refers to the continuity property of the function that describes the evo-
lution in time (either discrete-time or continuous-time) of the system state.
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ones triggered in the PWA system of Figure 1.3 by the state belonging to a
certain region in the state-space) and continuous dynamics. As this field is
still far from mature, mostly ad hoc and heuristic techniques of experienced
operators and designers represent the fastest way to solve such problems in
practice. However, this commonly leads to a major effort in tuning, prototy-
ping and trouble-shooting, due to the lack of understanding and systematic
synthesis methodologies that take into account both continuous and discrete
aspects of hybrid systems. It is clear that techniques facilitating combi-
ned analysis and synthesis of both discontinuous and continuous parts are
indispensable to build more efficient controller design methods for hybrid
systems.

The aim of this thesis is to provide a general framework for designing
stabilizing and robust controllers for practically relevant classes of discrete-
time hybrid systems, with an emphasis on PWA systems. A major part of
the proposed approach relies on the model predictive control methodology.

1.2 Model predictive control

Model predictive control (MPC) (also referred to as receding horizon con-
trol) is a control strategy that offers attractive solutions for the regulation
of constrained linear or nonlinear systems and, more recently, also for the
regulation of hybrid systems. Within a relatively short time, MPC has re-
ached a certain maturity due to the continuously increasing interest shown
for this distinctive part of control theory. This is illustrated by its successful
implementation in industry and by many excellent articles and books as well.
See, for example, (Garcia et al., 1989; Mayne et al., 2000; Qin and Badgwell,
2003; Findeisen et al., 2003; Camacho and Bordons, 2004) and the references
therein.

The initial MPC algorithms utilized only linear input/output models. In
this framework, several solutions have been proposed both in the industrial
world and in the academic world: IDCOM - Identification and command
(later MAC - Model algorithmic control) at ADERSA (Richalet et al., 1978)
and DMC - Dynamic matrix control at Shell (Cutler and Ramaker, 1980),
which use step and impulse response models, (the adaptive control branch)
MUSMAR - Multistep multivariable adaptive regulator (Mosca et al., 1984)
- the first MPC formulation that is based on state-space linear models, and
EPSAC - Extend predictive self-adaptive control (De Keyser and van Cau-
wenberghe, 1985). Generalized frameworks for setting up MPC algorithms
based on input/output models were also developed later on, from which the
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most significant ones are GPC - Generalized predictive control (Clarke et al.,
1987) and UPC - Unified predictive control (Soeterboek, 1992). The next
step of the academic community was to extend the MPC algorithms based on
state-space models to continuous (smooth) nonlinear systems, which includes
the following approaches: nonlinear MPC with zero state terminal equality
constraint (Keerthi and Gilbert, 1988), dual-mode nonlinear MPC (Mic-
halska and Mayne, 1993) and quasi-infinite horizon nonlinear MPC (Chen
and Allgöwer, 1996). More recent general set-ups for synthesizing stabilizing
MPC algorithms for smooth nonlinear systems can be found in (Magni et al.,
2001; Grimm et al., 2005). The first MPC approach for the control of hybrid
systems has been reported quite recently in (Bemporad and Morari, 1999)
(more about MPC for hybrid systems can be found in the next section).

One of the reasons for the fruitful achievements of MPC algorithms con-
sists in the intuitive way of addressing the control problem. In comparison
with conventional control, which often uses a pre-computed state or output
feedback control law, predictive control uses a discrete-time3 model of the
system to obtain an estimate (prediction) of its future behavior. This is
done by applying a set of input sequences to a model, with the measured
state/ouput as initial condition, while taking into account constraints. An
optimization problem built around a performance oriented cost function is
then solved to choose an optimal sequence of controls from all feasible se-
quences. The feedback control law is then obtained in a receding horizon
manner by applying to the system only the first element of the computed
sequence of optimal controls, and repeating the whole procedure at the next
discrete-time step. Summarizing the above discussion, one can conclude that
MPC is built around the following key principles:

• The explicit use of a process model for calculating predictions of the
future plant behavior;

• The optimization of an objective function subject to constraints, which
yields an optimal sequence of controls;

• The receding horizon strategy, according to which only the first element
of the optimal sequence of controls is applied on-line.

The MPC methodology involves solving on-line an open-loop finite horizon
optimal control problem subject to input, state and/or output constraints.

A graphical illustration of this concept is depicted in Figure 1.4.

3Although continuous-time models can also be employed, see (Mayne et al., 2000),
MPC is mostly based on discrete-time models.
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Figure 1.4: A graphical illustration of Model Predictive Control.

At each discrete-time instant k, the measured variables and the process
model (linear, nonlinear or hybrid) are used to (predict) calculate the futu-
re behavior of the controlled plant over a specified time horizon, which is
usually called the prediction horizon and is denoted by N . This is achie-
ved by considering a future control scenario as the input sequence applied
to the process model, which must be calculated such that certain desired
constraints and objectives are fulfilled. To do that, a cost function is mini-
mized subject to constraints, yielding an optimal sequence of controls over a
specified time horizon, which is usually called control horizon and is denoted
by Nu. According to the receding horizon control strategy, only the first
element of the computed optimal sequence of controls is then applied to the
plant and this sequence of steps is repeated at the next discrete-time instant,
for the updated state.

The MPC methodology can be summarized formally as the following
constrained optimization problem:
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Problem 1.2.1 Let N ≥ 1 be given and let X ⊆ Rn and U ⊆ Rm be sets
that implement state and input constraints, respectively, and contain the
origin in their interior. The prediction model is xk+1 = g(xk, uk), k ≥ 0,
with g : Rn × Rm → Rn a nonlinear, possibly discontinuous function with
g(0, 0) = 0. Let F : Rn → R+ with F (0) = 0 and L : Rn × Rm → R+ with
L(0, 0) = 0 be known mappings. At every discrete-time instant k ≥ 0 let
xk ∈ X be the measured state, let x0|k , xk and minimize the cost function

J(xk,uk) , F (xN |k) +
N−1∑

i=0

L(xi|k, ui|k),

over all input sequences uk , (u0|k, . . . , uN−1|k) subject to the constraints:

xi+1|k , g(xi|k, ui|k), i = 0, . . . , N − 1,

xi|k ∈ X, for all i = 1, . . . , N,

ui|k ∈ U, for all i = 0, . . . , N − 1.

In Problem 1.2.1, F (·), L(·, ·) and N denote the terminal cost, the stage cost
and the prediction horizon, respectively. The term xi|k denotes the predicted
state at future discrete-time instant i ∈ [0, N ], obtained at discrete-time in-
stant k ≥ 0 by applying the input sequence {ui|k}i=0,...,N−1 to a model of the
system, i.e. xk+1 = g(xk, uk), with the measured state xk as initial condition,
i.e. x0|k = xk. The control actions in the sequence {ui|k}i=0,...,N−1 consti-
tute the optimization variables. Suppose that the above MPC optimization
problem is solvable and let {u∗

i|k}i=0,...,N−1 denote an optimal solution. The
MPC control action is obtained as follows:

uMPC(xk) , u∗
0|k; k ≥ 0.

One of the most studied research problems regarding MPC, which is also
addressed in this thesis, consists in how to guarantee stability of a system in
closed-loop with an MPC controller, e.g. obtained by solving Problem 1.2.1,
as this is not automatically guaranteed and is indispensable for industrial
applications. For linear and continuous nonlinear systems, many solutions
to this problem have been developed, see the survey (Mayne et al., 2000) for
a comprehensive and well documented overview. The most popular appro-
ach is the so-called terminal cost and constraint set method, which requires
that the terminal predicted state, i.e. xN |k, is constrained inside a terminal
set that contains the origin (the equilibrium) in its interior. Then, under the
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assumption that the system dynamics and the MPC value function corres-
ponding to Problem 1.2.1 are continuous, sufficient stabilization conditions,
in terms of properties that a terminal cost F (·) and a terminal constraint set
(usually denoted by XT ) must satisfy, can be found in (Mayne et al., 2000).

1.3 Open problems in model predictive control of

hybrid systems

Although the key principles of MPC are independent of the type of system,
e.g. linear, nonlinear or hybrid, the computational complexity of the MPC
constrained optimization problem, as well as the stability issues, strongly
depend on the type of model used for prediction. For instance, assuming
that the MPC cost is defined using quadratic forms (Hahn, 1967) and the
constraint sets are polyhedra,

• Problem 1.2.1 is a quadratic programming problem if the model is
linear;

• Problem 1.2.1 is a nonlinear optimization problem if the model is non-
linear;

• Problem 1.2.1 is a mixed integer quadratic programming problem (Bem-
porad and Morari, 1999) if the model is piecewise affine.

Therefore, depending on the utilized prediction model and MPC cost func-
tion, different tools are required for solving the MPC optimization problem.

Next to the practical motivation to develop systematic analysis and con-
trol design methods for hybrid systems, there is also a strong theoretical
motivation for the work in this thesis, as fundamental properties like stabi-
lity and robustness are unclear in the hybrid context. Indeed, the switching
behavior of hybrid models, such as PWA ones, makes them inherently non-
linear and discontinuous. As such, the stabilization conditions for smooth
nonlinear MPC, e.g. as the ones presented in (Mayne et al., 2000), do not
apply when hybrid models are used for prediction. Also, the techniques de-
veloped for linear systems to compute the terminal cost and the terminal set
such that these stabilization conditions are fulfilled do not work for PWA or
other hybrid systems. In fact, in the excellent survey (Mayne et al., 2000),
as a direction for future research, it was pointed out that all MPC stability
notions should be reconsidered in the hybrid context.

The research on model predictive control of hybrid systems focuses on effi-
cient ways to solve the corresponding finite horizon constrained optimization
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problems and on techniques to a priori guarantee stability of the controlled
system. Fruitful results have already been obtained regarding computatio-
nal aspects, starting with the seminal paper (Bemporad and Morari, 1999)
that considers MPC costs defined using quadratic forms and mixed logical
dynamical (MLD) prediction models. In this case the hybrid MPC optimi-
zation problem corresponding to Problem 1.2.1 is a mixed integer quadratic
programming (MIQP) problem. Significant advances have been obtained for
MPC costs defined using 1,∞-norms and MLD or PWA prediction models,
see, for example, (Bemporad et al., 2000; Baotic et al., 2003; Borrelli, 2003).
In this case, the hybrid MPC optimization problem corresponding to Pro-
blem 1.2.1 is a mixed integer linear programming (MILP) problem. Although
the computational complexity of these types of optimization problems is non-
polynomial, they can be solved explicitly for low dimensional4 systems, via
multi parametric programming (Bemporad et al., 2000; Borrelli, 2003). The
most recent research on computational aspects of MPC for hybrid systems
deals with methods for solving MIQP and MILP problems efficiently, e.g.
see (Lazar and Heemels, 2003; Bemporad and Giorgetti, 2003; Grieder et al.,
2005) and the references therein. Software tools that can be used to solve hy-
brid MPC optimization problems for MLD or PWA systems can be found in
the following Matlab toolboxes: the Hybrid Toolbox (HT)(Bemporad, 2003)
and the Multi Parametric Toolbox (MPT) (Kvasnica et al., 2004).

This thesis focuses mainly on the (robust) stability of hybrid systems in
closed-loop with MPC controllers. Attractivity was proven for the equili-
brium of the closed-loop system in (Bemporad and Morari, 1999; Borrelli,
2003). Besides attractivity, Lyapunov stability is also a desirable property
from a practical point of view. This is because, if attractivity alone is gua-
ranteed, then an arbitrarily small disturbance acting on the system close to
the origin can cause the state to drift arbitrarily far away from the origin,
before converging again. A general proof of Lyapunov stability is missing
from the literature on MPC of hybrid systems.

Proofs of Lyapunov stability for particular types of MPC cost functi-
ons and hybrid prediction models have appeared recently, see, for example,
(Kerrigan and Mayne, 2002; Mayne and Rakovic, 2003; Grieder et al., 2005).
Still, note that (Kerrigan and Mayne, 2002) and (Mayne and Rakovic, 2003)
consider continuous PWA systems, which are in fact Lipschitz continuous
systems. Moreover, the Lyapunov stability result of Theorem 2 in (Kerrigan
and Mayne, 2002) is obtained by forcing the MPC value function (based on

4In principle, these problems can be solved explicitly for systems of any dimension, but
the computational burden limits this approach to systems of low dimension in practice.
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1,∞-norms) to be zero in the terminal set and by taking certain assumptions
that are hard to be a priori guaranteed in general. The stability result of
Theorem 5 in (Mayne and Rakovic, 2003) (MPC based on quadratic costs)
uses the assumption that the origin is in the interior of one of the regions
in the state-space partition of the PWA system, a case in which the stabi-
lization conditions for linear MPC apply. Theorem 3.1 in (Grieder et al.,
2005) addresses asymptotic stability of quadratic cost MPC of general PWA
systems, but it relies on the survey (Mayne et al., 2000), where continuity of
the MPC value function is assumed (see Section 3.2 of (Mayne et al., 2000)).
Note that continuity of the MPC value function cannot be guaranteed when
hybrid prediction models are used, as it is illustrated by many examples
presented in this thesis (see also (Borrelli, 2003)).

Another option to guarantee stability for MPC of hybrid systems based
on 1,∞-norms, presented in (Christophersen et al., 2004), is to perform
an a posteriori check of stability, after computing the MPC control law
as an explicit PWA function (Borrelli, 2003). However, in case such an a
posteriori test fails, there is no systematic procedure available for re-tuning
the parameters of the MPC algorithm such that stability is achieved.

Recently, results on robust MPC of hybrid systems have been presen-
ted in (Kerrigan and Mayne, 2002) and (Rakovic and Mayne, 2004), which
deal with dynamic programming and tube based approaches, respectively,
for solving feedback min-max MPC problems (Mayne, 2001) for continuous
PWA systems, and also provide a robust stability guarantee. However, the
resulting min-max MPC optimization problems usually have a much higher
computational burden, compared to standard hybrid MPC MIQP or MILP
problems. Also, the results of (Kerrigan and Mayne, 2002; Rakovic and
Mayne, 2004) are not applicable to discontinuous PWA systems.

As discussed in this section, there is both a practical and theoretical need
for a complete framework for setting up stabilizing and robust predictive con-
trollers for hybrid systems. The results of this thesis, which are summarized
in the next section, contribute to the development of such a framework.

1.4 Outline of the thesis

The remainder of this thesis is organized as follows.
Chapter 2, entitled Classical stability results revisited, provides general

results on three well-known properties of discrete-time nonlinear systems:

• asymptotic stability in the Lyapunov sense (Kalman and Bertram,
1960b);
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• input-to-state stability (Jiang and Wang, 2001);

• input-to-state practical stability (Jiang, 1993).

The focus is on discontinuous system dynamics and discontinuous candidate
Lyapunov functions as this is the case in the hybrid context. It is shown
that continuity of the system dynamics and the Lyapunov function at the
equilibrium point, rather than continuity on a neighborhood5 of the equili-
brium, is sufficient to guarantee asymptotic stability in the Lyapunov sense
or input-to-state stability for discrete-time, possibly discontinuous, nonlinear
systems. The importance of these results for stability theory of hybrid sys-
tems cannot be overstated, as it is illustrated by the following elementary
example of a PWA system:

xk+1 =

{
A1xk if [1 0]xk ≤ 1

A2xk if [1 0]xk > 1,

where

A1 =

[
0.62 −0.2848

−0.0712 0.8336

]
, A2 =

[
0.5125 −0.2855
1.4277 0.5125

]
.

This discontinuous PWA system is asymptotically stable in the Lyapunov
sense, see Figure 1.5 for a the trajectory plot. However, one can easily check
that the search for a continuous piecewise quadratic Lyapunov function6 for
the considered system fails, while a discontinuous piecewise quadratic Lya-
punov function can be found7. Therefore, even in very simple hybrid systems
as the one presented above, stability can often be established via a disconti-
nuous (piecewise quadratic) Lyapunov function. In such cases, robust stabi-
lity can no longer be established using classical arguments (see Chapter 4 for
details), which rely on continuous Lyapunov functions. However, the above
example is input-to-state stable, as it will be shown in chapter four. This
property will be established via a discontinuous ISS Lyapunov function.

The results developed in Chapter 2, by allowing for discontinuous system
dynamics and Lyapunov functions, can be employed throughout the thesis

5By continuity on a neighborhood of the equilibrium we mean continuity at all the
points contained in this neighborhood.

6This search can be performed efficiently via semi-definite programming (Boyd et al.,
1994), see Chapter 4 for details.

7Since the system is robustly stable, other types of continuous Lyapunov functions may
exist for this system, as implied by the converse theorems presented in (Kellett and Teel,
2004). However, it is not clear how one could construct a continuous Lyapunov function
in this case.



1.4. Outline of the thesis 27

Figure 1.5: A trajectory plot for the considered PWA system.

to derive stability and robust stability results for piecewise affine systems or
more general hybrid systems in closed-loop with MPC controllers. Additio-
nally, in the theorems regarding input-to-state (practical) stability, a special
type of K∞-functions (Hahn, 1967) is employed, which makes it possible to
derive explicit bounds on the evolution of the system state. These bounds are
important because they provide an a priori guarantee of robust performance
for the closed-loop system.

Chapter 3, entitled Stabilizing model predictive control of hybrid sys-
tems, addresses the stability problem of hybrid systems in closed-loop with
MPC controllers in its full generality and presents a priori sufficient con-
ditions for Lyapunov asymptotic stability and exponential stability of the
closed-loop system. The contribution of this chapter is threefold. First, a
general theorem on asymptotic stability in the Lyapunov sense that unifies
most of the previous results on stability of MPC is presented. This theorem
applies to a wide class of hybrid systems and MPC cost functions, and it
does not require continuity of the MPC value function nor of the system dy-
namics. Second, for particular choices of MPC criteria and constrained PWA
systems as prediction models, novel algorithms for computing a terminal cost
and a local state-feedback controller that satisfy the developed stabilization
conditions are presented. For quadratic MPC costs, the stabilization con-
ditions translate into a linear matrix inequality while, for MPC costs based
on 1,∞-norms, they are obtained as norm inequalities. Third, new ways for
calculating positively invariant sets for feedback controlled PWA systems are
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also presented. The focus is on obtaining invariant sets for PWA systems
that are:

• piecewise polyhedral - i.e. they consist of a union of a finite number of
polyhedra,

• and have a low complexity - i.e. the number of polyhedra forming the
union is as small as possible.

The developed algorithms yield positively invariant sets for PWA systems
that are either polyhedral, or consist of a union of a number of polyhedra
that is equal to the number of affine sub-systems of the PWA system. This
is a significant reduction in complexity, compared to piecewise polyhedral
invariant sets for PWA systems obtained via other algorithms from the li-
terature, such as the one of (Rakovic et al., 2004). The low complexity
piecewise polyhedral invariant sets can be used as terminal constraint sets in
MPC schemes for PWA systems, resulting in a computationally more friendly
MIQP or MILP optimization problem.

Chapter 4, entitled Global input-to-state stability and stabilization of
discrete-time PWA systems, investigates robust stability of piecewise affine
systems. We are motivated by the following insightful example:

xk+1 = Ajxk + fj when xk ∈ Ωj ,

with j ∈ S , {1, . . . , 9}, k ∈ Z+, and where

Aj =

[
1 0
0 1

]
for j 6= 7; A7 =

[
0.35 0.6062

0.0048 −0.0072

]
; f1 = −f2 =

[
0.5
0

]
;

f3 = f4 = f5 = f6 =

[
0
−1

]
; f7 =

[
0
0

]
; f8 =

[
0.4
−0.1

]
; f9 =

[
−0.4
−0.1

]
.

The system state takes values in the set X , ∪j∈SΩj , where the regions
Ωj are polyhedra (not necessarily closed), as it can be seen in Figure 1.6.
The state trajectories8 of the system obtained for the initial states x0 =
[0.2 3.6]⊤ ∈ Ω2 (square dotted line) and x0 = [0.2 3.601]⊤ ∈ Ω1 (circle dotted
line) are plotted in Figure 1.6. The considered PWA system is asymptotically
stable in the Lyapunov sense. In fact, in Chapter 4 it is proven that the
system is even exponentially stable for all initial conditions in X.

Note that, it is well-known that exponentially stable smooth nonlinear
systems, usually also have some (inherent) robustness (this is in fact due to

8Note that the regions Ω1 and Ω2 are defined such that for all x ∈ ∂Ω1 ∩ ∂Ω2 the
dynamics xk+1 = A2xk + f2 is employed.
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Figure 1.6: Unperturbed state trajectories (square and circle dotted lines).

the presence of a continuous Lyapunov function, see (Grimm et al., 2004)).
However, in the fourth chapter it is also demonstrated that this PWA system
has no robustness (i.e. it looses the asymptotic stability property) in the pre-
sence of arbitrarily small additive disturbances, a phenomenon that is called
“zero robustness”9. This phenomenon, which is mainly due to the absence of
a continuous Lyapunov function, issues a warning: in discrete-time it is cruci-
al that disturbances are taken into account when analyzing stability of PWA
or hybrid systems, since nominal stability can be easily lost in the presence
of arbitrarily small perturbations. Therefore, sufficient conditions for global
input-to-state (practical) stability and stabilization of discrete-time, possibly
discontinuous, PWA systems are developed. Piecewise quadratic candidate
input-to-state stable Lyapunov functions are employed for both analysis and
synthesis purposes. This enables us to obtain sufficient conditions based on
linear matrix inequalities, which can be solved efficiently.

Chapter 5, entitled Robust stabilization of discontinuous piecewise affine
systems using model predictive control, employs the input-to-state stabili-
ty framework to investigate the robustness of discrete-time (discontinuous)
PWA systems in closed-loop with MPC, or hybrid MPC for short. The

9This phenomenon was originally reported for smooth nonlinear control systems in
(Grimm et al., 2003a, 2004) and for discontinuous discrete-time nonlinear systems in
(Kellett and Teel, 2004).
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contribution of this chapter is threefold:

• it indicates that one should be cautious in inferring robust stability
results from nominal stability even in the case of PWA systems in
closed-loop with MPC. Indeed, we show via an example taken from
literature that hybrid MPC can generate (discontinuous) MPC values
functions that are not input-to-state Lyapunov functions;

• it provides an a posteriori test for checking robustness of nominally
stabilizing hybrid MPC schemes, possibly with a discontinuous MPC
value function;

• it presents a novel method based on tightened constraints for obtai-
ning MPC schemes for hybrid systems with an a priori robust stability
guarantee.

The advantage of this new approach is that the resulting MPC optimization
problems can still be formulated as MILP or MIQP problems, which are
standard for hybrid MPC.

Chapter 6, entitled Input-to-state stabilizing min-max predictive control-
lers, employs a min-max MPC set-up to synthesize robust predictive control-
lers for perturbed nonlinear systems. Input-to-state practical stability and
input-to-state stability of the closed-loop system are investigated10, with the
aim of providing a priori sufficient conditions for input-to-state stability of
min-max nonlinear MPC.

First, it is shown that only input-to-state practical stability can be ensu-
red in general for perturbed nonlinear systems in closed-loop with min-max
MPC schemes and explicit bounds on the evolution of the closed-loop system
state are provided. Then, new sufficient conditions that guarantee input-to-
state stability of the min-max MPC closed-loop system are derived, via a
dual-mode approach. These conditions are formulated in terms of proper-
ties that the terminal cost and a local state-feedback controller must satisfy.
New techniques that employ linear matrix inequalities in the case of qua-
dratic MPC cost functions and, norm inequalities in the case of MPC cost
functions based on 1,∞-norms, are developed for calculating the terminal
cost and the local controller for perturbed linear and PWA systems.

Chapter 7, entitled Robust sub-optimal predictive controllers, focuses on
the design of robustly stabilizing, but computationally friendly, sub-optimal
MPC algorithms for perturbed nonlinear systems and hybrid systems. This

10Note that the input-to-state practical stability property does not imply asymptotic
stability when the disturbance input vanishes, as it is implied by input-to-state stability.
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goal is achieved via simpler stabilizing constraints, that can be implemented
as a finite number of linear inequalities. Two sub-optimal nonlinear MPC
algorithms are presented. The first one is based on a contraction argument,
i.e. it is proven that, if the norm of the state of the nominal closed-loop
system is sufficiently decreasing at each sampling instant, then input-to-state
stability is guaranteed. The second MPC scheme resorts to an ∞-norm based
artificial Lyapunov function, which only depends on the measured state and
the first element of the sub-optimal sequence of predicted future inputs.
Both these schemes have an input-to-state stability guarantee with respect
to additive disturbance inputs.

For the class of PWA systems, it is shown how the sub-optimal MPC
scheme based on an artificial Lyapunov function can be modified to ensure
input-to-state stability with respect to measurement noise. This modified
scheme is particularly relevant because it can be used in interconnection
with an input-to-state stable observer, resulting in an asymptotically stable
closed-loop system. Methods for computing such artificial Lyapunov functi-
ons off-line for linear or PWA models are also indicated.

A case study on the control of DC-DC converters that includes prelimi-
nary real-time computational results is included to illustrate the potential of
the developed theory for practical applications. As the sampling period of
the considered DC-DC converter is well below one millisecond, this indicates
that the proposed MPC schemes are implementable for (very) fast systems,
which opens up a whole new range of industrial applications in electrical,
mechatronic and automotive systems.

Several concluding remarks and directions for future research are presen-
ted Chapter 8, entitled Conclusions.
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1.6 Basic mathematical notation and definitions

In this section, some basic mathematical notation and standard definitions
are recalled to make the manuscript self-contained.
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Sets and operations with sets:

• R, R+, Z and Z+ denote the field of real numbers, the set of non-
negative reals, the set of integers and the set of non-negative integers,
respectively;

• Z≥c1 and Z(c1,c2] denote the sets {k ∈ Z+ | k ≥ c1} and {k ∈ Z+ | c1 <

k ≤ c2}, respectively, for some c1, c2 ∈ Z+;

• For a set S ⊆ Rn, SN denotes the N -dimensional Cartesian product
S × . . . × S, for some N ∈ Z≥1;

• For a set P ⊆ Rn, ∂P denotes the boundary of P, int(P) denotes
the interior of P, cl(P) denotes the closure of P, card(P) denotes the
number of elements of P and Co(P) denotes the convex hull of P;

• For any real λ ≥ 0 and set P ⊆ Rn, the set λP is defined as

λP , {x ∈ Rn | x = λy for some y ∈ P};

• For two arbitrary sets P1 ⊆ Rn and P2 ⊆ Rn, P1 ∪ P2 denotes their
union, P1 ∩ P2 denotes their intersection, P1 \ P2 denotes their set
difference, P1 ⊂ P2 (or P1 ( P2) denotes “P1 is subset of, but not
equal to, P2”, P1 ⊆ P2 denotes “P1 is subset of, or equal to P2”;

• For two arbitrary sets P1 ⊆ Rn and P2 ⊆ Rn,

P1 ∼ P2 , {x ∈ Rn | x + P2 ⊆ P1}

denotes their Pontryagin difference and

P1 ⊕ P2 , {x + y | x ∈ P1, y ∈ P2}

denotes their Minkowski sum;

• A convex and compact set in Rn that contains the origin in its interior
is called a C-set;

• A polyhedron (or a polyhedral set) in Rn is a set obtained as the
intersection of a finite number of open and/or closed half-spaces;

• A piecewise polyhedral set is a set obtained as the union of a finite
number of polyhedral sets.
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Vectors, matrices and norms:

• For a real number a ∈ R, |a| denotes its absolute value and ⌈a⌉ denotes
the smallest integer larger than a;

• For a sequence {zj}j∈Z+ with zj ∈ Rl, z[k] denotes the truncation of
{zj}j∈Z+ at time k ∈ Z+, i.e. z[k] = {zj}j∈Z[0,k]

, and z[k1,k2] denotes
the truncation of {zj}j∈Z+ at times k1 ∈ Z≥1 and k2 ∈ Z≥k1 , i.e.
z[k1,k2] = {zj}j∈Z[k1,k2]

;

• The Hölder p-norm of a vector x ∈ Rn is defined as:

‖x‖p ,

{
(|x1|p + . . . + |xn|p)

1
p , p ∈ Z[1,∞)

maxi=1,...,n |xi|, p = ∞,

where xi, i = 1, . . . , n is the i-th component of x, ‖x‖2 is also called the
Euclidean norm and ‖x‖∞ is also called the infinity (or the maximum)
norm;

• Let ‖ · ‖ denote an arbitrary Hölder p-norm. For a sequence {zj}j∈Z+

with zj ∈ Rn,
‖{zj}j∈Z+‖ , sup{‖zj‖ | j ∈ Z+};

• In denotes the identity matrix of dimension n × n;

• For some matrices L1, . . . , Ln, diag([L1, . . . , Ln]) denotes a diagonal
matrix of appropriate dimensions with the matrices L1, . . . , Ln on the
main diagonal;

• For a matrix Z ∈ Rm×n and p ∈ Z≥1 or p = ∞

‖Z‖p , sup
x 6=0

‖Zx‖p

‖x‖p
,

denotes its induced matrix norm. It is well known, see, for example,
(Golub and Van Loan, 1989), that ‖Z‖∞ = max1≤i≤m

∑n
j=1 |Z{ij}|,

where Z{ij} is the ij-th entry of Z;

• For a matrix Z ∈ Rm×n, Z⊤ denotes its transpose and Z−1 denotes its
inverse (if it exists);

• For a matrix Z ∈ Rn×n, Z > 0 denotes “Z is positive definite”, i.e. for
all x ∈ Rn \ {0} it holds that x⊤Zx > 0, and Z = Z⊤;
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• For a matrix Z ∈ Rm×n with full-column rank, Z−L , (Z⊤Z)−1Z⊤

denotes the Moore-Penrose inverse of Z, which satisfies Z−LZ = In;

• For a positive definite and symmetric matrix Z, Z
1
2 denotes its Cho-

lesky factor, which satisfies (Z
1
2 )⊤Z

1
2 = Z

1
2 (Z

1
2 )⊤ = Z;

• For a positive definite matrix Z, λmin(Z) and λmax(Z) denote the smal-
lest and the largest eigenvalue of Z, respectively.
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Classical stability results revisited
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2.3 Input-to-state stability

2.4 Input-to-state practical
stability

2.5 Conclusions

In this chapter we recall classical stability properties for discrete-time
nonlinear systems, such as Lyapunov stability and input-to-state stability.
The aim is to derive sufficient stabilization conditions that allow for discon-
tinuous system dynamics and discontinuous candidate Lyapunov functions,
situations that were less of interest before the “hybrid era”.

2.1 Introduction

The Lyapunov stability of nonlinear systems, introduced in the fundamental
work (Lyapunov, 1907), is one of the most important system properties stu-
died in control systems theory. Practically, the goal of any controller design
methodology is to obtain a closed-loop system which is (at least) Lyapunov
stable. A lot of interest has been shown to stability theory of nonlinear sys-
tems, even in the early stages of control system theory, as it is demonstrated
by the excellent survey on continuous-time results (Kalman and Bertram,
1960a). The sufficient conditions for Lyapunov stability presented in (Kal-
man and Bertram, 1960a) are based on the existence of a so-called “candidate
Lyapunov function” that enjoys certain properties. In particular, continuity
and differentiability of the candidate Lyapunov function and continuity of
the system dynamics are required.

Extensions to discrete-time nonlinear systems, although not as numerous
as the articles treating the continuous-time case, have soon followed, see the
early works1 (Li, 1934), (Hahn, 1958), whose results are summarized in the
survey (Kalman and Bertram, 1960b). Later on, as discrete-time systems
became more important in control applications, due to the introduction of
digital computers, several works that also cover the discrete-time case have

1Copies of these two articles can be supplied upon request.
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appeared, see, for example, (Freeman, 1965; Willems, 1970; LaSalle, 1976)
and the more recent books (Vidyasagar, 1993; Khalil, 2002). In discrete-time
the candidate Lyapunov function and the system dynamics do not necessarily
have to be continuous, as it will be shown in this chapter. This is extreme-
ly interesting for hybrid systems, as in this case the system dynamics can
be discontinuous. However, the above-cited discrete-time results cannot be
directly employed to study stability of hybrid systems, as continuity of the
system dynamics is still a standing assumption in most of the literature. Mo-
reover, a complete formal proof is actually missing in the above references.
In this chapter we restate classical stability results (with some minor relaxa-
tions) and we prove that continuity at the equilibrium point alone, rather
than continuity on a neighborhood of the equilibrium suffices for Lyapunov
stability in discrete-time.

For continuous-time nonlinear systems affected by external (disturban-
ce) inputs, the input-to-state stability (ISS) framework, introduced in the
fundamental works (Sontag, 1989, 1990; Sontag and Wang, 1995), has pro-
ven to be very successful, as it generalizes the Lyapunov stability concept to
systems affected by perturbations. Extensions to the discrete-time case have
recently been developed in (Jiang and Wang, 2001, 2002; Jiang et al., 2004).
Similarly to the Lyapunov stability property, sufficient conditions for ISS
are derived in terms of properties that a so-called “candidate ISS Lyapunov
function” must satisfy. In this chapter we will consider a particular case of
the more general sufficient conditions of (Jiang and Wang, 2001) to establish
explicit bounds on the evolution of the perturbed system state and we will
show that continuity at the equilibrium point alone, rather than continuity
on a neighborhood of the equilibrium suffices also for ISS in discrete-time.
The input-to-state practical stability (ISpS) property, introduced in (Jiang,
1993; Jiang et al., 1994, 1996), is also studied in this chapter, as this is rele-
vant for systems which are not even continuous at the equilibrium point (see
Chapter 4 for details) or for candidate ISS Lyapunov functions that are not
even continuous at the equilibrium point (such functions arise in the context
of min-max MPC, see Chapter 6 for details). A discrete-time version of the
continuous-time result of (Jiang et al., 1996) is presented.

2.2 Lyapunov stability

Consider the time-invariant discrete-time autonomous nonlinear system de-
scribed by

xk+1 = G(xk), (2.1)
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where G : Rn → Rn is an arbitrary, possibly discontinuous, nonlinear functi-
on. A point x∗ ∈ Rn is an equilibrium point of system (2.1), if G(x∗) = x∗.
For convenience we recall the following definitions related to stability.

Definition 2.2.1 Let x∗ ∈ Rn be an equilibrium point of system (2.1) and
let X ⊆ Rn be a set that contains an open neighborhood of x∗.

1. The equilibrium x∗ is Lyapunov stable if for any ε > 0 there exists a
δ = δ(ε) > 0 such that

‖x0 − x∗‖ ≤ δ ⇒ ‖xk − x∗‖ ≤ ε for all k ∈ Z+,

where xk is the state of system (2.1) at time k ∈ Z+ with initial state
x0 at time k = 0.

2. The equilibrium x∗ is attractive in X if

lim
k→∞

‖xk − x∗‖ = 0, for all x0 ∈ X.

3. The equilibrium x∗ is locally attractive if there exists a δ > 0 such that

‖x0 − x∗‖ ≤ δ ⇒ lim
k→∞

‖xk − x∗‖ = 0.

4. The equilibrium x∗ is globally attractive if it is attractive in Rn.

5. The equilibrium x∗ is asymptotically stable in X in the Lyapunov sense
if it is both Lyapunov stable and attractive in X.

6. The equilibrium x∗ is locally (globally) asymptotically stable in the
Lyapunov sense if it is both Lyapunov stable and locally (globally)
attractive.

7. The equilibrium x∗ is exponentially stable in X if there exist θ > 0 and
τ ∈ [0, 1) such that

‖xk − x∗‖ ≤ θ‖x0 − x∗‖τk, for all x0 ∈ X and for all k ∈ Z+.

8. The equilibrium x∗ is locally exponentially stable if there exists a δ > 0,
θ > 0 and τ ∈ [0, 1) such that

‖x0 − x∗‖ ≤ δ ⇒ ‖xk − x∗‖ ≤ θ‖x0 − x∗‖τk, for all k ∈ Z+.



40 Classical stability results revisited

9. The equilibrium x∗ is globally exponentially stable if it is exponentially
stable in Rn.

Definition 2.2.2 A real-valued scalar function ϕ : R+ → R+ belongs to
class M (ϕ ∈ M) if it is non-decreasing, ϕ(0) = 0 and ϕ(x) > 0 for x > 0.
A real-valued scalar function ϕ : R+ → R+ belongs to class K (ϕ ∈ K) if it
is continuous, strictly increasing and ϕ(0) = 0. A real-valued scalar function
ϕ : R+ → R+ belongs to class K∞ (ϕ ∈ K∞) if ϕ ∈ K and it is radially
unbounded (i.e. ϕ(s) → ∞ as s → ∞).

Definition 2.2.3 Let 0 ≤ λ ≤ 1 be given. A set P ⊆ Rn that contains the
origin in its interior is called a λ-contractive set for system (2.1) if for all
x ∈ P it holds that G(x) ∈ λP. For λ = 1 a λ-contractive set is called a
positively invariant set.

In this section we formulate discrete-time stability results for the disconti-
nuous autonomous nonlinear system (2.1). For simplicity of exposition we
assume that x∗ = 0 is an equilibrium point for system (2.1), i.e. G(0) = 0.

Theorem 2.2.4 Let X ⊆ Rn be a bounded positively invariant set for sy-
stem (2.1) that contains a neighborhood N of the equilibrium x∗ = 0 and
let α1, α2 and α3 be class K-functions. Suppose there exists a function
V : X → R+ with V (0) = 0 such that:

V (x) ≥ α1(‖x‖), ∀x ∈ X, (2.2a)

V (x) ≤ α2(‖x‖), ∀x ∈ N , (2.2b)

V (G(x)) − V (x) ≤ −α3(‖x‖), ∀x ∈ X. (2.2c)

Then the following results hold:

(i) The origin of the nonlinear system (2.1) is asymptotically stable in
the Lyapunov sense in X.

(ii) If the inequalities in (2.2) hold with α1(s) , asλ, α2(s) , bsλ,
α3(s) , csλ for some constants a, b, c, λ > 0, then the origin of the nonli-
near system (2.1) is locally exponentially stable. Moreover, if the inequality
(2.2b) holds for N = X, then the origin of the nonlinear system (2.1) is
exponentially stable in X.

Proof: Stability. Let xk represent the solution of (2.1) at time k ∈ Z+,
obtained from the initial condition x0 at time k = 0. Take an η > 0 such
that the ball Bη , {x ∈ Rn | ‖x‖ ≤ η} satisfies Bη ⊆ N . Since α1, α2 ∈ K



2.2. Lyapunov stability 41

we can choose for any 0 < ε ≤ η a δ ∈ (0, ε) such that α2(δ) < α1(ε). For
any x0 ∈ Bδ ⊆ X, due to positive invariance of X, from (2.2b) it follows that

. . . ≤ V (xk+1) ≤ V (xk) ≤ . . . ≤ V (x0) ≤ α2(‖x0‖) ≤ α2(δ) < α1(ε).

Since we have that V (x) ≥ α1(ε) for all x ∈ X \ Bε it follows that xk ∈ Bε

for all k ∈ Z+. Hence, the origin of the nonlinear system (2.1) is Lyapunov
stable.

Attractivity. Since ∆V (xk) , V (xk+1) − V (xk) ≤ 0 and V (·) is lower
bounded by zero, it follows that limk→∞ V (xk) = VL ≥ 0 exists. Then,

lim
k→∞

∆V (xk) = VL − VL = 0.

Since 0 ≤ α3(‖xk‖) ≤ −∆V (xk), it follows that limk→∞ α3(‖xk‖) = 0.
Assume by contradiction that ‖xk‖ 9 0 for k → ∞. Then there exists a
subsequence {xkl

}l∈Z+ such that ‖xkl
‖ > µ > 0 for all l ≥ 0, which by

monotonicity and positivity of α3 implies that α3(‖xkl
‖) ≥ α3(µ) > 0 for

all l ≥ 0. Hence, we reached a contradiction of convergence of α3(‖xk‖) to
zero. Hence, limk→∞ ‖xk‖ = 0 for all x0 ∈ X, which implies that the origin
of the nonlinear system (2.1) is attractive in X and thus, we have asymptotic
stability in X in the Lyapunov sense.

Exponential stability. Take an η > 0 such that Bη ⊆ N and select for
any 0 < ε ≤ η a δ ∈ (0, ε) such that α2(δ) < α1(ε), as in the proof Lyapunov
stability. Suppose x0 ∈ Bδ. Then xk ∈ Bε ⊆ N for all k ∈ Z+. Therefore
it holds that V (xk) ≤ α2(‖xk‖) and V (xk+1) − V (xk) ≤ −α3(‖xk‖) for all
k ∈ Z+. Then, we have that for all k ∈ Z+

V (G(xk)) − V (xk) ≤ −c‖xk‖λ = −c

b
α2(‖xk‖) ≤ −c

b
V (xk).

This implies that:

V (xk) ≤ (1 − c

b
)kV (x0) for all k ∈ Z+.

In order to show that 0 ≤ 1− c
b

< 1, we use the inequalities (2.2b) and (2.2c),
which yield:

0 ≤ V (G(xk)) ≤ V (xk) − c‖xk‖λ ≤ α2(‖xk‖) − c‖xk‖λ = (b − c)‖xk‖λ.

Hence, it follows that b ≥ c > 0. Then, we have that ρ , 1 − c
b
∈ [0, 1).

From (2.2a) and (2.2b) it follows that

a‖xk‖λ ≤ V (xk) ≤ ρkV (x0) ≤ ρkb‖x0‖λ, for all k ∈ Z+.
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Figure 2.1: A graphical illustration of M-functions versus K-functions.

Hence, ‖xk‖ ≤ θ‖x0‖τk for all x0 ∈ Bδ and all k ∈ Z+, with θ , ( b
a
)

1
λ > 0

and τ , ρ
1
λ ∈ [0, 1). This means that the origin of the nonlinear system

(2.1) is locally exponentially stable, i.e. in a ball Bδ ⊆ N . Moreover, since
X is a positively invariant set for system (2.1), if inequality (2.2b) holds for
N = X then, by applying the same reasoning as above, it follows that the
origin of the nonlinear system (2.1) is exponentially stable in X.

Definition 2.2.5 A function V (·) that satisfies the hypothesis of Theo-
rem 2.2.4 is called a Lyapunov function.

Consider the following aspects regarding Theorem 2.2.4:
(i) The hypothesis of Theorem 2.2.4 allows that both G(·) and V (·) are

discontinuous. It only implies continuity at the point x = 0, and not neces-
sarily on a neighborhood of x = 0;

(ii) We only use α1, α2 ∈ K locally, in an arbitrary neighborhood of
the origin. Outside this neighborhood it is sufficient that α1, α2 ∈ M, see
Figure 2.1 for an illustrative plot. Allowing for class M bounds, which can
be discontinuous, might be convenient from a synthesis point of view, e.g.
when dealing with hybrid systems. This is because a class M upper bound
is less conservative and more easy to construct than a global class K upper
bound, when dealing with piecewise continuous systems, such as piecewise
affine or switched systems;

(iii) For x ∈ Bδ ⊆ N we have that ‖x‖ ≤ δ, which implies that for
x ∈ X \Bδ, ‖x‖ > δ. Then, from inequality (2.2a) it follows that there exists
a lower bound on V (·) outside the ball Bδ, i.e. for x ∈ X \ Bδ. This replaces
the more common and somewhat more restrictive assumption that V (·) is
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radially unbounded, i.e. V (x) → ∞ as x → ∞;
(iv) The inequality (2.2c) implies that inequality (2.2a) is satisfied with

α1(s) , α3(s).

2.3 Input-to-state stability

Consider the discrete-time perturbed autonomous nonlinear system:

xk+1 = G(xk, vk), k ∈ Z+, (2.3)

where xk ∈ Rn is the state, vk ∈ Rdv is an unknown disturbance input and
G : Rn × Rdv → Rn is a nonlinear, possibly discontinuous function. For
simplicity of notation, we assume that the origin is an equilibrium in (2.3)
for zero disturbance input, meaning that G(0, 0) = 0.

Definition 2.3.1 For a given 0 ≤ λ ≤ 1, a set P ⊆ Rn with 0 ∈ int(P) is
called a robust λ-contractive set (with respect to V) for system (2.3) if for
all x ∈ P it holds that G(x, v) ∈ λP for all v ∈ V. For λ = 1 a robust
λ-contractive set (with respect to V) is called a Robust Positively Invariant
(RPI) set (with respect to V).

Definition 2.3.2 A function β : R+ × R+ → R+ belongs to class KL if
for each fixed k ∈ R+, β(·, k) ∈ K and for each fixed s ∈ R+, β(s, ·) is
non-increasing and limk→∞ β(s, k) = 0.

Next, we introduce the notion of global input-to-state stability, as defined in
(Jiang and Wang, 2001), for the discrete-time nonlinear system (2.3).

Definition 2.3.3 The perturbed system (2.3) is globally Input-to-State Sta-
ble (ISS) if there exist a KL-function β and a K-function γ such that, for
each initial condition x0 ∈ Rn and all {vj}j∈Z+ with vj ∈ Rdv for all j ∈ Z+,
it holds that the corresponding state trajectory satisfies

‖xk‖ ≤ β(‖x0‖, k) + γ(‖v[k−1]‖) for all k ∈ Z≥1.

In this thesis we will often deal with constrained systems. Therefore we also
introduce the following local ISS notion.

Definition 2.3.4 Let X and V be subsets of Rn and Rdv , respectively, with
0 ∈ int(X). We call system (2.3) ISS for initial conditions in X and distur-
bances in V if there exist a KL-function β and a K-function γ such that, for
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each x0 ∈ X and all {vj}j∈Z+ with vj ∈ V for all j ∈ Z+, it holds that the
corresponding state trajectory satisfies

‖xk‖ ≤ β(‖x0‖, k) + γ(‖v[k−1]‖) for all k ∈ Z≥1.

For brevity, throughout the remainder of this thesis, we will use the
term “input-to-state stable” or “ISS” to denote the local property of Defini-
tion 2.3.4, i.e. “ISS for initial conditions in X and disturbances in V”, unless
explicitly specified otherwise. The term “global ISS” will be employed to
denote the global property of Definition 2.3.3.

Note that, in the case when the disturbance input converges to zero, the
input-to-state stability property implies asymptotic stability, i.e. the state
also converges to zero.

We are now ready to state the main result of this section.

Theorem 2.3.5 Let α1(s) , asλ, α2(s) , bsλ, α3(s) , csλ for some
a, b, c, λ > 0 and let σ ∈ K. Let V be a subset of Rdv that contains the origin.
Let X with 0 ∈ int(X) be a RPI set for system (2.3) and let V : X → R+ be
a function with V (0) = 0. Consider the following inequalities:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (2.4a)

V (G(x, v)) − V (x) ≤ −α3(‖x‖) + σ(‖v‖). (2.4b)

If inequalities (2.4) hold for all x ∈ X and all v ∈ V, then system (2.3) is ISS
for initial conditions in X and disturbances in V. Moreover, the ISS property
of Definition 2.3.4 holds with

β(s, k) , α−1
1 (2ρkα2(s)), γ(s) , α−1

1

(
2σ(s)

1 − ρ

)
, (2.5)

where ρ , 1 − c
b
∈ [0, 1).

Proof: From the hypothesis we have that α1(‖x‖) ≤ V (x) ≤ α2(‖x‖)
for all x ∈ X. For x ∈ X \ {0}, due to V (x) ≤ α2(‖x‖) for all x ∈ X we
obtain:

V (x) − α3(‖x‖) ≤
(

1 − α3(‖x‖)
α2(‖x‖)

)
V (x) = ρV (x), ∀x ∈ X \ {0},

where ρ , 1 − c
b
. Next, we show that ρ ∈ [0, 1). Since inequality (2.4) holds

for v = 0 it follows that

0 ≤ V (G(x, 0)) ≤ V (x) − c‖x‖λ ≤ (b − c)‖x‖λ.
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Hence, it follows that b ≥ c > 0 and thus ρ ∈ [0, 1). Since V (0)− α3(‖0‖) =
ρV (0) = 0, we have that V (x) − α3(‖x‖) ≤ ρV (x) for all x ∈ X. Then,

V (G(xk, vk)) = V (xk+1) ≤ ρV (xk) + σ(‖vk‖), ∀xk ∈ X, vk ∈ V, k ∈ Z+.

Due to robust positive invariance of X we can apply the above inequality
repetitively, which yields:

V (xk+1) ≤ ρk+1V (x0) + ρkσ(‖v0‖) + ρk−1σ(‖v1‖) + . . . + σ(‖vk‖),

for all x0 ∈ X, vk ∈ V, k ∈ Z+. Then, it follows that:

α1(‖xk+1‖) ≤ V (xk+1) ≤ ρk+1α2(‖x0‖) +
k∑

i=0

ρiσ(‖wk−i‖)

≤ ρk+1α2(‖x0‖) + σ(‖w[k]‖)
1

1 − ρ
,

for all x0 ∈ X, v[k] ∈ Vk+1, k ∈ Z+. One can easily check that α1 ∈ K∞

implies α−1
1 ∈ K∞. Then, taking into account that α−1

1 ∈ K∞ and σ ∈ K we
obtain:

‖xk+1‖ ≤ α−1
1

(
ρk+1α2(‖x0‖) + σ(‖v[k]‖)

1

1 − ρ

)

≤ α−1
1

(
2 max

(
ρk+1α2(‖x0‖), σ(‖v[k]‖)

1

1 − ρ

))

≤ α−1
1 (2ρk+1α2(‖x0‖)) + α−1

1

(
2σ(‖v[k]‖)

1

1 − ρ

)
,

for all x0 ∈ X, v[k] ∈ Vk+1, k ∈ Z+. Next, we consider two situations: ρ = 0
or ρ ∈ (0, 1). If ρ = 0 we have that

‖xk‖ ≤ α−1
1 (σ(‖vk−1‖)) ≤ β(‖x0‖, k) + α−1

1 (σ(‖v[k−1]‖))
≤ β(‖x0‖, k) + α−1

1 (2σ(‖v[k−1]‖))

for any β ∈ KL, k ∈ Z≥1.
For ρ ∈ (0, 1), let β(s, k) , α−1

1 (2ρkα2(s)). For a fixed k ∈ Z+, we have
that β(·, k) ∈ K due to α2 ∈ K∞, α−1

1 ∈ K∞ and ρ ∈ (0, 1) For a fixed
s, it follows that β(s, ·) is non-increasing and limk→∞ β(s, k) = 0, due to
ρ ∈ (0, 1) and α−1

1 ∈ K∞. Thus, it follows that β ∈ KL.
Now let γ(s) , α−1

1 (2σ(s) 1
1−ρ

). Since 1
1−ρ

> 0, it follows that γ ∈ K due

to α−1
1 ∈ K∞ and σ ∈ K.
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Hence, the perturbed nonlinear system (2.3) is ISS in the sense of Defi-
nition 2.3.4 for all x0 ∈ X and all disturbance inputs vk ∈ V, k ∈ Z+, with
β and γ as in (2.5).

Definition 2.3.6 A function V (·) that satisfies the hypothesis of Theo-
rem 2.3.5 is called an ISS Lyapunov function.

Consider the following aspects regarding Theorem 2.3.5:
(i) The hypothesis of Theorem 2.3.5 allows that both G(·, ·) and V (·)

are discontinuous. It only implies continuity at the point x = 0, and not
necessarily on a neighborhood of x = 0;

(ii) The proof of this theorem can also be based on the proof of Lemma 3.5
in (Jiang and Wang, 2001). Note that although continuity of the candidate
ISS Lyapunov function V (·) is assumed in Lemma 3.5 of (Jiang and Wang,
2001), the continuity property is not actually used in the proof;

(iii) By considering a special type of K-functions we are able to derive
explicit bounds on the evolution of the state trajectory, i.e. via the rela-
tion (2.5). In (Jiang and Wang, 2001), the existence of suitable bounds is
demonstrated, but an explicit relation is not derived;

(iv) These explicit bounds imply a stronger property for the system,
than the one required by the results of (Jiang and Wang, 2001), i.e. they
imply exponential stability in the absence of disturbances. However, they
are not conservative for the control design methodologies presented in this
thesis as the employed candidate ISS Lyapunov functions always satisfy the
inequalities (2.4) with α1(s) , asλ, α2(s) , bsλ, α3(s) , csλ for some
a, b, c, λ > 0.

2.4 Input-to-state practical stability

Consider the discrete-time autonomous perturbed nonlinear system:

xk+1 = G(xk, wk, vk), k ∈ Z+, (2.6)

where xk ∈ Rn, wk ∈ W ⊂ Rdw and vk ∈ V ⊂ Rdv are the state, unknown
time-varying parametric uncertainties and other disturbance inputs (possibly
additive). G : Rn × Rdw × Rdv → Rn is an arbitrary nonlinear, possibly
discontinuous, function. We assume that W is a known compact set and V

is a known C-set.
Note that we distinguish between time-varying parametric uncertainties

(or parametric uncertainties for short) and other disturbances, such as ad-
ditive disturbances, because the results developed in this section will be
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employed in Chapter 6, where linear and nonlinear systems affected by both
parametric and additive perturbations are considered.

Definition 2.4.1 For a given 0 ≤ λ ≤ 1, a set P ⊆ Rn that contains the
origin in its interior is called a robust λ-contractive set (with respect to W

and V) for system (2.6) if for all x ∈ P it holds that G(x,w, v) ∈ λP for all
w ∈ W and all v ∈ V. For λ = 1 a robust λ-contractive set (with respect to
W and V) is called a robust positively invariant set (with respect to W and
V).

Next, we define the notions of global and local Input-to-State practical Sta-
bility (ISpS) (Jiang, 1993; Jiang et al., 1994, 1996) for the discrete-time
nonlinear system (2.6).

Definition 2.4.2 The system (2.6) is said to be globally ISpS if there exist
a KL-function β, a K-function γ and a non-negative number d such that, for
each x0 ∈ Rn, all {wj}j∈Z+ with wj ∈ Rdw for all j ∈ Z+ and all {vj}j∈Z+

with vj ∈ Rdv for all j ∈ Z+, it holds that the corresponding state trajectory
satisfies

‖xk‖ ≤ β(‖x0‖, k) + γ(‖v[k−1]‖) + d, ∀k ∈ Z≥1. (2.7)

Definition 2.4.3 The system (2.6) is said to be ISpS for initial conditions
in a set X ⊆ Rn if there exist a KL-function β, a K-function γ and a non-
negative number d such that, for each x0 ∈ X, all {wj}j∈Z+ with wj ∈ W

for all j ∈ Z+ and all {vj}j∈Z+ with vj ∈ V for all j ∈ Z+, it holds that the
corresponding state trajectory satisfies

‖xk‖ ≤ β(‖x0‖, k) + γ(‖v[k−1]‖) + d, ∀k ∈ Z≥1. (2.8)

If the origin is an equilibrium in (2.6) for zero disturbance input v (i.e
G(0, w, 0) = 0 for all w ∈ W), X contains the origin in its interior and
inequality (2.8) is satisfied for d = 0, the system (2.6) is said to be ISS for
initial conditions in X.

Note that in the above definition we have extended the notion of input-to-
state stability, introduced in the previous subsection for nonlinear systems
affected by disturbance inputs only, to nonlinear systems affected by both
time-varying parametric uncertainties and (other) disturbance inputs. The
relevance of considering this case will become clear in Chapter 6.

In what follows we state a discrete-time version of the continuous-time
ISpS sufficient conditions of Proposition 2.1 of (Jiang et al., 1996).
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Theorem 2.4.4 Let d1, d2 be non-negative numbers and let a, b, c, λ be po-
sitive numbers with c ≤ b. Let α1(s) , asλ, α2(s) , bsλ, α3(s) , csλ and let
σ ∈ K. Furthermore, let X be a RPI set for system (2.6) and let V : X → R+

be a function such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) + d1 (2.9a)

V (G(x,w, v)) − V (x) ≤ −α3(‖x‖) + σ(‖v‖) + d2 (2.9b)

for all x ∈ X, w ∈ W and all v ∈ V. Then it holds that:
(i) The system (2.6) is ISpS for initial conditions in X and the ISpS

property (2.8) of Definition 2.4.3 holds for

β(s, k) , α−1
1 (4ρkα2(s)), γ(s) , α−1

1

(
2σ(s)

1 − ρ

)
, d , α−1

1 (4ξ), (2.10)

where ξ , d1 + d2
1−ρ

and ρ , 1 − c
b
∈ [0, 1).

(ii) If G(0, w, 0) = 0 for all w ∈ W, 0 ∈ int(X) and the inequalities (2.9)
hold for d1 = d2 = 0, the system (2.6) is ISS for initial conditions in X and
the ISS property (2.8) of Definition 2.4.3 (i.e. when d = 0) holds for

β(s, k) , α−1
1 (2ρkα2(s)), γ(s) , α−1

1

(
2σ(s)

1 − ρ

)
, (2.11)

where ρ , 1 − c
b
∈ [0, 1).

Proof: (i) From V (x) ≤ α2(‖x‖) + d1 for all x ∈ X, we have that for
any x ∈ X \ {0} it holds:

V (x) − α3(‖x‖) ≤ V (x) − α3(‖x‖)
α2(‖x‖)

(V (x) − d1) = ρV (x) + (1 − ρ)d1,

where ρ , 1 − c
b
∈ [0, 1). In fact, the above inequality holds for all x ∈ X,

since V (0)−α3(0) = V (0) = ρV (0)+(1−ρ)V (0) ≤ ρV (0)+(1−ρ)d1. Then,
inequality (2.9b) becomes

V (G(x,w, v)) ≤ ρV (x) + σ(‖v‖) + (1 − ρ)d1 + d2, (2.12)

for all x ∈ X, w ∈ W and all v ∈ V. Due to robust positive invariance of X,
inequality (2.12) yields repetitively:

V (xk+1) ≤ ρk+1V (x0) +

k∑

i=0

ρi(σ(‖vk−i‖) + (1 − ρ)d1 + d2)
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for all x0 ∈ X, w[k] ∈ Wk+1, v[k] ∈ Vk+1, k ∈ Z+. Then, taking (2.9a) into
account and using the property σ(‖vi‖) ≤ σ(‖v[k]‖) for all i ≤ k and the

identity
∑k

i=0 ρi = 1−ρk+1

1−ρ
, the following inequalities hold:

V (xk+1) ≤ ρk+1α2(‖x0‖) + ρk+1d1 +
k∑

i=0

ρi(σ(‖vk−i‖) + (1 − ρ)d1 + d2)

≤ ρk+1α2(‖x0‖) + ρk+1d1 + (σ(‖v[k]‖) + (1 − ρ)d1 + d2)

k∑

i=0

ρi

≤ ρk+1α2(‖x0‖) +
1 − ρk+1

1 − ρ
σ(‖v[k]‖) + d1 +

1 − ρk+1

1 − ρ
d2

≤ ρk+1α2(‖x0‖) +
1

1 − ρ
σ(‖v[k]‖) + d1 +

1

1 − ρ
d2,

for all x0 ∈ X, w[k] ∈ Wk+1, v[k] ∈ Vk+1, k ∈ Z+. Let ξ , d1 + d2
1−ρ

.

Taking (2.9a) into account and letting α−1
1 denote the inverse of α1, we

obtain:

‖xk+1‖ ≤ α−1
1 (V (xk+1)) ≤ α−1

1

(
ρk+1α2(‖x0‖) + ξ +

σ(‖v[k]‖)
1 − ρ

)
. (2.13)

Applying the following inequality,

α−1
1 (z + y) ≤ α−1

1 (2 max(z, y)) ≤ α−1
1 (2z) + α−1

1 (2y), (2.14)

it is easy to see that

‖xk+1‖ ≤ α−1
1 (4ρk+1α2(‖x0‖)) + α−1

1 (2
σ(‖v[k]‖)

1 − ρ
) + α−1

1 (4ξ),

for all x0 ∈ X, w[k] ∈ Wk+1, v[k] ∈ Vk+1, k ∈ Z+.
We distinguish between two cases: ρ 6= 0 and ρ = 0. First, suppose

ρ ∈ (0, 1) and let β(s, k) , α−1
1 (4ρkα2(s)). For a fixed k ∈ Z+, we have

that β(·, k) ∈ K due to α2 ∈ K∞, α−1
1 ∈ K∞ and ρ ∈ (0, 1). For a fixed

s, it follows that β(s, ·) is non-increasing and limk→∞ β(s, k) = 0, due to
ρ ∈ (0, 1) and α−1

1 ∈ K∞. Thus, it follows that β ∈ KL.

Now let γ(s) , α−1
1 (2σ(s)

1−ρ
). Since 1

1−ρ
> 0, it follows that γ ∈ K due to

α−1
1 ∈ K∞ and σ ∈ K.

Finally, let d , α−1
1 (4ξ). Since ρ ∈ (0, 1) and d1, d2 ≥ 0, we have that

d ≥ 0.
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In case when ρ = 0 we have that

‖xk‖ ≤ α−1
1 (2σ(‖v[k−1]‖)) + α−1

1 (2ξ)

≤ β(‖x0‖, k) + α−1
1 (2σ(‖v[k−1]‖)) + α−1

1 (2ξ)

≤ β(‖x0‖, k) + α−1
1 (2σ(‖v[k−1]‖)) + α−1

1 (4ξ)

for any β ∈ KL, ξ , d1 + d2 and k ∈ Z≥1.
Hence, the perturbed system (2.6) is ISpS in the sense of Definition 2.4.3

for initial conditions in X and property (2.8) is satisfied with the functions
given in (2.10).

(ii) Note that, following the proof of statement (i), it is trivial to observe
that when the sufficient conditions (2.9) are satisfied for d1 = d2 = 0, then
ISS is achieved, since d = α−1

1 (4ξ) = α−1
1 (0) = 0. From (2.13) and (2.14)

and following the reasoning used in the proof of Theorem 2.3.5 it can be
easily shown that the ISS property of Definition 2.3.4 actually holds with
the functions given in (2.11).

Definition 2.4.5 A function V (·) that satisfies the hypothesis of Theo-
rem 2.4.4 including part (i) is called an ISpS Lyapunov function.

Note that the hypothesis of Theorem 2.4.4 including part (i) (but exclu-
ding part (ii)) does not require continuity of G(·, ·, ·) or V (·), nor that
G(0, w, 0) = 0 or V (0) = 0. This makes the ISpS framework suitable for
analyzing stability of nonlinear systems in closed-loop with min-max MPC
controllers, since the min-max MPC value function is not zero at zero in
general (see Chapter 6 for details).

2.5 Conclusions

In this chapter we have presented general theorems on asymptotic stability
in the Lyapunov sense, input-to-state stability and input-to-state practical
stability, respectively. Regarding the assumptions on the system dynamics
and the candidate (ISS) Lyapunov function, it has been shown that conti-
nuity at the equilibrium point, rather than continuity on a neighborhood
of the equilibrium point is sufficient for Lyapunov stability or ISS. These
results will open up the establishment of Lyapunov stability, ISS or ISpS for
the particular cases of PWA systems and MPC closed-loop systems, as these
systems are typically not continuous on a neighborhood of the origin.



3

Stabilizing model predictive control of

hybrid systems

3.1 Introduction
3.2 Setting up the MPC

optimization problem
3.3 Stabilization conditions

for hybrid MPC
3.4 Computation of the

terminal cost

3.5 Computation of the
terminal set: Low
complexity invariant sets
for PWA systems

3.6 Terminal equality constraint
3.7 Illustrative examples
3.8 Conclusions

In this chapter we present a complete framework for the synthesis of stabi-
lizing model predictive controllers, based on both quadratic and 1,∞-norms
costs, for hybrid systems. This includes new techniques for computing sta-
bilizing state-feedback controllers and low complexity piecewise polyhedral
positively invariant sets for the class of PWA systems.

3.1 Introduction

One of the problems in model predictive control (MPC) that has received
an increased attention over the years consists in guaranteeing closed-loop
stability for the controlled system. The usual approach to ensure stability
in MPC is to consider the value function of the MPC cost as a candidate
Lyapunov function. Then, if the system dynamics is continuous, the classical
Lyapunov stability theory (Kalman and Bertram, 1960b) can be used to
prove that the MPC control law is stabilizing (Keerthi and Gilbert, 1988).
For a comprehensive overview on stability of receding horizon control in
discrete-time we refer the reader to (Mayne et al., 2000) and the references
therein.

The recent development of MPC for hybrid systems, which are inherently
discontinuous and nonlinear, requires a reconsideration of the stability re-
sults, as it was also pointed out in the excellent survey (Mayne et al., 2000).
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Attractivity was proven for hybrid systems in closed-loop with model predic-
tive controllers in (Bemporad and Morari, 1999; Borrelli, 2003). However,
proofs of Lyapunov stability only appeared in the literature recently, for par-
ticular classes of hybrid systems and MPC cost functions, see, for example,
(Kerrigan and Mayne, 2002; Mayne and Rakovic, 2003; Grieder et al., 2005).
In these works, either continuous piecewise affine (PWA) systems are con-
sidered, (Kerrigan and Mayne, 2002; Mayne and Rakovic, 2003), which are
in fact Lipschitz continuous systems or, in (Grieder et al., 2005), asymptotic
stability is established via the results of (Mayne et al., 2000), where conti-
nuity of the MPC value function is assumed. Note that this property does
not hold in general for the MPC value function, when hybrid systems, such
as PWA systems, are employed as prediction models, as it is illustrated by
many examples presented in this thesis (see also (Borrelli, 2003)).

In this chapter we present a priori verifiable conditions that guarantee
stability of discrete-time nonlinear, possibly discontinuous, systems in closed-
loop with MPC controllers. We develop a general theorem on asymptotic
stability in the Lyapunov sense that unifies most of the previous results on
stability of MPC. This theorem applies to a wide class of hybrid systems
and MPC cost functions, and it does not require continuity of the MPC va-
lue function nor of the system dynamics. Efficient methods for calculating
the terminal cost, for both quadratic and 1,∞-norm MPC costs, and the
terminal constraint set are developed for the class of discontinuous PWA
systems, with the origin not necessarily in the interior of one of the regions
in the state-space partition. New algorithms for calculating low complexi-
ty piecewise polyhedral positively invariant sets for PWA systems are also
presented.

3.2 Setting up the MPC optimization problem

Consider the following time-invariant discrete-time nonlinear system

xk+1 = g(xk, uk), (3.1)

where xk ∈ X ⊆ Rn is the state, uk ∈ U ⊆ Rm is the control input at the
discrete-time instant k ∈ Z+ and g : Rn ×Rm → Rn is an arbitrary, possibly
discontinuous, nonlinear function. The sets X and U specify state and input
constraints and it is assumed that they are compact polyhedral sets that
contain the origin in their interior. We assume for simplicity that the origin
is an equilibrium state for (3.1) with u = 0, meaning that g(0, 0) = 0. Note
that the class of nonlinear dynamical systems (3.1) contains certain classes
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of hybrid systems, such as PWA systems, due to the fact that g(·, ·) may be
discontinuous.

For a fixed N ∈ Z≥1, let xk(xk,uk) , (x1|k, . . . , xN |k) denote the state

sequence generated by system (3.1) from initial state x0|k , xk and by

applying the input sequence uk , (u0|k, . . . , uN−1|k) ∈ UN , where UN ,

U × . . . × U. Furthermore, let XT ⊆ X denote a desired target set that
contains the origin. The class of admissible input sequences defined with
respect to XT and state xk ∈ X is

UN (xk) , {uk ∈ UN | xk(xk,uk) ∈ XN , xN |k ∈ XT }.

The MPC optimization problem can now be formulated as follows.

Problem 3.2.1 Let the target set XT ⊆ X and N ∈ Z≥1 be given and let
F : Rn → R+ with F (0) = 0 and L : Rn × Rm → R+ with L(0, 0) = 0
be mappings. At time k ∈ Z+ let xk ∈ X be given and minimize the cost
function

J(xk,uk) , F (xN |k) +

N−1∑

i=0

L(xi|k, ui|k),

with prediction model (3.1), over all input sequences uk ∈ UN (xk).

In the MPC literature, F (·), L(·, ·) and N are called the terminal cost, the
stage cost and the prediction horizon, respectively. We call an initial state
x0 ∈ X feasible if UN (x0) 6= ∅. Similarly, Problem 3.2.1 is said to be feasible
for x ∈ X if UN (x) 6= ∅. Let Xf (N) ⊆ X denote the set of feasible states
with respect to Problem 3.2.1 and let

VMPC : Xf (N) → R+, VMPC(xk) , inf
uk∈UN (xk)

J(xk,uk) (3.2)

denote the MPC value function corresponding to Problem 3.2.1. We assume1

that there exists an optimal sequence of controls u
∗
k , (u∗

0|k, u
∗
1|k, . . . , u

∗
N−1|k)

for Problem 3.2.1 and any state xk ∈ Xf (N). Hence, the infimum in (3.2)
is a minimum and VMPC(xk) = J(xk,u

∗
k). Then, the MPC control law is

defined as
uMPC(xk) , u∗

0|k; k ∈ Z+. (3.3)

The stability results presented in this chapter also hold when the optimum
is not unique in Problem 3.2.1, i.e. all results apply irrespective of which
optimal sequence is selected.

1This assumption is satisfied for PWA prediction models and quadratic or 1,∞-norm
MPC costs (see Section 3.3 for details).
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3.3 Stabilization conditions for hybrid MPC

In this section we investigate the MPC stabilization of the discontinuous
nonlinear system (3.1), which also includes certain relevant classes of hybrid
systems. We will employ terminal cost and constraint set and terminal equa-
lity constraint methods, as the ones used for smooth nonlinear systems in
(Mayne et al., 2000) to guarantee stability for the closed-loop system (3.1)-
(3.3). Typically, these methods rely on continuity of VMPC(·) and of the sys-
tem dynamics (e.g., see Section 3.2 of (Mayne et al., 2000) or Theorem 4.4.2
of (Goodwin et al., 2005)). This property is no longer guaranteed in the case
of discontinuous dynamical systems, such as hybrid systems. Actually, in
the survey (Mayne et al., 2000) it was pointed out that all the concepts and
ideas used in MPC should be reconsidered in the hybrid context.

3.3.1 Main results

Let h : Rn → Rm denote an arbitrary, possibly discontinuous, nonlinear
function with h(0) = 0 and let XU , {x ∈ X | h(x) ∈ U} denote the safe set
with respect to state and input constraints for h(·).

The following theorem was obtained as a kind of general and unifying
result by combining previous results on stability of discrete-time nonlinear
MPC.

Assumption 3.3.1 Terminal cost and constraint set: There exist α1, α2 ∈
K, a neighborhood of the origin N ⊆ Xf (N) and a feedback control law h(·)
such that XT ⊆ XU, with 0 ∈ int(XT ), is a positively invariant set for system
(3.1) in closed-loop with uk = h(xk), k ∈ Z+,

L(x, u) ≥ α1(‖x‖) for all x ∈ Xf (N) and all u ∈ U, (3.4a)

F (x) ≤ α2(‖x‖) for all x ∈ N and (3.4b)

F (g(x, h(x))) − F (x) + L(x, h(x)) ≤ 0 for all x ∈ XT . (3.4c)

Assumption 3.3.2 Terminal equality constraint: XT = {0}, F (x) = 0 for
all x ∈ X and there exist α1, α̃2 ∈ K and a neighborhood of the origin
N ⊆ Xf (N) such that L(x, u) ≥ α1(‖x‖) for all x ∈ Xf (N) and all u ∈ U

and L(x∗
i|k, u

∗
i|k) ≤ α̃2(‖xk‖), for any optimal u

∗
k ∈ UN (xk), initial state

xk , x∗
0|k ∈ N and i = 0, . . . , N − 1, where (x∗

1|k, . . . , x
∗
N |k) , xk(xk,u

∗
k).

Theorem 3.3.3 Fix N ∈ Z≥1 and suppose that either Assumption 3.3.1
holds, or Assumption 3.3.2 holds. Then:
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(i) If Problem 3.2.1 is feasible at time k ∈ Z+ for state xk ∈ X, Problem
3.2.1 is feasible at time k + 1 for state xk+1 = g(xk, u

MPC(xk)). Moreover,
XT ⊆ Xf (N);

(ii) The origin of the MPC closed-loop system (3.1)-(3.3) is asymptoti-
cally stable in the Lyapunov sense for initial conditions in Xf (N);

(iii) If Assumption 3.3.1 holds with α1(s) , asλ, α2(s) , bsλ for some
constants a, b, λ > 0, the origin of the MPC closed-loop system (3.1)-(3.3) is
exponentially stable in Xf (N).

Proof: First, we address the terminal cost and constraint case, i.e.
when Assumption 3.3.1 holds. Consider an optimal sequence of controls

u
∗
k , (u∗

0|k, u
∗
1|k, . . . , u

∗
N−1|k)

obtained by solving Problem 3.2.1 and the shifted sequence of controls

uk+1 , (u∗
1|k, . . . , u

∗
N−1|k, h(xN−1|k+1)), (3.5)

where xN−1|k+1 is the state at prediction time N − 1, obtained at discrete-
time k + 1 by applying the input sequence u∗

1|k, . . . , u
∗
N−1|k to system (3.1)

with initial condition x0|k+1 , x∗
1|k = xk+1 = g(xk, u

MPC(xk)).
(i) If Problem 3.2.1 is feasible at time k ∈ Z+ for state xk ∈ X then the-

re exists u
∗
k ∈ UN (xk) that solves Problem 3.2.1. Then, it follows that

xN−1|k+1 ∈ XT . Due to positive invariance of XT ⊆ XU it holds that
xN |k+1 ∈ XT and thus, uk+1 ∈ UN (xk+1). This implies that Problem 3.2.1
is feasible for state xk+1 = g(xk, u

MPC(xk)). Moreover, all states in the
set XT ⊆ XU are feasible with respect to Problem 3.2.1, as the feedback
uk , h(xk) can be applied for any xk ∈ XT and any k ∈ Z+. This implies
that XT ⊆ Xf (N).

(ii) By Assumption 3.3.1, inequality (3.4a), we have that

VMPC(x) ≥ L(x, uMPC(x)) ≥ α1(‖x‖), ∀x ∈ Xf (N). (3.6)

Let x̃ , (x̃1|k, . . . , x̃N |k) denote the state sequence generated by the “local”

dynamics xk+1 = g(xk, h(xk)) from initial state x̃0|k , x ∈ XT . Since
x̃ ∈ XN

T , inequality (3.4c) holds for all elements of the sequence x̃, yielding:

F (x̃1|k) − F (x̃0|k) + L(x̃0|k, h(x̃0|k)) ≤ 0,

F (x̃2|k) − F (x̃1|k) + L(x̃1|k, h(x̃1|k)) ≤ 0,

. . . , F (x̃N |k) − F (x̃N−1|k) + L(x̃N−1|k, h(x̃N−1|k)) ≤ 0.
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From the above inequalities, by optimality and by Assumption 3.3.1, ine-
quality (3.4b), it follows that

VMPC(x) ≤ J(x, ũ) ≤ F (x) ≤ α2(‖x‖), ∀x ∈ XT , (3.7)

where ũ , (h(x̃0|k), . . . , h(x̃N−1|k)). By optimality, we observe that for all
xk ∈ Xf (N) it holds that:

VMPC(xk+1) − VMPC(xk) = J(xk+1,u
∗
k+1) − J(xk,u

∗
k)

≤ J(xk+1,uk+1) − J(xk,u
∗
k)

= −L(xk, u
MPC(xk)) + F (xN |k+1)

− F (x∗
N |k) + L(x∗

N |k, h(x∗
N |k)). (3.8)

By the hypothesis (3.4c), from x∗
N |k ∈ XT and using Assumption 3.3.1 it

follows that

VMPC(g(x, uMPC(x)) − VMPC(x) ≤ −L(x, uMPC(x))

≤ −α1(‖x‖), ∀x ∈ Xf (N). (3.9)

Hence, VMPC is a Lyapunov function. The second statement of Theorem 3.3.3
then follows from Theorem 2.2.4 part (i).

(iii) From the proof of part (ii), under the additional hypothesis it follows
that VMPC(·) satisfies the hypothesis of Theorem 2.2.4 part (ii), which is
sufficient for local exponential stability. This is because the class K upper
bound, i.e. α2(·), on VMPC(·) only holds for the states in XT . However, in
(Limon et al., 2006) it is shown how a class K upper bound on VMPC for all
states in Xf (N) can be obtained from the local one, under the assumption of
compactness of X and U, and boundedness of the functions F (·) and L(·, ·),
but without requiring continuity of VMPC(·). Using the technique of (Limon
et al., 2006), exponential stability in Xf (N) for the hybrid MPC closed-loop
system is readily proven.

Next, we consider the terminal equality constraint case, i.e. when As-
sumption 3.3.2 holds.

The proof of the first statement provided above for the terminal cost
and constraint set approach also applies for the terminal equality constraint
case, since h(x) = 0 for all x ∈ X and XT = {0} is positively invariant. By
Assumption 3.3.2, inequality (3.6) holds. Since XT = {0}, F (x) = 0 and
h(x) = 0 for all x ∈ X the inequality (3.4c) holds. However, note that the
terminal cost no longer provides a suitable upper bound for the MPC value
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function. Letting x∗
0|k , xk, by Assumption 3.3.2 we have that

VMPC(xk) = J(xk,u
∗
k) =

N−1∑

i=0

L(x∗
i|k, u

∗
i|k) ≤ Nα̃2(‖xk‖), ∀xk ∈ N .

(3.10)
Therefore, VMPC(x) ≤ α2(‖x‖) for all x ∈ N , with α2(s) , Nα̃2(s) ∈ K.
Using the same reasoning as the one employed for the terminal cost and
constraint set approach, it can be shown that the statements follow from
Theorem 2.2.4.

3.3.2 The class of PWA systems

Throughout the rest of this chapter we focus on the class of time-invariant
discrete-time piecewise affine (PWA) systems (Sontag, 1981, 1996) described
by equations of the form

xk+1 = Ajxk + Bjuk + fj when xk ∈ Ωj , j ∈ S, (3.11)

which is a sub-class of the discontinuous nonlinear system (3.1). Also, we
take the nonlinear function h(·) as a piecewise linear (PWL) state-feedback
control law, i.e.

h(x) , Kjx when xk ∈ Ωj , j ∈ S. (3.12)

Here, Aj ∈ Rn×n, Bj ∈ Rn×m, fj ∈ Rn, Kj ∈ Rm×n, j ∈ S with S ,

{1, 2, . . . , s} a finite set of indices and s denotes the number of discrete
modes. The collection {Ωj | j ∈ S} defines a partition of X, meaning that
∪j∈SΩj = X and int(Ωi) ∩ int(Ωj) = ∅ for i 6= j. Each Ωj is assumed to be
a polyhedron (not necessarily closed). Let S0 , {j ∈ S | 0 ∈ cl(Ωj)} and let
S1 , {j ∈ S | 0 6∈ cl(Ωj)}, so that S = S0 ∪ S1. We assume that the origin
is an equilibrium state for (3.11) with u = 0 and we require that

fj = 0 for all j ∈ S0. (3.13)

The class of hybrid systems described by (3.11)-(3.13) contains PWA systems
which may be discontinuous over the boundaries and which are piecewise
linear, instead of PWA, in the state space region ∪j∈S0Ωj . This class of PWA
systems is more general than the one considered in (Kerrigan and Mayne,
2002; Mayne and Rakovic, 2003), where continuity of the system dynamics is
assumed. Also, system (3.11)-(3.13) includes the case when the origin lies on
the boundaries of multiple regions Ωj . This is a case of interest, since many
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physical systems exhibit a change in their dynamic behavior when certain
states change their sign.

If the PWA system (3.11) is used as prediction model, the optimization
problem corresponding to Problem 3.2.1 is a MIQP problem in case quadratic
costs are used, and a MILP problem in case 1,∞-norm costs are employed.
These problems can be solved using the tools of Hybrid Toolbox (Bemporad,
2003) or Multi Parametric Toolbox (Kvasnica et al., 2004). Note that if a
MIQP (MILP) problem is feasible, the global optimum is attained because,
in principle, a MIQP (MILP) consists of a finite number of QP (LP) pro-
blems, see, for example (Borrelli, 2003). Then, due to the fact that each
QP (LP) (with bounded feasible set) attains its optimum, the existence of
an optimum for the MIQP (MILP) problem is guaranteed (although it may
not be unique). Hence, the standing assumption employed in Section 3.2 on
existence of optimal control sequences holds for PWA prediction models and
the result of Theorem 3.3.3 applies.

Although we focus on PWA systems of the form (3.11), the results de-
veloped in the remainder of this chapter have a wider applicability since it
is known (Heemels et al., 2001) that PWA systems are equivalent under cer-
tain mild assumptions with other relevant classes of hybrid systems, such as
mixed logical dynamical systems (Bemporad and Morari, 1999) and linear
complementarity systems (van der Schaft and Schumacher, 1998). Also, it
is well known that PWA systems can approximate nonlinear systems arbi-
trarily well (Sontag, 1981) and they arise from the interconnection of linear
systems and automata (Sontag, 1996).

3.3.3 The problem statement reconsidered

For a given stage cost L(·, ·), the fundamental stability results for MPC of
hybrid systems provided in this section come down to computing a terminal
cost F (·), a nonlinear function h(·) and a terminal set XT such that As-
sumption 3.3.1 holds (the terminal equality constraint situation is treated
separately in Section 3.6). This is a non-trivial problem, which depends on
the type of system dynamics and MPC cost.

For example, in the particular case of PWA systems and quadratic MPC
costs this problem has only been solved partially, in (Grieder et al., 2005),
i.e. by employing a common quadratic Lyapunov function for system (3.11)
in closed-loop with uk = h(xk), k ∈ Z+, with h(·) defined in (3.12). This
is known to be conservative (see, for example, (Ferrari-Trecate et al., 2002))
because there are PWA systems which only admit a piecewise quadratic
(PWQ) Lyapunov function (see also Section 3.7, for an example where the
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method of (Grieder et al., 2005) fails). In the case of MPC costs based
on 1,∞-norms, to the author’s knowledge, there is no systematic method
available for solving this problem. A complete solution to the problem of
calculating the terminal cost is presented in Section 3.4.

The problem of computing the terminal set XT boils down to computing
positively invariant sets for PWA systems, which is a notoriously difficult
problem. An algorithm for calculating the maximal positively invariant set
for PWA systems was recently presented in (Rakovic et al., 2004). However,
it is known that the maximal positively invariant set inside a given compact
set is a piecewise polyhedral set for PWA systems, which can be very complex
(i.e. it may consist of the union of a very large number of polyhedra, which
in principle can be infinite, if the algorithm does not converge). This in
turn influences the computational complexity of the MIQP (MILP) MPC
optimization problem. Hence, it would be desirable to obtain a trade-off
between the size of the terminal constraint set and its complexity. Section 3.5
deals with this issue.

Note that once a quadratic or 1,∞-norm terminal cost F (·), a nonlinear
function h(·) of the form (3.12) and a piecewise polyhedral terminal set
XT that satisfy Assumption 3.3.1 for system (3.11) have been calculated, it
is well-known (Borrelli, 2003) that the set of feasible states Xf (N) can be
obtained explicitly for a fixed value of the prediction horizon N ∈ Z≥1 using
either the HT Bemporad (2003) or the MPT Kvasnica et al. (2004). This
may help in selecting a suitable prediction horizon N .

3.4 Computation of the terminal cost

In this section we provide solutions to the problem of computing a terminal
cost F (·) and a function h(·) of the form (3.12) that satisfy Assumption 3.3.1
for both quadratic and 1,∞-norm MPC costs.

3.4.1 Quadratic MPC costs

Consider the case when quadratic forms are used to define the cost function,
i.e.

F (x) = ‖P
1
2

j x‖2
2 = x⊤Pjx when x ∈ XT ∩ Ωj

and
L(x, u) = ‖Q 1

2 x‖2
2 + ‖R 1

2 u‖2
2 = x⊤Qx + u⊤Ru.

Without any significant loss of generality, in this subsection we assume that
XT ⊆ ∪j∈S0Ωj . Let s0 denote the number of elements of S0. In this ca-
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se Pj , Q ∈ Rn×n and R ∈ Rm×m are assumed to be positive definite and
symmetric matrices. For the above stage and terminal costs it holds that

L(x, u) ≥ x⊤Qx ≥ λmin(Q)‖x‖2
2

for all x ∈ Rn and all u ∈ Rm, and that

F (x) ≤ max
j∈S0

λmax(Pj)‖x‖2
2

for all x ∈ Rn. Therefore, a part of Assumption 3.3.1 is trivially satisfied
with α1(‖x‖) , λmin(Q)‖x‖2

2 and α2(‖x‖) , maxj∈S0 λmax(Pj)‖x‖2
2.

Next, we provide methods for calculating the matrices {(Pj ,Kj) | j ∈ S0}
such that inequality (3.4) is satisfied for the PWA system (3.11).

Let Qji , {x ∈ Ωj | ∃u ∈ U : Ajx + Bju + fj ∈ Ωi}, (j, i) ∈ S0 × S0 and
let St0 , {(j, i) ∈ S0 × S0 | Qji 6= ∅}. The set of pairs of indices St0 can be
easily determined off-line by solving s2

0 linear programs. Consider now the
PWL sub-system of the PWA system (3.11), i.e.

xk+1 = Ajxk + Bjuk, when xk ∈ XT ∩ Ωj , j ∈ S0. (3.14)

The set St0 contains all discrete mode transitions that can occur in system
(3.14), i.e. a transition from Ωj to Ωi can occur if and only if (j, i) ∈ St0.
Letting uk be the control law (3.12) in (3.14) and substituting the resulting
closed-loop system and F (·) in (3.4) yields that it is sufficient to find (Pj ,Kj)
with Pj > 0 for all j ∈ S0 that satisfy the matrix inequality

Pj − (Aj + BjKj)
⊤Pi(Aj + BjKj) − Q − K⊤

j RKj > 0, ∀(j, i) ∈ St0,

(3.15)

for (3.4) to be satisfied with strict inequality. Next, we present three methods
that can be used to solve the nonlinear matrix inequality (3.15) efficiently
using semi-definite programming.

Lemma 3.4.1 Let {(Pj ,Kj , Zj , Yj , Gj) | j ∈ S0} with Zj ,Pj positive defini-
te and Gj invertible for all j ∈ S0 denote unknown variables that are related
according to Zj = P−1

j , Yj = KjP
−1
j and Kj = YjG

−1
j , j ∈ S0. Then the

following matrix inequalities are equivalent:

(
Pi 0
0 Pj − (Aj + BjKj)

⊤Pi(Aj + BjKj) − Q − K⊤
j RKj

)
> 0, (j, i) ∈ St0;

(3.16)
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Zj Zj Y ⊤
j (AjZj + BjYj)

⊤

Zj Q−1 0 0
Yj 0 R−1 0

(AjZj + BjYj) 0 0 Zi


 > 0, (j, i) ∈ St0; (3.17)




Zj (AjZj + BjYj)
⊤ (R

1
2 Yj)

⊤ (Q
1
2 Zj)

⊤

(AjZj + BjYj) Zi 0 0

R
1
2 Yj 0 In 0

Q
1
2 Zj 0 0 In


 > 0, (j, i) ∈ St0;

(3.18)




Gj + G⊤
j − Zj G⊤

j Y ⊤
j (AjGj + BjYj)

⊤

Gj Q−1 0 0
Yj 0 R−1 0

(AjGj + BjYj) 0 0 Zi


 > 0, (j, i) ∈ St0. (3.19)

Proof: First we prove that the matrix inequality (3.16) and the LMI
(3.17) are equivalent. We start by applying the Schur complement to (3.17),
which yields:

Zj −
(
Zj Y ⊤

j (AjZj + BjYj)
⊤
)



Q 0 0
0 R

0 0 Z−1
i






Zj

Yj

(AjZj + BjYj)


 > 0

and

(
Q−1 0 0

0 R−1

0 0 Zi

)
> 0 for all (j, i) ∈ St0. Since Q > 0 and R > 0 it follows

that
(

Zi 0

0 Zj − ZjQZj − Y ⊤
j RYj − (AjZj + BjYj)

⊤Z−1
i (AjZj + BjYj)

)
> 0.

Substituting Zj , P−1
j , Zi , P−1

i and Yj , KjP
−1
j in the above matrix

inequality and pre-multiplying and post-multiplying with
(

Pi 0
0 Pj

)
> 0 yields

the equivalent matrix inequality (3.16).
The proof that (3.16) and the LMI (3.18) are equivalent is analogue to the

proof of the equivalence (3.16) ⇔ (3.17) (see also (Kothare et al., 1996) for
a proof of (3.16) ⇔ (3.18) for the particular case when a common terminal
weight P and a linear feedback K are used). Finally, it can be proven that
(3.16) and the LMI (3.19) are equivalent by applying the Schur complement
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to (3.19) in the same way as it was applied to (3.17) and exploiting the
inequality G⊤

j Z−1
j Gj ≥ Gj + G⊤

j − Zj for all j ∈ S0 (see also the proof
of Theorem 2 of (Daafouz et al., 2002), which deals with the stability of
feedback controlled switched linear systems, for insight).

After solving any of the above LMIs, the terminal weights Pj and the
feedbacks Kj are simply recovered as Pj , Z−1

j and Kj , YjZ
−1
j , j ∈ S0 for

(3.17) and (3.18) and as Pj , Z−1
j and Kj , YjG

−1
j , j ∈ S0 for (3.19).

If any of the above LMIs is feasible for Pj = P for all j ∈ S0 implies that
F (x) = x⊤Px is a local common quadratic Lyapunov function for system
(3.14) in closed-loop with uk = h(xk), k ∈ Z+, with h(·) as defined in
(3.12). Letting Pj 6= Pi for i 6= j, (i, j) ∈ St0 implies a relaxation in the
sense that solving any of the above LMIs now amounts to searching for
a PWQ Lyapunov function (Johansson and Rantzer, 1998; Ferrari-Trecate
et al., 2002).

Next, we employ an S-procedure technique with respect to the matrix
inequality (3.15), as done in (Johansson and Rantzer, 1998), to further reduce
conservativeness, i.e., for all (j, i) ∈ St0 we consider the inequality

Pj − (Aj + BjKj)
⊤Pi(Aj + BjKj) − Q − K⊤

j RKj − E⊤
jiUjiEji > 0 (3.20)

in the unknowns (Pj ,Kj , Uji), where the matrices Pj are the terminal weights,
the matrices Uji have all entries non-negative and the matrices Eji define
the cones Cji, which are such that Cji , {x ∈ Rn | Ejix ≥ 0} and Qji ⊆ Cji

for all (j, i) ∈ St0. Note that if (Pj ,Kj , Uji) with Pj > 0 and Uji with all
entries non-negative for all (j, i) ∈ St0 satisfy (3.20), then it follows that

x⊤(Pj − (Aj + BjKj)
⊤Pi(Aj + BjKj) − Q − K⊤

j RKj)x

≥ x⊤(E⊤
jiUjiEji)x ≥ 0 (3.21)

whenever x ∈ Qji ⊆ Cji, (j, i) ∈ St0. Hence, (3.4) is satisfied and conservati-
veness is reduced when comparing to the matrix inequality (3.15). However,
the techniques used in the proof of Lemma 3.4.1 can not be used to trans-
form (3.20) into an LMI, as this would require the matrices Uji to be positive
definite, which increases conservativeness.

We therefore develop an alternative method for finding a solution to the
matrix inequality (3.20). This method is based on solving a sequence of LMIs
that is obtained by fixing a suitable basis of the state space and successively
selecting tuning parameters. Consider the eigenvalue decomposition Pj =
VjΣjV

⊤
j , j ∈ S0 where Σj = diag(σ1j , . . . , σnj), σ1j ≥ . . . ≥ σnj and V ⊤

j =

V −1
j . Assume that the orthonormal matrices {Vj | j ∈ S0} are known and
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let Γj , diag(γ1j , . . . , γnj), j ∈ S0 denote an arbitrary diagonal matrix. For
any (j, i) ∈ St0, consider now the following LMI:

∆ji ,




VjΣjV
⊤
j − Q − E⊤

jiUjiEji (Aj + BjKj)
⊤Vi K⊤

j

V ⊤
i (Aj + BjKj) Γi 0

Kj 0 R−1


 > 0, (3.22)

in the unknowns {(σ1j , . . . , σnj), (γ1i, . . . , γni),Kj , Uji | (j, i) ∈ St0}. In ad-
dition to (3.22) we require that the linear scalar inequalities

σ1j ≥ . . . ≥ σnj > 0, γnj ≥ . . . ≥ γ1j > 0, (3.23a)
1

ǫlj

− σlj ≥ 0, ǫlj − γlj ≥ 0, l = 1, . . . , n, (3.23b)

with ǫlj fixed constants (scaling factors) in (0, 1], are satisfied for all j ∈ S0

and that
Uji has all entries non-negative ,∀(j, i) ∈ St0. (3.24)

Note that the scaling factors ǫlj ∈ (0, 1] are assumed to be known in (3.23)
and that condition (3.24) can be easily written as an LMI. Hence, the con-
ditions (3.22)-(3.23)-(3.24) are in the LMI form.

Theorem 3.4.2 Choose the orthonormal matrices Vj and the scaling factors
ǫlj ∈ (0, 1], l = 1, . . . , n, j ∈ S0 such that the LMI (3.22)-(3.23)-(3.24)
is feasible. Let (σ1j , . . . , σnj), (γ1i, . . . , γni), Kj , Uji be a solution. Then
(Pj ,Kj , Uji) with Pj = Vj diag(σ1j , . . . , σnj)V

⊤
j > 0 is a solution of the

matrix inequality (3.20).

Proof: Since {(σ1j , . . . , σnj), (γ1i, . . . , γni),Kj , Uji | (j, i) ∈ St0} satisfy
the LMI (3.22)-(3.23)-(3.24) we can apply the Schur complement to (3.22),
which yields

VjΣjV
⊤
j −(Aj+BjKj)

⊤ViΓ
−1
i V ⊤

i (Aj+BjKj)−Q−K⊤
j RKj−E⊤

jiUjiEji > 0.

By adding and subtracting (Aj + BjKj)
⊤ViΣiV

⊤
i (Aj + BjKj) in the above

inequality we obtain the equivalent

VjΣjV
⊤
j − (Aj + BjKj)

⊤ViΣiV
⊤
i (Aj + BjKj)

− Q − K⊤
j RKj − E⊤

jiUjiEji

> (Aj + BjKj)
⊤ViΓ

−1
i V ⊤

i (Aj + BjKj)

− (Aj + BjKj)
⊤ViΣiV

⊤
i (Aj + BjKj). (3.25)
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From (3.23b) we have that 1 − σljγlj ≥ 0 for all l = 1, . . . , n and all j ∈ S0.
Then, the inequality

Γ−1
i − Σi =




1−γ1iσ1i

γ1i
. . . 0

...
. . .

...
0 . . . 1−γniσni

γni


 ≥ 0

holds for all i ∈ S0 and from (3.25) it follows that the inequality

VjΣjV
⊤
j − (Aj +BjKj)

⊤ViΣiV
⊤
i (Aj +BjKj)−Q−K⊤

j RKj −E⊤
jiUjiEji > 0

is satisfied for all (j, i) ∈ St0. The matrix inequality (3.20) is obtained by
letting Pj = VjΣjV

⊤
j > 0 for all j ∈ S0 in the above inequality.

Note that solving the LMI (3.22)-(3.23)-(3.24) hinges on the fact that
the orthonormal matrices Vj and the scaling factors ǫlj ∈ (0, 1], l = 1, . . . , n,
j ∈ S0 must be chosen a priori. This is not a problem with respect to the
scaling factors, which can be chosen arbitrarily small. However, when it
comes to fixing the matrices Vj , it is interesting to find out how they should
be chosen such that by varying σ1j , . . . , σnj a sufficiently wide range of Pj

matrices is covered. An answer to this question can be obtained for the two
dimensional case, where all orthonormal matrices can be parameterized as
follows:

Vj ,

(
− sin θj cos θj

cos θj sin θj

)
, (3.26)

where 0 ≤ θj ≤ π. In this way, multiple solutions of the LMI (3.22)-(3.23)-
(3.24) can be obtained by varying θj , as will be illustrated in Section 3.7.
A similar explicit form of Vj can be specified also in the three dimensional
case, by using two angles, i.e., θ1j and θ2j . However, these expressions get
more complicated in higher dimensional spaces.

3.4.2 MPC costs based on 1,∞-norms

Consider the case when 1,∞-norms are used to define the cost function, i.e.

F (x) = ‖Pjx‖ when x ∈ XT ∩ Ωj

and
L(x, u) = ‖Qx‖ + ‖Ru‖,

where ‖ · ‖ denotes the 1-norm or the ∞-norm, for brevity of notation. Here
Pj ∈ Rp×n, Q ∈ Rq×n and R ∈ Rr×n are assumed to be matrices that have
full-column rank.
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In this setting, contrary to a quadratic MPC cost, we no longer require
that XT ⊆ ∪j∈S0Ωj . Also, we consider the PWA system (3.11):

xk+1 = Ajxk + Bjuk + fj when xk ∈ XT ∩ Ωj , j ∈ S, (3.27)

instead of the PWL sub-system (3.14).
Since Q has full-column rank there always exists a positive number γ such

that ‖Qx‖ ≥ γ‖x‖ for all x ∈ Rn. Then it follows that L(x, u) ≥ ‖Qx‖ ≥
γ‖x‖, for all x ∈ Rn and all u ∈ Rm, and that F (x) ≤ maxj∈S ‖Pj‖‖x‖
for all x ∈ Rn. Hence, a part of Assumption 3.3.1 is trivially satisfied with
α1(‖x‖) , γ‖x‖ and α2(‖x‖) , maxj∈S ‖Pj‖‖x‖.

Next, we provide methods for calculating the matrices {(Pj ,Kj) | j ∈ S}
such that inequality (3.4) is satisfied for the PWA system (3.11).

Let Qji , {x ∈ Ωj | ∃u ∈ U : Ajx + Bju + fj ∈ Ωi}, (j, i) ∈ S × S
and let St , {(j, i) ∈ S × S | Qji 6= ∅}. Note that the set St defined here
differs from the set St0, since it also incorporates the indices j ∈ S1, i.e.
St0 = St ∩{S0 ×S0}. The set of pairs of indices St can be easily determined
off-line by solving s2 linear programs. The set St contains all discrete mode
transitions that can occur in the PWA system (3.27), i.e. if (j, i) ∈ St then
a transition from Ωj to Ωi can occur.

Substituting (3.27) and F (·) in (3.4) yields that, for (3.4) to be satisfied,
it is sufficient to find {(Pj ,Kj) | j ∈ S} that satisfy:

‖Pi((Aj +BjKj)x+fj)‖−‖Pjx‖+‖Qx‖+‖RKjx‖ ≤ 0, ∀x ∈ XT , (3.28)

for all (j, i) ∈ St. Now consider the following norm inequalities:

‖Pi(Aj + BjKj)P
−L
j ‖ + ‖QP−L

j ‖ + ‖RKjP
−L
j ‖ ≤ 1 − γji, (j, i) ∈ St

(3.29)

and
‖Pifj‖ ≤ γji‖Pjx‖, ∀x ∈ XT ∩ Ωj , (j, i) ∈ St, (3.30)

where γji ∈ [0, 1), (j, i) ∈ St. Note that, because of (3.13), (3.30) trivially
holds if S = S0.

Theorem 3.4.3 Suppose (3.29)-(3.30) is solvable in (Pj ,Kj , γji) where Pj

has full-column rank and γji ∈ [0, 1) for (j, i) ∈ St. Then (Pj ,Kj) with j ∈ S
is a solution of the norm inequality (3.28).

Proof: Since {(Pj ,Kj , γji) | (j, i) ∈ St} satisfy (3.29) it follows that

‖Pi(Aj + BjKj)P
−L
j ‖ + ‖QP−L

j ‖ + ‖RKjP
−L
j ‖ + γji − 1 ≤ 0, (j, i) ∈ St.

(3.31)
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Right multiplying the inequality (3.31) with ‖Pjx‖ and using the inequality
(3.30) yields:

0 ≥ ‖Pi(Aj + BjKj)P
−L
j ‖‖Pjx‖ + ‖QP−L

j ‖‖Pjx‖
+ γji‖Pjx‖ + ‖RKjP

−L
j ‖‖Pjx‖ − ‖Pjx‖ ≥

≥ ‖Pi(Aj + BjKj)P
−L
j Pjx‖ + ‖QP−L

j Pjx‖
+ ‖Pifj‖ + ‖RKjP

−L
j Pjx‖ − ‖Pjx‖ ≥

≥ ‖Pi(Aj + BjKj)x + Pifj‖ + ‖RKjx‖ + ‖Qx‖ − ‖Pjx‖. (3.32)

Hence, inequality (3.28) holds.
A way to solve the norm inequalities (3.29) is to minimize the cost

J1 ({Pj ,Kj | j ∈ S}) ,

max
(j,i)∈St

(
‖Pi(Aj + BjKj)P

−L
j ‖ + ‖QP−L

j ‖ + ‖RKjP
−L
j ‖

)
,

if the resulting value function is less than 1. This is a non-convex nonlinear
optimization problem, which can be solved using black-box optimization sol-
vers, such as fmincon and fminunc of Matlab. In order to ensure that the
matrices Pj , j ∈ S have full-column rank one can either impose the cons-
traints det(P⊤

j Pj) > 0 using fmincon or, the fminunc solver can be used in
combination with appropriately shifting the initial condition when the opti-
mization algorithm converges to parameters for which P⊤

j Pj is not invertible.
Alternatively, one can solve an optimization problem with a zero cost subject
to the nonlinear constraint J1 ({Pj ,Kj | j ∈ S}) < 1. The nonlinear natu-
re of these optimization problems is not critical for on-line implementation,
since they are solved off-line.

Once the matrices Pj and the numbers γji satisfying (3.29) have been
found, one still has to check that they also satisfy inequality (3.30), provided
that S 6= S0. For example, this can be verified by checking the inequality

‖Pifj‖ ≤ γji min
x∈XT∩Ωj

‖Pjx‖, (j, i) ∈ St(XT ),

where St(XT ) , {(j, i) | XT∩Ωj 6= ∅}∩S1. In order to overcome the difficulty
of solving (3.29)-(3.30) simultaneously, one can require that XT ⊆ ∪j∈S0Ωj

is a positively invariant set only for the PWL sub-system (3.14), as done for
quadratic MPC costs.

Note that the auxiliary control action (3.12) defines now a local state
feedback, instead of a global state feedback, as in Theorem 3.4.3. In this
case Theorem 3.4.3 can be reformulated as follows.
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Corollary 3.4.4 Suppose that the inequality

‖Pi(Aj + BjKj)P
−L
j ‖ + ‖QP−L

j ‖ + ‖RKjP
−L
j ‖ ≤ 1 (3.33)

is solvable in (Pj ,Kj) for Pj with full-column rank for (j, i) ∈ St0 and that
XT ⊆ ∪j∈S0Ωj . Then (Pj ,Kj) with j ∈ S0 is a solution of the norm inequa-
lity (3.28).

Proof: Since XT ⊆ ∪j∈S0Ωj it follows that the inequality (3.28) only
needs to be satisfied for (j, i) ∈ St0. From (3.13) we have that fj = 0 for
all j ∈ S0 and thus, inequality (3.30) is directly satisfied with equality for
γji = 0 and for all (j, i) ∈ St0. Then the result follows from Theorem 3.4.3.

3.5 Computation of the terminal set: Low com-

plexity invariant sets for PWA systems

In this section we address the problem of computing a terminal constraint
set that satisfies Assumption 3.3.1 for the class of PWA systems. More spe-
cifically, we present three methods for computing low complexity piecewise
polyhedral positively invariant sets for PWA systems.

3.5.1 Polyhedral invariant sets

Consider the closed-loop system (3.14) with the feedback gains calculated
using one of the methods from Section 3.4, i.e.

xk+1 = (Aj + BjKj)xk , Acl
j xk when xk ∈ Ωj , j ∈ S0. (3.34)

The first method deals with the computation of a polyhedral positively
invariant set for the PWL system (3.34). To do so, we consider the autono-
mous switched linear system corresponding to (3.34), i.e.

xk+1 = Acl
j xk, j ∈ S0. (3.35)

Note that we removed the switching rule from (3.34), turning the PWL
system (3.34) into a switched linear system (3.35) with arbitrary switching.

Definition 3.5.1 Let 0 ≤ λ ≤ 1 be given. A set P ⊆ Rn is called a λ-
contractive set for system (3.35) with arbitrary switching if for all x ∈ P
and all j ∈ S0 it holds that Acl

j x ∈ λP. For λ = 1, P is called a positively
invariant set for system (3.35) with arbitrary switching.
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We make use of the following result.

Lemma 3.5.2 A set which is positively invariant (λ-contractive) for the
switched linear system (3.35) under arbitrary switching is also a positively
invariant (λ-contractive) set for the PWL system (3.34).

Proof: This follows directly from the fact that, for the PWL system
(3.34), the update of the state is equal to xk+1 = Acl

j xk for at least one
j ∈ S0 at any discrete-time instant k ∈ Z+.

Since we require that XT ⊆ XU ∩ {∪j∈S0Ωj} and XU is not convex in
general, we consider in the following a new safe set, X̃U, taken as a reasonably
large compact polyhedral set (that contains the origin in its interior) inside
XU ∩ {∪j∈S0Ωj}. For instance, if XU ⊆ ∪j∈S0Ωj is a polyhedron, we set
X̃U = XU or, if ∪j∈S0Ωj is a polyhedron we could set X̃U = {x ∈ ∪j∈S0Ωj |
Kjx ∈ U,∀j ∈ S0}. For an arbitrary target set X we define Q1

j (X) , {x ∈
Rn | Acl

j x ∈ X}. Note that if X is a polyhedron that contains the origin, then
Q1

j (X) has the same properties and, if X is compact, then Q1
j (X) is closed

(see (Blanchini, 1994) for proofs).
Consider now the following sequence of sets:

X0 = X̃U, Xi =
⋂

j∈S0

X
j
i , i = 1, 2, . . . , (3.36)

where X
j
i , Q1

j (Xi−1)
⋂

Xi−1, i = 1, 2, . . . .

Theorem 3.5.3 The following properties hold with respect to the sequence
of sets (3.36):

(i) The maximal positively invariant set contained in the safe set X̃U

for system (3.35) with arbitrary switching is a convex set that contains the
origin and is given by

P =
∞⋂

i=0

Xi = lim
i→∞

Xi; (3.37)

(ii) If an algorithm based on the recurrent sequence of sets (3.36) termi-
nates in a finite number of iterations then the set P defined as in (3.37) is a
polyhedral set;

(iii) If there exists a λ-contractive set with 0 < λ < 1 for system (3.35)
under arbitrary switching that contains the origin in its interior, then an
algorithm based on the recurrent sequence of sets (3.36) terminates in a
finite number of iterations and P contains the origin in its interior;

(iv) The set P defined in (3.37) is a positively invariant set for the PWL
system (3.34).
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Proof: (i) If x ∈ P then x ∈ Xi for all i. Hence, we have that
Acl

j x ∈ Xi−1 for all j ∈ S0 and all i ≥ 1. Then Acl
j x ∈ P for all j ∈ S0. So,

P is a positively invariant set for system (3.35) with arbitrary switching.

In order to prove that the set P is maximal let P̃ ⊆ X̃U = X0 be a
positively invariant set for system (3.35) with arbitrary switching. To use
induction, we assume that P̃ ⊆ Xi for some i (note that this holds for
i = 0). Due to the positive invariance of P̃, for any x ∈ P̃ we have that
Acl

j x ∈ P̃ ⊆ Xi for all j ∈ S0. Hence, x ∈ Xi+1. Thus, P̃ ⊂ Xi+1 and by

induction P̃ ⊂ Xi for all i, which yields P̃ ⊂ ⋂∞
i=0 Xi = P.

Now we prove that P is a convex set. Assume that P is the maximal
positively invariant set for system (3.35) with arbitrary switching. Then we
have that P is a positively invariant set for any linear subsystem in (3.35)
and thus, it follows from (Gutman and Cwikel, 1987) that the convex hull
of P is also a positively invariant set for any linear system in (3.35). Hence,
the convex hull of P is a positively invariant set for system (3.35) under
arbitrary switching. Since X̃U is a convex set, it follows that the convex hull
of P is included in X̃U. By maximality, the convex hull of P is also included
in P and thus, P is convex.

As the origin is an equilibrium for xk+1 = Acl
j x,∀j ∈ S0, P contains the

origin.

(ii) Assume that the algorithm (3.36) terminates in i∗ steps. Then, it
follows directly from Xi ⊆ Xi−1 for all i > 0 that Xi = Xi∗ for all i ≥ i∗ and
P = Xi∗ . Since X̃U is a polyhedral set and from the fact that the intersection
of polyhedra produces polyhedra, it follows that the sets X

j
0 , Q1

j (X̃U)
⋂

X̃U

are polyhedra for all j ∈ S0. Then it follows that the set X1 is a polyhedral
set and, for the same reason, Xi, i = 2, 3, . . . , are polyhedral sets. Then, it
follows that P is also a polyhedral set.

(iii) The proof is essentially due to (Kolmanovsky and Gilbert, 1998).
Let E denote a λ-contractive set with 0 < λ < 1 for system (3.35) under
arbitrary switching that contains the origin in its interior. Then there exist
c2 > c1 > 0 such that c1E ( X̃U ( c2E . Since c2E is λ-contractive, we have
that any state trajectory starting on the boundary or in the interior of c2E
reaches in i discrete-time steps the set λic2E . Hence, there exists an i∗ such
that all the state trajectories starting inside X̃U ( c2E lie in c1E within i∗

discrete-time steps. Since c1E is λ-contractive and thus, positively invariant,
it follows that if a state trajectory stays i∗ discrete-time steps inside X̃U,
then it stays in forever. Hence, Xi∗ ⊆ P and thus, Xi∗ = P. As c1E ⊆ P, P
contains the origin in its interior.

(iv) This follows directly from (i).
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Remark 3.5.4 If an algorithm based on (3.36) is used to calculate a posi-
tively invariant for system (3.34), then a number of s0 one-step controllable
sets Q1

j (Xi−1) must be computed at each iteration. Alternatively, if the
maximal positively invariant set is computed with the algorithm of (Rakovic
et al., 2004), then si

0 one-step controllable sets must be calculated at the i-th
iteration, which yields a combinatorial explosion.

Therefore, the computation of the convex positively invariant set P defi-
ned in (3.37) is computationally more friendly than the computation of the
maximal positively invariant set.

3.5.2 Squaring the circle

In this subsection we provide a second method for computing positively in-
variant sets for PWL systems. In fact, we present a new approach to the
computation of piecewise polyhedral positively invariant sets for general per-
turbed nonlinear systems. As this method also applies to piecewise linear
systems defined on conical regions in the state-space systems, it can be em-
ployed to obtain a terminal constraint set that satisfies Assumption 3.3.1.

Given a β-contractive ellipsoidal set E , e.g. obtained as the sublevel set
of a quadratic Lyapunov function, the key idea of this method is to construct
a polyhedral set that lies between the ellipsoidal sets βE and E . We prove
that the resulting polyhedral set is positively invariant (and contractive if
an additional requirement is satisfied).

The problem of fitting a polyhedral set between two ellipsoidal sets (with
one ellipsoidal set contained in the interior of the other ellipsoidal set) is
solved by treating the ellipsoidal sets as sublevel sets of quadratic functions
and constructing a PieceWise Affine (PWA) function that approximates the
“outer” quadratic function well enough, i.e. so that its graph lies between the
graphs of the two quadratic functions. A solution to the original problem
is then obtained by retrieving a suitable sublevel set of the resulting PWA
function.

One of the advantages of the proposed algorithm is that it requires the
solution of a finite number of QP problems and its computational complexity
is bounded. This bound guarantees that the algorithm has finite terminati-
on. Also, due to its unique geometrical approach, which is independent of
the system dynamics, the method is applicable to a wide class of systems,
including linear systems affected by disturbances or subject to input satura-
tion, switched linear systems under arbitrary switching and piecewise linear
systems defined on conical regions in the state-space, as already mentioned.
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Preliminaries

Given (n + 1) affinely independent2 points (θ0, . . . , θn) of Rn, we define a
simplex S as

S , Co(θ0, . . . , θn) , {x ∈Rn | x =
n∑

l=0

µlθl,

n∑

l=0

µl = 1,

µl ≥ 0 for l = 0, 1, . . . , n}.

A function f : Rn → R is a quadratic function if f(x) , x⊤Px + Cx + α

for some P ∈ Rn×n, C ∈ R1×n and α ∈ R. A quadratic function f is
strictly convex if and only if P > 0. An ellipsoid (or an ellipsoidal set)
E is a sublevel set (corresponding to some constant level f0 ∈ R+) of a
strictly convex quadratic function, i.e. E , {x ∈ Rn | f(x) ≤ f0}. Let
Ω1, . . . ,ΩN denote a polyhedral partition of Rn, i.e. Ωi is a polyhedron (not
necessarily closed) for all i = 1, . . . , N , int(Ωi) ∩ int(Ωj) = ∅ for i 6= j and
∪i=1,...,NΩi = Rn.

Definition 3.5.5 A function f : Rn → R with f(x) = x⊤Pix+Cix+αi when
x ∈ Ωi, i = 1, . . . , N is called a PieceWise Quadratic (PWQ) function. A
function f̄ : Rn → R with f̄(x) = Hix+ai when x ∈ Ωi, for some Hi ∈ R1×n,
ai ∈ R, i = 1, . . . , N is called a PieceWise Affine (PWA) function.

A piecewise ellipsoidal set is a sublevel set of a piecewise quadratic function
with matrices Pi > 0 for all i = 1, . . . , N .

General problem statement and proposed solution

Consider the discrete-time perturbed nonlinear system:

xk+1 = G(xk, wk, vk), k ∈ Z+, (3.38)

where xk ∈ Rn, wk ∈ W ⊂ Rdw and vk ∈ V ⊂ Rdv are the state and an
unknown parametric uncertainty and disturbance input, respectively, and W

and V are known, bounded sets. G : Rn × Rdw × Rdv → Rn is an arbitrary,
possibly discontinuous, nonlinear function. For simplicity, we assume that
the origin is an equilibrium in (3.38) for zero disturbance input, meaning
that G(0, w, 0) = 0 for all w ∈ W.

2By this we mean that (1 θ⊤
0 )⊤, . . . , (1 θ⊤

n )⊤ are linearly independent in R
n+1.
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Definition 3.5.6 For a given 0 ≤ λ ≤ 1, a set P ⊆ Rn is called a (robust) λ-
contractive set for system (3.38) if for all x ∈ P it holds that G(x,w, v) ∈ λP
for all w ∈ W and all v ∈ V. For λ = 1 a (robust) λ-contractive set is called
a (robust) positively invariant set.

For a set P ⊆ Rn, let Q1(P) , {x ∈ Rn | G(x,w, v) ∈ P, ∀w ∈ W,∀v ∈ V}
denote the (robust) one-step controllable set for system (3.38), with respect
to P. We are interested in the problem of computing polyhedral Positively
Invariant (PI) sets and polyhedral contractive sets for system (3.38), which
includes PWA systems as a particular case.

Problem 3.5.7 Suppose that a (piecewise) ellipsoidal β-contractive set with
β ∈ [0, 1) is known for system (3.38). (i) Construct a (piecewise) polyhedral
PI set for system (3.38); (ii) Construct a (piecewise) polyhedral λ-contractive
set with λ ∈ [0, 1) for system (3.38).

Note that systematic solutions to obtain β-contractive (piecewise) ellipsoi-
dal sets are available in the literature for many relevant subclasses of (3.38),
such as linear systems subject to input saturation (Hu et al., 2002), linear
systems affected by parametric uncertainties (Kothare et al., 1996) and/or
additive disturbances (Kolmanovsky and Gilbert, 1998), piecewise affine sys-
tems (Ferrari-Trecate et al., 2002). Typically, they are obtained as sublevel
sets of quadratic (PWQ) Lyapunov functions, which can be calculated effi-
ciently via semi-definite programming.

Most of the existent methods for solving Problem 3.5.7 are based on re-
cursive algorithms that compute one-step controllable or one-step reachable
sets (Blanchini, 1994) and they are applicable to perturbed linear systems.
For example, see the forward procedure presented in (Blanchini, 1994) (ex-
tensions of this method to piecewise affine systems were proposed in (Rako-
vic et al., 2004; Lazar et al., 2004a)), the backward procedure introduced in
(Blanchini et al., 1995) or the reachability based algorithm given in (Kolma-
novsky and Gilbert, 1998). Although these algorithms do not require that
an ellipsoidal contractive set is known, existence of a quadratic Lyapunov
function (and thus, existence of an ellipsoidal contractive set) can be used to
prove finite termination for the forward procedure, e.g. see (Rakovic et al.,
2004). In the sequel we generalize results from (Blanchini, 1995) to obtain
a novel solution to Problem 3.5.7. In (Blanchini, 1995) (see Lemma 4.1 and
Lemma 4.2), where perturbed linear systems are considered, it was shown
that a polyhedral set contained in between two convex sublevel sets of a
Lyapunov function is positively invariant and λ-contractive. The result of
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(Blanchini, 1995) is extended in the theorem presented below to a wide class
of systems, which includes, for example, any PWQ stabilizable system.

Theorem 3.5.8 Consider system (3.38) and let E ⊆ Rn be a β-contractive
set for system (3.38), for some β ∈ (0, 1), that contains the origin in its
interior.

(i) Suppose there exists a set P ⊆ Rn that satisfies βE ⊂ P ⊂ E . Then,
P is a PI set for system (3.38) and 0 ∈ int(P);

(ii) Let βE ⊂ λP ⊂ P ⊂ E for some3 λ ∈ (0, 1). Then, P is a λ-
contractive set for system (3.38) and 0 ∈ int(P). Moreover, Q1(λP) is a
λ-contractive set for system (3.38) and E ⊂ Q1(λP).

Proof: (i) For any x ∈ P ⊂ E it follows that G(x,w, v) ∈ βE ⊂ P
for any w ∈ W and any v ∈ V due to the fact that E is a β-contractive set
for system (3.38). Hence, P is a PI set for system (3.38). Since E contains
the origin in its interior, βE contains the origin in its interior and thus,
0 ∈ int(P);

(ii) Applying the same reasoning as above we have that for any x ∈ P ⊂ E
it follows that G(x, w, v) ∈ βE ⊂ λP for any w ∈ W and any v ∈ V due
to the fact that E is a β-contractive set for system (3.38). Hence, P is a
λ-contractive set for system (3.38) and 0 ∈ int(P);

Moreover, from the fact that for any x ∈ E it holds that G(x, w, v) ∈
βE ⊂ λP for any w ∈ W and any v ∈ V, it follows that E ⊂ Q1(λP). Since
P ⊂ E , we have that P ⊂ Q1(λP) and thus, λP ⊂ λQ1(λP). Then, for
any x ∈ Q1(λP) we have that G(x,w, v) ∈ λP ⊂ λQ1(λP) for any w ∈ W

and any v ∈ V. Hence, Q1(λP) is a λ-contractive set for system (3.38) and
E ⊂ Q1(λP).

Note that the results of Theorem 3.5.8 also apply to certain types of
non-convex sets E and P, i.e. piecewise ellipsoidal and piecewise polyhe-
dral sets, respectively (see Section 3.7 for an illustrative example). Also, a
λ-contractive polyhedral set P can be obtained without the additional hy-
pothesis of Theorem 3.5.8-(ii). Indeed, if E is β-contractive with β ∈ (0, 1)
we can solve the “tighter” inclusion

√
βE ⊂ P ⊂ E . Then, we obtain

βE ⊂
√

βP ⊂ P ⊂ E ,

which is the hypothesis of Theorem 3.5.8-(ii) with λ =
√

β.
The case of interest in this paper is, as stated in Problem 3.5.7, when

E is a piecewise ellipsoidal set and P is a piecewise polyhedral set. By

3Note that the result also holds when β = 0 and λ = 0 but in this case P does not
necessarily contain the origin in its interior.
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Theorem 3.5.8, it is sufficient to construct a piecewise polyhedral set P that
lies between the piecewise ellipsoidal sets βE and E to obtain a solution to
Problem 3.5.7. In the next section we present an algorithm for solving this
problem of computational geometry.

Remark 3.5.9 The result E ⊂ Q1(λP) (of Theorem 3.5.8-(ii)) is relevant
when the state of system (3.38) is constrained in a compact polyhedral set
X ⊂ Rn with 0 ∈ int(X). Then, given the largest β-contractive piecewise
ellipsoidal set contained in X, a larger, piecewise polyhedral, λ-contractive
set can be simply obtained by computing the set Q1(λP) ∩ X.

Construction of the desired polyhedral set

Next, we present a solution to the problem of fitting a piecewise poly-
hedral set P between two piecewise ellipsoidal sets where one is contained
in the interior of the other, i.e. βE ( E , with β a number4 in (0, 1). In case
E is an ellipsoid, the main idea is to treat the sets E and βE as sublevel sets
of two quadratic functions fE(x) and fβE(x), respectively, that correspond
to a certain constant (level) f0 ∈ R+, i.e. E , {x ∈ Rn | fE(x) ≤ f0} and
βE , {x ∈ Rn | fβE(x) ≤ f0}. Then, we compute a PWA function f̄ that
satisfies fβE(x) > f̄(x) ≥ fE(x) for all x ∈ Rn. The desired polyhedral set is
obtained as P , {x ∈ Rn | f̄(x) ≤ f0}.

In the piecewise quadratic case we assume that the polyhedral partiti-
oning {Ωj | j ∈ S} (S is a finite set of indexes) consists of cones, which
ensures that βΩj ⊆ Ωj . We write E as:

E =
⋃

j∈S

(Ej ∩ Ωj) with Ej , {x ∈ Rn | fEj
(x) ≤ f0},

where fEj
, x⊤Pjx + Cjx+αj is a strictly convex quadratic function for all

j ∈ S. Then, we construct a PWA function f̄j(x), as in the quadratic case
mentioned above, such that fβEj

(x) > f̄j(x) ≥ fEj
(x) for all x ∈ Rn and for

all j ∈ S. Then, a piecewise polyhedral set P that satisfies βE ⊂ P ⊂ E is
simply obtained as

P =
⋃

j∈S

(Pj ∩ Ωj) with Pj , {x ∈ Rn | f̄j(x) ≤ f0}.

4The case β = 0 is trivial: any P ⊂ E with 0 ∈ int(P) works.
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Indeed, as Pj is a polyhedral set that satisfies βEj ⊂ Pj ⊂ Ej , j ∈ S, we
obtain

P =
⋃

j∈S

(Pj ∩ Ωj) ⊂
⋃

j∈S

(Ej ∩ Ωj) = E .

Since βEj ⊂ Pj and βΩj ⊆ Ωj for all j ∈ S, we have that:

βE = β



⋃

j∈S

(Ej ∩ Ωj)


 =

⋃

j∈S

β(Ej ∩ Ωj) =

=
⋃

j∈S

(βEj ∩ βΩj) ⊆
⋃

j∈S

(Pj ∩ Ωj) = P.

As the PWQ case can be split into a finite number of quadratic instances of
the problem, in the following we consider only the quadratic case, i.e. when
the set E is a sublevel set of a strictly convex quadratic function fE .

Next, choose P ∈ Rn×n (with P > 0) and f0, αE ∈ R (with f0 > αE)
such that E is the sublevel set of fE(x) , x⊤Px + αE , corresponding to the
level f0. Then, we have that βE is the sublevel set of fβE(x) , x⊤Px + αβE ,
corresponding to the level f0, where αβE , (1−β2)f0+β2αE > αE . Consider
now an initial polyhedron P0 ⊂ Rn that contains E . Let (θ̃0, .., θ̃m), with
m ≥ n, be the vertices of P0. An initial set of simpleces S0

1 , . . . , S0
l0

that
contains these points is determined by Delaunay triangulation (Yepremyan
and Falk, 2005). Then, for every simplex S0

i , Co(θ0
0i, . . . , θ

0
ni), i = 1, . . . , l0,

the following operations are performed.

Algorithm 3.5.10 1. Let k = 0.

2. For every simplex Sk
i , i = 1, . . . , lk, construct the matrix

Mk
i ,

[
1 1 . . . 1
θk
0i θk

1i . . . θk
ni

]
.

3. Set vk
i , [ fE(θk

0i) fE(θk
1i) . . . fE(θk

ni) ]⊤ and construct the function

f̄k
i (x) , (vk

i )⊤(Mk
i )−1

[
1
x

]
.

4. Solve the QP problem:

Jk∗
i , min

x∈Sk
i

{
Jk

i (x) , fβE(x) − f̄k
i (x)

}
, (3.39)

and let xk∗
i , arg minx∈Sk

i
Jk

i (x).
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5. If Jk∗
i > 0 for all i = 1, . . . , lk, then Stop. Otherwise, for all Sk

i ,

i = 1, . . . , lk, for which Jk∗
i ≤ 0 build new simpleces S

i
0, S

i
1, . . . , S

i
n

defined by the vertices (xk∗
i , θk

1i, . . . , θ
k
ni), (θk

0i, x
k∗
i , . . . , θk

ni), . . . and
(θk

0i, . . . , θ
k
ni, x

k∗
i ), respectively. Increment k by one, add the new sim-

pleces S
i
0, S

i
1, . . . , S

i
n to the set of simpleces {Sk

i }i=1,...,lk and repeat
the algorithm recursively from Step 2.

Algorithm 3.5.10 computes a simplicial partition of a given initial polyhedral
set P0 that contains the ellipsoidal set E , by splitting a single simplex Sk

i

into n + 1 simpleces. This is done by fixing a new vertex xk∗
i which is

obtained by solving the QP problem (3.39), and by calculating a new PWA
approximation over the new set of simpleces. The steps of Algorithm 3.5.10
are repeated for all resulting simpleces, until Jk∗

i > 0 for all simpleces. At
every iteration k, a tighter PWA approximation of the quadratic function fE
is obtained. Algorithm 3.5.10 proceeds in a typical branch & bound way, i.e.
branching on a new vertex xk∗

i , and bounding whenever it finds a simplex
Sk

i for which it holds that Jk∗
i > 0.

Suppose Algorithm 3.5.10 stops. At the k̄-th iteration5 for some k̄ ∈ Z+,
the following PWA function is generated:

f̄(x) , f̄ k̄
i (x) when x ∈ Sk̄

i , i = 1, . . . , lk̄

, H k̄
i x + ak̄

i when x ∈ Sk̄
i , i = 1, . . . , lk̄, (3.40)

where lk̄ is the number of simpleces obtained at the end of Algorithm 3.5.10

and H k̄
i x + ak̄

i = (vk̄
i )⊤(M k̄

i )−1

[
1
x

]
. The PWA function f̄ constructed via

Algorithm 3.5.10 is a continuous function. Moreover, for x =
∑n

j=0 µjθji

with
∑n

j=0 µj = 1, the corresponding functions f̄ k̄
i satisfy:

f̄ k̄
i (x) = f̄ k̄

i




n∑

j=0

µjθji


 =

n∑

j=0

µjfE(θji),

which, by strict convexity of fE , implies that f̄ k̄
i (x) ≥ fE(x) for all x ∈ Sk̄

i

and all i = 1, . . . , lk̄. Hence, f̄(x) ≥ fE(x) for all x ∈ P0. Since the stopping
criterion defined in Step 4 of Algorithm 3.5.10 assures that at the end of
the entire procedure the optimal value J k̄∗

i of the QP problem (3.39) will be
greater than zero in every simplex Sk̄

i , i = 1, . . . , lk̄, it follows that

fE(x) ≤ f̄(x) < fβE(x), ∀x ∈ ∪i=1,...,lk̄
Sk̄

i .

5The existence of a finite k̄ will be proven in the sequel.
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Then, the sublevel set of f̄ given by

P ,
⋃

i=1,...,lk̄

{x ∈ Sk̄
i | H k̄

i x + ak̄
i ≤ f0}

satisfies βE ⊂ P ⊂ E . Indeed, note that for x ∈ P it holds that

f̄(x) ≤ f0 ⇒ fE(x) ≤ f̄(x) ≤ f0 ⇒ x ∈ E ,

and for x ∈ βE it holds that

fβE(x) ≤ f0 ⇒ f̄(x) < fβE(x) ≤ f0 ⇒ x ∈ P.

The desired polyhedral set P (see Figure 3.1) satisfying βE ⊂ P ⊂ E , is
obtained as the convex hull of the vertices of P. Indeed,

βE ⊂ P ⊂ P ⇒ βE ⊂ P

and, by the convexity of E , it holds that

P , Co(P) ⊆ Co(E) = E .

Note that the computation of the vertices of P and of their convex hull can
be performed efficiently using, for instance, the Geometric Bounding Toolbox
(GBT) (Veres, 1995). Also, an ellipsoidal β-contractive set with β ∈ (0, 1)
as small as possible is desirable, as this will result in a polyhedral positively
invariant (λ-contractive) set of lower complexity.

Remark 3.5.11 The approximation error

ε̄ , max
x∈P0

[f̄(x) − fE(x)]

obtained at the end of Algorithm 3.5.10 is upper bounded by the allowed
maximum error defined as εmax , minx∈P0 [fβE(x) − fE(x)] > 0. Thus,
the Stop criterion of Algorithm 3.5.10 can be set as Jk∗

i > δ for some δ ∈
(0, εmax), instead of just Jk∗

i > 0, to create a gap between P and βE . A larger
δ will result in a smaller λ ∈ (0, 1) for which it holds that βE ⊂ λP ⊂ P ⊂ E .
The number of vertices of P tends to infinity, P recovers the ellipsoidal set
E and λ tends to β when δ tends to εmax.
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Figure 3.1: Illustration of the proposed solution for constructing the poly-
hedral invariant set P.

An estimate of the computational complexity

Algorithm 3.5.10 computes at every iteration k a tighter PWA approxima-
tion f̄k of the given strictly convex quadratic function fE . It stops when the
approximation error obtained at the k-th iteration of the algorithm satisfies

εk , max
x∈P0

[f̄k(x) − fE(x)] ≤ εmax, k ∈ Z+.

Indeed, if the above inequality holds for some finite k̄ ∈ Z+, then for all
x ∈ P0 it holds that f̄ k̄(x) − fE(x) < εmax, which implies that f̄ k̄(x) <

fE(x) + εmax ≤ fβE(x). Consider now the following assumption.

Assumption 3.5.12 The optimum xk∗
i obtained in Step 4 of Algorithm 3.5.10

for every simplex Sk
i , i = 1, . . . , lk, k ∈ Z+, satisfies xk∗

i ∈ int(Sk
i ).

In (Alessio et al., 2005), the authors proved that under Assumption 3.5.12
the error εk committed at the k-th iteration of the algorithm is such that

εk−1

4
≤ εk ≤ εk−1

2
, ∀k ∈ Z+ \ {0}.

The algorithm builds recursively a tree where in each node it stores the
vertices of the current simplex Sk

i and the pairs (Hk
i , ak

i ) such that f̄k(x) =
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Hk
i x + ak

i , for all x ∈ Sk
i , i ≥ 1, k ∈ Z+. If the value of Jk∗

i for the current
simplex is less than zero, then Algorithm 3.5.10 splits Sk

i in n + 1 simpleces
and adds a new level to the tree. The height of the tree can be easily
computed once the values of the initial error ε0 , maxx∈P0 [f̄

0(x) − fE(x)]
and of the allowed maximum error εmax are known, which yields the following
upper bound on the complexity of Algorithm 3.5.10.

Theorem 3.5.13 Suppose that the initial polyhedral set P0, the initial error
ε0 and the desired final approximation error εmax are known. Furthermore,
suppose Assumption 3.5.12 holds6. Then, the following bound holds on the
height ξT of the tree generated by Algorithm 3.5.10:

ξT ≤
⌈
log2

ε0

εmax

⌉
.

Note that the height ξT of the tree and the number of nodes give the
number of simpleces for which the steps of Algorithm 3.5.10 have to be
performed. This in turn yields the number of QP problems that have to be

solved, which is of order l0(n+1)

❧
log2

ε0
εmax

♠
, where l0 is the initial number of

simpleces and n is the dimension of the state-space. Hence, Algorithm 3.5.10
always terminates in finite time.

Examples

We present two examples to illustrate the effectiveness of the new algo-
rithm for computing polyhedral positively invariant sets.

Linear systems subject to input saturation: Consider the following linear
system subject to input saturation (Hu et al., 2002):

xk+1 = Axk + B sat(uk), k ∈ Z+, (3.41)

where A =
[

0.8876 −0.5555
0.5555 1.5542

]
, B =

[
−0.1124
0.5555

]
and sat(uk) , sgn(uk) min(1, |uk|).

In (Hu et al., 2002), a quadratically stabilizing state-feedback control law for
system (3.41), i.e. uk = Fxk, with F = [−0.7651 −2.0299], and a quadratic
Lyapunov function V (x) = x⊤Px with P =

[
5.0127 −0.6475
−0.6475 4.2135

]
were calculated.

Since this control law does not take into account the input saturation, the
maximal feasible domain of attraction for the closed-loop system is given by
the ellipsoidal sublevel set EF of V , corresponding to the level f0 = 0.8237,

6If xk∗
i lies on a facet of Sk

i for some i ≥ 1, k ∈ Z+, the same result holds with some
minor modifications to the splitting strategy.
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Figure 3.2: Polyhedral (solid line) and ellipsoidal (dashed line) invariant sets.

see Figure 3.2. To obtain a larger ellipsoidal domain of attraction for the
feedback F , we employed the LMI technique of (Hu et al., 2002), which yiel-
ded the new feedback matrix H = [−0.2 − 1.4] that takes into account the
effect of saturation and establishes the enlarged ellipsoidal domain of attrac-
tion EH (i.e. the sublevel set of V , corresponding to the level f0 = 2) for
system (3.41) in closed-loop with uk = Fxk.

Next, we employed the method developed in this paper in order to cal-
culate a polyhedral set P such that βEH ⊂ P ⊂ EH , where β = 0.95 is
the contraction factor of EH . The resulting polyhedron is λ-contractive with
λ = 0.98 and has 65 vertices. The set P and the enlarged polyhedral domain
of attraction Q1(λP), which contains the (ellipsoidal) domain of attraction
EH , are plotted in Figure 3.2 together with the closed-loop state trajectory
for the initial state x0 = [0.5434 0.4938]⊤.

Linear systems subject to additive disturbances: Consider the following
discrete-time triple integrator affected by additive disturbances:

xk+1 = Axk + Buk + vk, k ∈ Z+, (3.42)
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Figure 3.3: Polyhedral invariant set and state trajectory for system (3.42)
in closed-loop with u = Kx and randomly generated disturbances v in V.

where A =

[
1 Ts

T2
s
2

0 1 Ts
0 0 1

]
, B =




T3
s

3!

T2
s
2
Ts


, Ts = 0.8, vk ∈ V is the additive dis-

turbance input, and V = [−0.1, 0.1] × [−0.1, 0.1] × [−0.1, 0.1]. We calcu-
lated a robust stabilizing state-feedback control law for system (3.42), i.e.
uk = Kxk, with K = [−1.1739 − 2.4071 − 2.0888], together with a robust

quadratic Lyapunov function V (x) = x⊤Px with P =
[

14.4684 13.5850 4.0221
13.5850 17.4375 5.4581
4.0221 5.4581 2.5328

]
.

The procedure presented in this section was employed to calculate a po-
lyhedral set P such that βE ⊂ P ⊂ E , where E is the sublevel set of V ,
corresponding to the level f0 = 20, and the contraction factor is β = 0.8.
The resulting set P is λ-contractive with λ = 0.9 and has 56 vertices. A plot
of P is given in Figure 3.3 together with a plot of the closed-loop system sta-
te trajectory obtained for x0 = [−3 2 2]⊤ and randomly generated additive
disturbances.

For an example of a PWA system we refer the reader to Section 3.7,
which also illustrates the design of stabilizing terminal cost and constraint
set MPC schemes for PWA systems.



82 Stabilizing model predictive control of hybrid systems

3.5.3 Norms as Lyapunov functions

The third method for computing low complexity piecewise polyhedral posi-
tively invariant sets for PWA systems relies on the result of Theorem 3.4.3.
We define

P , ∪j∈S{x ∈ Ωj | ‖Pjx‖ ≤ c}, (3.43)

for some c > 0, where {Pj | j ∈ S} are the weights of the terminal cost and
‖ · ‖ denotes the either the 1-norm or the ∞-norm. For example, if P is used
as the terminal set in Problem 3.2.1, to satisfy Assumption 3.3.1, c must be
taken less than or equal to sup{µ > 0 | {x ∈ Ωj | ‖Pjx‖ ≤ µ} ⊆ XU}.

Lemma 3.5.14 Suppose that the hypothesis of Theorem 3.4.3 is satisfied.
Then, the piecewise polyhedral set P defined in (3.43) is a positively invariant
set for the PWA system (3.27) in closed-loop with uk = h(xk) = Kjxk when
xk ∈ Ωj , j ∈ S, k ∈ Z+.

Proof: By the hypothesis of Theorem 3.4.3, inequality (3.28) holds, i.e.

‖Pi((Aj+BjKj)x+fj)‖−‖Pjx‖+‖Qx‖+‖RKjx‖ ≤ 0, ∀x ∈ Rn, (j, i) ∈ St.

Suppose that x ∈ P ∩ Ωj . Then, from the above inequality we have that

‖Pi((Aj +BjKj)x+fj)‖ ≤ ‖Pjx‖−‖Qx‖ ≤ ‖Pjx‖ ≤ c, ∀x ∈ P, (j, i) ∈ St.

Then, it follows that (Aj + BjKj)x + fj ∈ P for all x ∈ P ∩ Ωj and all
j ∈ S and thus, P is a positively invariant set for the PWA system (3.27) in
closed-loop with uk = h(xk) = Kjxk when xk ∈ Ωj , j ∈ S, k ∈ Z+.

Note that the set P defined in (3.43) is a sublevel set of the terminal
cost F (x) = ‖Pjx‖ when x ∈ Ωj and it consists of the union of s polyhedra
(this is because the regions Ωj are assumed to be polyhedra). If a common
terminal weight is used, i.e. Pj = P for all j ∈ S, then the set P defined in
(3.43) is a polyhedral set.

3.6 Terminal equality constraint

In this section we consider the case when a terminal equality constraint is
employed to guarantee stability. In this setting the terminal cost F (x) is set
equal to zero for all x and the terminal constraint set is taken as XT = {0}
in Problem 3.2.1. This implies that the terminal constraint now becomes
xN |k = 0. On one hand, this method has the advantage that the computation
of a terminal cost and terminal set that satisfy Assumption 3.3.1 is no longer
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necessary. On the other hand, the terminal equality constraint method usu-
ally requires a larger prediction horizon for feasibility of the Problem 3.2.1,
which increases the computational complexity of the MPC algorithm.

Note that the terminal equality constraint method, although it has been
used since the early stages of hybrid MPC (Bemporad and Morari, 1999)
has only been proven to guarantee attractivity for the closed-loop system
(e.g. see Theorem 1 of (Bemporad and Morari, 1999)). We show that under
suitable assumptions Lyapunov stability can also be achieved in this setting
using the general theory developed in Section 3.3, i.e. we demonstrate that
Assumption 3.3.2 is satisfied.

Consider an optimal control sequence obtained by solving Problem 3.2.1
at time k ∈ Z+, i.e. u

∗
k = (u∗

0|k, u
∗
1|k, . . . , u

∗
N−1|k) and let x

∗
k(xk,u

∗
k) ,

(x∗
1|k, . . . , x

∗
N |k) denote the state sequence generated by system (3.38) from

initial state x0|k , xk and by applying the input sequence u
∗
k. Note that

x∗
N |k = 0. Let ‖ · ‖ denote either the 1-norm or the ∞-norm, and consider

the following assumption.

Assumption 3.6.1 There exist positive numbers τi such that ‖u∗
i|k‖ ≤

τi‖xk‖ for all xk ∈ Xf (N), and all i = 0, . . . , N − 1.

The above assumption requires that all the controls in the optimal sequence
satisfy a regularity property, i.e. ‖u∗

i|k‖ ≤ τi‖xk‖ for all xk ∈ Xf (N), and all
i = 0, . . . , N −1. To a priori guarantee that Assumption 3.6.1 holds, one can
add the regularity constraints to the MPC optimization problem explicitly,
for some fixed values of the parameters τi, i = 0, . . . , N − 1.

We will make use of the following result.

Lemma 3.6.2 Under Assumption 3.6.1 there exist some ηi > 0 such that

‖x∗
i|k‖ ≤ ηi‖xk‖, for all xk ∈ Xf (N) and all i = 0, . . . , N − 1. (3.44)

Proof: We will use induction to prove Lemma 3.6.2. For i = 0, the
inequality ‖x∗

i|k‖ ≤ ηi‖xk‖ holds for any η0 ≥ 1. Suppose ‖x∗
i|k‖ ≤ ηi‖xk‖

holds for some 0 ≤ i ≤ N − 2. Now we will prove that it holds for i + 1. We
have that

‖x∗
i+1|k‖ = ‖Ajx

∗
i|k + Bju

∗
i|k + fj‖ when x∗

i|k ∈ Xf (N) ∩ Ωj , j ∈ S.

Since there exists a positive number µ such that ‖x‖ ≥ µ for all x ∈ ∪j∈S1Ωj

and fj = 0 for j ∈ S0, it follows that there exists a positive number θ such
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that ‖fj‖ ≤ θ‖x‖ for all x ∈ Rn and all j ∈ S. Then, by Assumption 3.6.1
it follows that

‖x∗
i+1|k‖ ≤ ‖Aj‖‖x∗

i|k‖ + ‖Bj‖‖u∗
i|k‖ + ‖fj‖ ≤

≤ max
j∈S

(‖Aj‖ + τi‖Bj‖ + θ)‖x∗
i|k‖. (3.45)

Hence, by the induction hypothesis it follows that

‖x∗
i+1|k‖ ≤ ηi+1‖xk‖,

for ηi+1 , maxj∈S(‖Aj‖ + τi‖Bj‖ + θ)ηi > 0.
In the sequel we will show that the stage cost L(·, ·) satisfies Assumpti-

on 3.3.2 for both the quadratic forms case and the 1,∞-norms case.

Theorem 3.6.3 Suppose that Assumption 3.6.1 holds and L(x, u) , x⊤Qx+
u⊤Ru or L(x, u) , ‖Qx‖ + ‖Ru‖. Then the stage cost L(·, ·) satisfies As-
sumption 3.3.2.

Proof: We have already proven in Section 3.4 that L(·, ·) satisfies part
of Assumption 3.3.2 for α1(‖x‖) = λmin(Q)‖x‖2

2 in the quadratic forms case
and α1(‖x‖) = γ‖x‖ in the 1,∞-norms case. Now we prove that the second
part of Assumption 3.3.2 is satisfied. Consider the quadratic stage cost, i.e.
L(x, u) = x⊤Qx + u⊤Ru. From Lemma 3.6.2 and by Assumption 3.6.1 it
follows that:

L(x∗
i|k, u

∗
i|k) ≤ λmax(Q)‖x∗

i|k‖2
2 + λmax(R)‖u∗

i|k‖2
2 ≤

≤ (η2
i λmax(Q) + τ2

i λmax(R))‖xk‖2
2 , ci‖xk‖2

2,

∀xk ∈ Xf (N), i = 0, . . . , N − 1, (3.46)

where ci > 0 for all i = 0, . . . , N − 1. Applying the same reasoning for a
1,∞-norms stage cost, i.e. L(x, u) = ‖Qx‖ + ‖Ru‖, it follows that:

L(x∗
i|k, u

∗
i|k) ≤ ‖Q‖‖x∗

i|k‖ + ‖R‖‖u∗
i|k‖ ≤

≤ (ηi‖Q‖ + τi‖R‖)‖xk‖ , ai‖xk‖,
∀xk ∈ Xf (N), i = 0, . . . , N − 1, (3.47)

where ai > 0 for all i = 0, . . . , N − 1.
Hence, the stage cost L(x, u) satisfies Assumption 3.3.2 for α1(‖x‖) =

λmin(Q)‖x‖2
2 and α2(‖x‖) = maxi=0,...,N−1 ci‖x‖2

2, for the quadratic forms
case, and α1(‖x‖) = γ‖x‖ and α2(‖x‖) = maxi=0,...,N−1 ai‖x‖ for the 1,∞-
norms case.
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We have shown that Assumption 3.3.2 holds for MPC costs based on both
quadratic forms and 1,∞-norms. Hence, it follows from Theorem 3.3.3 that
Lyapunov stability can be achieved for terminal equality constraint MPC of
hybrid systems.

3.7 Illustrative examples

In this section we illustrate the various methods for setting up MPC schemes
for PWA systems with an a priori stability guarantee by means of simulated
examples.

3.7.1 Example 1

In this example we illustrate the approach of Lemma 3.4.1 for computing a
terminal cost and the method of Section 3.5.1 for computing the terminal
set as a polyhedral invariant set. Consider the system used in (Bemporad
and Morari, 1999):

xk+1 =

{
A1xk + Buk if [1 0]xk ≥ 0

A2xk + Buk if [1 0]xk < 0
(3.48)

subject to the constraints xk ∈ X = [−5, 5] × [−5, 5] and uk ∈ U = [−1, 1],
where

A1 =

[
0.35 −0.602

0.6062 0.35

]
, A2 =

[
0.35 0.6062

−0.6062 0.35

]
, B =

[
0
1

]
.

The LMI (3.17) has been solved for Z1 = Z2 = Z, Y1, Y2 and for the
weights Q = I2, R = 0.4. We have obtained the terminal weight matrix
P = diag([1.4876 2.2434]) and the feedback gains K1 = [−0.611 − 0.3572],
K2 = [0.611 − 0.3572]. We take the safe set with respect to state and input
constraints as X̃U = {x ∈ X | |Kjx| ≤ 1, j = 1, 2}. The polyhedral positively
invariant set obtained with an algorithm based on the recurrent sequence of
sets (3.36) is

XT =

{
x ∈ X̃U |

[−0.2121 0.373
0.2121 −0.373
0.2121 0.373
−0.2121 −0.373

]
x ≤

[
1
1
1
1

]}
. (3.49)

For system (3.48) and the terminal set (3.49), a prediction horizon of N = 4
ensures that X ⊆ Xf (N). The set of feasible states for N = 4 (obtained using
the MPT (Kvasnica et al., 2004)) is plotted in Figure 3.4. The simulation
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Figure 3.4: Example 1. The set of feasible states obtained for N = 4.

Figure 3.5: Example 1. Up: State trajectory - circle line, XT - grey polyhe-
dron; Down: Input history - circle line.

results are plotted in Figure 3.5 for system (3.48) with initial state x0 =
[5 5]⊤ in closed-loop with the MPC control (3.3) calculated for N = 4 using
the Hybrid Toolbox (Bemporad, 2003), together with a plot of the terminal
constraint set.
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3.7.2 Example 2

In this example we illustrate the S-procedure approach of Theorem 3.4.2 for
computing a terminal cost and the “squaring the circle” method of Secti-
on 3.5.2 for computing the terminal set as a piecewise polyhedral invariant
set. Consider the following open-loop unstable 2D PWL system:

xk+1 =





A1xk + Buk if E1xk > 0

A2xk + Buk if E2xk ≥ 0

A3xk + Buk if E3xk > 0

A4xk + Buk if E4xk ≥ 0

(3.50)

subject to the constraints xk ∈ X = [−10, 10] × [−10, 10], uk ∈ U = [−1, 1],
where A1 = [ 0.5 0.61

0.9 1.345 ], A2 =
[
−0.92 0.644
0.758 −0.71

]
, B = [ 1

0 ], A3 = A1 and A4 = A2.
The partitioning of the system is given by E1 = −E3 =

[
−1 1
−1 −1

]
, E2 =

−E4 =
[
−1 1
1 1

]
. The weights of the MPC cost are Q = 10−4I2 and R = 10−3

and the cost is defined using quadratic forms. For system (3.50) the LMIs
of Lemma 3.4.1 and the LMI proposed in (Grieder et al., 2005) turn out to
be infeasible. With the S-procedure approach of Theorem 3.4.2 we obtained
the following solution by solving the LMI (3.22)-(3.23)-(3.24) for the tuning
factors ǫ11 = 0.04, ǫ21 = 0.3, ǫ12 = 0.08, ǫ22 = 1 and for the orthonormal
matrices V1, V2 defined as in (3.26) for θ1 = 2.4 and θ2 = 0.9:

P1 =

[
12.9707 10.9974
10.9974 14.9026

]
, P2 =

[
7.9915 −5.5898
−5.5898 5.3833

]
,

P3 = P1, P4 = P2,

K1 =
[
−0.7757 −1.0299

]
, K2 =

[
0.6788 −0.4302

]
,

K3 = K1, K4 = K2,

U11 =

[
0.4596 1.9626
1.9626 0.0198

]
, U12 =

[
0.4545 2.0034
2.0034 0.0250

]
,

U21 =

[
0.0542 0.0841
0.0841 0.0506

]
, U22 =

[
0.0599 0.0914
0.0914 0.0565

]
,

σ11 = 24.9765, σ21 = 2.8969, σ12 = 12.4273, σ22 = 0.9475,

γ11 = 0.0395, γ21 = 0.2954, γ12 = 0.0791, γ22 = 0.9675. (3.51)

The function V (x) = x⊤Pjx when x ∈ Ωj , j = 1, 2, 3, 4, is a PWQ Lya-
punov function for system (3.50) in closed-loop with uk = h(xk) , Kjxk

when xk ∈ Ωj , with the feedback gains given above. Its level sets are pie-
cewise ellipsoidal β-contractive sets with a contraction factor β = 0.9378.
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Figure 3.6: Example 2. Piecewise polyhedral invariant set P (light grey) to
be employed as terminal set in the MPC scheme, XU (dark grey and light
grey) and state-trajectory for system (3.50) in closed-loop with uk = h(xk).

Therefore, we can employ the “squaring the circle” algorithm of Section 3.5
for computing a terminal constraint set that satisfy Assumption 3.3.1. A
contractive piecewise polyhedral set P was computed for system (3.50) in
closed-loop with h(·) with the feedbacks given in (3.51) using the approach
of Theorem 3.5.8 and Algorithm 3.5.10 for the sublevel sets E , {x ∈ X |
V (x) ≤ 14} ⊆ XU and βE . The resulting set P is the union of four poly-
hedra and it is a λ-contractive set with λ = 0.9286. The closed-loop state
trajectories for system (3.50) in closed-loop with uk = h(xk), k ∈ Z+, with
the vertices of P as initial conditions are plotted in Figure 3.7 together with
a plot of the safe set XU. The state trajectory of system (3.50) with initi-
al state x0 = [−5 − 3.8]⊤ and in closed-loop with the MPC control (3.3)
calculated for N = 4 using the Hybrid Toolbox (Bemporad, 2003) is plot-
ted in Figure 3.7. The MPC controller successfully stabilizes the open-loop
unstable system (3.50). Moreover, the MPC controller is able to stabilize a
state that is far outside the safe set XU, while satisfying the state and input
constraint. This illustrates the advantage of MPC over the local stabilizing
state-feedback control law h(·).

3.7.3 Example 3

In this example we illustrate the approach of Section 3.4.2 for computing a
terminal cost and the method of Section 3.5.3 for computing the terminal set.
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Figure 3.7: Example 2. State trajectory for the MPC closed-loop system -
circle line; XT - non-convex union of white polyhedra.

Consider the following open-loop unstable 3D PWA system with 4 modes:

xk+1 =





A1xk + B1uk if [0 1 0]xk > 0 , [0 0 1]xk > 0

A2xk + B2uk if [0 1 0]xk ≥ 0 , [0 0 1]xk ≤ 0

A3xk + B3uk if [0 1 0]xk < 0 , [0 0 1]xk < 0

A4xk + B4uk if [0 1 0]xk ≤ 0 , [0 0 1]xk ≥ 0

(3.52)

subject to the constraints xk ∈ X = [−5, 5]× [−5, 5]× [−5, 5] and uk ∈ U =
[−2.5, 2.5], where

A1 =



−0.2523 0.4856 0.6467
0.5290 −0.2616 0.3128
−0.4415 −0.2713 −0.6967


 , B1 =




0.5656
0.5460
0.9389


 ,

A2 =




0.0647 0.1729 −0.6542
−0.3131 −0.6691 −0.6516
−0.3085 0.0613 0.0099


 , B2 =




0.6543
0.5266
−0.0558


 ,

A3 =




0.6402 −0.5409 −0.5629
−0.6693 −0.6874 0.1748
−0.2812 0.4898 −0.3526


 , B3 =




0.7580
−0.8050
−0.4059


 ,

A4 =



−0.3501 0.2590 0.6695
−0.4808 0.1905 0.3865
−0.1217 −0.2631 −0.0013


 , B4 =




0.6961
−0.7619
−0.2590


 .
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Figure 3.8: Example 3. State-space partition.

The state-space partition corresponding to system (3.52) is plotted in
Figure 3.8. The weights of the MPC cost are Q = 0.02I3 and R = 0.01 and
the cost is defined using ∞-norms. The following solution to the inequali-
ty (3.29) (with ∞-norms) was found using a min-max formulation and the
Matlab fminunc solver:

P =




0.7029 3.8486 1.1501
4.1796 0.5642 1.6656
−1.4275 1.5026 5.3197
−1.3717 2.5343 −1.5468


 ,

K1 =
[
0.4699 0.1750 0.1591

]
, K2 =

[
0.4039 0.4239 1.1529

]
,

K3 =
[
−0.7742 −0.1436 −0.1603

]
,

K4 =
[
−0.0800 −0.0405 −0.2867

]
.

The terminal set (see Figure 3.9 for a plot) has been obtained as in (3.43) for
c = 4. The resulting terminal set satisfies XT ⊂ XU = ∪j∈S{x ∈ Ωj | Kjx ∈
U} for the gains given above. The simulation results are plotted in Figure 3.9
for system (3.52) with initial state x0 = [3.6 2 1]⊤ and in closed-loop with
the MPC control (3.3) calculated for the matrices P , Q and R given above,
N = 3 and with XT as the terminal set. As guaranteed by Theorem 3.4.3 and
Theorem 3.3.3, the MPC control law (3.3) stabilizes the open-loop unstable
system (3.52) while satisfying the state and input constraints.
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Figure 3.9: Example 3. MPC closed-loop trajectory - circle line and terminal
constraint set XT .

3.8 Conclusions

In this chapter we have derived a priori verifiable sufficient conditions for
Lyapunov asymptotic stability and exponential stability of model predictive
control of hybrid systems. We developed a general theory which shows that
Lyapunov stability can be achieved for both terminal cost and constraint
set and terminal equality constraint MPC, even if the considered Lyapunov
function and the system dynamics are discontinuous. In the particular case
of constrained PWA systems and quadratic forms or 1,∞-norms based cost
functions, new procedures for calculating the terminal cost and the termi-
nal constraint set have been developed. If the MPC cost is defined using
quadratic forms, then the terminal cost is calculated via semi-definite pro-
gramming. For an 1,∞-norm based cost, the terminal cost is obtained by
solving off-line an optimization problem. Novel algorithms for calculating
low complexity piecewise polyhedral positively invariant sets for PWA sys-
tems have also been developed. Also, besides the advantages brought to
the on-line computation of the MPC control action, the off-line computation
of these positively invariant sets is numerically more friendly in compari-
son with the computation of the maximal positively invariant set. Several
examples illustrated the presented theory.
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Global input-to-state stability and

stabilization of discrete-time piecewise

affine systems

4.1 Introduction
4.2 An example of zero

robustness in PWA systems
4.3 Problem statement

4.4 Analysis
4.5 Synthesis
4.6 Illustrative examples
4.7 Concluding remarks

This chapter is concerned with inherent robustness of nominally stable
discrete-time PWA and hybrid systems. An example shows that globally
exponentially stable PWA systems can have zero robustness to arbitrarily
small additive disturbances. This motivates the need for a methodology that
enables robust stability analysis and robust controller synthesis for discrete-
time PWA systems. An approach based on input-to-state stability (ISS) is
employed in this chapter to develop such a framework.

4.1 Introduction

In the linear and the continuous nonlinear case, nominally stable systems
generically have some robustness properties. To give an insight into this
general statement, consider the following nominal and perturbed nonlinear
systems:

xk+1 = G(xk)

xk+1 = H(xk, vk) , G(xk) + vk,

where G : Rn → Rn, H : Rn × Rn → Rn are nonlinear functions and xk,
vk are the state and an unknown additive disturbance input at discrete-time
instant k ∈ Z+. As done classically, if the nominal dynamics G(·) enjoys a
continuous (or even stronger, Lipschitz continuous) Lyapunov function V (·)
(i.e. a function that satisfies the hypothesis of Theorem 2.2.4), then it is
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Figure 4.1: Continuous Lyapunov function.

easy to prove that this is also an ISS Lyapunov function (i.e. it satisfies
the hypothesis of Theorem 2.3.5), which is sufficient for ensuring input-to-
state stability. Indeed, continuity implies that for any compact subset P
of Rn there exists a K-function σ such that for any x, y ∈ P it holds that
|V (y) − V (x)| ≤ σ(‖y − x‖). Hence, we have that

V (H(x, v)) − V (x) = V (G(x) + v) − V (x) ≤ V (G(x)) + σ(‖v‖) − V (x)

≤ −α3(‖x‖) + σ(‖v‖)

and thus, the continuous Lyapunov function V (·) is an ISS Lyapunov func-
tion. The graphical illustration of the above reasoning is given in Figure 4.1
(note that the origin is on the right side of the horizontal axis). The no-
minal state trajectory starting from the initial state x0 reaches x1 in one
discrete-time step and the Lyapunov function V (·) is decreasing. If a distur-
bance acts additively on the system state at time k = 1, this may cause a
jump (increase) in the value of V (·). However, due to continuity of V (·), this
jump can be upper bounded by a K-function of the disturbance input, as
explained above. Thus, inherent robustness is established. For more general
robust stability results that use continuous candidate Lyapunov functions
we refer the reader to (Grimm et al., 2004; Messina et al., 2005).

Clearly, the above continuity based robustness (ISS) argument no longer
holds if the Lyapunov function V (·) is discontinuous at some points. This is
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Figure 4.2: Discontinuous Lyapunov function.

illustrated graphically in Figure 4.2. The nominal state trajectory starting
from the initial state x0 reaches x1 in one discrete-time instant and x2 at the
second discrete-time instant. The discontinuous Lyapunov function V (·) is
decreasing. If an arbitrarily small disturbance acts additively on the system
state at time k = 1 (note that V (·) is discontinuous at x = x1) this may cause
a jump in the value of V (·) by a fixed amount, which cannot be bounded
locally by a K-function. Therefore, in the case when stability is established
via discontinuous Lyapunov functions, the classical way of proving (inherent)
robustness fails and special precautions must be taken when establishing
robustness from nominal stability.

The above observation is extremely interesting for discrete-time PWA
and hybrid systems. This is due to the fact that the existing results on
analysis of nominal stability of discrete-time PWA systems available in the
literature, e.g. see (Mignone et al., 2000a; Ferrari-Trecate et al., 2002; Feng,
2002; Daafouz et al., 2002), rely on piecewise quadratic (PWQ), possibly
discontinuous, candidate Lyapunov functions. Of course, the trivial solution
for ensuring inherent robustness for PWA systems would be to search for a
continuous Lyapunov function. However, this is known to be very conserva-
tive, as one can easily construct an example of a stable PWA system that
admits a discontinuous PWQ Lyapunov function, but it does not admit a
continuous PWQ Lyapunov function.
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To illustrate this, consider the following piecewise linear system:

xk+1 =

{
A1xk if [1 0]xk ≤ 1

A2xk if [1 0]xk > 1,
(4.1)

where

A1 =

[
0.62 −0.2848

−0.0712 0.8336

]
, A2 =

[
0.5125 −0.2855
1.4277 0.5125

]
.

The Linear Matrix Inequalities (LMI) technique of (Ferrari-Trecate et al.,
2002) was employed for this system to compute a PWQ Lyapunov function.
This led to the following LMIs in the unknowns P1, P2,

P1, P2 > 0

P1 − A⊤
1 P1A1 > 0, P1 − A⊤

1 P2A1 > 0

P2 − A⊤
2 P2A2 > 0, P2 − A⊤

2 P1A2 > 0, (4.2)

which yielded a PWQ Lyapunov function, i.e.:

V (x) =

{
x⊤P1x if [1 0]xk ≤ 1

x⊤P2x if [1 0]xk > 1,

with

P1 =

[
1.8306 −0.2545
−0.2545 1.2859

]
, P2 =

[
3.6652 0.3130
0.3130 0.9356

]
.

This establishes nominal asymptotic stability in the Lyapunov sense for sy-
stem (4.1), as it is also illustrated by the trajectory plot given in Figu-
re 4.3. Note that the LMI (4.2) with the additional constraint P1 = P2

is infeasible, which implies that system (4.1) does not admit a common
(and thus continuous) quadratic Lyapunov function. Moreover, the sys-
tem (4.1) does not admit even a continuous PWQ Lyapunov function, as
the corresponding condition for continuity over the switching hyperplane is
equivalent with P1 = P2. The computed PWQ Lyapunov function is discon-
tinuous. For example consider the point x∗ = [1 0.3]⊤, for which it holds
that (x∗)⊤P1x

∗ = 1.7936 6= 3.9372 = (x∗)⊤P2x
∗.

This example confirms that there exist nominally asymptotically stable
PWA systems that admit a discontinuous PWQ Lyapunov function, but not a
continuous PWQ one. In such cases, robustness can no longer be established
in the classical way, which relies on continuous Lyapunov functions.

However, this example is input-to-state stable, as it can be easily verified
(via the LMI sufficient condition for ISS presented later in this chapter,
Section 4.4) that the discontinuous Lyapunov function computed above is
also a discontinuous ISS Lyapunov function.
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Figure 4.3: A trajectory plot for system (4.1).

4.2 An example of zero robustness in PWA systems

Although the absence of a continuous Lyapunov function does not necessari-
ly imply that input-to-state stability is lost in the presence of perturbations,
in (Grimm et al., 2004) and (Kellett and Teel, 2004) it was shown that it
can lead to the so-called “zero robustness” phenomenon. More specifically,
the authors of (Grimm et al., 2004) present several examples of smooth non-
linear control systems, while the authors of (Kellett and Teel, 2004) present
an example of a discrete-time discontinuous nonlinear system, that are (is)
nominally exponentially stable, but have (has) zero robustness to arbitra-
rily small disturbances. In other words, zero robustness means that the
asymptotic stability property is completely lost in the presence of arbitrarily
small perturbations. This phenomenon is mainly due to the absence of a
continuous Lyapunov function.

As in the previous section we pointed out that in PWA systems nomi-
nal stability is often established via discontinuous Lyapunov functions, it is
relevant to investigate whether or not the zero robustness phenomenon can
occur in PWA systems as well. An answer to this question cannot be ob-
tained directly from the examples of (Grimm et al., 2004; Kellett and Teel,
2004), as the dynamics (vectorfield) of a PWA system is affine (or linear) in
any particular region of the state-space. The zero robustness phenomenon
could only occur in piecewise affine systems for initial conditions in the vi-
cinity of a switching hyperplane (i.e. at the boundaries of some regions in
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the state-space partition) at which the dynamics is discontinuous. Still, for
such initial conditions, the affine (linear) vectorfield may cause the state to
drift away from the switching hyperplane by a fixed distance. Then, stabi-
lity would be preserved in the presence of sufficiently small perturbations.
However, if the vectorfield in some state-space region yields a trajectory that
is parallel to a “discontinuous” switching hyperplane, then zero robustness
can occur for initial conditions belonging to the same switching hyperplane,
as it is illustrated in the sequel.

Consider the discontinuous nominal and perturbed PWA systems

xk+1 = Ajxk + fj when xk ∈ Ωj , (4.3a)

x̃k+1 = Aj x̃k + fj + vk when xk ∈ Ωj , (4.3b)

with vk ∈ Vε , {v ∈ R2 | ‖v‖∞ ≤ ε} for some ε > 0, j ∈ S , {1, . . . , 9},
k ∈ Z+, and where

Aj =

[
1 0
0 1

]
for j 6= 7; A7 =

[
0.35 0.6062

0.0048 −0.0072

]
; f1 = −f2 =

[
0.5
0

]
;

f3 = f4 = f5 = f6 =

[
0
−1

]
; f7 =

[
0
0

]
; f8 =

[
0.4
−0.1

]
; f9 =

[
−0.4
−0.1

]
.

The system state takes values in the set X , ∪j∈SΩj , where the regions Ωj

are polyhedra (not necessarily closed), as shown in Figure 4.4. The state
trajectories1 of system (4.3) obtained for the initial states x0 = [0.2 3.6]⊤ ∈
Ω2 (square dotted line) and x0 = [0.2 3.601]⊤ ∈ Ω1 (circle dotted line) are
plotted in Figure 4.4.

In the theorem below we derive some properties for this system.

Theorem 4.2.1 The following statements hold:
(i) Let P ∈ R2×2 be the solution of the discrete-time Lyapunov equation

A⊤
7 PA7−P = −Q obtained for some Q > 0. For example, P = [ 1.1406 0.2420

0.2420 1.4171 ]
for Q = I2. Then, the function

V (x) , x⊤
10Px10 +

9∑

i=0

x⊤
i Qxi, (4.4)

where xi is the solution of system (4.3a) obtained at time i ∈ Z[0,10] from the

initial condition x0 , x ∈ X, is a discontinuous PWQ Lyapunov function for
system (4.3a);

1Note that the regions Ω1 and Ω2 are defined such that for all x ∈ ∂Ω1 ∩ ∂Ω2 the
dynamics xk+1 = A2xk + f2 is employed.
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Figure 4.4: Unperturbed state trajectories (square and circle dotted lines)
for system (4.3a).

(ii) The PWA system (4.3a) is exponentially stable in X;
(iii) For any ε > 0 the PWA system (4.3b) is not input-to-state stable

for initial conditions in ∂Ω1 ∩ ∂Ω2 and disturbances in Vε.

Proof: (i) The following properties hold for the PWA system (4.3a), as
it can be seen by inspection of the dynamics:

• (P1) ‖xk+1‖∞ ≤ ‖xk‖∞ for all xk ∈ X, k ∈ Z+;

• (P2) For any initial state x0 ∈ X the state trajectory satisfies xk ∈ Ω7

for all k ∈ Z≥10;

• (P3) ‖A7‖∞ < 1;

• (P4) Ω7 is a Positively Invariant (PI) set for the dynamics xk+1 =
A7xk + f7;

• (P5) X is a PI set for the PWA system (4.3).

By property (P5), X is a PI set for the PWA system (4.3). Therefore,
we only need to prove that the PWQ function V (·) defined in (4.4) satisfies
the hypothesis of Theorem 2.2.4. Note that the inequality

α1(‖x‖2) ≤ V (x) ≤ α2(‖x‖2)
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is trivially satisfied for all x ∈ X with α1(‖x‖2) , λmin(Q)‖x‖2
2 and α2(‖x‖2) ,

maxj0,...,j9 (λmax(PQ)) ‖x‖2
2, where

PQ , Q +

9∑

i=1







i−1∏

p=0

Ajp




⊤

Q




i−1∏

p=0

Ajp





+




9∏

p=0

Ajp




⊤

P




9∏

p=0

Ajp




and jp ∈ S for all p ∈ Z[0,9]. Finally, for any x ∈ Ωj and any j ∈ S, by
property (P2) it holds that

V (Ajx + fj) − V (x) = −x⊤Qx + x⊤
10(A

⊤
7 PA7 − P + Q)x10

= −x⊤Qx ≤ −λmin(Q)‖x‖2
2 , −α3(‖x‖2),

where x10 is the solution of system (4.3) obtained from initial condition
x0 = x. One can easily check that V (·) defined in (4.4) is discontinuous, for
example, at x∗ = [0.2 3.6]⊤ ∈ Ω2.

(ii) The statement follows directly from the result of part (i), via Theo-
rem 2.2.4, part (ii);

(iii) In order to illustrate the zero robustness phenomenon for the pertur-
bed PWA system (4.3b) we constructed an additive disturbance vk, which at
times k = 0, 2, 4, . . . is equal to [0 ε]⊤ and at times k = 1, 3, 5, . . . is equal to
[0 − ε]⊤, where ε > 0 can be taken arbitrarily small. The system trajectory
with initial state x̃0 = [0.2 3.6]⊤ ∈ ∂Ω2 ∩ ∂Ω1 is given by x̃k = [0.2 3.6]⊤,
if k = 0, 2, 4, . . . and x̃k+1 = [−0.3 3.6 + ε]⊤, if k = 1, 3, 5, . . .. This is a
limit cycle with period 2 and ‖x̃k‖∞ ≥ 3.6 for all k ∈ Z+. Since for any
β ∈ KL and γ ∈ K we can take ε arbitrarily small and k∗ ∈ Z+ large enough
such that β(k, ‖x̃0‖∞)+ γ(‖w[k−1]‖∞) < 3.6 ≤ ‖x̃k‖∞ for all k ≥ k∗, for any
ε > 0, the PWA system (4.3b) is not ISS for initial conditions in ∂Ω1 ∩ ∂Ω2

and disturbances in Vε.
The above example illustrated that nominally exponentially stable PWA

systems (even with the origin in the interior of one of the state-space regions
Ωj) can have zero robustness to additive disturbances. Moreover, by taking
any finite polyhedral partition of R2 \ X, defining the dynamics in each
polyhedral region of this partition to be xk+1 = [ 0 0

0 0 ]xk +
[

0.1
−0.1

]
, k ∈ Z+,

and adding these affine subsystems to the PWA system (4.3a), one obtains a
PWA system that is globally exponentially stable, but it has zero robustness
to arbitrarily small additive disturbances. Taking into account the fact that
R2 is a robust positively invariant set for the so-obtained PWA system,
one can easily prove via contradiction that this system does not admit a
continuous Lyapunov function, using the reasoning presented in Section 4.1
and the result of Theorem 4.2.1 part (iii).
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4.3 Problem statement

As shown in the previous section, nominally exponentially stable discrete-
time PWA systems can have zero robustness to arbitrarily small additive
disturbances, mainly due to the absence of a continuous Lyapunov function.
Therefore, in discrete-time, it is important that disturbances are taken into
account when synthesizing stabilizing controllers for PWA systems, which
will be applied in practice.

Robust stability results for discrete-time PWA systems were presented
in (Ferrari-Trecate et al., 2002, Section 3), which deals with LMI based l2-
gain analysis for PWA systems; and in (Grieder, 2004, Chp. 8.5), where it
was observed that, if a robust positively invariant set can be calculated for a
nominally asymptotically stable PWA system, then local robust convergence
is ensured. For continuous-time input-to-state stability results for switched
systems and hybrid systems we refer the reader to the recent works (Vu et al.,
2005; Hespanha et al., 2005; Cai and Teel, 2005). However, to the best of
the author’s knowledge, a global robust stability analysis methodology for
discrete-time PWA systems that can be used for both analysis and synthesis
purposes is missing from the literature.

As such, in the remainder of this chapter we consider discrete-time PWA
systems subject to unbounded additive disturbance inputs and we employ
the input-to-state (practical) stability (ISpS) framework introduced in the
second chapter to obtain global robust stability results. For simplicity and
clarity of exposition, only PWQ candidate ISpS (ISS) Lyapunov functions
are considered, but the results can also be extended mutatis mutandis to pie-
cewise polynomial (Prajna and Papachristodoulou, 2003) or piecewise affine
candidate functions. The sufficient conditions for ISpS (ISS) are expressed in
terms of LMIs, which can be solved efficiently (Boyd et al., 1994). One of the
advantages of using the ISpS (ISS) framework for studying robust stability
of discrete-time PWA systems is that the results apply to PWA systems in
their full generality, i.e. non-zero affine terms are allowed in the regions in
the state-space partition whose closure contains the origin. Note that this si-
tuation is often excluded in other works. In the sequel we present a new LMI
technique for dealing with non-zero affine terms, which does not rely on a
system transformation and the S-procedure, e.g. as done in (Ferrari-Trecate
et al., 2002, Remark 3). This new technique makes it possible to obtain LMI
based sufficient conditions for input-to-state stabilizing controllers synthesis
as well, and not just for analysis.

The rest of this chapter focuses on perturbed discrete-time, possibly dis-
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continuous, PWA systems of the form

xk+1 = G(xk, vk) , Ajxk + fj + Djvk if xk ∈ Ωj , (4.5)

where Aj ∈ Rn×n, fj ∈ Rn, Dj ∈ Rn×dv for all j ∈ S and S , {1, 2, . . . , s}
is a finite set of indexes. The collection {Ωj | j ∈ S} defines a partition of
Rn, meaning that ∪j∈SΩj = Rn and int(Ωi) ∩ int(Ωj) = ∅ for i 6= j. Each
Ωj is assumed to be a polyhedron. Let S0 , {j ∈ S | 0 ∈ cl(Ωj)}, S1 , {j ∈
S | 0 6∈ cl(Ωj)} and let Saff , {j ∈ S | fj 6= 0}, Slin , {j ∈ S | fj = 0}, so
that S0 ∪ S1 = Saff ∪ Slin = S.

The goal is to derive sufficient conditions for global ISpS and global ISS,
respectively, of system (4.5). To do so, we consider PWQ candidate ISpS
(ISS) Lyapunov functions of the form

V : Rn → R+, V (x) = x⊤Pjx if x ∈ Ωj , (4.6)

where Pj , j ∈ S, are positive definite and symmetric matrices. For the
remainder of this chapter we use ‖·‖ to denote the Euclidean norm for short-
ness. It is easy to observe that V (·) satisfies condition (2.9a) for α1(‖x‖) ,

minj∈S λmin(Pj)‖x‖2, α2(‖x‖) , maxj∈S λmax(Pj)‖x‖2 and d1 = 0.

4.4 Analysis

In this section we present LMI-based sufficient conditions for global ISpS
(ISS) of system (4.5). Let Q be a known positive definite and symmetric
matrix and let γ1, γ2 be known positive numbers with γ1γ2 > 1. For any
(j, i) ∈ S × S consider now the following LMI:

∆ji ,




Ξji −A⊤
j Pi −A⊤

j Pi

−PiAj γ1Pi −Pi

−PiAj −Pi γ2Pi


 > 0, (4.7)

where
Ξji , Pj − A⊤

j PiAj − E⊤
j UjiEj − Q − Mji.

The matrix Ej , j ∈ S, defines the cone Cj , {x ∈ Rn | Ejx ≥ 0} that is
chosen such that Ωj ⊆ Cj . The role of these matrices is to introduce an S-
procedure relaxation (Johansson and Rantzer, 1998). The unknown variables
in (4.7) are the matrices Pj , j ∈ S, which are required to be positive definite
and symmetric, the matrices Uji, (j, i) ∈ S × S, which are required to have
non-negative elements, and the matrices Mji, (j, i) ∈ Saff × S, which are



4.4. Analysis 103

required to be positive definite and symmetric. For all (j, i) ∈ Slin × S we
take Mji = 0. For any (j, i) ∈ Saff × S, define

Eji , {x ∈ Rn | x⊤Mjix < (1 + γ1)f
⊤
j Pifj}.

Theorem 4.4.1 Let system (4.5), the matrix Q > 0 and the numbers
γ1, γ2 > 0 with γ1γ2 > 1 be given. Suppose that the LMIs

∆ji > 0, (j, i) ∈ S × S (4.8)

are feasible. Then, it holds that:
(i) The system (4.5) is globally ISpS;
(ii) If2 (∪i∈SEji) ∩ Ωj = ∅ for all j ∈ Saff, then system (4.5) is globally

ISS;
(iii) If system (4.5) is piecewise Linear (PWL), i.e. Slin = S, then system

(4.5) is globally ISS.

Proof: The proof consists in showing that V (·), as defined in (4.6), is
an ISpS (ISS) Lyapunov function.

(i) By the hypothesis ∆ji > 0 for all (j, i) ∈ S ×S. Then, it follows that:

(
x⊤ f⊤

j (Djv)⊤
)
∆ji




x

fj

Djv


 ≥ 0,

for all x ∈ Ωj , (j, i) ∈ S × S and all v ∈ Rdv . The above inequality yields:

(Ajx + fj + Djv)⊤Pi(Ajx + fj + Djv) − x⊤Pjx

≤ −x⊤Qx + (1 + γ2)(Djv)⊤Pi(Djv) − x⊤E⊤
j UjiEjx+

(1 + γ1)f
⊤
j Pifj − x⊤Mjix

≤ −λmin(Q)‖x‖2 + (1 + γ2) max
i∈S

λmax(Pi) max
j∈S

‖Dj‖2‖v‖2+

(1 + γ1) max
i∈S

λmax(Pi) max
j∈S

‖fj‖2. (4.9)

Hence, V (Ajx + fj + Djv)− V (x) ≤ −α3(‖x‖) + σ(‖v‖) + d2 for all x ∈ Ωj ,
(j, i) ∈ S × S and all v ∈ Rdv , where

α3(‖x‖) , λmin(Q)‖x‖2,

σ(‖v‖) , (1 + γ2) max
i∈S

λmax(Pi) max
j∈S

‖Dj‖2‖v‖2,

d2 , (1 + γ1) max
i∈S

λmax(Pi) max
j∈S

‖fj‖2.

2Note that this implies S0 ⊆ Slin.
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From (4.7) we also have that for all (j, i) ∈ S × S,

∆ji > 0 ⇒ Ξji > 0 ⇒ x⊤(Pj − Q)x ≥ 0 for all x ∈ Ωj .

Then, it follows that for all j ∈ S and all x ∈ Ωj :

λmin(Q)‖x‖2 ≤ x⊤Qx ≤ x⊤Pjx ≤ max
j∈S

λmax(Pj)‖x‖2,

which yields λmin(Q) , c ≤ b , maxj∈S λmax(Pj). Hence, the function V (·)
defined in (4.6) satisfies the hypothesis of Theorem 2.4.4 with d1 = 0 and
d2 = (1 + γ1) maxi∈S λmax(Pi) maxj∈S ‖fj‖2. Then, the statement follows
from Theorem 2.4.4.

(ii) To establish global ISS, we need to prove that in the above setting,
we obtain d2 = 0 under the additional hypothesis. For j ∈ Slin, if x ∈ Ωj

we obtain d2 = 0 due to fj = 0. For any j ∈ Saff, if x ∈ Ωj it holds that
x 6∈ ∪i∈SEji. This yields:

(1 + γ1)f
⊤
j Pifj − x⊤Mjix ≤ 0,

and thus, from the first inequality in (4.9) it follows that the function V (·)
defined in (4.6) satisfies the hypothesis of Theorem 2.4.4 with d1 = d2 = 0.
Then, the statement follows from Theorem 2.4.4.

(iii) This is a special case of part (ii).
The matrix Q gives the gain of the K-function α3(·) and is related to

the decrease of the state norm, and hence, to the transient behavior (see
the result of Theorem 2.3.5). If ISpS (ISS) is the only goal, Q can be
chosen less positive definite to reduce conservativeness of the LMI (4.8).
The numbers γ1, γ2 and the matrices {Pj | j ∈ S} yield the constant
d2 = (1 + γ1) maxi∈S λmax(Pi) maxj∈S ‖fj‖2 and the gain of the K-function
σ(s) = (1+γ2) maxi∈S λmax(Pi) maxj∈S ‖Dj‖2s2. Note that a necessary con-
dition for feasibility of the LMI (4.8) is γ1γ2 > 1. As it would be desirable to
obtain a constant d2 and gain of the function σ(·) as small as possible, one
has to make a trade-off in choosing γ1 and γ2. One could add a cost criterion
to (4.8) and specify γ1, γ2 as unknown variables in the resulting optimization
problem, which might solve the trade-off. Although in this case (4.8) is a
bilinear matrix inequality (i.e. due to γ1Pi, γ2Pi), since the unknowns γ1, γ2

are scalars, this problem can be solved efficiently via semi-definite program-
ming solvers (software), e.g. (Sturm, 2001), (Löfberg, 2002), by setting lower
and upper bounds for γ1, γ2 and doing bisections.

Note that, since we take Mji = 0 for all (j, i) ∈ Slin × S, the LMI-based
sufficient conditions for ISS (4.7) recover the LMI-based sufficient conditions
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for asymptotic stability presented in (Ferrari-Trecate et al., 2002) (for PWL
systems) in the absence of disturbances (i.e. when vk = 0 for all k ∈ Z+).

Consider now the following definition.

Definition 4.4.2 Let V be a compact and convex subset of Rdv . The system
(4.5) is said to be Globally Ultimately Bounded (GUB) in a set P ⊂ Rn if
for all x0 ∈ Rn and all {vp}p∈Z+ with vp ∈ V for all p ∈ Z+, there exists an
i ∈ Z+ such that the corresponding state trajectory satisfies xk ∈ P for all
k ∈ Z≥i.

If the disturbance inputs are bounded, which is a reasonable assumption
in practice, we show next that ISpS implies Global Ultimate Boundedness
(GUB). This means that the ISpS property also implies the usual robust
stability (convergence) property, e.g. as the one defined in (Grieder, 2004,
Chp. 8.5), while the result of Theorem 4.4.1 part (i) applies to a more general
class of PWA systems.

Assume that the additive disturbance input vk takes values at all times
k ∈ Z+ in a compact and convex subset V of Rn and, for any (j, i) ∈ S × S,
let

ξji , (1 + γ1)f
⊤
j Pifj + max

v∈V

(1 + γ2)v
⊤D⊤

j PiDjv.

Note that ξji exists due to compactness of V. For all j ∈ S define the set
Mj , ∪i∈S{x ∈ Ωj | x⊤Mjix < ξji}. Let P , ∪j∈SMj and let R1(P) ,

{G(x, v) | x ∈ P, v ∈ V} be a robust one-step reachable set (Blanchini,
1994) for the PWA system (4.5).

Theorem 4.4.3 Let Υ , maxx∈R1(P)∪P V (x), let VΥ , {x ∈ Rn | V (x) ≤
Υ} and suppose that the hypothesis of Theorem 4.4.1 including part (i)
holds. Then, system (4.5) is GUB in the set VΥ.

Proof: As shown in the proof of Theorem 4.4.1, equation (4.9), for all
x ∈ Ωj , (j, i) ∈ S × S we have

V (Ajx + fj + Djv) − V (x) ≤ −α3(‖x‖) + (1 + γ2)(Djv)⊤Pi(Djv)

+ (1 + γ1)f
⊤
j Pifj − x⊤Mjix.

Then, for all x ∈ {Rn \ P} ∩ Ωj it holds that

V (Ajx + fj + Djv) − V (x) ≤ −α3(‖x‖). (4.10)

Now let x0 6∈ VΥ. Since V (x) ≤ Υ for all x ∈ P implies P ⊆ VΥ, it follows
that x0 6∈ P. We also have that V (·) satisfies condition (2.9a) with d1 = 0,
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which, together with (4.10), implies via Theorem 2.4.4 part (ii) that there
exists a KL-function β(·, ·) such that the trajectory of system (4.5) satisfies
‖xk‖ ≤ β(‖x0‖, k) as long as x0, . . . , xk 6∈ P. Hence, there exists a finite
i ∈ Z+ such that xi ∈ VΥ for any x0 6∈ VΥ. Next, we prove that VΥ is a
Robust Positively Invariant (RPI) set for system (4.5). For any x ∈ VΥ \ P
it holds that

V (G(x, v)) ≤ V (x) − α3(‖x‖) ≤ V (x) ≤ Υ,

for all v ∈ V. We also have that for any x ∈ P, G(x, v) ∈ R1(P) for all
v ∈ V, which yields V (G(x, v)) ≤ Υ. Thus, for any x ∈ VΥ, it holds that
G(x, v) ∈ VΥ for all v ∈ V, which implies that VΥ is a RPI set for the PWA
system (4.5) for all disturbances v ∈ V. Hence, the PWA system (4.5) is
GUB in the set VΥ.

4.5 Synthesis

In this section we address the problem of input-to-state (practically) stabili-
zing controllers synthesis for perturbed discrete-time non-autonomous PWA
systems:

xk+1 = g(xk, uk, vk) , Ajxk + Bjuk + fj + Djvk if xk ∈ Ωj , (4.11)

where uk ∈ Rm is the input and Bj ∈ Rn×m for all j ∈ S. The nomenclature
in (4.11) is similar with the one used in Section 4.4 for system (4.5).

In this section we take the control input as a PWL state-feedback control
law of the form:

uk , h(xk) , Kjxk if xk ∈ Ωj , (4.12)

where Kj ∈ Rm×n for all j ∈ S. The aim is to calculate the feedback gains
{Kj | j ∈ S} such that the PWA closed-loop system (4.11)-(4.12) is globally
ISpS and ISS, respectively. For this purpose we make use again of PWQ
candidate ISpS (ISS) Lyapunov functions of the form (4.6).

For any (j, i) ∈ S × S, consider now the following LMI:

∆ji ,

(
∆11

ji ∆12
ji

∆21
ji ∆22

ji

)
> 0, (4.13)

where

∆11
ji ,




Zj ∗ ∗
−(AjZj + BjYj) γ1Zi −Zi

−(AjZj + BjYj) −Zi γ2Zi


 ,
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the term ∗ denotes −(AjZj + BjYj)
⊤ and, for j ∈ Saff

∆22
ji , diag








Zi 0 0
0 Zi 0
0 0 Zi


 ,




Q−1 0 0
0 Q−1 0
0 0 Q−1


 ,




Nji 0 0
0 Nji 0
0 0 Nji








∆12
ji = ∆21

ji
⊤

,




(AjZj + BjYj)
⊤ 0 0 Zj 0 0 Zj 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


 ,

while for j ∈ Slin,

∆22
ji , diag








Zi 0 0
0 Zi 0
0 0 Zi


 ,




Q−1 0 0
0 Q−1 0
0 0 Q−1








∆12
ji = ∆21

ji
⊤

,




(AjZj + BjYj)
⊤ 0 0 Zj 0 0

0 0 0 0 0 0
0 0 0 0 0 0


 .

The operator diag([L1, . . . , Ln]) denotes a diagonal matrix of appropriate
dimensions with the matrices L1, . . . , Ln on the main diagonal, and the ele-
ment 0 denotes everywhere a zero matrix of appropriate dimensions. The
unknown variables in (4.13) are the matrices Zj ∈ Rn×n, j ∈ S, which are
required to be positive definite and symmetric, the matrices Yj ∈ Rm×n,
j ∈ S, and the matrices Nji, (j, i) ∈ Saff × S, which are required to be posi-
tive definite and symmetric. The matrix Q is a known positive definite and
symmetric matrix and the numbers γ1, γ2 > 0 with γ1γ2 > 1 play the same
role as described in Section 4.4. For any (j, i) ∈ Saff × S, define

Eji , {x ∈ Rn | x⊤N−1
ji x < (1 + γ1)f

⊤
j Pifj}.

Theorem 4.5.1 Let system (4.11), the matrix Q > 0 and the numbers
γ1, γ2 > 0 with γ1γ2 > 1 be given. Suppose that the LMIs

∆ji > 0, (j, i) ∈ S × S (4.14)

are feasible and let {Zj , Yj | j ∈ S} and {Nji | (j, i) ∈ Saff×S} be a solution.
For all j ∈ S let Pj , Z−1

j and let Kj , YjZ
−1
j . For all (j, i) ∈ Slin ×S take

Mji = 0. For all (j, i) ∈ Saff × S take Mji = N−1
ji . Then, it holds that:



108

Global input-to-state stability and stabilization of discrete-time piecewise
affine systems

(i) The closed-loop system (4.11)-(4.12) is globally ISpS;
(ii) If (∪i∈SEji) ∩ Ωj = ∅ for all j ∈ Saff, then the closed-loop system

(4.11)-(4.12) is globally ISS;
(iii) If system (4.11) is PWL, i.e. Slin = S, then the closed-loop system

(4.11)-(4.12) is globally ISS.

Proof: By applying the Schur complement (Boyd et al., 1994) to (4.14),
for any (j, i) ∈ S × S we obtain

∆11
ji − ∆21

ji
⊤
∆22

ji
−1

∆21
ji > 0,

which yields the equivalent matrix inequality:

Φji ,




Γji ∗ ∗
−(AjZj + BjYj) γ1Zi −Zi

−(AjZj + BjYj) −Zi γ2Zi


 > 0, (4.15)

where the term ∗ denotes −(AjZj + BjYj)
⊤ and

Γji , Zj − (AjZj + BjYj)
⊤Z−1

i (AjZj + BjYj)

− ZjQZj − ZjN
−1
ji Zj .

By pre- and post-multiplying (4.15) with

(
Z−1

j 0 0

0 Z−1
i 0

0 0 Z−1
i

)
and by substitu-

ting Z−1
j with Pj , YjZ

−1
j with Kj and N−1

ji with Mji turns inequality (4.15)
into the equivalent matrix inequality:




Ξji ∗ ∗
−Pi(Aj + BjKj) γ1Pi −Pi

−Pi(Aj + BjKj) −Pi γ2Pi


 > 0,

for all (j, i) ∈ S × S, where the term ∗ denotes −(Aj + BjKj)
⊤Pi and

Ξji , Pj − (Aj + BjKj)
⊤Pi(Aj + BjKj) − Q − Mji.

Then, it follows that the LMI (4.8) is feasible for the closed-loop system
(4.11)-(4.12) for all (j, i) ∈ S × S. The rest of the proof is analogous to the
proof of Theorem 4.4.1.

Note that using the same reasoning employed in the proof of Theo-
rem 4.4.3, it can be proven that if the hypothesis of Theorem 4.5.1 part
(i) is satisfied, then the closed-loop system (4.11)-(4.12) is GUB.
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4.6 Illustrative examples

In this section we illustrate the theoretical results presented in Section 4.4
and Section 4.5 by means of two simulated examples.

4.6.1 Example 1

In this example we illustrate the S-procedure relaxation and the result of
Theorem 4.4.1 part (iii). Consider the following perturbed PWL system:

xk+1 =





A1xk + vk if E1xk > 0

A2xk + vk if E2xk ≥ 0

A3xk + vk if E3xk > 0

A4xk + vk if E4xk ≥ 0,

(4.16)

where all inequalities hold componentwise, A1 = [ 0.5 0.61
0.9 1.345 ], A2 =

[
−0.92 0.644
0.758 −0.71

]
,

A3 = A1 and A4 = A2. The state-space partition of system (4.16) is given
by E1 = −E3 =

[
−1 1
−1 −1

]
and E2 = −E4 =

[
−1 1
1 1

]
. Searching for a common

quadratic or a PWQ without the S-relaxation ISS Lyapunov function did not
succeed for system (4.16). However, by solving the LMI (4.7) for Q = 10−4I2,
γ1 = 100 and γ2 = 11 we obtained the following PWQ with an S-relaxation
ISS Lyapunov function V (x) = x⊤Pjx when x ∈ Ωj , j = 1, 2, 3, 4:

P1 =

[
0.1845 0.0494
0.0494 0.0335

]
, P2 =

[
0.0851 −0.0110
−0.0110 0.0336

]
,

P3 = P1, P4 = P2,

U11 =

[
0.0119 0.0519
0.0519 0.0223

]
, U12 =

[
0.0120 0.0540
0.0540 0.0053

]
,

U21 =

[
0.0035 0.0048
0.0048 0.0041

]
, U22 = 10−3

[
0.1185 0.2265
0.2265 0.3749

]
.

States trajectories for system (4.16) with initial state x0 = [−10 10]⊤ are
plotted in Figure 4.5 together with the additive disturbance inputs history.
The disturbance inputs were randomly generated in the interval [0 1] until
sampling time 70 and then they were set equal to zero. The gain of the func-
tion σ(·) corresponding to γ2 = 11 is 2.3911. This yields an ISS gain equal to

15.4243 for system (4.16) via the relation γ(s) , α−1
1

(
2σ(s)
1−ρ

)
established in

Chapter 2. As guaranteed by Theorem 4.4.1, system (4.16) is globally ISS,
which ensures Lyapunov asymptotic stability when the disturbance inputs



110

Global input-to-state stability and stabilization of discrete-time piecewise
affine systems

Figure 4.5: States trajectories and disturbances histories for system (4.16).

converge to zero, as it can be observed from the states trajectories plot given
in Figure 4.5.

4.6.2 Example 2

In this example we illustrate the result of Theorem 4.5.1 part (ii). Let

A(Ts) ,




1 Ts
T 2

s

2!
T 3

s

3!

0 1 Ts
T 2

s

2!
0 0 1 Ts

0 0 0 1


 , B(Ts) ,




T 4
s

4!
T 3

s

3!
T 2

s

2!
Ts




denote the dynamics corresponding to a discrete-time quadruple integrator,
i.e. xk+1 = A(Ts)xk + B(Ts)uk, obtained from a continuous-time quadruple
integrator via a sampled-and-hold device with sampling period Ts > 0. Let
xi, i = 1, 2, 3, 4, denote the i-th component of the state vector. Let X ,

{x ∈ R4 | −2 < x4 < 2}, let Ω1 , {x ∈ R4 | x4 ≥ 2} and let Ω4 , {x ∈ R4 |
x4 ≤ −2}. Let Ω2 , {x ∈ X | x4 ≥ 0} and Ω3 , {x ∈ X | x4 < 0}. Consider
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now the following perturbed piecewise affine system:

xk+1 =





A1xk + B1uk + f1 + D1vk if xk ∈ Ω1

A2xk + B2uk + f2 + D2vk if xk ∈ Ω2

A3xk + B3uk + f3 + D3vk if xk ∈ Ω3

A4xk + B4uk + f4 + D4vk if xk ∈ Ω4,

(4.17)

where A1 = A4 = A(1.2), B1 = B4 = B(1.2), A2 = A(0.9), B2 = B(0.9),
A3 = A(0.8), B3 = B(0.8), f2 = f3 = 0, f1 = f4 = [0.1 0.1 0.1 0.1]⊤ and
D1 = D2 = D3 = D4 = [1 1 1 1]⊤. The LMIs (4.14) were solved3 for Q =
0.01I4, γ1 = 2 and γ2 = 4, yielding the following weights of the PWQ
ISS Lyapunov function V (x) = x⊤Pjx if x ∈ Ωj , j = 1, 2, 3, 4, feedbacks
{Kj | j = 1, 2, 3, 4} and matrix M :

P1 = P4 =




0.3866 0.7019 0.5532 0.1903
0.7019 1.5632 1.3131 0.4688
0.5532 1.3131 1.2255 0.4552
0.1903 0.4688 0.4552 0.1955


 ,

P2 =




0.3574 0.6052 0.4420 0.1407
0.6052 1.2725 0.9894 0.3278
0.4420 0.9894 0.8812 0.3046
0.1407 0.3278 0.3046 0.1328


 ,

P3 =




0.3779 0.6410 0.4597 0.1453
0.6410 1.3414 1.0298 0.3390
0.4597 1.0298 0.9007 0.3118
0.1453 0.3390 0.3118 0.1334


 ,

K1 = K4 =
[
−0.3393 −1.1789 −1.8520 −1.7028

]
,

K2 =
[
−0.5584 −1.7607 −2.4729 −2.0012

]
,

K3 =
[
−0.6814 −2.0895 −2.8249 −2.1705

]
,

M =




0.0156 0.0075 0.0023 0.0005
0.0075 0.0212 0.0082 0.0016
0.0023 0.0082 0.0146 0.0044
0.0005 0.0016 0.0044 0.0081


 .

One can easily establish that the hypothesis of Theorem 4.5.1 part (ii) is
satisfied, i.e. E1i ∩Ω1 = ∅ and E4i ∩Ω4 = ∅ for all i = 1, 2, 3, 4, by observing

3For simplicity we used a common matrix N for all possible mode transitions that can
occur when the state is in mode one or mode four, i.e. N = N11 = N12 = N13 = N44 =
N42 = N43, which yields M = N−1.
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Figure 4.6: States trajectories and disturbance input histories for the closed-
loop system (4.17)-(4.12).

that

min
x∈Ω1

x⊤Mx = min
x∈Ω4

x⊤Mx

= 0.4340 > 0.3221 = max
i=1,2,3,4

(1 + γ1)f
⊤
1 Pif1 = max

i=1,2,3,4
(1 + γ1)f

⊤
4 Pif4.

Hence, system (4.17) in closed-loop with (4.12) is globally ISS. The gain
of the function σ(·) corresponding to γ2 = 4 is 15.8772. This yields an
ISS gain equal to 42.52 for system (4.17)-(4.12) via the relation γ(s) =

α−1
1

(
2σ(s)
1−ρ

)
= 42.52s established in chapter two. The closed-loop states

trajectories obtained for initial state x0 = [6 6 4 4]⊤ are plotted in Figure 4.6
together with the additive disturbance input history. The disturbance input
was randomly generated in the interval [0 1] until sampling time 60 and then
it was set equal to zero. As guaranteed by Theorem 4.5.1, the closed-loop
system (4.17)-(4.12) is globally ISS, which ensures asymptotic stability in
the Lyapunov sense when the disturbance inputs converges to zero, as it can
be observed in Figure 4.6.
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4.7 Concluding remarks

In this chapter we presented LMI based sufficient conditions for global input-
to-state (practical) stability and stabilization of discrete-time perturbed,
possibly discontinuous, PWA systems. The importance of these results can-
not be overstated since we have showed that nominally exponentially stable
discrete-time PWA systems can have zero robustness to arbitrarily small
additive disturbances and hence, special precautions must be taken when
implementing stabilizing controllers for PWA systems in practice. The de-
veloped methodology has a wide applicability, including, besides the class of
PWA systems, any hybrid system that can be transformed into an equivalent
PWA form, e.g. mixed logical dynamical systems or linear complementarity
systems.

State and input constraints have not been considered in order to obtain
global ISpS (ISS) results. However, the usual LMI techniques (Boyd et al.,
1994) for specifying state and/or input constraints can be added to the suf-
ficient conditions presented in this paper, resulting in local ISpS (ISS) of
constrained PWA systems. Also, a local (i.e. in some subset of ∪j∈S0Ωj) ISS
result is obtained under the hypothesis of Theorem 4.4.1 (Theorem 4.5.1)
part (ii), in the case when Eji ∩ Ωj 6= ∅ for some (j, i) ∈ Saff × S.

For simplicity and clarity of exposition we employed PWQ (with an S-
procedure relaxation for analysis) candidate ISpS (ISS) Lyapunov functions
of the form (4.6). However, the results can be extended to piecewise poly-
nomial or piecewise affine candidate ISpS (ISS) Lyapunov functions. The
future work deals with extensions to PWA systems affected by parametric
uncertainties and the use of norm based candidate ISS Lyapunov functions.
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5.6 Illustrative examples
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This chapter employs the input-to-state stability (ISS) framework to
investigate the robustness of discrete-time (discontinuous) piecewise affine
(PWA) systems in closed-loop with stabilizing model predictive controllers
(MPC). The importance of these issues cannot be overstated, since nominal-
ly stabilizing controllers are always affected by perturbations when applied
in practice.

5.1 Introduction

A certain maturity was reached in the field of MPC for hybrid systems,
regarding computational and nominal stability aspects. This is illustrated by
the existing tools for solving hybrid MPC optimization problems, the Hybrid
Toolbox (HT)(Bemporad, 2003) and the Multi Parametric Toolbox (MPT)
(Kvasnica et al., 2004), and by the stability results published in the literature
(see Chapter 3 for details). In this chapter we focus on inherent robustness of
discrete-time PWA systems in closed-loop with MPC controllers (or hybrid
MPC for short), which is a problem that was not addressed before in the
literature. By the inherent robustness property we mean that a nominally
stabilizing controller has some robustness in the presence of perturbations.
Its importance cannot be overstated, since all controllers designed to be
nominally stable are affected by perturbations when applied in practice. The
goal is to provide an answer to the following important questions:
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• Is it possible that nominally stabilizing MPC can generate MPC value
functions that are not ISS Lyapunov functions?

• If the answer is yes, how can one test whether or not a specific no-
minally stabilizing hybrid MPC scheme, possibly with a discontinuous
value function, has some robustness (i.e. how can one test if the MPC
value function is a ISS Lyapunov function, despite its discontinuity)?

• In case such a test fails, how can one design MPC schemes for hybrid
systems with an a priori robust stability guarantee?

Inherent robustness has been studied in MPC for linear and smooth nonlinear
systems. In (Grimm et al., 2004) the authors proved that linear systems in
closed-loop with stabilizing MPC are inherently robust due to the presence
of a continuous MPC value function, which is an ISS Lyapunov function
in this case. However, they also shown via examples that continuous and
necessarily nonlinear systems in closed-loop with MPC can actually have zero
robustness to arbitrarily small disturbances, in the absence of a continuous
MPC value function1. The first contribution of this chapter is to issue a
warning by presenting an example of a PWA system in closed-loop with a
stabilizing MPC controller which generates an MPC value function that is
discontinuous and, more importantly, it is not an ISS Lyapunov function.
This indicates that the natural way to ensure ISS (robustness) in MPC fails
for PWA systems. This brings us to the second and third questions above.

Several solutions that rely on continuous (or even Lipschitz continuous)
system dynamics and/or MPC value functions were proposed for smooth
nonlinear systems in the literature, e.g. see (Scokaert et al., 1997; Limon
et al., 2002a; Grimm et al., 2003b, 2004), regarding the second and the third
question posed here. Since hybrid systems are inherently nonlinear and dis-
continuous, and hybrid MPC value functions are discontinuous in general,
these results are not applicable in hybrid MPC. Moreover, there is no sys-
tematic method in MPC in general for achieving inherent robustness, while
allowing for discontinuous system dynamics and/or MPC value functions.
Therefore, the second contribution of this chapter is an a posteriori test that
can be used to check if a given nominally stabilizing hybrid MPC scheme,
possibly with a discontinuous value function, is inherently robust. This test
consists in solving a finite number of Linear Programming (LP) problems
and can be performed once the explicit form of the MPC controller, its fea-

1The value function corresponding to the MPC cost is usually used as the candidate
Lyapunov function to prove nominal stability.
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sible set and the MPC value function are computed (see (Borrelli, 2003;
Bemporad, 2003; Kvasnica et al., 2004) for details and software tools).

If the a posteriori robustness test fails for a specific hybrid MPC closed-
loop system, there are no systematic ways available for discontinuous PWA
systems that can be used to modify nominally stabilizing MPC schemes so
that robustness is ensured. The third contribution of this chapter is a design
method for setting up hybrid MPC schemes with an a priori ISS guarantee
with respect to bounded additive disturbance inputs. This method restricts
the predicted future states to a tightened, possibly disconnected subset of
the state-space, and does not require continuity of the MPC value function,
nor of the PWA system dynamics. Note that tightened constraints were
used before in order to ensure robust feasibility only, in smooth nonlinear
MPC (Limon et al., 2002a). In this chapter, however, an extension of this
technique is employed for discontinuous PWA systems to achieve both robust
feasibility and ISS (and thus, robustness to additive disturbance inputs).

A remark is dedicated to the results of (Kerrigan and Mayne, 2002) and
(Rakovic and Mayne, 2004) that deal with dynamic programming and tube
based, respectively, approaches for solving feedback min-max MPC problems
for continuous PWA systems, and also provide a robust stability guarantee.
However, these results are not really appealing for hybrid systems, as conti-
nuous PWA systems are Lipschitz continuous systems and, in this case, the
previous results of (Scokaert et al., 1997; Limon et al., 2002a; Grimm et al.,
2003b, 2004) also apply. In this chapter we use a different approach that
does not resort to min-max formulations, to develop robust MPC schemes
for discontinuous PWA systems, which is relevant for hybrid systems.

5.2 Preliminaries

We consider nominal and perturbed discrete-time PWA systems of the form:

xk+1 = g(xk, uk) , Ajxk + Bjuk + fj when xk ∈ Ωj , (5.1a)

x̃k+1 = g̃(x̃k, uk, wk) , Aj x̃k + Bjuk + fj + wk when x̃k ∈ Ωj , (5.1b)

where wk ∈ W ⊂ Rn, k ∈ Z+ denotes an unknown additive disturbance
input, Aj ∈ Rn×n, Bj ∈ Rn×m and fj ∈ Rn, j ∈ S with S , {1, 2, . . . , s}
a finite set of indexes. We assume that W is a bounded polyhedral set
that contains the origin, and the state and the input are constrained in
some polyhedral C-sets X and U. The collection {Ωj | j ∈ S} defines a
partition of X, meaning that ∪j∈SΩj = X and int(Ωi) ∩ int(Ωj) = ∅ for
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i 6= j. Each Ωj is assumed to be a polyhedron (not necessarily closed). Let
S0 , {j ∈ S | 0 ∈ cl(Ωj)} and let S1 , {j ∈ S | 0 6∈ cl(Ωj)}, so that
S = S0 ∪ S1. We assume that the origin is an equilibrium state for (5.1)
with u = 0 and therefore we require that fj = 0 for all j ∈ S0. Note that
this includes PWA systems that are discontinuous over the boundaries of the
state-space regions Ωj , j ∈ S.

Although we focus on PWA systems of the form (5.1), the results devel-
oped in this chapter have a wider applicability since it is known (Heemels
et al., 2001) that PWA systems are equivalent under certain mild assump-
tions with other relevant classes of hybrid systems, such as mixed logical
dynamical systems (Bemporad and Morari, 1999) and linear complementa-
rity systems (van der Schaft and Schumacher, 1998).

Next, consider the case when the MPC methodology is used to generate
the control input uk, k ∈ Z+, in (5.1). For a fixed N ∈ Z≥1, let xk(xk,uk) ,

(x1|k, . . . , xN |k) denote the state sequence generated by the nominal PWA

system (5.1a) from initial state x0|k , xk and by applying the input sequence

uk , (u0|k, . . . , uN−1|k) ∈ UN , where UN , U × . . . × U. Furthermore, let
XT ⊆ X denote a desired polyhedral target set. The class of admissible input
sequences defined with respect to XT and state xk ∈ X, k ∈ Z+, is

UN (xk) , {uk ∈ UN | xk(xk,uk) ∈ XN , xN |k ∈ XT }.

For the remainder of this chapter let ‖ · ‖ denote the ∞-norm for shortness.
Consider now the functions F (x) , ‖Pjx‖ when x ∈ Ωj and L(x, u) ,

‖Qx‖ + ‖Ru‖, where Pj ∈ Rpj×n, j ∈ S, Q ∈ Rq×n and R ∈ Rr×n are
assumed to be known matrices that have full-column rank.

Problem 5.2.1 Let XT ⊆ X and N ∈ Z≥1 be given. At time k ∈ Z+ let
xk ∈ X be given and minimize the cost

J(xk,uk) , F (xN |k) +
N−1∑

i=0

L(xi|k, ui|k),

with prediction model (5.1a), over all sequences uk in UN (xk).

We call an initial state x0 ∈ X feasible if UN (x0) 6= ∅. Similarly, Pro-
blem 5.2.1 is said to be feasible for x ∈ X if UN (x) 6= ∅. Let Xf (N) ⊆
X denote the set of feasible states with respect to Problem 5.2.1 and let
V̂ : Xf (N) → R+, V̂ (xk) , inf

uk∈UN (xk) J(xk,uk) denote the MPC value
function corresponding to Problem 5.2.1. Suppose there exists2 an optimal

2As explained in Section 3.3.2, this assumption is satisfied for PWA prediction models.
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sequence of controls u
∗
k , (u∗

0|k, u
∗
1|k, . . . , u

∗
N−1|k) for Problem 5.2.1 and any

state xk ∈ Xf (N). Then, V̂ (xk) = J(xk,u
∗
k) and the MPC control law is

obtained as
û(xk) , u∗

0|k; k ∈ Z+. (5.2)

Consider an auxiliary state feedback control law haux : Rn → Rm with
haux(0) = 0, which is usually employed in proving stability of terminal cost
and constraint set MPC. In the PWA setting we take this state feedback
PWL, i.e. haux(x) , Kjx when x ∈ Ωj , Kj ∈ Rm×n, j ∈ S. Let XU , {x ∈
X | haux(x) ∈ U} and let XPI with 0 ∈ int(XPI) be a Positively Invariant
(PI) set for system (5.1a) in closed-loop with haux that is contained in XU.
Consider now the following assumption.

Assumption 5.2.2 There exist {Pj ,Kj | j ∈ S} such that

‖Pi(Aj + BjKj)x + Pifj‖ − ‖Pjx‖ + ‖Qx‖ + ‖RKjx‖ ≤ 0, (5.3)

for all x ∈ XPI and all (j, i) ∈ S × S.

The requirement (5.3) is obtained from3 Assumption 3.3.1, inequality (3.4c),
for the particular case of a ∞-norm MPC cost and h(x) = Kjx if x ∈ Ωj .
Note that Assumption 5.2.2 implies that the origin of the PWA system (5.1a)
is stabilizable.

Theorem 5.2.3 Suppose that Assumption 5.2.2 holds and take XT = XPI.
Then, the PWA system (5.1a) in closed-loop with the MPC controller (5.2) is
asymptotically stable in the Lyapunov sense for initial conditions in Xf (N).

The proof of Theorem 5.2.3, which can be obtained as a particular case
of the proof of Theorem 3.3.3, relies on the fact that Assumption 5.2.2 is
equivalent to

F (g(x, haux(x))) − F (x) + L(x, haux(x)) ≤ 0, ∀x ∈ XT .

This in turn ensures that the hybrid MPC value function V̂ (·) is a Lyapunov
function for the closed-loop system (5.1a)-(5.2), i.e. there exist α1(s) , asλ,
α2(s) , bsλ, α3(s) , csλ, with a, b, c, λ > 0, such that α1(‖x‖) ≤ V̂ (x) ≤
α2(‖x‖) and V̂ (g(x, û(x))) − V̂ (x) ≤ −α3(‖x‖) for all x ∈ Xf (N). See, for
example, Chapter 3 for more details.

3This is the general assumption of Chapter 3 that contains the sufficient conditions for
asymptotic stability in the Lyapunov sense of MPC of hybrid systems.
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In the above setting, Theorem 8.4 of (Borrelli, 2003) states that the
MPC control law û(·) defined in (5.2) is a PWA state-feedback. Hence, the
resulting hybrid MPC closed-loop system is a PWA system, i.e.

xk+1 = g(xk, û(xk)) = Ajxk + Bj û(xk) + fj ,

û(xk) = Lixk + li when xk ∈ Ωj ∩ Ωi, (5.4a)

x̃k+1 = g̃(x̃k, û(x̃k), wk) = Aj x̃k + Bj û(x̃k) + fj + wk,

û(x̃k) = Lix̃k + li when x̃k ∈ Ωj ∩ Ωi, (5.4b)

with (j, i) ∈ S × S (S is a finite set of indexes), k ∈ Z+, where Li ∈ Rm×n,
li ∈ Rm, and ∪i∈SΩi = Xf (N) (with int(Ωi) ∩ int(Ωj) = ∅ for i 6= j) is a
new partition corresponding to the explicit MPC control law. Moreover, the
MPC value function V̂ (·) is a PWA function (recall that ‖ · ‖ denotes the
∞-norm), i.e.

V̂ (x) , Ejx + ej when x ∈ Ω̂j , (5.5)

where Ej ∈ R1×n, ej ∈ R, j takes values in some finite set of indexes Ŝ, and
∪

j∈ ❜SΩ̂j = Xf (N) (with int(Ω̂i) ∩ int(Ω̂j) = ∅ for i 6= j) is a new partition
corresponding to the MPC value function.

5.3 A motivating example

As already mentioned in Chapter 4, in the linear and continuous nonlinear
case, nominally stable systems generically have some robustness properties.
This is usually due to the presence of a continuous Lyapunov function, which
is also an ISS Lyapunov function in this case. Unfortunately, the classical
continuity based inherent robustness (ISS) argument no longer holds if a
Lyapunov function V (·) is discontinuous at some points.

Note that discontinuity of the candidate Lyapunov function V (·) does not
necessarily obstruct the sufficient conditions for ISS established in Chapter 2
to hold. However, we show via an example from literature that stabilizing
hybrid MPC can generate discontinuous value functions that are not ISS
Lyapunov functions for perturbed systems of the form (5.4b). As in (5.4) and
(5.5), the following notation will be used: for i ∈ S and j ∈ Ŝ, ûi(x) , Lix+li
and V̂j(x) , Ejx + ej for any x ∈ X.

Consider the following discontinuous PWA system, taken from (Mignone
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et al., 2000b):

xk+1 =





A1xk + Buk if D1xk > 0

A2xk + Buk if D2xk ≥ 0

A3xk + Buk if D3xk > 0

A4xk + Buk if D4xk ≥ 0

(5.6)

where A1 =
[

−0.04 −0.461
−0.139 0.341

]
, A2 =

[
0.936 0.323
0.788 −0.049

]
, A3 =

[
−0.857 0.815
0.491 0.62

]
, A4 =[

−0.022 0.644
0.758 0.271

]
, B = [ 1 0 ]⊤, D1 = −D3 =

[
−1 0
0 −1

]
, D2 = −D4 =

[
−1 0
0 1

]
and

all inequalities hold componentwise. The state and the input of system (5.6)
are constrained at all times in the sets X = [−10, 10] × [−10, 10] and U =
[−1, 1], respectively. The method presented in chapter three, Section 3.4.2,
was employed to compute a common terminal weight matrix P = P1 =
P2 = P3 = P4 and feedbacks {Kj | j = 1, . . . , 4} such that inequality (5.3)
of Assumption 5.2.2 holds for the stage cost weights Q = diag([1 1]) and
R = 0.1. The following matrices were obtained:

P =

[
6.7001 3.1290
−2.1107 4.1998

]
, K1 =

[
0.2703 −0.1136

]
,

K2 =
[
−0.8042 −0.2560

]
,K3 =

[
1.0122 −0.7513

]
,

K4 =
[
−0.5548 −1.1228

]
. (5.7)

Then, we used the MPT (Kvasnica et al., 2004), which implements the al-
gorithm of (Rakovic et al., 2004), to calculate the terminal constraint set
XT as the maximal positively invariant set contained in XU for system (5.6)
in closed-loop with uk(xk) = haux(xk), k ∈ Z+, with the feedbacks given in
(5.7), and where XU = ∪j=1,...,4{x ∈ Ωj | Kjx ∈ U}. By Theorem 5.2.3,
this is sufficient to guarantee that the MPC closed-loop system (5.6)-(5.2)
is asymptotically stable in the Lyapunov sense for all x ∈ Xf (N), N ∈ Z≥1.
Then, the MPT was used to calculate the MPC control law (5.2) for N = 1
as an explicit PWA state-feedback, and to simulate the resulting PWA MPC
closed-loop system (5.4a). The explicit MPC controller is defined over 86
state-space regions Ωi, i ∈ S , {1, . . . , 86} that satisfy ∪i∈SΩi = Xf (1).
The set of feasible states Xf (1) is plotted in Figure 5.1 together with the
partition corresponding to the explicit MPC control law.

Lemma 5.3.1 For the MPC closed-loop system (5.4) corresponding to sy-
stem (5.6) it holds that:

(i) The value function V̂ (·) and the closed-loop dynamics (5.4a) are not
continuous;
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Figure 5.1: The feasible set Xf (1) and state trajectory for the PWA MPC
closed-loop system (5.6)-(5.2) with x0 = [−1.9649 − 1.9649]⊤.

(ii) V̂ (·) is a Lyapunov function for the closed-loop dynamics (5.4a)
showing asymptotic stability in Xf (1);

(iii) For any ε > 0, V̂ (·) is not an ISS Lyapunov function for the closed-
loop dynamics (5.4b) and disturbances w ∈ Bε , {w ∈ W | ‖w‖ ≤ ε}.

Proof: (i) We have chosen the state (x1 in Figure 5.1)

x∗ = [0 − 2.1830]⊤ ∈ {∂Ω38 ∩ ∂Ω58} ∩ Ω38

to show that the MPC closed-loop system (5.4a) and V̂ (·) for the above
example are not continuous on int(Xf (1)). We have obtained the following
values:

A2x
∗ + Bû38(x

∗) = [0.0130 0.1070]⊤;

A3x
∗ + Bû58(x

∗) = [−0.7791 − 1.3535]⊤;

V̂ (x∗) = V̂38(x
∗) = 2.6766; lim

x→x∗, x∈Ω58

V̂ (x) = V̂58(x
∗) = 11.7383.

(ii) As Assumption 5.2.2 is satisfied via the procedure presented in chap-
ter three, Section 3.4.2, the statement follows from Theorem 5.2.3.
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(iii) The MPC closed-loop system (5.4a) corresponding to system (5.6)
is such that the dynamics active in region Ω38 is employed for xk = x∗. The
nominal state trajectory obtained for the initial state

x0 = [−1.9649 − 1.9649]⊤ ∈ {∂Ω47 ∩ ∂Ω53} ∩ Ω47

reaches the state x1 = x∗ in one step (see Figure 5.1 for the trajectory plot).
Then, for any K-function σ(·) we can take an arbitrarily small disturbance
w such that x∗ + w ∈ Ω58, for which

V̂ (x∗ + w) − V̂ (x0) = V̂58(x
∗ + w) − V̂ (x0)

≈ 0.5970

> σ(‖w‖) ≥ −α3(‖x0‖) + σ(‖w‖) (5.8)

for any α3 ∈ K∞. Hence, the ISS inequality (2.4a) of Theorem 2.3.5 does not
hold for arbitrarily small w and thus, V̂ (·) is not an ISS Lyapunov function
for the closed-loop dynamics (5.4b).

The result of Lemma 5.3.1 part (iii) implies that the most likely and
natural candidate (i.e. the MPC value function V̂ (·)) for proving ISS for
the closed-loop system (5.4b) fails. Hence, one should be careful in drawing
conclusions on robustness from nominal stability (established via V̂ (·)) when
dealing with hybrid MPC. At least, there is no obvious way to infer ISS from
nominal stability in hybrid MPC, or to modify nominally stabilizing MPC
schemes for hybrid systems such that ISS is ensured a priori.

5.4 A posteriori tests for checking robustness

As shown in the previous section, hybrid MPC may be non-robust to ar-
bitrarily small additive disturbances due to the fact that the MPC value
function V̂ (·) is not an ISS Lyapunov function in general, which brings us to
the second question posed in the introduction of this chapter.

In this section we present a posteriori sufficient conditions for ISS of the
perturbed system (5.4b) that can be used to implement a test for checking
inherent robustness of nominally stabilizing hybrid MPC schemes.

An alternative to the results presented in this section is to employ the
approach of (Kellett and Teel, 2004) for checking robustness of discontinuous
discrete-time nonlinear systems. This method can establish robustness of a
discontinuous system by checking nominal stability for an upper semicon-
tinuous set-valued regularization of the dynamics. The application of this
method to MPC of PWA systems is part of future research.
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Let Bµ = {w ∈ W | ‖w‖ ≤ µ} for some µ > 0, P ⊆ Xf (N) and let
R1(P) , {g(x, û(x)) | x ∈ P} denote the one-step reachable set for system
(5.4a).

Theorem 5.4.1 Suppose that the PWA MPC closed-loop system (5.4a)
satisfies Assumption 5.2.2 and let XD ⊂ Xf (N) denote the set of all states at

which V̂ (·) is not continuous. Let P ⊆ Xf (N) with 0 ∈ int(P) and suppose
that there exists a µ > 0 such that4

R1(P) ⊆ P ∼ Bµ, (5.9a)

d(x, XD) > µ for all x ∈ R1(P), (5.9b)

where d(x, XD) , infy∈XD
‖x − y‖. Then, it holds that:

(i) If Problem 5.2.1 is feasible for state x̃k ∈ P, Problem 5.2.1 is feasible
for state x̃k+1 = g̃(x̃k, û(x̃k), wk) = g(x̃k, û(x̃k)) + wk for all wk ∈ Bµ and
all k ∈ Z+; (ii) The PWA MPC closed-loop system (5.4b) is ISS for initial
conditions in P and disturbances in Bµ.

Proof: (i) The condition R1(P) ⊆ P ∼ Bµ implies that g(x̃k, û(x̃k)) +
wk ∈ P ⊆ Xf (N) for all x̃k ∈ P and all wk ∈ Bµ, k ∈ Z+. Hence, Pro-
blem 5.2.1 is feasible for state x̃k+1 = g(x̃k, û(x̃k)) + wk and any wk in Bµ,
k ∈ Z+;

(ii) The inequality (5.9b) implies that V̂ (·) is continuous on the set (ball)
{g(x, û(x)) ⊕ Bµ} for all x ∈ P. Note that this set is a ball of radius µ

centered at g(x, û(x)). Next, we prove that V̂ (·) is Lipschitz continuous on
g(x, û(x))⊕Bµ with the same Lipschitz constant for all x ∈ P. For any two
points y, ȳ ∈ g(x, û(x)) ⊕ Bµ connect y and ȳ via a straight line and let the
points z1, . . . , zM−1 be the intersection points of the line segment with the
boundaries of the regions Ω̂j , j ∈ Ŝ. Note that this line segment will not
pass through a point in XD, as it is contained in the ball g(x, û(x)) ⊕ Bµ

and {g(x, û(x)) ⊕ Bµ} ∩ XD = ∅, ∀x ∈ P. Let z0 , y and zM , ȳ. The
number of intersection points that needs to be considered is finite. This is
because the number of regions Ω̂j is finite. If a non-trivial part of the line
segment lies on ∂Ω̂j for some j ∈ Ŝ, select the end-points of the intersection
of the line segment with ∂Ω̂j and include only these points in the collection
{z1, . . . , zM−1}. Note that the line segment between zi and zi+1 lies in one
of the regions Ω̂ji

in the state-space partition corresponding to V̂ (·). Due
to continuity of V̂ (·) in the region g(x, û(x)) ⊕ Bµ, for zi ∈ ∂Ωji−1 ∩ ∂Ωji

,

4Note that the condition (5.9a) implies that P ⊆ Xf (N) is a RPI set for system (5.4b)
and disturbances in Bµ.
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i = 1, . . . ,M , we have that V̂ (zi) = Eji−1zi + eji−1 = Eji
zi + eji

. Then, it
follows that

∣∣∣V̂ (y) − V̂ (ȳ)
∣∣∣ =

∣∣∣∣∣

M∑

i=1

(V̂ (zi−1) − V̂ (zi))

∣∣∣∣∣ ≤
M∑

i=1

∣∣∣V̂ (zi−1) − V̂ (zi)
∣∣∣

=
M∑

i=1

|Eji
(zi−1 − zi)| ≤

M∑

i=1

‖Eji
‖‖zi−1 − zi‖

≤ max
ji∈ ❜S ‖Eji

‖
M∑

i=1

‖zi−1 − zi‖ = max
ji∈ ❜S ‖Eji

‖‖y − ȳ‖,

where ‖Eji
‖ = ‖Eji

‖∞ ,
∑n

p=1 |E
{1p}
ji

| is the corresponding induced matrix

norm. Note that
∑M

i=1 ‖zi−1 − zi‖ = ‖y− ȳ‖ because the points zi lie on the
same line segment. Hence, V̂ (·) is Lipschitz continuous on g(x, û(x)) ⊕ Bµ

for all x ∈ P with Lipschitz constant LV , max
ji∈ ❜S ‖Eji

‖. Then, it follows
that

V̂ (g̃(x, û(x), w)) − V̂ (g(x, û(x))) ≤ σ(‖w‖)
for all x ∈ P and w ∈ Bµ, where σ(‖w‖) , LV ‖w‖. By Assumption 5.2.2,
V̂ (g(x, û(x))) − V̂ (x) ≤ −α3(‖x‖), which yields:

V̂ (g̃(x, û(x), w)) − V̂ (x) ≤ −α3(‖x‖) + σ(‖w‖),
for all x ∈ P and all w ∈ Bµ. The statement then follows from the general
ISS result of Theorem 2.3.5 presented in Chapter 2.

In the case when quadratic costs are used in Problem 5.2.1, Theorem
8.1 of (Borrelli, 2003) provides sufficient conditions under which the MPC
control law (5.2) is a PWA state-feedback (possibly defined on state-space
regions that are not polyhedra) and the corresponding MPC value functi-
on is piecewise quadratic. Then, the proof of Theorem 5.4.1 can also be
applied for hybrid MPC based on quadratic cost functions. Moreover, Theo-
rem 5.4.1 can be extended to any nominally stable PWA system that admits
a discontinuous Lyapunov function.

Note that the sufficient condition of Theorem 5.4.1 part (ii) can be further
relaxed, as illustrated by the following result.

Proposition 5.4.2 Suppose that the PWA MPC closed-loop system (5.4)
satisfies Assumption 5.2.2 and that there exists a µ > 0 such that Xf (N) is
a RPI set for system (5.4b) and w ∈ Bµ. Let XD ⊂ Xf (N) denote the set of

all states at which V̂ (·) is not continuous and let

Z , {g(x, û(x)) | x ∈ Xf (N), g(x, û(x)) ∈ XD}.
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For any z ∈ Z let

I(z) , {i ∈ Ŝ | {z ⊕ Bµ} ∩ Ω̂i 6= ∅},
and consider the following inequalities:

V̂i(z) ≤ V̂j(z), ∀z ∈ Ω̂j ∩ Z, ∀i ∈ I(z), (5.10a)

V̂i(z) ≤ V̂ (x), ∀z ∈ Z, ∀i ∈ I(z), (5.10b)

where j ∈ Ŝ, x ∈ Xf (N) and V̂i(z) , Eiz + ei for any z ∈ Z and any i ∈ Ŝ.
Suppose that either inequality (5.10a) or, inequality (5.10b) holds. Then,
the PWA MPC closed-loop system (5.4) is ISS for initial conditions in Xf (N)
and disturbances in Bµ.

The conditions (5.10) ensure that the discontinuity of V̂ (·) actually works in
favor of nominal stability in the sense that V̂ (g̃(x, û(x), w)) ≤ V̂ (g(x, û(x)))
(condition (5.10a)) or, at least, the value of the MPC cost corresponding to
a perturbed state is still decreasing, despite the jump caused by the discon-
tinuity (condition (5.10b)).

Suppose now that a PWA MPC closed-loop system of the form (5.4a)
and the corresponding set XD are known. Note that the set of points at
which V̂ (·) is discontinuous is given by:

XD =
⋃

i,j∈ ❜S,

i6=j

{
x ∈ ∂Ω̂i ∩ ∂Ω̂j | (Ei − Ej)x 6= (ei − ej)

}
.

The constant µ can be calculated as follows:

µ = min
j∈S,

i∈S

{ min
y∈Ωj∩Ωi∩P,

ȳ∈XD

‖(Aj + BjLi)y + (Bjli + fj) − ȳ‖}. (5.11)

A solution to the optimization problem (5.11) can be obtained by solving a
finite number of LP problems. If µ > 0, then µ is a measure of the (worst
case) inherent robustness of system (5.4a).

In order to verify the results of Theorem 5.4.1 we solved the LP pro-
blems corresponding to (5.11) for the example presented in Section 5.3 and
we obtained µ = 0, as expected. So, the sufficient conditions for ISS of
Theorem 5.4.1 fail for this example. Moreover, inequality (5.8) shows that
both condition (5.10a) and condition (5.10b) do not hold and therefore, the
tests of Proposition 5.4.2 also fail for this example. Then, instead of using a
trial-and-error approach to modify the terminal cost and the terminal set in
order to satisfy conditions (5.9), it would be desirable to have a systematic
way for modifying Problem 5.2.1 so that ISS is guaranteed a priori, which
brings us to the third question posed in the introduction.
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5.5 Robust predictive controllers for discontinuous

PWA systems

As concluded in the previous section there is a need for MPC schemes for
(discontinuous) PWA systems with an a priori robustness guarantee with
respect to (small) additive disturbance inputs. In this section we present
new design methods based on tightened constraints for setting up ISS MPC
schemes for hybrid systems. The novelty of the proposed approach consists in
allowing for discontinuous PWA predictions models and discontinuous MPC
value functions. The key idea employed in this section for obtaining ISS
predictive controllers for PWA systems is to constrain the nominal predicted
state sequence such that the mode sequence corresponding to a perturbed
initial state remains the same as the nominal predicted mode sequence.

5.5.1 Input-to-state stabilizing MPC using tightened cons-

traints

Consider first a subclass of the PWA system (5.1), i.e. assume that 0 ∈
int(Ωj∗) for some j∗ ∈ S (this implies S0 = {j∗}). In this case we use a com-
mon terminal cost, i.e. F (x) = ‖Px‖ for all x ∈ XT . Let η , maxj∈S ‖Aj‖,
ξ , ‖P‖ and define, for any µ > 0 and i ∈ Z≥1,

Li
µ , {x ∈ Rn | ‖x‖ ≤ µ

i−1∑

p=0

ηp}.

Consider now the following (tightened) set of admissible input sequences:

ŨN (xk) , {uk ∈ UN | xi|k ∈ Xi, i = 1, . . . , N − 1, xN |k ∈ XT }, k ∈ Z+,

(5.12)
where

Xi , ∪j∈S{Ωj ∼ Li
µ} ⊆ X for all i = 1, . . . , N − 1

and (x1|k, . . . , xN |k) is the state sequence generated from initial state x0|k ,

xk and by applying the input sequence uk to the PWA model (5.1a). Let
X̃f (N) denote the set of feasible states for Problem 5.2.1 with ŨN (xk) in-
stead of UN (xk), and let V̂ (·) and û(·) denote the corresponding MPC value
function and MPC control law, respectively. For any µ > 0, Bµ = {w ∈ W |
‖w‖ ≤ µ} and recall that XU = {x ∈ X | haux(x) ∈ U}. Note that, since
W ⊂ Rn, it holds that Bµ ⊆ L1

µ.
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Theorem 5.5.1 Assume that 0 ∈ int(Ωj∗) for some j∗ ∈ S. Take N ∈ Z≥1,
θ > θ1 > 0 and µ > 0 such that µ ≤ θ−θ1

ξηN−1 ,

Fθ , {x ∈ Rn | F (x) ≤ θ} ⊆ (Ωj∗ ∼ LN−1
µ ) ∩ XU

and g(x, haux(x)) ∈ Fθ1 for all x ∈ Fθ. Set XT = Fθ1 . Furthermore, suppose
that Assumption 5.2.2 holds and inequality (5.3) with Pj = P for all j ∈ S
is satisfied for all x ∈ Fθ. Then:

(i) If x̃k ∈ X̃f (N), then x̃k+1 ∈ X̃f (N) for all wk ∈ Bµ and all k ∈ Z+,

where x̃k+1 = Aj x̃k + Bj û(x̃k) + fj + wk. Moreover, XT ⊆ X̃f (N).
(ii) The perturbed PWA system (5.1b) in closed-loop with the MPC

control (5.2) obtained by solving Problem 5.2.1 (with ŨN (xk) instead of
UN (xk) and (5.1a) as prediction model) at each sampling instant is ISS for
initial conditions in X̃f (N) and disturbances in Bµ.

Proof: Let (x∗
1|k, . . . , x

∗
N |k) denote the state sequence obtained from

initial state x0|k , x̃k and by applying the input sequence u
∗
k to (5.1a). Let

(x1|k+1, . . . , xN |k+1) denote the state sequence obtained from the initial state

x0|k+1 , x̃k+1 = xk+1 + wk = x∗
1|k + wk and by applying the input sequence

uk+1 , (u∗
1|k, . . . , u

∗
N−1|k, haux(xN−1|k+1)) to (5.1a).

(i) The constraints imposed in (5.12) ensure that:

(P1) (xi|k+1, x
∗
i+1|k) ∈ Ωji+1 × Ωji+1 , ji+1 ∈ S,

for all i = 0, . . . , N−2 and, ‖xi|k+1−x∗
i+1|k‖ ≤ ηiµ for i = 0, . . . , N−1. This

is due to the fact that x0|k+1 = x∗
1|k + wk, xi|k+1 = x∗

i+1|k +
∏i

p=1 Ajpwk for

i = 1, . . . , N−1 and ‖∏i
p=1 Ajpwk‖ ≤ ηiµ, which implies that

∏i
p=1 Ajpwk ∈

Li+1
µ .

Pick the indexes ji+1 ∈ S such that x∗
i+1|k ∈ Ωji+1 for all i = 1, . . . , N−2.

Then, due to x∗
i+1|k ∈ Ωji+1 ∼ Li+1

µ , it follows by Lemma 2 of (Limon et al.,

2002a) that xi|k+1 ∈ Ωji+1 ∼ Li
µ ⊂ Xi for i = 1, . . . , N − 2. From

xN−1|k+1 = x∗
N |k +

N−1∏

p=1

Ajpwk

it follows that
F (xN−1|k+1) − F (x∗

N |k) ≤ ξηN−1µ,

which implies that

F (xN−1|k+1) ≤ θ1 + ξηN−1µ ≤ θ,
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due to x∗
N |k ∈ XT = Fθ1 and µ ≤ θ−θ1

ξηN−1 . Hence,

xN−1|k+1 ∈ Fθ ⊂ XU ∩ (Ωj∗ ∼ LN−1
µ ) ⊂ XU ∩ XN−1

so that haux(xN−1|k+1) ∈ U and xN |k+1 ∈ Fθ1 = XT . Thus, the sequence of

inputs uk+1 is feasible at time k + 1 and Problem 5.2.1 with ŨN (xk) instead
of UN (xk) remains feasible. Moreover, from g(x, haux(x)) ∈ Fθ1 for all x ∈ Fθ

and Fθ1 ⊂ Fθ it follows that Fθ1 is a positively invariant set for system (5.1a)
in closed-loop with haux(·). Then, since

Fθ1 ⊂ Fθ ⊆ (Ωj∗ ∼ LN−1
µ ) ∩ XU ⊂ Xi ∩ XU for all i = 1, . . . , N − 1

and XT = Fθ1 , the sequence of control inputs (haux(x0|k), . . . , haux(xN−1|k))

is feasible with respect to Problem 5.2.1 (with ŨN (xk) instead of UN (xk))
for all x0|k , x̃k ∈ Fθ1 . Therefore, XT = Fθ1 ⊆ X̃f (N).

(ii) The result of part (i) implies that X̃f (N) is a RPI set for system
(5.1b) in closed-loop with the MPC control (5.2) and disturbances in Bµ.
Moreover, since 0 ∈ int(XT ), we have that 0 ∈ int(X̃f (N)). The choice
of the terminal stage costs already ensures that there exist α1(s) , as and
α2(s) , bs, a, b > 0, such that α1(‖x‖) ≤ V̂ (x) ≤ α2(‖x‖) for all x ∈ X̃f (N).
Let x̃k+1 denote the solution of (5.1b) in closed-loop with û(·) obtained as
indicated in part (i) of the proof and let x∗

0|k , x̃k. Due to full-column
rank of Q there exists γ > 0 such that ‖Qx‖ ≥ γ‖x‖ for all x. Then, by
optimality, property (P1), xN−1|k+1 ∈ Fθ and from inequality (5.3) it follows
that:

V̂ (x̃k+1) − V̂ (x̃k) ≤ J(x̃k+1,uk+1) − J(x̃k,u
∗
k)

= −L(x∗
0|k, u

∗
0|k) + F (xN |k+1) + (−F (xN−1|k+1) + F (xN−1|k+1))

− F (x∗
N |k) + L(xN−1|k+1, haux(xN−1|k+1))

+

N−2∑

i=0

(L(xi|k+1,uk+1(i + 1)) − L(x∗
i+1|k, u

∗
i+1|k))

≤ −L(x∗
0|k, u

∗
0|k) + F (xN |k+1) − F (xN−1|k+1)

+ L(xN−1|k+1, haux(xN−1|k+1)) +


ξηN−1 + ‖Q‖

N−2∑

p=0

ηp


 ‖wk‖

(5.3)

≤ −‖Qx∗
0|k‖ + σ(‖wk‖) ≤ −α3(‖x̃k‖) + σ(‖wk‖),

with σ(s) , (ξηN−1 + ‖Q‖∑N−2
p=0 ηp)s and α3(s) , γs.
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Thus, it follows that V̂ (·) satisfies the hypothesis of Theorem 2.3.5, the-
reby proving ISS of the closed-loop system (5.1b)-(5.2) for initial conditions
in X̃f (N) and disturbances in Bµ.

The tightened set of admissible input sequences (5.12) may become very
conservative as the prediction horizon increases, since it requires that the
state trajectory must be kept farther and farther away from the boundaries.
This drawback can be reduced by introducing a pre-compensating state-
feedback, which is a common solution in robust MPC.

5.5.2 Dual-mode input-to-state stabilizing MPC

Next, we present a new dual-mode technique for setting up ISS MPC schemes
for hybrid systems, which generalizes the results of the previous subsection
to PWA systems with the origin lying on the boundaries of multiple regions
in the state-space partition. In this case it is no longer necessary to consider
a common terminal cost, i.e. we allow for F (x) = ‖Pjx‖ when x ∈ Ωj ∩ XT ,
j ∈ S. Let XRPI ⊆ XU with 0 ∈ int(XRPI) be a RPI set for system (5.1b)
in closed-loop with haux(·). Let ξ , maxj∈S ‖Pj‖, let η = maxj∈S ‖Aj‖ and,
for any i ∈ Z≥1, let Li

µ = {x ∈ Rn | ‖x‖ ≤ µ
∑i−1

p=0 ηp}.
Next, choose (compute) a terminal set XT ⊆ XRPI ∩ XN such that XT ⊕

LN
µ ⊆ Q1(XT ), where XN , ∪j∈S{Ωj ∼ LN

µ } ⊆ X and Q1(XT ) , {x ∈ X |
∃u ∈ U s.t. g(x, u) ∈ XT } is the one-step controllable set for the dynamics
g(·, ·) with respect to the target set XT . Note that for each fixed XT ⊆
XRPI ∩ XN there is a trade-off in choosing µ such that XT ⊕LN

µ ⊆ Q1(XT ).
Consider now the updated (tightened) set of admissible input sequences:

ŨN (xk) , {uk ∈ UN |xi|k ∈ Xi, i = 1, . . . , N − 1, xN |k ∈ XT }, k ∈ Z+,

(5.13)

where Xi = ∪j∈S{Ωj ∼ Li
µ} ⊆ X for all i ∈ Z[1,N−1] and (x1|k, . . . , xN |k)

is a state sequence generated from initial state x0|k , x̃k and by applying
the input sequence uk to the nominal PWA model (5.1a). Just as done
previously, let X̃f (N) denote the set of feasible states for Problem 5.2.1 with
ŨN (xk) instead of UN (xk), and let V̂ (·) and û(·) denote the corresponding
MPC value function and MPC control law, respectively.

We define a dual-mode MPC control law as follows:

ûDM(xk) ,

{
û(xk) if xk ∈ X̃f (N) \ XRPI

haux(xk) if xk ∈ XRPI

; k ∈ Z+. (5.14)

Therefore, the set of feasible states corresponding to ûDM(·) is X̃f (N)∪XRPI,
which contains the origin in its interior due to 0 ∈ int(XRPI).
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Usually, e.g. see (Kerrigan and Mayne, 2002), in dual-mode robust MPC
the terminal set is taken as XRPI. The terminal state is restricted here to a
disconnected subset of XRPI, i.e. XT ⊆ XRPI ∩ XN ⊂ XRPI, with 0 6∈ XT , in
order to guarantee robust feasibility of Problem 5.2.1 with ŨN (xk) instead
of UN (xk) and ISS, as it will be shown next. If the state trajectory reaches
either XT or XRPI\XT , the dual-mode control law switches to the PWL local
controller and then the state trajectory remains in XRPI (and not necessarily
in XT ) forever, due to robust positive invariance of XRPI under haux(·).

Theorem 5.5.2 Take µ > 0, N ∈ Z≥1 and XT ⊆ XRPI ∩ XN such that
XRPI ∩ XN 6= ∅ and XT ⊕ LN

µ ⊆ Q1(XT ). Suppose that haux(·) and the
terminal cost F (·) satisfy (5.3) for all x ∈ XRPI.

(i) If Problem 5.2.1 with ŨN (xk) instead of UN (xk) is feasible at time
k ∈ Z+ for state x̃k ∈ X, then Problem 5.2.1 with ŨN (xk) instead of UN (xk)
is feasible at time k + 1 for state x̃k+1 = Aj x̃k + Bj û

DM(x̃k) + fj + wk for
all wk ∈ Bµ and all k ∈ Z+;

(ii) The perturbed PWA system (5.1b) in closed-loop with ûDM(·) is ISS
for initial conditions in X̃f (N) ∪ XRPI and disturbances in Bµ.

Proof: (i) There are two situations possible: either x̃k ∈ XRPI or
x̃k 6∈ XRPI. If x̃k ∈ X̃f (N) \ XRPI for some k ∈ Z+, let (x∗

1|k, . . . , x
∗
N |k)

denote an optimal predicted state sequence obtained at time k from ini-
tial state x0|k , x̃k ∈ X̃f (N) \ XRPI and by applying the input sequence
u
∗
k = (u∗

0|k, . . . , u
∗
N−1|k) to the PWA model (5.1a). Let (x1|k+1, . . . , xN−1|k+1)

denote the state sequence obtained from the perturbed initial state x0|k+1 ,

x̃k+1 = xk+1 + wk = x∗
1|k + wk and by applying the inputs (u∗

1|k, . . . , u
∗
N−1|k)

to the nominal PWA model (5.1a). The state constraints imposed in (5.13)
ensure that: (P1) (xi|k+1, x

∗
i+1|k) ∈ Ωji+1 × Ωji+1 , ji+1 ∈ S for all i =

0, . . . , N − 2 and, ‖xi|k+1 − x∗
i+1|k‖ ≤ ηiµ for i = 0, . . . , N − 1. Then,

as shown in the proof of Theorem 5.5.1, we have that xi|k+1 ∈ Ωji+1 ∼
Li

µ ⊂ Xi for i = 1, . . . , N − 2. Next, xN−1|k+1 = x∗
N |k +

∏N−1
p=1 Ajpwk,

x∗
N |k ∈ XT and ‖∏N−1

p=1 Ajpwk‖ ≤ ηN−1µ imply that xN−1|k+1 ∈ XT ⊕ LN
µ .

Since XT ⊕ LN
µ ⊆ Q1(XT ), it follows that there exists a ū ∈ U such that

xN |k+1 , g(xN−1|k+1, ū) ∈ XT . Hence, the sequence of inputs uk+1 ,

(u∗
1|k, . . . , u

∗
N−1|k, ū) is feasible at time k + 1 and the optimization problem

as given in Problem 5.2.1 with ŨN (xk) instead of UN (xk) remains feasible.
Consider now the other situation, i.e. x̃k ∈ XRPI. If the state trajec-

tory enters (or starts in) XRPI ⊆ XU (note that XT ⊂ XRPI), feasibility of
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ûDM(xk) = haux(xk) is ensured due to robust positive invariance of XRPI for
system (5.1b) in closed-loop with uk = haux(xk), k ∈ Z+.

(ii) The result of part (i) implies that X̃f (N) ∪ XRPI is a RPI set for
system (5.1b) in closed-loop with the dual-mode MPC control ûDM(·) and
disturbances in Bµ. To prove ISS, we consider three situations: in Case 1
we assume that x̃k ∈ X̃f (N) \ XRPI for all k ∈ Z+, in Case 2 we assume
that x̃0 ∈ XRPI, and in Case 3 we assume that x̃0 ∈ X̃f (N) \XRPI and there
exists a p ∈ Z≥1 such that x̃k 6∈ XRPI for all k ∈ Z<p and x̃p ∈ XRPI.

Note that Case 1 can only occur when the disturbance is non-zero, i.e. if
the disturbance asymptotically converges to zero or it vanishes for some k ∈
Z+, then the closed-loop system state will converge to a subset of XRPI, which
brings us to Case 3. In other words, Case 1 cannot happen for asymptotically
decreasing disturbances.

In Case 1, the hypothesis already ensures that the MPC value function
V̂ (·) satisfies the ISS condition (2.4a) for some α1(s) , as and α2(s) , bs,
a, b > 0, which ensures that α1(‖x‖) ≤ V̂ (x) ≤ α2(‖x‖) for all x ∈ X̃f (N).
Let x̃k+1 denote the solution of the perturbed system (5.1b) in closed-loop
with ûDM(·) obtained as indicated in part (i) of the proof and let x∗

0|k , x̃k.
Due to full-column rank of Q there exists γ > 0 such that ‖Qx‖ ≥ γ‖x‖ for
all x. Then, as shown in the proof of Theorem 5.5.1 it holds that

V̂ (x̃k+1) − V̂ (x̃k) ≤ J(x̃k+1,uk+1) − J(x̃k,u
∗
k) ≤ −α3(‖x̃k‖) + σ(‖wk‖),

with σ(s) , (ξηN−1 + ‖Q‖∑N−2
p=0 ηp)s and α3(s) , γs. Hence, it follows

that V̂ (·) satisfies the hypothesis of Theorem 2.3.5, thereby establishing ISS
in this particular case for the closed-loop system (5.1b)-(5.14), for initial
conditions in X̃f (N) \ XRPI and disturbances in Bµ.

In Case 2, we prove that the closed-loop system is ISS by showing that
the candidate (discontinuous) ISS Lyapunov function F (x) = ‖Pjx‖ when
x ∈ Ωj satisfies the hypothesis of Theorem 2.3.5. Since Pj has full-column
rank for all j ∈ S there exist positive constants aj and bj , ‖Pj‖ such that
aj‖x‖ ≤ ‖Pjx‖ ≤ bj‖x‖ for all j ∈ S. Hence, the K∞-functions α1(s) ,

minj∈S ajs and α2(s) , maxj∈S bjs satisfy α1(‖x‖) ≤ F (x) ≤ α2(‖x‖) for
all x ∈ Rn. Next, from the hypothesis we have that inequality (5.3) holds
for all x ∈ XRPI and all (j, i) ∈ S × S, which yields:

F ((Aj + BjKj)x + fj + w) − F (x)

≤ ‖Pi(Aj + BjKj)x + Pifj‖ + ‖Piw‖ − ‖Pjx‖
≤ −‖Qx‖ + max

i∈S
‖Pi‖‖w‖ ≤ −α3(‖x‖) + σ(‖w‖),
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for all x ∈ XRPI, (j, i) ∈ S × S and disturbances in Bµ, where α3(s) , γs

(with γ > 0 such that ‖Qx‖ ≥ γ‖x‖) and σ(s) , maxi∈S ‖Pi‖s. Then, due
to robust positive invariance of XRPI, ISS for initial conditions in XRPI and
disturbances in Bµ follows from Theorem 2.3.5.

In Case 3 there exists a finite p ∈ Z≥1 such that x̃k 6∈ XRPI for all k ∈ Z<p

and x̃p ∈ XRPI. Then, from Theorem 2.3.5, Case 1 and Case 2, it follows
that there exist KL-functions β1, β2 and K-functions γ1, γ2 such that for all
p ∈ Z≥1 it holds:

‖x̃k‖ ≤ β1(‖x̃0‖, k) + γ1(‖w[k−1]‖), ∀k ∈ Z≤p,

‖x̃k‖ ≤ β2(‖x̃p‖, k − p) + γ2(‖w[k−p,k−1]‖), ∀k ∈ Z>p,

for all w[k−1] ∈ {Bµ}k and all w[k−p,k−1] ∈ {Bµ}p, respectively. The functions
β1 ∈ KL, γ1 ∈ K and β2 ∈ KL, γ2 ∈ K are obtained as in (2.5) for some
constants ρ̄, ρ ∈ [0, 1) and some K∞-functions ᾱ1(s) , ās, ᾱ2(s) , b̄s and
α1(s) , as, α2(s) , bs, with ā, b̄, a, b > 0, respectively. Let

γ3(s) , β2(2γ1(s), 1) + γ2(s)

and consider the inequality:

β2(2β1(s, p), k − p)
(2.5)
= α−1

1 (2ρk−pα2(2ᾱ−1
1 (2ρ̄pᾱ2(s))) ≤ 8

bb̄

aā
ρ̃ks , β3(s, k),

(5.15)

where ρ̃ , max(ρ, ρ̄) ∈ [0, 1). Then, for all k ∈ Z>p and all p ∈ Z≥1 it follows
that

‖x̃k‖ ≤ β2(β1(‖x̃0‖, p) + γ1(‖w[p−1]‖), k − p) + γ2(‖w[k−p,k−1]‖)
≤ β2(2β1(‖x̃0‖, p), k − p) + β2(2γ1(‖w[p−1]‖), k − p) + γ2(‖w[k−p,k−1]‖)
(5.15)

≤ β3(‖x̃0‖, k) + β2(2γ1(‖w[p−1]‖), 1) + γ2(‖w[k−p,k−1]‖)
≤ β3(‖x̃0‖, k) + β2(2γ1(‖w[k−1]‖), 1) + γ2(‖w[k−1]‖)
≤ β3(‖x̃0‖, k) + γ3(‖w[k−1]‖).

Since β3 ∈ KL, β2 ∈ KL and γ1, γ2 ∈ K, we obtain that γ3 ∈ K. Applying
Case 1 and Case 2 and combining with the result obtained above for Case 3
it follows that:

‖xk‖ ≤ β(‖x̃0‖, k) + γ(‖w[k−1]‖),
for all x̃0 ∈ X̃f (N) ∪ XRPI, w[k−1] ∈ {Bµ}k and all k ∈ Z≥1, where

β(s, k) , max(β1(s, k), β2(s, k), β3(s, k))
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is a KL-function and γ(s) , max(γ1(s), γ2(s), γ3(s)) is a K-function. Hence,
ISS is proven for system (5.1b) in closed-loop with ûDM(·) for all initial
conditions in X̃f (N) ∪ XRPI and disturbances in Bµ.

Note that for the particular case when N = 1, the terminal constraint
set can be simply defined as XT = {XRPI ∼ L1

µ} ∩ X1. The statements of
Theorem 5.5.2 still hold, as g(x, ûDM(x)) + w ∈ XRPI for all w ∈ Bµ ⊆ L1

µ

and the dual-mode control law (5.14) switches to the local controller haux(·)
after one discrete-time instant for all initial conditions x ∈ X̃f (1) \ XRPI.

5.6 Illustrative examples

In this section we illustrate the results of Theorem 5.5.1 and Theorem 5.5.2
by means of simulated examples.

5.6.1 Example 1

First, we illustrate the application of Theorem 5.5.1 and how to construct
the parameters θ, θ1 and µ for a given N ∈ Z≥1. Consider the following
discontinuous PWA system:

xk+1 = g̃(xk, uk, wk) , g(xk, uk)+wk , Ajxk +Bjuk +wk if xk ∈ Ωj , j ∈ S,

(5.16)
where S = {1, . . . , 5}, A1 =

[
−0.0400 −0.4610
−0.1390 0.3410

]
, A2 =

[
0.6552 0.2261
0.5516 −0.0343

]
, A3 =[

−0.7713 0.7335
0.4419 0.5580

]
, A4 =

[
−0.0176 0.5152
0.6064 0.2168

]
, A5 =

[
−0.0400 −0.4610
−0.0990 0.6910

]
, B1 = B2 =

B3 = B4 = [ 1 0 ]⊤ and B5 = [ 0 1 ]⊤. The state and the input of system
(5.16) are constrained at all times in the sets X = [−3, 3] × [−3, 3] and
U = [−0.2, 0.2], respectively. The state-space partition is plotted in Figu-
re 5.2. The method presented in chapter three, Section 3.4.2, was employed
to compute the terminal weight matrix P =

[
2.3200 0.3500
−0.2100 2.4400

]
and the feedback

K = [−0.04 −0.35 ] such that inequality (5.3) of Assumption 5.2.2 holds for all
x ∈ R2, the ∞-norm MPC cost with Q = [ 1 0

0 1 ], R = 0.01 and haux(x) = Kx.
Based on inequality (5.3), it can be shown that the sublevel sets of the ter-
minal cost F , i.e. also Fθ, are λ-contractive sets with λ = 0.6292 for the
dynamics g(x, haux(x)). Then, for any θ1 with θ > θ1 ≥ λθ it holds that
g(x, haux(x)) ∈ Fθ1 for all x ∈ Fθ. This yields µ ≤ (1−λ)θ

ξηN−1 . However, µ

and θ must also be such that Fθ ⊆ (Ω5 ∼ LN−1
µ ) ∩ XU. Hence, a trade-off

must be made in choosing θ and µ. A large θ implies a large µ, which is
desirable since µ is an upper bound on ‖w‖, but θ must also be small enough
to ensure the above inclusion. We chose θ = 0.96 and θ1 = λθ = 0.6040.
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Figure 5.2: State-space partition for system (5.16).

Then, with η = 1.5048, ξ = 2.67 and a prediction horizon N = 2 one ob-
tains that any µ with 0 ≤ µ ≤ 0.0886 is an admissible upper bound on ‖w‖.
For µ = 0.0886 it holds that Fθ ⊆ (Ω5 ∼ L1

µ) ∩ XU (see Figure 5.3 for an
illustrative plot). Hence, the hypothesis of Theorem 5.5.1 is satisfied for any
w ∈ Bµ = {w ∈ R2 | ‖w‖ ≤ 0.0886}.

Then, we used the Multi Parametric Toolbox (MPT) (Kvasnica et al.,
2004) to calculate the MPC control law (5.2) as an explicit PWA state-
feedback, and to simulate the resulting MPC closed-loop system (5.16)-(5.2)
for randomly generated disturbances in Bµ. The explicit MPC controller
is defined over 132 state-space regions. The set of feasible states X̃f (2) is
plotted in Figure 5.3 together with the partition corresponding to the explicit
MPC control law. Note that, by Theorem 5.5.1, ISS is ensured for the closed-
loop system for initial conditions in X̃f (2) and disturbances in Bµ, without
employing a continuous MPC value function Indeed, for example, V̂ (·) and
the closed-loop dynamics (5.16)-(5.2) are discontinuous at x = [0 1]⊤ ∈
int(X̃f (2)).

5.6.2 Example 2

Next, we illustrate the result of Theorem 5.5.2 for the PWL system (5.6)
introduced in Section 5.3. The terminal weight matrices Pj = P for all
j = 1, . . . , 4 and the feedbacks {Kj | j = 1, . . . , 4} given in (5.7) are such
that inequality (5.3) holds for all x ∈ Rn. To implement the dual-mode MPC
control law one has to compute the terminal set XT . The MPT (Kvasnica
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Figure 5.3: State trajectories for the MPC closed-loop system (5.16)-(5.2)
with x0 = [0.003 1.7]⊤ - dashed line and x0 = [−2.8 0.7]⊤ - solid line.

et al., 2004) was employed in order to calculate the maximal RPI set XRPI

contained in XU. We choose µ = 0.1 and N = 1, for which the terminal
constraint set can be chosen as XT = {XRPI ∼ L1

µ} ∩ X1 6= ∅, where X1 =
∪j=1,...,4{Ωj ∼ L1

µ}.
An explicit solution of Problem 5.2.1 with ŨN (xk) instead of UN (xk) was

calculated with the MPT. The feasible set X̃f (1) ∪ XRPI of the dual-mode
MPC control law and the state-space partition (138 regions) corresponding
to the explicit MPC control law û(·) are plotted in Figure 5.4.

Note that, by Theorem 5.5.2, ISS is ensured for the closed-loop system,
without employing a continuous MPC value function. Indeed, the dual-
mode MPC value function V̂ is discontinuous at x ∈ ∂Ω32 ∩ ∂Ω80, e.g.
V̂32(x

∗) = 2.9038 and V̂80(x
∗) = 11.7383 for x∗ = [0 − 2.1830]⊤.

To illustrate the ISS property of the dual-mode MPC control law we
simulated system (5.6) in closed-loop with ûDM(·) for initial states x01 =
[−1.9649 − 1.9649]⊤ (solid line) and x02 = [5 − 5]⊤ (dashed line) and the
disturbance values depicted in Figure 5.5 - (a), (b) for both x01 and x02.
The control inputs are also plotted in Figure 5.5 - (c), (d) for initial states
x01 and x02, respectively. Once the disturbance converges to zero, the state
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Figure 5.4: The feasible set X̃f (1) ∪ XRPI (X̃f (1) - light grey; a part of
XRPI - dark grey) and closed-loop state trajectories obtained for initial states
x01 = [−1.9649 − 1.9649]⊤ (solid line), x02 = [5 − 5]⊤ (dashed line), for
system (5.6) in closed-loop with (5.14).

trajectories also converge to the origin for both initial states, due to the ISS
property. It is also worth to point out that the initial state x01, which was
a problematic initial condition, as discussed in Section 5.3, is contained in
the feasible set of the ISS dual-mode MPC controller. This illustrates the
effectiveness of the proposed methodology.

5.7 Conclusions

This chapter considered robust asymptotic stability in terms of ISS for (dis-
continuous) PWA systems controlled by MPC strategies, as this is an im-
portant property from a practical point of view. We focused mainly on the
case of MPC cost based on ∞-norms, which gives rise to a PWA closed-
loop system, although many results are easily extendable to hybrid MPC
based on quadratic costs. We presented an example of a PWA system taken
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Figure 5.5: History on the interval [0, 29] of: disturbance inputs w =
[w1 w2]

⊤ - (a) and (b); ûDM(·) for x01 - (c); ûDM(·) for x02 - (d).

from literature for which a nominally stabilizing MPC scheme generates a
(discontinuous) MPC value function that is not an ISS Lyapunov function.

Then, we presented an a posteriori test for verifying whether or not a
nominally stabilizing MPC controller, possibly with a discontinuous value
function, has also some inherent robustness properties. In case this test fails,
as it happened for the example shown in Section 5.3, there are no systematic
ways available for modifying hybrid MPC schemes such that ISS (and thus,
robustness) is a priori ensured. Therefore, a new design method for setting
up hybrid MPC schemes for general discontinuous PWA systems, with an a
priori ISS guarantee, was developed. The novel hybrid MPC algorithms use
tightened constraints and do not require continuity of the system, the MPC
control law nor of the MPC value function.

The application of the results presented in this chapter for designing com-
putationally friendly feedback min-max hybrid MPC schemes is the object
of future research.
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In this chapter we consider discrete-time nonlinear systems that are affec-
ted, possibly simultaneously, by time-varying parametric uncertainties and
disturbance inputs. The min-max model predictive control (MPC) metho-
dology is employed to obtain a controller that robustly steers the state of the
system towards a desired equilibrium. The goal is to provide a priori suffi-
cient conditions for robust stability of the resulting closed-loop system via
the input-to-state stability framework. Moreover, new techniques for com-
puting a terminal cost and a local state-feedback control law that satisfy the
developed min-max MPC robust stabilization conditions are presented. The-
se techniques apply to min-max MPC algorithms based on both quadratic
and 1,∞-norms cost functions.

6.1 Introduction

The problem of robust regulation of discrete-time linear and nonlinear sys-
tems affected, possibly simultaneously, by parametric uncertainties and dis-
turbance inputs towards a desired equilibrium has attracted the interest of
many researchers. The reason is that this situation is often encountered in
practical control applications. In case hard constraints are imposed on state
and input variables, the robust MPC methodology provides a reliable so-
lution for addressing this control problem. The research related to robust
MPC is focused on solving efficiently the corresponding MPC optimization
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problems on one hand, e.g. see (Bemporad et al., 2003b; Kerrigan and Macie-
jowski, 2004; Mayne et al., 2004; Pluymers et al., 2005; Alamo et al., 2005),
and guaranteeing stability of the controlled system, on the other hand. In
this chapter we are interested in stability issues and therefore, we focus our
attention on results developed in this direction. See (Scokaert and Mayne,
1998; Mayne et al., 2000; Bemporad et al., 2003b; Kerrigan and Maciejowski,
2004; Pluymers et al., 2005; Mayne et al., 2004; Alamo et al., 2005; Muñoz
de la Peña et al., 2005) and the references therein for a complete overview,
also regarding computational aspects.

There are several ways for designing robust MPC controllers for per-
turbed nonlinear systems. One way is to rely on the inherent robustness
properties of nominally stabilizing nonlinear MPC algorithms, e.g. as it
was done in (Scokaert et al., 1997; Magni et al., 1998; Limon et al., 2002b;
Grimm et al., 2003b). Another approach is to incorporate knowledge about
the disturbances in the MPC problem formulation via open-loop worst case
scenarios. This includes MPC algorithms based on tightened constraints, e.g.
as the one of (Limon et al., 2002a), and MPC algorithms based on open-loop
min-max optimization problems, e.g. see the survey (Mayne et al., 2000). To
incorporate feedback to the disturbance inputs, the closed-loop or feedback
min-max MPC problem set-up was introduced in (Lee and Yu, 1997) and fur-
ther developed in (Mayne, 2001; Magni et al., 2003; Limon et al., 2006). The
open-loop approach is computationally somewhat easier than the feedback
approach, e.g. as it is also shown in the example of Section 6.6.3, but the set
of feasible states corresponding to the feedback min-max MPC optimization
problem is usually much larger. Sufficient conditions for asymptotic stability
of nonlinear systems in closed-loop with feedback min-max MPC controllers
were presented in (Mayne, 2001) under the a priori assumption that the (ad-
ditive) disturbance input converges to zero as time tends to infinity. These
results were extended in (Limon et al., 2006) to the case when persistent
(additive) disturbance inputs affect the system.

In this chapter we employ the input-to-state stability (ISS) framework
(Sontag, 1989, 1990; Jiang and Wang, 2001), which was introduced in Chap-
ter 2, to derive new sufficient conditions for robust asymptotic stability of
nonlinear min-max MPC. Firstly, we show that in general, only input-to-
state practical stability (ISpS) (Jiang, 1993; Jiang et al., 1994, 1996) can be
a priori ensured for min-max nonlinear MPC. This is because the min-max
MPC controller takes into account the effect of a non-zero disturbance input,
even if the disturbance input vanishes in reality. In other words, ISpS does
not imply asymptotic stability for zero disturbance inputs, as it is the case
for ISS. However, we derive explicit bounds on the evolution of the min-max



6.2. Min-max MPC: Problem set-up 141

MPC closed-loop system state and we prove that the developed ISpS suffi-
cient conditions actually imply that the state trajectory of the closed-loop
system is ultimately bounded in a Robust Positively Invariant (RPI) set.

Still, in the case when the disturbance input converges to zero, it is
desirable that asymptotic stability is recovered for the controlled system,
i.e. that the state also converges to zero, which is guaranteed by the ISS
property, but not by the ISpS property, as explained above. One of the main
results of this chapter is to provide novel a priori sufficient conditions for ISS
of min-max nonlinear MPC. ISS is achieved via a dual-mode approach and
using a new technique based on KL-estimates of stability, e.g. see (Khalil,
2002). This result is important because it unifies the properties of (Limon
et al., 2006) and (Mayne, 2001), i.e. it guarantees both ISpS in the presence
of persistent disturbances and robust asymptotic stability in the presence of
asymptotically decaying disturbances (without a priori assuming that this
property holds for the disturbances).

Another main result of this chapter consists in new techniques for com-
puting a terminal cost and a local state-feedback controller such that the
developed robust stabilization conditions for min-max MPC are satisfied.
These techniques employ linear matrix inequalities (LMI) for quadratic MPC
costs and norm inequalities for MPC costs based on 1,∞-norms. The pro-
posed stabilization method works for systems affected by both parametric
uncertainties and additive disturbances. One of its advantages is that the
resulting MPC cost function is continuous, convex and bounded. Also, the
techniques for computing the terminal cost presented in this chapter do not
depend on the type of min-max MPC numerical set-up. They can be employ-
ed to ensure robust stability or input-to-state stability for both open-loop
and feedback min-max MPC schemes, such as the ones in (Kothare et al.,
1996; Scokaert and Mayne, 1998; Bemporad et al., 2003b; Kerrigan and Ma-
ciejowski, 2004; Mayne et al., 2004; Alamo et al., 2005; Muñoz de la Peña
et al., 2005; Pluymers et al., 2005).

6.2 Min-max MPC: Problem set-up

The results presented in this chapter can be applied to both open-loop and
feedback min-max MPC strategies. However, it is the common feeling that
open-loop min-max formulations are conservative and underestimate the set
of feasible input trajectories. For this reason, although we present both
problem formulations, the stability results are proven only for feedback min-
max nonlinear MPC set-ups. Note that it is possible to prove, via a similar
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reasoning and using the same hypotheses, that all the results developed in
this chapter also hold for open-loop min-max MPC schemes.

Consider the discrete-time non-autonomous perturbed nonlinear system:

xk+1 = g(xk, uk, wk, vk), k ∈ Z+, (6.1)

where xk ∈ Rn, uk ∈ Rm, wk ∈ W ⊂ Rdw and vk ∈ V ⊂ Rdv are the
state, the control action, unknown time-varying parametric uncertainties and
disturbance inputs at discrete-time k and, g : Rn × Rm × Rdw × Rdv → Rn

is an arbitrary nonlinear, possibly discontinuous, function. Let X ⊂ Rn and
U ⊂ Rm be C-sets that represent state and input constraints for system
(6.1).

Open-loop min-max MPC evaluates a single control sequence, i.e. uk ,

(u0|k, . . . , uN−1|k) ∈ UN . For a fixed N ∈ Z≥1, let xk(xk,uk,wk,vk) ,

(x1|k, . . . , xN |k) denote a state sequence generated by system (6.1) from ini-

tial state x0|k , xk and by applying the input sequence uk, where wk ,

(w0|k, . . . , wN−1|k) ∈ WN and vk , (v0|k, . . . , vN−1|k) ∈ VN are the corres-

ponding disturbance sequences and xi|k , g(xi−1|k, ui−1|k, wi−1|k, vi−1|k) for
all i = 1, . . . , N .

Furthermore, let XT ⊆ X with 0 ∈ int(XT ) denote a desired target set.
The class of admissible input sequences defined with respect to XT and state
xk ∈ X is

UN (xk) , {uk ∈ UN |xk(xk,uk,wk,vk) ∈ XN , xN |k ∈ XT ,

∀wk ∈ WN ,∀vk ∈ VN}.

Let F : Rn → R+ with F (0) = 0 and L : Rn × Rm → R+ with L(0, 0) = 0
be continuous, convex and bounded functions on bounded sets.

The open-loop min-max MPC problem is formulated as follows: Let the
target set XT ⊆ X and N ∈ Z≥1 be given. At time k ∈ Z+ let xk ∈ X be
given and minimize the cost

J(xk,uk) , max
wk∈WN ,vk∈VN

{
F (xN |k) +

N−1∑

i=0

L(xi|k, ui|k)

}
,

with prediction model (6.1), over all sequences uk in UN (xk).
An initial state x ∈ X is called feasible for the above problem if UN (x) 6=

∅. Similarly, the optimization problem is said to be feasible for x ∈ X if
UN (x) 6= ∅. The set of all feasible states for the open-loop min-max MPC
optimization problem is denoted by Xf (N).
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Feedback min-max MPC obtains a sequence of feedback control laws
that minimizes a worst case cost function, while assuring robust constraint
handling. In this chapter we employ the dynamic programming approach1 to
feedback min-max nonlinear MPC proposed in (Lee and Yu, 1997) for linear
systems and in (Mayne, 2001) for nonlinear systems. In this approach, the
feedback min-max optimal control input is obtained as follows:

Vi(x) , minu∈U{maxw∈W,v∈V[L(x, u) + Vi−1(g(x, u, w, v))]
s.t. g(x, u, w, v) ∈ Xf (i − 1),∀w ∈ W,∀v ∈ V}, (6.2)

where the set Xf (i) contains all the states xi ∈ X which are such that (6.2)
is feasible, i = 1, . . . , N , and “s.t.” is a short term for “such that”. The
optimization problem is defined for i = 1, . . . , N where N is the prediction
horizon.

The boundary conditions are:

V0(x0) , F (x0),

Xf (0) , XT ,
(6.3)

where XT ⊆ X is a desired target set that contains the origin in its interior.
Taking into account the definition of the min-max problem, Xf (i) is now
the set of all states that can be robustly controlled into the target set XT in
i ∈ Z≥1 steps.

The control law is applied to system (6.1) in a receding horizon manner.
At each sampling time the problem is solved for the current state x and the
value function VN (x) is obtained. The feedback min-max MPC control law
is defined as

ū(x) , u∗
N , (6.4)

where u∗
N is the optimizer that yields the min-max MPC value function

V (x) = VN (x), which will be used in the next section as a candidate ISpS
Lyapunov function to establish ISpS of the nonlinear system (6.1) in closed-
loop with the feedback min-max MPC control (6.4).

6.3 ISpS results for min-max nonlinear MPC

In this section we present sufficient conditions for ISpS of system (6.1) in
closed-loop with the feedback min-max MPC control (6.4) and we derive

1An alternative, equivalent formulation of feedback min-max MPC is the so-called
“large scale scenario” approach presented in (Scokaert and Mayne, 1998; Mayne et al.,
2000).
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explicit bounds on the evolution of the closed-loop system state. Let h :
Rn → Rm denote an arbitrary nonlinear function with h(0) = 0 and let
XU , {x ∈ X | h(x) ∈ U}.

Assumption 6.3.1 There exist a, b, a1, λ > 0 with a ≤ b, non-negative
numbers e1, e2, a function h : Rn → Rm with h(0) = 0 and a K-function σ1

such that:

1. XT ⊆ XU and 0 ∈ int(XT );

2. XT is a RPI set for system (6.1) in closed-loop with uk = h(xk), k ∈ Z+;

3. L(x, u) ≥ a‖x‖λ for all x ∈ X and all u ∈ U;

4. a1‖x‖λ ≤ F (x) ≤ b‖x‖λ + e1 for all x ∈ XT ;

5. F (g(x, h(x), w, v))−F (x) ≤ −L(x, h(x))+σ1(‖v‖)+e2 for all x ∈ XT ,
w ∈ W, and all v ∈ V.

Note that Assumption 6.3.1, which implies that F (·) is a local ISpS (ISS)
Lyapunov function, can be regarded as a generalization of the usual suffi-
cient conditions for nominal stability of MPC, which imply that F (·) is a
local Lyapunov function, see, for example, the survey (Mayne et al., 2000).
Techniques for computing a terminal cost and a function h(·) such that As-
sumption 6.3.1 is satisfied for a industrially relevant subclass of system (6.1)
will be presented in Section 6.5. See also the illustrative example presented
in Section 6.6.3.

The next result is directly obtained via Theorem 2.4.4 by showing that
the terminal cost F (·) is a local (i.e. for all x ∈ XT ) ISpS (ISS) Lyapunov
function for system (6.1) in closed-loop with uk = h(xk), k ∈ Z+.

Proposition 6.3.2 Suppose that Assumption 6.3.1 holds. Then, system
(6.1) in closed-loop with uk = h(xk), k ∈ Z+, is ISpS for initial conditions
in XT . Moreover, if Assumption 6.3.1 holds with e1 = e2 = 0, system (6.1)
in closed-loop with uk = h(xk), k ∈ Z+, is ISS for initial conditions in XT .

Now we state the main result of this section.

Theorem 6.3.3 Suppose that F (·), L(·, ·), XT and h(·) are such that As-
sumption 6.3.1 holds for system (6.1). Then, the perturbed nonlinear system
(6.1) in closed-loop with the feedback min-max MPC control (6.4) is ISpS
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for initial conditions in Xf (N). Moreover, the property (2.8) holds with the
following functions:

β(s, k) ,

(
4θ

a

) 1
λ

ρ̃ks, γ(s) ,

(
2δ

a(1 − ρ)

) 1
λ

s, d ,

(
4ξ

a

) 1
λ

, (6.5)

where θ , max(b, Γ
rλ ) for some constants Γ, r > 0, ρ̃ , ρ

1
λ ∈ (0, 1), ρ ,

1 − a
θ
∈ (0, 1), δ > 0 can be taken arbitrarily small, and ξ , d1 + d2

1−ρ
, with

d1 , e1 + N(maxv∈V σ1(‖v‖) + e2) and d2 , maxv∈V σ1(‖v‖) + e2.

Proof: The proof consists in showing that the min-max MPC value
function V (·) defined in the previous section is an ISpS Lyapunov function,
i.e. it satisfies the hypothesis of Theorem 2.4.4. First, it is known (see (May-
ne, 2001; Kerrigan and Maciejowski, 2001)) that under Assumption 6.3.1-1,2,
the set Xf (N) is a RPI set for system (6.1) in closed-loop with the feedback
min-max MPC control (6.4).

Now we obtain lower and upper bounding functions on the min-max MPC
value function that satisfy the conditions (2.9a), introduced in Chapter 2.
From Assumption 6.3.1-3 it follows that V (x) = VN (x) ≥ L(x, ū(x)) ≥
a‖x‖λ, for all x ∈ Xf (N), where ū(x) is the feedback min-max MPC control
law defined in (6.4).

Next, letting x0 , x ∈ XT , from Assumption 6.3.1-2,5 it follows that for
any w[N−1] ∈ WN and any v[N−1] ∈ VN

F (xN ) +
N−1∑

i=0

L(xi, h(xi)) ≤ F (x0) +
N−1∑

i=0

σ1(‖vi‖) + Ne2,

where xi , g(xi−1, h(xi−1), wi−1, vi−1) for i = 1, . . . , N . Then, by optimality
and Assumption 6.3.1-4 we have that for all x ∈ XT ,

V (x) = VN (x) ≤ F (x) + N(max
v∈V

σ1(‖v‖) + e2) ≤ b‖x‖λ + d1,

where d1 , e1 + N(maxv∈V σ1(‖v‖) + e2) > 0.
To establish a global upper bound on V (·) in Xf (N), let r > 0 be such

that Br , {x ∈ Rn | ‖x‖ ≤ r} ⊆ XT . Due to compactness of X, U, W, V

and convexity and boundedness of F (·), L(·, ·) there exists a number Γ > 0
such that V (x) ≤ Γ for all x ∈ Xf (N). Letting θ , max(b, Γ

rλ ) we obtain
V (x) ≤ θ‖x‖λ ≤ θ‖x‖λ + d1 for all x ∈ Xf (N) \ XT . Then, due to θ ≥ b it
also follows that V (x) = VN (x) ≤ b‖x‖λ + d1 ≤ θ‖x‖λ + d1 for all x ∈ XT .
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Hence, V (·) satisfies condition (2.9a) for all x ∈ Xf (N) with α1(s) , asλ,
α2(s) , θsλ and d1 = e1 + N(maxv∈V σ1(‖v‖) + e2) > 0.

Next, we show that V (·) satisfies condition (2.9b) of Chapter 2. By
Assumption 6.3.1-5 and optimality, for all x ∈ XT = Xf (0) we have that:

V1(x) − V0(x) ≤ max
w∈W,v∈V

[L(x, h(x)) + F (g(x, h(x), w, v))] − F (x)

≤ max
v∈V

σ1(‖v‖) + e2.

Then, we obtain via induction that:

Vi+1(x) − Vi(x) ≤ max
v∈V

σ1(‖v‖) + e2, ∀x ∈ Xf (i), ∀i ∈ 0, . . . , N − 1. (6.6)

At time k ∈ Z+, for a given state xk ∈ X and a fixed prediction horizon
N the min-max MPC control law ū(xk) is calculated and then applied to
system (6.1). The state evolves to xk+1 = g(xk, ū(xk), wk, vk) ∈ Xf (N).
Then, by Assumption 6.3.1-5 and applying recursively (6.6) it follows that

VN (xk+1) − VN (xk)

≤ VN (xk+1) − max
w∈W,v∈V

[L(xk, ū(xk)) + VN−1(g(xk, ū(xk), w, v))]

≤ VN (xk+1) − L(xk, ū(xk)) − VN−1(g(xk, ū(xk), wk, vk))

= VN (xk+1) − L(xk, ū(xk)) − VN−1(xk+1)

≤ −L(xk, ū(xk)) + max
v∈V

σ1(‖v‖) + e2

≤ −a‖xk‖λ + max
v∈V

σ1(‖v‖) + e2

≤ −a‖xk‖λ + d2, (6.7)

for all xk ∈ Xf (N), wk ∈ W, vk ∈ V, k ∈ Z+, where d2 , maxv∈V σ1(‖v‖) +
e2 > 0. Hence, the feedback min-max nonlinear MPC value function V (·)
satisfies (2.9b) with α3(s) , asλ, any σ ∈ K and d2 = maxv∈V σ1(‖v‖)+e2 >

0. The statements then follow from the fundamental ISpS result of chapter
two, i.e. Theorem 2.4.4.

The functions β(·, ·), γ(·) and the constant d defined in (6.5) are obtained
by letting σ(s) , δsλ for some (any) δ > 0 and substituting the functions
α1(·), α2(·), α3(·), σ(·) and the constants d1, d2 obtained above in relation
(2.10).

6.4 ISS results for min-max nonlinear MPC

As shown in the proof of Theorem 6.3.3, ISS cannot be proven for system
(6.1) in closed-loop with ū(·), if the min-max MPC value function V (·) is used
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as the candidate ISS Lyapunov function, which is the most common method
of proving stability in MPC, e.g. see the survey (Mayne et al., 2000). This
is due to the fact that by construction, V (·) satisfies the conditions (2.9)
with d1, d2 > 0, even if Assumption 6.3.1 holds for e1 = e2 = 0. In the case
of persistent disturbances this is not necessarily a drawback, since ultimate
boundedness in a RPI subset of Xf (N) is guaranteed, as it will be shown in
the sequel. However, in the case when the disturbance input vanishes after
a certain time it is desirable to have an ISS closed-loop system, since then
ISS implies (robust) asymptotic stability.

In this section we present sufficient conditions for ISS of system (6.1) in
closed-loop with a dual-mode min-max MPC strategy. Therefore, a standing
assumption throughout this section is that the origin is an equilibrium in
(6.1) for zero inputs u and v. By this we mean that g(0, 0, w, 0) = 0 for all
w ∈ W. The following technical result will be employed to prove the main
result for dual-mode min-max nonlinear MPC.

For any τ with 0 < τ < a define

Mτ ,

{
x ∈ Xf (N) | ‖x‖λ ≤ d2

a − τ

}
and Mτ , Xf (N) \ Mτ , (6.8)

where a is the constant of Assumption 6.3.1-3 and d2 = maxv∈V σ1(‖v‖) +
e2 > 0. Note that 0 ∈ int(Mτ ), as for d2 and a defined above it holds that
d2

a−τ
> 0 and 0 ∈ int(XT ) ⊆ int(Xf (N)).

Theorem 6.4.1 Suppose that F (·), L(·, ·), XT and h(·) are such that As-
sumption 6.3.1 holds for system (6.1) and there exists a τ ∈ (0, a) such that
Mτ 6= ∅. Then, for each x0 ∈ Mτ and any disturbances realizations {wj}j∈Z+

with wj ∈ W for all j ∈ Z+ and {vj}j∈Z+ with vj ∈ V for all j ∈ Z+, there
exists an i ∈ Z≥1 such that xi ∈ Mτ . Let i(x0) denote the minimal one, i.e.
i(x0) , arg min{i ∈ Z≥1 | x0 ∈ Mτ , xi ∈ Mτ}.

Moreover, there exists a KL-function β(·, ·) such that for all x0 ∈ Mτ

and any disturbances realizations {wj}j∈Z+ with wj ∈ W for all j ∈ Z+ and
{vj}j∈Z+ with vj ∈ V for all j ∈ Z+, the trajectory of the closed-loop system
(6.1)-(6.4) satisfies ‖xk‖ ≤ β(‖x0‖, k) for all k ∈ Z≤i(x0), where xk ∈ Mτ for
all k ∈ Z<i(x0).

Proof: We prove the second statement of the theorem first. As shown
in the proof of Theorem 6.3.3, the hypothesis implies that

a‖x‖λ ≤ V (x) ≤ θ‖x‖λ + d1, ∀x ∈ Xf (N).
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Let r̃ > 0 be such that Br̃ ⊆ Mτ . For all the state trajectories that satisfy
xk ∈ Mτ (and thus xk 6∈ Mτ ) for all k ∈ Z<i(x0) we have that ‖xk‖ ≥ r̃ for
all k ∈ Z<i(x0). This yields:

V (xk) ≤ θ‖xk‖λ + d1

(‖xk‖
r̃

)λ

≤
(

θ +
d1

r̃λ

)
‖xk‖λ, ∀xk ∈ Mτ , k ∈ Z<i(x0).

The hypothesis also implies (see (6.7)) that

V (xk+1) − V (xk) ≤ −a‖xk‖λ + d2, ∀xk ∈ Xf (N), wk ∈ W, vk ∈ V, k ∈ Z+,

and by the definition (6.8) it follows that

V (xk+1) − V (xk) ≤ −τ‖xk‖λ, ∀xk ∈ Mτ , wk ∈ W, vk ∈ V, k ∈ Z<i(x0).

(6.9)
Then, following the steps of the proof of Theorem 2.4.4, it is straightforward
to show that the state trajectory satisfies for all k ∈ Z≤i(x0),

‖xk‖ ≤ β(‖x0‖, k); β(s, k) , α−1
1 (ρkα2(s)) =

(
b̄

a

) 1
λ (

ρ
1
λ

)k

s, (6.10)

where α2(s) , b̄sλ, b̄ , θb + d1

r̃λ , α1(s) , asλ and ρ , 1 − τ
b̄
. Note that

ρ ∈ (0, 1) due to 0 < τ < a ≤ b.
Next, we prove that there exists an i ∈ Z≥1 such that xi ∈ Mτ . Let

r̄ > r̃ > 0 be such that Xf (N) ⊆ Br̄. Such an r̄ exists due to the fact that
the compactness of X implies that Xf (N) is bounded. Assume that there
does not exist an i ∈ Z≥1 such that xi ∈ Mτ . Then, for all i ∈ Z+ we have
that

‖xi‖ ≤ β(‖x0‖, i) =

(
b̄

a

) 1
λ

‖x0‖
(
ρ

1
λ

)i

≤
(
ρ

1
λ

)i
(

b̄

a

) 1
λ

r̄.

Since ρ
1
λ ∈ (0, 1), we have that limi→∞

(
ρ

1
λ

)i

= 0. Hence, there exists an

i ∈ Z≥1 such that xi ∈ Br̃ ⊆ Mτ and we reached a contradiction.
Before stating the main result, we make use of Theorem 6.4.1 to prove

that the ISpS sufficient conditions of Assumption 6.3.1 ensure ultimate boun-
dedness of the min-max MPC closed-loop system. This property is achieved
with respect to a RPI sublevel set of the min-max MPC value function in-
duced by the set Mτ .

Lemma 6.4.2 Let

Υ , max
x∈Mτ

{
V (x) − a‖x‖λ + d2

}
and VΥ , {x ∈ Xf (N) | V (x) ≤ Υ}.
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Suppose that the hypothesis of Theorem 6.4.1 holds. Then, the closed-loop
system (6.1)-(6.4) is ultimately bounded in the set VΥ for initial conditions
in Xf (N).

Proof: By definition of Υ, it follows that Mτ ⊆ VΥ. Suppose that
x0 ∈ Xf (N)\VΥ and thus, x0 ∈ Mτ . Then, by Theorem 6.4.1 it follows that
there exists an i ∈ Z≥1 such that xi ∈ Mτ ⊆ VΥ.

Next, we prove that VΥ is a RPI set for the closed-loop system (6.1)-(6.4).
As shown in the proof of Theorem 6.4.1 (see (6.9)), for any x ∈ VΥ \ Mτ it
holds that

V (g(x, ū(x), w, v)) ≤ V (x) − τ‖x‖λ ≤ V (x) ≤ Υ,

for all w ∈ W and all v ∈ V. Now let x ∈ Mτ . Two situations can occur:
either g(x, ū(x), w, v) ∈ Mτ or g(x, ū(x), w, v) 6∈ Mτ . The first case is trivial
due to Mτ ⊆ VΥ. In the latter case, by inequality (6.7) and since x ∈ Mτ it
holds that

V (g(x, ū(x), w, v)) ≤ V (x) − a‖x‖λ + d2 ≤ Υ.

Therefore, for any x ∈ VΥ, it holds that g(x, ū(x), w, v) ∈ VΥ for all w ∈ W

and all v ∈ V, which implies that VΥ is a RPI set for the closed-loop system
(6.1)-(6.4). Hence, the closed-loop system (6.1)-(6.4) is ultimately bounded
in VΥ.

Note that in a worst case situation, i.e. when the disturbance input v ∈ V

is too large and Mτ = Xf (N) for any τ ∈ (0, a), the closed-loop system (6.1)-
(6.4) is still ultimately bounded in the set Xf (N) for all x0 ∈ Xf (N), due to
robust positive invariance of Xf (N).

To state the main result, let the dual-mode feedback min-max MPC
control law be defined as:

ūDM(xk) ,

{
ū(xk) if xk ∈ Xf (N) \ XT

h(xk) if xk ∈ XT

; k ∈ Z+. (6.11)

Theorem 6.4.3 Suppose that Assumption 6.3.1 holds with e1 = e2 = 0 for
system (6.1). Furthermore, suppose there exists τ ∈ (0, a) such that Mτ ⊆
XT . Then, the perturbed nonlinear system (6.1) in closed-loop with the
dual-mode feedback min-max MPC control ūDM is ISS for initial conditions
in Xf (N).

Proof: In order to prove ISS, we consider two situations: in Case 1 we
assume that x0 ∈ XT and in Case 2 we assume that x0 ∈ Xf (N) \ XT . In
Case 1, F (·) satisfies the hypothesis of Proposition 6.3.2 with e1 = e2 = 0 and
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hence, the closed-loop system (6.1)-(6.4) is ISS. Then, using the reasoning
employed in the proof of Theorem 2.4.4, it can be shown that there exist
a KL-function β1(s, k) , α−1

1 (2ρk
1α2(s)), with α1(s) , a1s

λ, α2(s) , bsλ,
ρ1 , 1 − a

b
, and a K-function γ(·) such that for all x0 ∈ XT the state

trajectory satisfies

‖xk‖ ≤ β1(‖x0‖, k) + γ(‖v[k−1]‖), ∀k ∈ Z≥1. (6.12)

In Case 2, since Mτ ⊆ XT , by Theorem 6.4.1 there exists a p ∈ Z≥1 such that
xp ∈ XT . From Theorem 6.4.1 we also have that there exists a KL-function
β2(s, k) , ᾱ−1

1 (ρk
2ᾱ2(s)), with ᾱ1(s) , asλ, ᾱ2(s) , b̄sλ, ρ2 , 1 − τ

b̄
such

that for all x0 ∈ Xf (N) \ XT the state trajectory satisfies

‖xk‖ ≤ β2(‖x0‖, k), ∀k ∈ Z≤p and xp ∈ XT .

Then, for all p ∈ Z≥1 and all k ∈ Z≥p+1 it holds that

‖xk‖ ≤ β1(‖xp‖, k − p) + γ(‖v[k−p,k−1]‖)
≤ β1(β2(‖x0‖, p), k − p) + γ(‖v[k−p,k−1]‖) ≤ β3(‖x0‖, k) + γ(‖v[k−1]‖),

where v[k−p,k−1] denotes the truncation between time k−p and k−1. In the
above inequalities we used

β1(β2(s, p), k − p) = α−1
1

(
2ρ

k−p
1 α2

((
b̄

a

) 1
λ

s

(
ρ

1
λ

2

)p
))

≤
(

2bb̄

a2

) 1
λ

s

(
ρ

1
λ

3

)k

, β3(s, k),

and ρ3 , max(ρ1, ρ2) ∈ (0, 1). Hence, β3 ∈ KL.
Then, we have that

‖xk‖ ≤ β(‖x0‖, k) + γ(‖v[k−1]‖), ∀k ∈ Z≥1,

for all x0 ∈ Xf (N), {wj}j∈Z+ with wj ∈ W for all j ∈ Z+ and all {vj}j∈Z+

with vj ∈ V for all j ∈ Z+, where β(s, k) , max (β1(s, k), β2(s, k), β3(s, k)).
Since β1,2,3(·, ·) ∈ KL implies that β(·, ·) ∈ KL, and we have γ(·) ∈ K,

the statement then follows from the definition of the ISpS property given in
Chapter 2, i.e. Definition 2.4.3.

The interpretation of the condition Mτ ⊆ XT is that the min-max MPC
controller steers the state of the system inside the terminal set XT for all
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disturbances w in W and v in V. Then, ISS can be achieved by switching to
the local feedback control law when the state enters the terminal set.

Note that in principle it is sufficient that there exist a nonlinear function
h̃(·) that satisfies Assumption 6.3.1, a RPI set X̃ ⊆ X̃U for (6.1) in closed-
loop with uk = h̃(xk), k ∈ Z+, and a τ ∈ (0, a) such that Mτ ⊆ X̃ for the
result of Theorem 6.4.3 to hold, where X̃U , {x ∈ X | h̃(x) ∈ U}. By this
we mean that if one takes the modified dual-mode scheme

ūDM
mod(xk) ,

{
ū(xk) if xk ∈ Xf (N) \ X̃

h̃(xk) if xk ∈ X̃
; k ∈ Z+,

the result of Theorem 6.4.3 still holds. Hence, it is not necessary to use the
terminal set XT employed in the min-max MPC optimization problem as the
“switch set” (i.e., for example, X̃ defined above).

6.5 New methods for computing the terminal cost

As shown in the previous sections, to guarantee ISpS (ISS) stability for the
nonlinear system (6.1) in closed-loop with a min-max MPC controller, for
a given stage cost L(·, ·), one needs to compute the terminal cost F (·), the
state-feedback control law h(·) and the terminal set XT such that Assumpti-
on 6.3.1 holds. This is a highly non-trivial problem which is not solved in its
full generality. In this section we consider an industrially relevant subclass of
system (6.1) for which the corresponding min-max MPC optimization pro-
blems are computationally tractable and for which it is possible to derive
systematic ways for solving the above-mentioned problem.

More specifically, we consider the class of constrained discrete-time li-
near systems affected, possibly simultaneously, by time-varying parametric
uncertainties and additive disturbance inputs, i.e.

xk+1 = g(xk, uk, wk, vk) , A(wk)xk + B(wk)uk + E(wk)vk, k ∈ Z+,

(6.13)

where xk ∈ X ⊂ Rn is the state, uk ∈ U ⊂ Rm is the control action,
wk ∈ W ⊂ Rdw is an unknown parametric uncertainty and vk ∈ V ⊂ Rdv is
an unknown additive disturbance input. The sets X and U are assumed to
be compact and to contain the origin in their interior, while W and V are
assumed to be compact polyhedral sets. Here, A(w) ∈ Rn×n, B(w) ∈ Rn×m

and E(w) ∈ Rn×dv for all w ∈ W. The vectors wk and vk are unknown
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exogenous perturbations that take values for all k ∈ Z+ in W and V, respec-
tively. We assume that A(w), B(w) and E(w) are affine functions of w ∈ W

and there exists a w ∈ W such that the matrix B(w) has full-column rank.

Let Wvert ⊂ W and Vvert ⊂ V be the sets of all the vertices of W

and V, arranged in a certain fixed order. Furthermore, let S , {1, . . . , S}
and O , {1, . . . , O} denote the set of indexes s and o such that ws and
vo take values in Wvert and Vvert, respectively. Since we assume that W

is a polyhedral set it follows that [A(w) B(w) E(w)] ∈ Ω, where Ω ,

Co{[A(ws) B(ws) E(ws)]}, s ∈ S. Also, since we assume that V is a po-
lyhedral set it follows that v ∈ Co{vo}, o ∈ O. In other words, there exist
some nonnegative integers λ1, . . . , λS and µ1, . . . , µO such that:

[A(w) B(w) E(w)] =
S∑

s=1

λs[A(ws) B(ws) E(ws)],

S∑

s=1

λs = 1; (6.14a)

v =
O∑

o=1

µov
o,

O∑

o=1

µo = 1. (6.14b)

6.5.1 Specific problem statement

The problem addressed in this section is how to calculate F (·) and h(·)
such that Assumption 6.3.1 holds for the perturbed linear system (6.13).
This is a non-trivial problem, which depends on the type of MPC cost. For
example, in the case of quadratic MPC costs this problem has only been
solved partially (Kothare et al., 1996), i.e. for zero additive disturbances.
In the case of MPC costs based on 1,∞-norms, to the authors’ knowledge,
there is no systematic method available (which does not resort to a zero
terminal cost and a zero stage cost in XT , as done in (Scokaert and Mayne,
1998; Kerrigan and Maciejowski, 2004)) for solving this problem.

The aim is now to provide solutions, for both quadratic and 1,∞-norms
MPC costs, to the problem of calculating the terminal cost F (·) and local
control law h(·) such that Assumption 6.3.1 is satisfied for linear systems
affected by both parametric uncertainties and additive disturbances.

These techniques can also be employed to obtain a terminal cost and a lo-
cal controller that satisfy Assumption 6.3.1 for particular types of nonlinear
systems, see, for example, Section 6.6.3. Moreover, they can be straightfor-
wardly extended to the class of perturbed PWA systems via the results of
chapters three and four.
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6.5.2 MPC costs based on quadratic forms

Consider the case when quadratic forms are used to define the MPC cost
function, i.e. F (x) , ‖P 1

2 x‖2
2 = x⊤Px and L(x, u) , ‖Q 1

2 x‖2
2 + ‖R 1

2 u‖2
2 =

x⊤Qx + u⊤Ru, where P,Q ∈ Rn×n and R ∈ Rm×m are assumed to be
positive definite and symmetric matrices. Then, it follows that L(x, u) ≥
x⊤Qx ≥ λmin(Q)‖x‖2

2 for all x ∈ Rn and all u ∈ Rm and λmin(P )‖x‖2
2 ≤

F (x) ≤ λmax(P )‖x‖2
2 for all x ∈ Rn. Hence, Assumption 6.3.1-3,4 is satisfied

for a , λmin(Q) > 0, a1 , λmin(P ) > 0, b , λmax(P ) > 0 and λ = 2.
Next, we present LMI based sufficient conditions for Assumption 6.3.1-

5 to be satisfied. Let Q and R be known positive definite and symmetric
matrices and let τ > 0 be a given number. Consider now the following matrix
inequality:

∆(w) ,

(
∆11 ∆12

∆21 ∆22

)
> 0, (6.15)

where

∆11 ,

(
Z −(A(w)Z + B(w)Y )⊤

−(A(w)Z + B(w)Y ) τZ

)
,

∆22 , diag

([(
Z 0
0 Z

)
,

(
Q−1 0
0 Q−1

)
,

(
R−1 0
0 R−1

)])
,

∆12 = ∆⊤
21 ,

(
(A(w)Z + B(w)Y )⊤ 0 Z 0 Y ⊤ 0

0 0 0 0 0 0

)
.

In (6.15), the operator diag([Z1, . . . , Zn]) denotes a diagonal matrix of ap-
propriate dimensions with the matrices Z1, . . . , Zn on the main diagonal, and
0 denotes a zero matrix of appropriate dimensions. The unknown variables
in the matrix inequality (6.15) (an LMI for fixed w ∈ W) are the matrix
Z ∈ Rn×n, which is required to be positive definite and symmetric, and
Y ∈ Rm×n.

Theorem 6.5.1 Suppose that the LMI

diag([∆(w1), ∆(w2), . . . ,∆(wS)]) > 0, (6.16)

in the unknowns Z, Y is feasible, where {ws | s ∈ S = {1, . . . , S}} are the
vertices of W. Let Z > 0 and Y be a solution of (6.16). Then, the terminal
cost F (x) = x⊤Px with P , Z−1 and the control law h(x) = Kx with the
feedback gain K , Y Z satisfy Assumption 6.3.1-5 for all x ∈ Rn, w ∈ W

and all v ∈ Rdv , and with σ(‖v‖) , (1 + τ)‖P 1
2 ‖2

2 maxw∈W ‖E(w)‖2
2‖v‖2

2.
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Proof: Using property (6.14a) and the hypothesis (6.16) it follows that

∆(w) = ∆

(
S∑

s=1

λsw
s

)
=

S∑

s=1

λs∆(ws) > 0, ∀w ∈ W.

Then, applying the Schur complement to (6.15) we obtain

∆11 − ∆12∆
−1
22 ∆21 > 0 ⇔ ∆11 − ∆⊤

21∆
−1
22 ∆21 > 0,

which yields the equivalent matrix inequality:

ΘZ(w) ,

(
ΞZ(w) −(A(w)Z + B(w)Y )⊤

−(A(w)Z + B(w)Y ) τZ

)
> 0

for all w ∈ W, where

ΞZ(w) , Z − (A(w)Z + B(w)Y )⊤Z−1(A(w)Z + B(w)Y )

− ZQZ − Y ⊤RY.

Next, by pre- and post-multiplying the matrix inequality ΘZ(w) > 0

with the positive definite matrix

(
Z−1 0
0 Z−1

)
and by replacing Z−1 with

P and Y Z−1 with K in the resulting matrix inequality we obtain:

ΘP (w) ,

(
ΞP (w) −(A(w) + B(w)K)⊤P

−P (A(w) + B(w)K) τP

)
> 0

for all w ∈ W, where

ΞP (w) , P − (A(w) + B(w)K)⊤P (A(w) + B(w)K)

− Q − K⊤RK.

This implies that

[
x⊤ v⊤E(w)⊤

]
ΘP (w)

[
x

E(w)v

]
≥ 0, (6.17)

for all x ∈ Rn, w ∈ W and all v ∈ Rdv , which yields:

x⊤ΞP (w)x − v⊤E(w)⊤P (A(w) + B(w)K)x

− x⊤(A(w) + B(w)K)⊤PE(w)v − v⊤E(w)⊤PE(w)v

+ (1 + τ)v⊤E(w)⊤PE(w)v ≥ 0 ⇔ x⊤Px − x⊤Qx − x⊤K⊤RKx

− ((A(w) + B(w)K)x + E(w)v)⊤P ((A(w) + B(w)K)x + E(w)v)

+ (1 + τ)v⊤E(w)⊤PE(w)v ≥ 0. (6.18)
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Note that in (6.18) we added and subtracted the term v⊤E(w)⊤PE(w)v.
Next, consider the function

σ̄(w, v) , (1 + τ)v⊤E(w)⊤PE(w)v = (1 + τ)‖P 1
2 E(w)v‖2

2,

and choose σ(‖v‖) , (1 + τ)‖P 1
2 ‖2

2 maxw∈W ‖E(w)‖2
2‖v‖2

2. Using the fact
that σ̄(w, v) ≤ σ(‖v‖) for all w ∈ W and all v ∈ Rdv , inequality (6.18), and
letting h(x) , Kx we obtain:

F (A(w)x + B(w)h(x) + E(w)v) − F (x) ≤ −L(x, h(x)) + σ(‖v‖).

Hence, Assumption 6.3.1-5) is satisfied for all x ∈ Rn, w ∈ W and all v ∈ Rdv ,
and with

σ(‖v‖) , (1 + τ)‖P 1
2 ‖2

2 max
w∈W

‖E(w)‖2
2‖v‖2

2.

The only thing left to prove is that λmin(Q) , a ≤ b , λmax(P ). As shown
above, for all w ∈ W it holds that:

ΘP (w) > 0 ⇒ ΞP (w) > 0 ⇒ P − Q > 0 ⇒ x⊤(P − Q)x ≥ 0,

for all x ∈ Rn. Then, it follows that a‖x‖2
2 ≤ x⊤Qx ≤ x⊤Px ≤ b‖x‖2

2, for
all x ∈ Rn and therefore, a ≤ b.

Once the terminal cost F (·) and the state-feedback control law h(·) have
been calculated by solving the LMI (6.16), Assumption 6.3.1-1,2 is satisfied
by taking XT as the maximal RPI set for the closed-loop system xk+1 =
(A(wk)+B(wk)K)xk +E(wk)vk that is contained in XU. The maximal RPI
set can be computed efficiently using the algorithms of (Blanchini, 1994;
Kolmanovsky and Gilbert, 1998), which are implemented, for example, in
the multi parametric toolbox (MPT) (Kvasnica et al., 2004).

The matrix Q is related to the decrease of the state norm, and hence,
to the transient behavior. If robust stability is the only goal, Q can be
chosen less positive definite to reduce conservativeness of the LMI (6.16).
The number τ > 0 and the matrix P yield the gain of the K-function σ(·),
which is related to the robust performance of the closed-loop system, as
shown in Section 6.3 and Section 6.4. Note that τ can also be defined as an
unknown variable in (6.16), which results in a bilinear matrix inequality (i.e.
due to τP ). However, since the unknown τ is a scalar, this problem can be
solved efficiently via semi-definite programming solvers by setting lower and
upper bounds for τ and doing bisections.
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6.5.3 MPC costs based on 1,∞-norms

In this section we consider the case when 1,∞-norms are used to define the
MPC cost function, i.e. F (x) , ‖Px‖ and L(x, u) , ‖Qx‖ + ‖Ru‖, where
P ∈ Rnp×n, Q ∈ Rnq×n and R ∈ Rmr×m are assumed to be matrices that
have full-column rank and ‖ · ‖ denotes either the 1-norm or the ∞-norm.

For any full-column rank matrix Z ∈ Rnz×n there exist ζ2(Z) ≥ ζ1(Z) >

0 such that

ζ1(Z)‖x‖ ≤ ‖Zx‖ ≤ ζ2(Z)‖x‖, ∀x ∈ Rn.

Then, we have that L(x, u) ≥ ‖Qx‖ ≥ ζ1(Q)‖x‖ for all x ∈ Rn and all
u ∈ Rm and ζ1(P )‖x‖ ≤ F (x) ≤ ζ2(P )‖x‖ for all x ∈ Rn. Hence, Assump-
tion 6.3.1-3,4 is satisfied for a , ζ1(Q) > 0, a1 , ζ1(P ) > 0, b , ζ2(P ) > 0
and λ = 1.

Next, we present norm inequalities based sufficient conditions for As-
sumption 6.3.1-5 to be satisfied. Let Q and R be known full-column rank
matrices and consider the following norm inequalities:

1 − ‖P (A(ws) + B(ws)K)P−L‖ − ‖QP−L‖ − ‖RKP−L‖ ≥ 0 (6.19a)

ζ − ‖P (A(ws) + B(ws)K)‖ − ‖Q‖ − ‖RK‖ ≥ 0, (6.19b)

where P−L = (P⊤P )−1P⊤, ζ > 0 is a fixed number and {ws | s ∈ S =
{1, . . . , S}} are the vertices of W. The unknown variables in (6.19) are the
matrices P and K.

Theorem 6.5.2 Consider the following hypotheses:

(i) There exist a full-column rank matrix P and a feedback gain K that
satisfy inequality (6.19a) for all s ∈ S;

(ii) There exist a matrix P and a feedback gain K that satisfy inequality
(6.19b) for all s ∈ S and ‖Px‖ ≥ ζ‖x‖ for all x ∈ Rn.

Suppose that either hypothesis (i) or hypothesis (ii) holds. Then, the
terminal cost F (x) , ‖Px‖ and the function h(x) , Kx satisfy Assumpti-
on 6.3.1-5 for all x ∈ Rn, w ∈ W and all v ∈ Rdv and with

σ(‖v‖) , τ‖P‖max
w∈W

‖E(w)‖‖v‖

for any τ ≥ 1.

Proof: (i) Using property (6.14a) and the inequality (6.19a) we obtain
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that for all w ∈ W:

1 − ‖P (A(w) + B(w)K)P−L‖ − ‖QP−L‖ − ‖RKP−L‖

= 1 − ‖P
S∑

s=1

λs(A(ws) + B(ws)K)P−L‖ − ‖QP−L‖ − ‖RKP−L‖

≥
S∑

s=1

λs(1 − ‖P (A(ws) + B(ws)K)P−L‖ − ‖QP−L‖ − ‖RKP−L‖) ≥ 0.

(6.20)

Then, by post-multiplying the above inequality with ‖Px‖ and using the
triangle inequality yields:

0 ≤ ‖Px‖ − ‖P (A(w) + B(w)K)P−L‖‖Px‖ − ‖QP−L‖‖Px‖
− ‖RKP−L‖‖Px‖ ≤ ‖Px‖ − ‖P (A(w) + B(w)K)P−LPx‖
− ‖QP−LPx‖ − ‖RKP−LPx‖ ≤ ‖Px‖ − ‖Qx‖ − ‖RKx‖
− ‖P (A(w) + B(w)K)x‖ + (τ − 1)‖PE(w)v‖
≤ ‖Px‖ − ‖P ((A(w) + B(w)K)x + E(w)v)‖ − ‖Qx‖
− ‖RKx‖ + τ‖PE(w)v‖, ∀τ ≥ 1.

Letting h(x) , Kx and σ(‖v‖) , τ‖P‖maxw∈W ‖E(w)‖‖v‖ we obtain

F (A(w)x + B(w)h(x) + E(w)v) − F (x) ≤ −L(x, h(x)) + σ(‖v‖).

Hence, Assumption 6.3.1-5 is satisfied for all x ∈ Rn, w ∈ W and all v ∈ Rdv

and with σ(‖v‖) , τ‖P‖maxw∈W ‖E(w)‖‖v‖ for any τ ≥ 1. Finally, from
the above inequality we obtain:

ζ1(Q)‖x‖ ≤ ‖Qx‖ ≤ ‖Px‖ ≤ ζ2(P )‖x‖, ∀x ∈ Rn,

and therefore, ζ1(Q) , a ≤ b , ζ2(P ).
(ii) The proof is obtained analogously to the proof of part (i), by post-

multiplying the inequality obtained from (6.19b) as in (6.20) with ‖x‖ and
using ‖Px‖ ≥ ζ‖x‖ for all x ∈ Rn.

A solution that satisfies the norm inequalities (6.19) can be obtained by
minimizing the costs

J1(P,K) , max
s∈S

{
‖P (A(ws) + B(ws)K)P−L‖ + ‖QP−L‖ + ‖RKP−L‖

}
,

J2(P,K) , max
s∈S

{‖P (A(ws) + B(ws)K)‖ + ‖Q‖ + ‖RK‖} ,
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if the resulting value functions are less than 1 or ζ, respectively. These
are non-convex nonlinear optimization problems, which can be solved using
black-box optimization solvers, such as fmincon and fminunc of Matlab.
Alternatively one can construct an optimization problem with a zero cost
and impose the nonlinear constraint J1(P,K) ≤ 1. Such a problem can be
solved with the fmincon solver. The nonlinear nature of these optimization
problems is not critical, since they are solved off-line.

Moreover, the optimization problems associated to (6.19a) and (6.19b)
can be simplified if one of the unknowns is fixed using an educated guess.
For example, a locally stabilizing feedback K can be calculated via the LMI
approach of Theorem 6.5.1. Then, fixing K in (6.19b) and solving in P

amounts to searching for a piecewise linear Lyapunov function for a system
which already admits a quadratic Lyapunov function, which is not conser-
vative, e.g. see (Blanchini, 1994). Alternatively, P can be chosen as the
matrix that defines a 0-symmetric polyhedral RPI set for system (6.13) in
closed-loop with h(·), e.g. obtained using MPT. Then, fixing P in (6.19a)
or (6.19b) and solving in K boils down to searching for a different feedback
which renders the polyhedral set induced by F (·) RPI and, moreover, is such
that (6.19a) or (6.19b), respectively, holds.

6.6 Illustrative examples

In this section we present three examples that show how the results developed
in this chapter can be applied to solve robust control problems.

6.6.1 An active suspension system

Consider the problem of robustly regulating to the origin the following active
suspension system (Bemporad et al., 2003b):

xk+1 =




0.809 0.009 0 0
−36.93 0.80 0 0
0.191 −0.009 1 0.01

0 0 0 1


xk +




0.0005
0.0935
−0.005
−0.01


uk +




−0.009
0.191

−0.0006
0


 vk,

(6.21)

k ∈ Z+, where the additive disturbance vk takes values in the set V , {v ∈
R | −0.4 ≤ v ≤ 0.4}, for all k ∈ Z+. The first and the third state are
constrained between −0.02 and 0.02, and −0.05 and 0.05, respectively. The
control input is constrained between −5 and 5.



6.6. Illustrative examples 159

Figure 6.1: 3D section of the terminal constraint set XT .

To ensure robust stability, we employed the LMI approach of Theo-
rem 6.5.1 in order to compute a quadratic forms based terminal cost and a
local state-feedback controller that satisfy Assumption 6.3.1. The following
terminal weight P and feedback K were obtained for the same stage cost
weights used in (Bemporad et al., 2003b), i.e. Q = diag([5000, 0.1, 400, 0.1]),
R = 1.8, and for τ = 100:

P = 104




7.5651 0.0079 0.3702 −0.0156
0.0079 0.0017 0.0001 0.0001
0.3702 0.0001 0.7241 0.0250
−0.0156 0.0001 0.0250 0.0303


 ,

K =
[
20.7682 −0.8657 16.8717 2.1688

]
.

The terminal constraint set XT (a polyhedron with 56 vertices, see Figure 6.1
for a 3D section plot) was calculated as the maximal RPI set inside XU for
system (6.21) in closed-loop with h(x) = Kx using the MPT (Kvasnica et al.,
2004). The evolution in time of the states, additive disturbance input and
min-max MPC control action is plotted in Figure 6.2. The min-max MPC
control action was calculated for N = 6 using the numerical set-up of (Muñoz
de la Peña et al., 2005) to solve the min-max MPC optimization problem.
As it can be observed in Figure 6.2, the closed-loop system is robustly stable
and the state converges to the origin when the additive disturbance vanishes.
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Figure 6.2: States, additive disturbance input and control action histories.

6.6.2 A perturbed double integrator

Consider a discrete-time perturbed double integrator, i.e.

xk+1 = A(wk)xk + B(wk)uk + Evk, k ∈ Z+, (6.22)

which was obtained from a continuous-time double integrator via a sample-
and-hold device with a time-varying sampling period Ts as follows: A(w) =

[ 1 w
0 1 ], B(w) =

[
w2

2
w

]
, E = I2. The uncertainty parameter w ∈ W , [0.6, 1]

represents the sampling period Ts and the additive disturbance takes values
in the set V , {v ∈ R2 | ‖v‖ ≤ 0.1}. Both states are constrained between
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−10 and 10 and the input is constrained between −2 and 2. Note that B(w)
is not an affine function of w (i.e. the first element of B(w) is a quadra-
tic function of w). For simplicity, we only used the four pairs of vertices
[A(1) B(1)], [A(1) B(0.6)], [A(0.6) B(1)] and [A(0.6) B(0.6)] to model the
parametric uncertainty.

An optimization problem based on the inequality (6.19a) was solved using
the Matlab fminunc solver taking into account all the fours pairs of vertices
given above. The following terminal weight P and feedback K were obtained
for Q = 0.2I2 and R = 0.01:

P =

[
2.5335 2.0038
0.2554 3.2492

]
, K =

[
−0.6304 −1.5246

]
. (6.23)

Then, by Theorem 6.5.2 the terminal cost F (x) = ‖Px‖ and local control
law h(x) = Kx satisfy Assumption 6.3.1 for system (6.22). The terminal
constraint set XT (a polyhedron with 10 vertices, see Figure 6.3) was cal-
culated as the maximal RPI set inside XU for system (6.22) in closed-loop
with h(x) = Kx using the MPT (Kvasnica et al., 2004) for the above four
pairs of vertices corresponding to the parametric uncertainty and additive
disturbances in V.

Two simulations were performed. First, the additive disturbance was
set equal to zero at all times and system (6.22) was affected by parametric
uncertainty only. The state trajectory of system (6.22) in closed-loop with
a feedback min-max MPC controller based on an ∞-norms cost with N = 6
is plotted in Figure 6.3. The evolution in time of the sampling period and
of the control input is plotted in Figure 6.4.

In the second simulation Ts = wk = 1 for all k ∈ Z+ and system (6.22)
was affected by additive disturbances only. The state trajectory of system
(6.22) in closed-loop with a feedback min-max MPC controller based on an
∞-norms cost with N = 6 is plotted in Figure 6.5. The evolution in time of
the additive disturbances and of the control input is plotted in Figure 6.6.
In both simulations, a recently developed optimization algorithm(Muñoz de
la Peña et al., 2005) based on Bender’s decomposition was used to calculate
the feedback min-max control input. As guaranteed by the theory presented
in this chapter, the closed-loop system is robustly stable in both cases and,
when the additive disturbance vanishes in the second simulation, the state
converges to the origin.

Note that we have used the same terminal cost matrix P given in (6.23)
and terminal constraint set XT in both simulations. This demonstrates that
the stabilization method developed in this chapter works for linear systems
that are affected by both parametric uncertainties and additive disturbances.
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Figure 6.3: The closed-loop state trajectory for the first simulation.
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Figure 6.4: Sampling period (Ts = w) and control input histories.

6.6.3 A perturbed nonlinear double integrator

Consider a perturbed discrete-time nonlinear double integrator obtained
from a continuous-time double integrator via a sample-and-hold device with
a sampling period equal to one, as follows:

xk+1 = Axk + Buk + f(xk) + vk, k ∈ Z+, (6.24)

where A = [ 1 1
0 1 ], B = [ 0.5

1 ], f : R2 → R2, f(x) , 0.025 [ 1
1 ]x⊤x is a nonlinear

additive term and vk ∈ V , {v ∈ R2 | ‖v‖ ≤ 0.03} for all k ∈ Z+ is
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Figure 6.5: The closed-loop state trajectory for the second simulation.
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Figure 6.6: Additive disturbances (v = [v1v2]
⊤) and control input histories.

an additive disturbance input (we use ‖ · ‖ to denote the infinity norm for
shortness). The state and the input are constrained at all times in the C-sets

X , {x ∈ R2 | ‖x‖ ≤ 10} and U , {u ∈ R | |u| ≤ 2}.

The MPC cost function is defined using ∞-norms, i.e.

F (x) , ‖Px‖, L(x, u) , ‖Qx‖ + ‖Rx‖,



164 Input-to-state stabilizing min-max predictive controllers

where P is a full-column rank matrix (to be determined), Q = 0.8I2 and
R = 0.1. Note that the stage cost L(·, ·) satisfies Assumption 6.3.1-3 for
λ = 1 and any a ∈ (0, 0.8).

We take the function h(·) as h(x) , Kx, where K ∈ R1×2 is the gain
matrix. To compute the terminal cost matrix P and the gain matrix K such
that Assumption 6.3.1-5 holds, we first obtain a solution for the following
linearization of system (6.24):

xk+1 = Axk + Buk + vk, k ∈ Z+, (6.25)

which is obtained from (6.24) by removing the nonlinear term f(·). To
accommodate for the nonlinear term f(·), we employ a “larger” stage cost
weight matrix for the state, i.e. Q̃ = 2.4I2, instead of Q = 0.8I2, for which
it holds that ‖Q̃x‖ ≥ ‖Qx‖ for all x ∈ R2. The terminal cost F (x) = ‖Px‖
and local control law h(x) = Kx with the matrices

P =

[
12.1274 7.0267
0.4769 11.6072

]
, K =

[
−0.5885 −1.4169

]
, (6.26)

were computed (using a technique based on inequality (6.19a), as described
in Section 6.5) such that the following inequality holds for the linear system
(6.25), i.e.

‖P ((A + BK)x + v)‖ − ‖Px‖ ≤ −‖Q̃x‖ − ‖RKx‖ + σ1(‖v‖), (6.27)

for all x ∈ R2 and all v ∈ R2, where σ1(s) , ‖P‖s.
The terminal cost F (x) , ‖Px‖ satisfies Assumption 6.3.1-4 for λ = 1,

b , ‖P‖ = 19.1541, a1 = 0.1 and e1 = 0. The safe set is the following (see
Figure 6.7 for a plot of XU):

XU , {x ∈ X | ‖x‖ ≤ 1.72, |Kx| ≤ 2}.

The terminal set XT , also plotted in Figure 6.7, is taken as the maximal RPI
set contained in the set XU (and which is non-empty) for the linear system
(6.18), in closed-loop with uk = h(xk), k ∈ Z+, and disturbances in the set
{v ∈ R2 | ‖v‖ ≤ 0.18}. One can easily check that maxx∈XT

‖f(x)‖ < 0.15
and thus, it follows that the terminal set XT chosen as specified above is
a RPI set for the nonlinear system (6.24) in closed-loop with uk = h(xk),
k ∈ Z+, and all disturbances v in V = {v ∈ R2 | ‖v‖ ≤ 0.03}.

Using the fact that (in the second equality below, ‖·‖ denotes the induced
infinity matrix norm)

‖Q̃x‖ ≥ 2.3515‖x‖, ∀x ∈ R2, max
x∈XT

‖P0.025 [ 1
1 ] x⊤‖ = 1.5515,
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inequality (6.27) and the triangle inequality, for all x ∈ XT and all v ∈ R2

we obtain:

‖P ((A + BK)x + v) + Pf(x)‖ − ‖Px‖
≤ ‖P ((A + BK)x + v)‖ − ‖Px‖ + ‖Pf(x)‖
≤ −‖Q̃x‖ − ‖RKx‖ + σ1(‖v‖) + ‖Pf(x)‖
≤ −2.3515‖x‖ − ‖RKx‖ + σ1(‖v‖) + max

x∈XT

(
‖P0.025 [ 1

1 ]x⊤‖
)
‖x‖

≤ −2.3515‖x‖ − ‖RKx‖ + σ1(‖v‖) + 1.5515‖x‖
= −0.8‖x‖ − ‖RKx‖ + σ1(‖v‖)
= −‖Q‖‖x‖ − ‖RKx‖ + σ1(‖v‖)
≤ −‖Qx‖ − ‖RKx‖ + σ1(‖v‖)
= −L(x,Kx) + σ1(‖v‖).

Hence, the terminal cost F (x) = ‖Px‖ and the control law h(x) = Kx, with
the matrices P and K given in (6.26), satisfy Assumption 6.3.1-5) for the
nonlinear system (6.24) with e2 = 0 and with σ1(s) = ‖P‖s.

Consider now the set Mτ , which needs to be determined to establish ISS
of the nonlinear system (6.24) in closed-loop with the dual-mode min-max
MPC control law (6.4) that robustly optimizes the calculated MPC cost
function. We can choose the constant a = 0.79 < 0.8, which ensures that
‖Qx‖ ≥ a‖x‖ for all x ∈ R2, and since d2 = maxv∈V σ1(‖v‖) = 0.5746, it
follows that a necessary condition to be satisfied is τ ∈ (0, 0.79) (with the
smallest set Mτ obtained for limτ→0

d2
a−τ

= 0.7273). For τ = 0.0718, which

yields d2
a−τ

= 0.8001, it holds that Mτ ⊂ XT , see Figure 6.7 for an illustrative
plot. Therefore, the closed-loop system (6.24)-(6.4) is ISS for x0 ∈ Xf (N)
and disturbances in V, as guaranteed by Theorem 6.4.3.

Unfortunately, the feedback min-max MPC optimization problem was
computationally untractable for the nonlinear model (6.24). Because of this,
we have used an open-loop min-max MPC problem set-up, as the one de-
scribed in Section 6.2, to calculate the control input.

Note that, as remarked in the beginning of Section 6.2, it can be pro-
ven that the hypothesis of Theorem 6.4.3 is also sufficient for ISS when an
open-loop min-max MPC controller is employed in the dual-mode set-up of
Section 6.4 instead of the feedback min-max MPC controller ū(·).

Although the resulting open-loop min-max optimization problem still
has a very high computational burden, we could obtain a solution using the
fmincon Matlab solver. The closed-loop state trajectory for initial state x0 =
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Figure 6.7: State trajectory for the nonlinear system (6.24) in closed-loop
with a dual-mode min-max MPC controller and an estimate of the feasible
set Xf (4).

[−7 − 4]⊤ and prediction horizon N = 4 is plotted in Figure 6.7. The dual-
mode min-max MPC control input and (randomly generated) disturbance
input histories are plotted in Figure 6.8.

6.7 Conclusions

In this chapter we have revisited the robust stability problem of min-max
nonlinear model predictive control. The input-to-state practical stability fra-
mework has been employed to study stability of perturbed nonlinear systems
in closed-loop with min-max MPC controllers. A priori sufficient conditions
for ISpS were presented and explicit bounds on the evolution of the closed-
loop system state were derived. Moreover, it was proven that these conditi-
ons also ensure ultimate boundedness. Then, new sufficient conditions under
which ISS can be achieved in min-max nonlinear MPC were derived via a
dual-mode approach. This result is important because it unifies the proper-
ties of (Limon et al., 2006) and (Mayne, 2001), i.e. it guarantees both ISpS
in the presence of persistent disturbances and robust asymptotic stability in
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Figure 6.8: Dual-mode min-max nonlinear MPC control input and distur-
bance input histories.

the presence of decaying uncertainties.
New techniques for computing the terminal cost and a local state-feedback

controller such that the developed input-to-state stabilization conditions are
satisfied were developed for min-max MPC controllers based on both quadra-
tic and 1,∞-norms costs. These techniques employ linear matrix inequalities
(which can be solved efficiently) in the case of quadratic MPC cost functions
and norm inequalities in the case of MPC cost functions based on 1,∞-
norms. The effectiveness of the developed methods was illustrated by means
of simulated examples.

Future work is concerned with the extension of the techniques developed
for computing the terminal cost to the class of perturbed PWA systems, as
well as with the design of computationally efficient feedback min-max MPC
problem set-ups.
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Robust sub-optimal model predictive

controllers

7.1 Introduction
7.2 Sub-optimal MPC

algorithms for fast
nonlinear systems

7.3 Application to PWA systems
7.4 Application to the

control of DC-DC converters
7.5 Concluding remarks

This chapter focuses on the synthesis of computationally friendly robust
stabilizing sub-optimal model predictive control (MPC) algorithms for per-
turbed nonlinear and hybrid systems. This goal is achieved via new, simpler
stabilizing constraints, that can be implemented as a finite number of linear
inequalities. A case study on the control of DC-DC converters that contains
preliminary real-time computational estimates is included to illustrate the
potential of the developed theory for practical applications.

7.1 Introduction

One of the most studied properties of model predictive control (MPC) is the
stability of the controlled system. Perhaps the most embraced stabilization
method is the so-called terminal cost and constraint set approach, e.g. see
the survey (Mayne et al., 2000) for an overview. This method, already uti-
lized in Chapter 3 and Chapter 5, uses the value function of the MPC cost
as a candidate Lyapunov function for the closed-loop system and achieves
stability via a particular terminal cost and an additional constraint on the
terminal state, i.e. the predicted state at the end of the prediction horizon.
Its advantage consists in the fact that initial feasibility of the MPC optimi-
zation problem implies feasibility all the way and the finite horizon MPC
cost is proven to be a good approximation of the infinite horizon MPC cost.
However, these properties are only guaranteed under the standing assump-
tion that the global optimum of the MPC optimization problem is attained
on-line, at each sampling instant. Clearly, when dealing with nonlinear or
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hybrid prediction models and hard constraints, it is difficult if not impossi-
ble to guarantee this assumption in practice, where numerical solvers usually
provide (in the limited computational time available) a feasible, sub-optimal
input sequence, rather than a globally optimal one. Such a sub-optimal input
sequence needs to have certain properties to still guarantee (robust) stability
of the MPC closed-loop system. Therefore, in practice, there is a need for
sub-optimal MPC algorithms based on simpler optimization problems, which
can be solved faster, and that still have an a priori stability guarantee.

An important result regarding sub-optimal MPC of nonlinear systems
was presented in (Scokaert et al., 1999), where it is shown that feasibility
of the MPC optimization problem rather than optimality is sufficient for
stability. In (Scokaert et al., 1999), stability is achieved without optimality,
by forcing the MPC value function to decrease at each sampling-instant. This
requirement can be expressed in terms of an additional, so called stabilizing
constraint. However, if nonlinear prediction models are used, this constraint
becomes highly nonlinear and difficult to implement from a computational
point of view, as the MPC value function depends on the whole sequence of
unknown predicted future inputs. Feasibility is guaranteed for the nominal
case in (Scokaert et al., 1999) by adding a terminal equality or inequality
constraint.

This chapter investigates the possibility of designing input-to-state sta-
bilizing (ISS) (Jiang and Wang, 2001), but computationally friendly sub-
optimal MPC algorithms for nonlinear and hybrid systems. We propose to
achieve this goal via new, simpler stabilizing constraints, that can be imple-
mented as a finite number of linear inequalities and whose complexity does
not depend on the length of the prediction horizon. Two sub-optimal nonli-
near MPC algorithms are presented. The first one is based on a contraction
argument, i.e. it is proven that, if the norm of the state of the closed-loop
system is sufficiently decreasing at each sampling instant, then input-to-state
stability is guaranteed. The second MPC scheme resorts to an ∞-norm ba-
sed artificial Lyapunov function, which only depends on the measured state
and the first element of the sub-optimal sequence of predicted future inputs.
Both these schemes have an input-to-state stability guarantee with respect
to additive disturbance inputs. For the class of PWA systems, it is shown
how the sub-optimal MPC scheme based on an artificial Lyapunov function
can be modified to ensure input-to-state stability with respect to measure-
ment noise. This modified scheme is particularly relevant because it can be
used in interconnection with an asymptotically stable observer, resulting (if
cascade conditions are satisfied) in an asymptotically stable closed-loop sys-
tem. Methods for computing ∞-norms artificial Lyapunov functions off-line
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for linear or PWA models are also indicated. A case study on the control
of DC-DC converters is included to illustrate the potential of the developed
theory for practical applications.

Remark 7.1.1 Compared to (Scokaert et al., 1999), we do not guarantee
that initial feasibility implies feasibility all the way for the proposed algo-
rithms. However, note that we consider perturbed systems. In this case,
feasibility all the way is also not guaranteed for the algorithms of (Scokaert
et al., 1999). From a computational point of view, we obtain faster MPC
algorithms, as our stabilizing constraints can be written as a finite number
of linear inequalities. Moreover, we also provide an ISS guarantee, which
ensures an explicit bound on the norm of the MPC closed-loop system state,
via the results presented in Chapter 2.

7.2 Sub-optimal MPC algorithms for fast nonlinear

systems

We consider nominal and perturbed discrete-time nonlinear systems of the
form:

xk+1 = f(xk) + g(xk)uk, k ∈ Z+, (7.1a)

x̃k+1 = f(x̃k) + g(x̃k)uk + wk, k ∈ Z+, (7.1b)

where xk, x̃k ∈ Rn, uk ∈ Rm and wk ∈ W ⊂ Rn are the state, the input and
the additive disturbance, respectively, and f : Rn → Rn, g : Rn → Rn×m

are nonlinear, possibly discontinuous functions with f(0) = 0. In the sequel
we will consider the case when sub-optimal MPC is used to generate the
control input in (7.1). We assume that the state and the input vectors are
constrained for both systems (7.1a) and (7.1b), in a compact subset X of
Rn and a compact subset U of Rm, respectively, which contain the origin in
their interior. For a fixed N ∈ Z≥1, let xk(xk,uk) , (x1|k, . . . , xN |k) denote
the state sequence generated by the nominal system (7.1a) from initial state
x0|k , xk and by applying an input sequence uk , (u0|k, . . . , uN−1|k). Let
F : Rn → R+ with F (0) = 0 and L : Rn × Rm → R+ with L(0, 0) = 0 be
mappings. At time k ∈ Z+ let xk ∈ X be available. The basic MPC scenario
consists in minimizing at each sampling instant k ∈ Z+ a finite horizon cost
function of the form

J(xk,uk) , F (xN |k) +
N−1∑

i=0

L(xi|k, ui|k), (7.2)
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with prediction model (7.1a), over all input sequences uk, subject to the
state and input constraints.

Let Xf (N) ⊆ X denote the set of feasible states with respect to the
above optimization problem, i.e. the set of all states for which there exists
a sequence of inputs that satisfies the input constraints and results in a
predicted state trajectory that satisfies the state constraints. Then,

VMPC : Xf (N) → R+, VMPC(xk) , inf
uk∈UN (xk)

J(xk,uk)

is the MPC value function corresponding to the cost (7.2). If there exists
an optimal sequence of controls u

∗
k , (u∗

0|k, u
∗
1|k, . . . , u

∗
N−1|k) that minimizes

(7.2), the infimum above is a minimum and VMPC(xk) = J(xk,u
∗
k). Then, an

optimal MPC control law is defined as uMPC(xk) , u∗
0|k, k ∈ Z+. Stability

of the resulting MPC closed-loop system is usually guaranteed by adding a
particular constraint on the terminal state xN |k, e.g. see Chapter 3 or the
survey (Mayne et al., 2000).

As mentioned in the introduction, in practice, the available solvers pro-
vide only a feasible, sub-optimal sequence of inputs, i.e.

ūk , (ū0|k, ū1|k, . . . , ūN−1|k),

and the control applied to the plant, i.e. ū0|k, is a sub-optimal MPC control.

The resulting value function is then V (xk) , J(xk, ūk). The stability of
the resulting sub-optimal MPC closed-loop system may be unclear, and can
be lost. Next, we present sub-optimal MPC algorithms that still guarantee
stability a priori for the controlled system.

7.2.1 A contraction approach

In this section we consider ∞-norm based MPC costs, i.e. F (x) , ‖Px‖ and
L(x, u) , ‖Qx‖+ ‖Ruu‖, where ‖ · ‖ denotes the ∞-norm for shortness and
P ∈ Rp×n, Q ∈ Rq×n and Ru ∈ Rru×m are assumed to be known matrices
that have full-column rank. To set-up the sub-optimal MPC algorithm we
assume1 that a sector growth condition holds for the dynamics f(·), g(·) in
the sense that there exist constants Lf ,Lg > 0 such that

‖f(x) + g(x)u‖ ≤ Lf‖x‖ + Lg‖u‖, ∀x ∈ X,∀u ∈ U. (7.3)

1Note that the continuity assumption is only required for the contraction based sub-
optimal MPC algorithm presented in this section, and it is not necessary for the other
sub-optimal MPC algorithms.
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We also assume that all the controls in the sequence of predicted future
inputs satisfy the regularity condition

‖ui|k‖ ≤ θi‖x0|k‖, i = 0, . . . , N − 1, (7.4)

for some constants θi > 0. Since the control laws ui|k are not known expli-
citly, in order to ensure that (7.4) holds we will choose the constants θi a
priori and impose (7.4) as an additional constraint to the MPC optimization
problem. Note that the above assumptions are usually employed in smooth
nonlinear MPC to guarantee robust stability, e.g. see (Scokaert et al., 1997).
Then, using (7.3) and (7.4) successively, one can easily establish a class K
upper bound on J(x,u) for any x ∈ X and feasible u, i.e.

J(x,u) ≤ α2(‖x‖) with α2(s) , C(Lf ,Lg, θ,N)s,

where C(Lf ,Lg, θ,N) > 0 is a constant that depends on Lf , Lg, θ ,

(θi, . . . , θn) and N (e.g., see (Scokaert et al., 1997) for details). Since Q

has full-column rank, there exists a ξQ > 0 such that ‖Qx‖ > ξQ‖x‖ for all
x ∈ X. Then, it holds that J(x,u) ≥ α1(‖x‖) for all x ∈ X and any u, where
α1(s) , ξQs. Let τ ∈ (0, 1) be a known constant.

Algorithm 7.2.1

1. At time k ∈ Z+ measure the state xk, let x0|k , xk and find a control
sequence uk = (u0|k, . . . , uN−1|k) that satisfies:

xi+1|k = f(xi|k) + g(xi|k)ui|k, i = 0, . . . , N − 1, (7.5a)

α2(2‖f(x0|k) + g(x0|k)u0|k‖) − (1 − τ)α1(‖x0|k‖) ≤ 0, (7.5b)

xi|k ∈ X, i = 1, . . . , N, (7.5c)

ui|k ∈ U, i = 0, . . . , N − 1, (7.5d)

‖ui|k‖ ≤ θi‖x0|k‖, i = 0, . . . , N − 1. (7.5e)

2. Let ūk be a feasible sequence of inputs calculated at Step 1. Apply to
the perturbed system (7.1b) the control input ūMPC(xk) , ū0|k.

Theorem 7.2.2 Let Xf (N) be the set of states x ∈ X for which the opti-

mization problem in Step 1 of Algorithm 7.2.1 is feasible and let X̃f (N) ⊆
Xf (N) be a RPI set for system (7.1b) in closed-loop with the sub-optimal

MPC control ūMPC(·) with 0 ∈ int(X̃f (N)).
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Then, the perturbed system (7.1b) in closed-loop with the sub-optimal
MPC control ūMPC(·) is ISS for initial conditions in X̃f (N) and disturbances
in W.

Proof: The proof consists in showing that V (xk) , J(xk, ūk) is an
ISS Lyapunov function. Let C denote C(Lf ,Lg, θ,N) for shortness. By
construction and from constraint (7.5e) we have that V (·) satisfies (2.4a) for
all x ∈ X̃f (N) with α1(‖x‖) = ξQ‖x‖ and α2(‖x‖) = C‖x‖. Moreover, from
constraint (7.5b) we have that for all x ∈ X̃f (N) and any feasible ū (recall
that ‖ · ‖ denotes the ∞-norm):

V (f(x) + g(x)ūMPC(x) + w) − V (x)

≤ α2(‖f(x) + g(x)ūMPC(x) + w‖) − α1(‖x‖)
≤ α2(‖f(x) + g(x)ūMPC(x)‖ + ‖w‖) − α1(‖x‖)
≤ α2(‖f(x) + g(x)ūMPC(x)‖) + α2(‖w‖) − α1(‖x‖)
≤ −α3(‖x‖) + σ(‖w‖),

where α3(s) , τα1(s) = τξQs and σ(s) , α2(s) = Cs. The statement then
follows from Theorem 2.3.5.

In Step 1 of Algorithm 7.2.1, one has to search for a feasible sequence
of inputs, which is sufficient for guaranteeing ISS of the closed-loop system.
However, as in practice it is also important to achieve robust performance,
one can still minimize the cost (7.2), while searching for a feasible sequence
of inputs. ISS of the closed-loop system is still guaranteed in this case, even
if the global optimum is not attained.

The drawback of the sub-optimal MPC Algorithm 7.2.1 is that the gain
of α2(·), i.e. C(Lf ,Lg, θ,N), is a strictly increasing function of N , which
implies that for long prediction horizons, the contractive constraint (7.5b)
may become very conservative. Moreover, the constant C(Lf ,Lg, θ,N) also
depends on the ∞-norms of P , Q and Ru. Hence, one cannot freely choose
the MPC cost weights, e.g. following performance motivations, since a large
∞-norm implies a large gain of the K-function γ(·), which in turn yields a
large ISS gain for the closed-loop system, via σ(·), α1(·) and the relation
(2.5) established in chapter two.

7.2.2 An artificial Lyapunov function approach

In practice it would be desirable that the design of the MPC cost, i.e.
choosing the parameters F (·), L(·, ·) and N , is separated from guarantee-
ing stability, so that the MPC cost can be tuned for best performance. A
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possible solution to achieve this goal is to resort to an artificial Lyapunov
function, which is designed independently of the MPC cost function.

In this section, an ∞-norms artificial Lyapunov function is employed
to derive an ISS sub-optimal MPC algorithm. Consider the candidate ISS
Lyapunov function

V (x) , ‖PV x‖,
where PV ∈ Rpv×n is a full-column rank matrix. Let QV ∈ Rqv×n denote
a known matrix with full-column rank. The sub-optimal MPC algorithm is
now formulated as follows.

Algorithm 7.2.3

1. At time k ∈ Z+ measure the state xk, let x0|k , xk and find a control
sequence uk = (u0|k, . . . , uN−1|k) (alternatively, also minimize the cost
(7.2)) that satisfies:

xi+1|k = f(xi|k) + g(xi|k)ui|k, i = 0, . . . , N − 1, (7.6a)

‖PV (f(x0|k) + g(x0|k)u0|k)‖ − ‖PV x0|k‖ ≤ −‖QV x0|k‖, (7.6b)

xi|k ∈ X, i = 1, . . . , N, (7.6c)

ui|k ∈ U, i = 0, . . . , N − 1. (7.6d)

2. Let ūk be a feasible sequence of inputs calculated at Step 1. Apply to
the perturbed system (7.1b) the control input ūMPC(xk) , ū0|k.

Theorem 7.2.4 Let Xf (N) be the set of states x ∈ X for which the opti-

mization problem in Step 1 of Algorithm 7.2.3 is feasible and let X̃f (N) ⊆
Xf (N) be a RPI set for system (7.1b) in closed-loop with the sub-optimal

MPC control ūMPC(·) with 0 ∈ int(X̃f (N)).

Then, the perturbed system (7.1b) in closed-loop with the sub-optimal
MPC control ūMPC(·) is ISS for initial conditions in X̃f (N) and disturbances
in W.

Proof: The proof consists in showing that V (xk) = ‖PV xk‖ is an ISS
Lyapunov function for system (7.1b) in closed-loop with ūMPC(·). Since PV

has full-column rank, there exist c2 ≥ c1 > 0 such that c1‖x‖ ≤ ‖PV x‖ ≤
c2‖x‖ for all x. Hence, V (·) satisfies condition (2.4a) for α1(‖x‖) , c1‖x‖
and α2(‖x‖) , c2‖x‖. Next, we show that V (·) satisfies condition (2.4b).
The hypothesis of the theorem implies that X̃f (N) is a RPI set for system
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(7.1b) in closed-loop with ūMPC(·) and disturbances in W. Moreover, from
constraint (7.6b) and using the triangle inequality, we have that for all x ∈
X̃f (N) and any feasible ū:

V (f(x) + g(x)ūMPC(x) + w) − V (x)

= ‖PV (f(x) + g(x)ūMPC(x) + w)‖ − ‖PV x‖
≤ ‖PV (f(x) + g(x)ūMPC(x))‖ + ‖PV w‖ − ‖PV x‖
≤ −‖QV x‖ + ‖PV w‖ ≤ −α3(‖x‖) + σ(‖w‖),

where α3(s) , ξQV
s (ξQV

is such that ‖QV x‖ ≥ ξQV
‖x‖ for all x) and

σ(s) , c2s. The statement then follows from Theorem 2.3.5.
Next, we present a method for computing the ∞-norm based artificial

Lyapunov function V (·) off-line. Let

xk+1 = Axk + Buk, k ∈ Z+, (7.7)

where A ∈ Rn×n, B ∈ Rn×m, be a linear approximation of (7.1a) about
(0, 0). We assume that there exists a neighborhood N ⊂ X of the origin
where Ax+Bu ≈ f(x)+ g(x)u for all x ∈ N and all u ∈ U. For a given full-
column rank matrix QV , in order to compute the matrix PV , we consider a
linear state-feedback uk = Kxk, K ∈ Rm×n, k ∈ Z+, and we make use of the
following result, which yields an ISS Lyapunov function for the closed-loop
system xk+1 = (A + BK)xk + wk, wk ∈ W for all k ∈ Z+.

Lemma 7.2.5 Suppose that a full-column rank matrix PV and a gain K

satisfy
1 − ‖PV (A + BK)P−L

V ‖ − ‖QV P−L
V ‖ ≥ 0, (7.8)

where P−L
V , (P⊤

V PV )−1P⊤
V is a left Moore-Penrose inverse of PV . Then, it

holds that ‖PV (A + BK)x‖ − ‖PV x‖ ≤ −‖QV x‖ for all x and, the functi-
on V (x) = ‖PV x‖ is an ISS Lyapunov function for the closed-loop system
xk+1 = (A + BK)xk + wk.

The proof of Lemma 7.2.5 is a particular case of the proof of the more general
result presented in Section 6.5.3. We also refer the reader to Section 6.5.3
for ways to find a solution to inequality (7.8).

Note that, due to the use of an artificial Lyapunov function, the weights
of the MPC cost function and the length of the prediction horizon can now
be freely chosen in order to achieve physical performance requirements, in
case one also minimizes the cost (7.2) in Step 1 of Algorithm 7.2.3. The value
function of the MPC cost is no longer used as an ISS Lyapunov function and
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the norms of P , Q and Ru no longer influence the gain of the K-function
γ(·), which represents the ISS gain of the closed-loop system.

Remark 7.2.6 The hypothesis of Theorem 7.2.2 (Theorem 7.2.4) assumes
robust feasibility of the optimization problem that has to be solved in Step 1
of Algorithm 7.2.1 (Algorithm 7.2.3), which cannot be guaranteed a priori
in general. In practice, the constraint x1|k ∈ X ∼ W is usually added to
the optimization problem to ensure that the closed-loop system state, i.e.
x̃k+1 = x1|k + wk, k ∈ Z+, does not violate the state constraints at time
k + 1 for any disturbance in W.

Remark 7.2.7 When the sets X, U (and W) are polyhedral, which is often
the case in practice, the constraints (7.5b)-(7.5e), as well as the constraints
(7.6b)-(7.6d), can be written as a finite number of linear inequalities since
the measured state x0|k is known and ‖ · ‖ denotes the ∞-norm. Moreover,
since the nonlinear system (7.1) is affine with respect to the input, for N = 1,
the optimization problem that has to be solved at Step 1 of Algorithm 7.2.1
or Algorithm 7.2.3 can be formulated as a single linear program.

7.3 Application to PWA systems

In this section we consider discrete-time piecewise affine systems affected by
measurement noise, i.e.

xk+1 = Ajxk + Bju(x̂k) + fj when xk ∈ Ωj , j ∈ S, k ∈ Z+, (7.9)

where xk ∈ X ⊆ Rn is the state, uk ∈ U ⊆ Rm is the control input, x̂k ,

xk + ek is the measured state and ek ∈ E ⊂ Rn represents an unknown
bounded measurement noise.

The sets X, U and E are assumed to be polyhedral C-sets. Here, Aj ∈
Rn×n, Bj ∈ Rn×m, fj ∈ Rn, Kj ∈ Rm×n, j ∈ S with S , {1, 2, . . . , s}
a finite set of indices and s denotes the number of discrete modes. The
collection {Ωj | j ∈ S} defines a partition of X, meaning that ∪j∈SΩj = X

and int(Ωi) ∩ int(Ωj) = ∅ for i 6= j. Each Ωj is assumed to be a polyhedron
(not necessarily closed). Let S0 , {j ∈ S | 0 ∈ cl(Ωj)} and let S1 , {j ∈ S |
0 6∈ cl(Ωj)}, so that S = S0∪S1. We assume that the origin is an equilibrium
state for (7.9) with u = 0 and we require that fj = 0 for all j ∈ S0. This
includes PWA systems that are discontinuous.

Inherent robustness to measurement noise is usually guaranteed in the
case of (Lipschitz) continuous system dynamics, or even stronger, continuous
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control laws and candidate Lyapunov functions. See, for example, (Magni
et al., 1998) and the more recent article (Messina et al., 2005), where only
continuity of the control system (but not necessarily of the feedback law) is
assumed. However, in the case of PWA systems, when the system dynamics
may be discontinuous, the problem of guaranteeing robustness to measure-
ment noise is much more difficult. The goal is to develop a sub-optimal
MPC scheme for (discontinuous) PWA systems that is robust to measure-
ment noise. This is achieved in the present section via an artificial Lyapunov
function approach, similar to the one used in the previous section to deal
with additive disturbances.

Note that if the robust MPC algorithms presented in Chapter 5, where
additive disturbances were considered, are used to generate the control input
u(x̂k), then the measurement noise input affects the PWA system (7.9) in the
same way as an additive disturbance input, due to the fact that the MPC
control input is a PWA state feedback in this case. Hence, if the initial
state is known, i.e. e0 = 0 and thus x̂0 = x0. Then, the MPC schemes
developed in chapter five are ISS with respect to measurement noise inputs.
This is because the tightened set of admissible input sequences ensures that
the effect of the measurement noise will not change the mode of the PWA
system (i.e. the region Ωj where the real state xk lies). More precisely, the
state will still be measured wrong, but the mode will be measured right, i.e.
(x̂k, xk) ∈ Ωj × Ωj , j ∈ S. Then, the effect of measurement noise is just
an additive disturbance and the results developed in Chapter 5 hold mutatis
mutandis.

However, in practice it is often the case that the initial state and/or
mode are not known, e.g. when an observer is used to estimate the state.
Therefore, we develop in the sequel a sub-optimal MPC algorithm that is
ISS with respect to measurement noise, without assuming that the initial
state or mode is known.

To do so, we consider an ∞-norm based artificial Lyapunov function of
the form:

V (x) , ‖P V
j x‖ if x ∈ Ωj , j ∈ S.

Such a function can be calculated for the PWA system (7.9) in closed-loop
with a state-feedback uk , Kjxk when xk ∈ Ωj using the techniques presen-
ted in Section 3.4.2.

Next, let the terminal cost and the stage cost be defined using ∞-norms,
i.e. F (x) , ‖Pjx‖ when x ∈ Ωj and L(x, u) = ‖Qx‖ + ‖Ru‖, where the
full-column rank matrices {Pj | j ∈ S}, Q and R can now be freely chosen
to ensure performance.
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Algorithm 7.3.1

1. At time k ∈ Z+ obtain the measured state x̂k, let x0|k , x̂k and

compute the set Be(x̂k) , x̂k ⊕ E. If Be(x̂k) ∩ Ωj 6= ∅ for j ∈ S, then
add the index j to a set of indices S1k

.

2. Solve the LP problems

min
j∈S1k

,x∈Be(x̂k)∩Ωj

‖P V
j x‖ and max

x∈Be(x̂k)∩Ωj

‖Qx‖,

and let

(P V
j∗
k
, x∗

1k
) , arg min

j∈S1k
,x∈Be(x̂k)∩Ωj

‖P V
j x‖, x∗

2k
, arg max

x∈Be(x̂k)
‖Qx‖.

3. For all j ∈ S1k
perform the following operations: (i) Compute the

one-step reachable set

Xj , {y ∈ X | y = Ajx + Bju + fj ;x ∈ Be(x̂) ∩ Ωj , u ∈ U};

(ii) If Xj ∩ Ωi 6= ∅ for i ∈ S, then add the index i to a set of indices
Sj

2k
.

4. Find a control sequence uk = (u0|k, . . . , uN−1|k) (alternatively, also
minimize the cost (7.2)) that satisfies:

xi+1|k , Ajxi|k + Bjui|k + fj when xi|k ∈ Ωj ,

i = 0, . . . , N − 1, (7.10a)

max
i∈Sj

2k

(
‖P V

i ‖
)
‖Ajx0|k + Bju0|k + fj‖ − ‖P V

j∗
k
x∗

1k
‖ ≤ −‖Qx∗

2k
‖,

for all j ∈ S1k
, (7.10b)

xi|k ∈ X, i = 1, . . . , N, (7.10c)

ui|k ∈ U, i = 0, . . . , N − 1. (7.10d)

5. Let ūk be a feasible sequence of inputs calculated at Step 4. Apply to
the perturbed PWA system (7.9) the sub-optimal MPC control input
ūMPC(x̂k) , ū0|k.
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Theorem 7.3.2 Let Xf (N) be the set of states x ∈ X for which the opti-

mization problem in Step 4 of Algorithm 7.3.1 is feasible and let X̃f (N) ⊆
Xf (N) be a RPI set for the PWA system (7.9) in closed-loop with the sub-

optimal MPC control ūMPC(·) for all e ∈ E, with 0 ∈ int(X̃f (N)).
Then, the PWA system (7.9) in closed-loop with ūMPC(·) and affected

by measurement noise is ISS for states in X̃f (N) and measurement noise in
E.

Proof: The proof consists in showing that the “artificial” local Lyapunov
function V (x) , ‖P V

j x‖ when x ∈ Ωj , j ∈ S, is an ISS Lyapunov function for
the MPC closed-loop system. It is straightforward to show that α1(‖x‖) ≤
V (x) ≤ α2(‖x‖) for all x ∈ X̃f (N), where α1(‖x‖) , τ‖x‖ for some τ > 0

and α2(‖x‖) , maxj∈S ‖P V
j ‖‖x‖. Next, for all k ∈ Z+, x̂k ∈ X̃f (N) and

xk ∈ Be(x̂k) we have that:

V (xk+1) − V (xk) = V (Ajxk + Bj ū
MPC(x̂k) + fj) − V (xk)

= ‖P V
i (Ajxk + Bj ū

MPC(x̂k) + fj)‖ − ‖P V
j xk‖

when (xk, xk+1) ∈ Ωj × Ωi

≤ max
i∈Sj

2k

(
‖P V

i ‖
)
‖Aj(x̂k − ek) + Bj ū

MPC(x̂k) + fj‖ − ‖P V
j∗
k
x∗

1k
‖

≤ max
i∈Sj

2k

(
‖P V

i ‖
)
‖Aj x̂k + Bj ū

MPC(x̂k) + fj‖ − ‖P V
j∗
k
x∗

1k
‖

+ max
i∈Sj

2k

(
‖P V

i ‖
)
max
j∈S

(‖Aj‖) ‖ek‖

≤ −‖Qx∗
2k
‖ + max

i∈Sj
2k

(
‖P V

i ‖
)
max
j∈S

(‖Aj‖) ‖ek‖

≤ −‖Qxk‖ + max
i∈Sj

2k

(
‖P V

i ‖
)
max
j∈S

(‖Aj‖) ‖ek‖

≤ −α3(‖xk‖) + σ(‖ek‖),

with
σ(s) , max

i∈Sj
2k

(
‖P V

i ‖
)
max
j∈S

(‖Aj‖) s, α3(s) , γs.

Hence, V (·) is an ISS Lyapunov function for the closed-loop MPC system.
Then the statement follows from Theorem 2.3.5.

As done in the previous subsection on sub-optimal MPC we rely on the
fact that (robust) feasibility implies (input-to-state) stability. Also, the pre-
diction horizon and the MPC cost no longer play a role in proving stability
and their only purpose is to improve performance.
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Figure 7.1: A schematic view of a Buck-Boost converter.

Note that the ISS constraint (7.10b) can be written as a finite number
of linear inequality constraints in u0|k. Hence, the optimization problem
that has to be solved at Step 4 of the above algorithm is a mixed integer
linear programming (MILP) problem for N ∈ Z>1 and a LP problem for
N = 1. In addition to solving this MILP problem, at most (2 card(S) + 1)
LP problems must be solved in Step 2 and card(S)(card(S)+1) intersections
of polyhedra must be computed in Step 1 and Step 3. However, the worst case
is equivalent to using a common artificial Lyapunov function weight matrix,
i.e. P V

j = P V for all j ∈ S. If this is the case, one can search for a common
Lyapunov function based on ∞-norms, i.e. V (x) = ‖P V x‖ for all x ∈ X.
Then, only two LP problems must be solved (in Step 2), without computing
any intersection. Algorithm 7.3.1 can be directly implemented using the
MPT (Kvasnica et al., 2004), as it contains all the necessary numerical tools.

7.4 Application to the control of DC-DC converters

In this section we implement Algorithm 7.2.3 to control a Buck-Boost DC-DC
converter power circuit. DC-DC converters are some of the most important
circuits within the family of power circuits. They are extensively used in po-
wer supplies for electronic equipment to control the energy flow between two
DC systems. Control of a DC-DC converter power circuit is based, explicitly
or implicitly, on a model that describes how control actions and disturban-
ces are expected to affect the behavior of the plant. Usually, the control
problem consists in defining the desired nominal operating condition, and
then regulating the circuit so that it stays close to the nominal, when the
plant is subject to disturbances and modeling errors that cause its operation
to deviate from the nominal. The following nonlinear averaged model of a
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Buck-Boost DC-DC converter (see Figure 7.1 for a schematic representation
of an ideal circuit (i.e. neglecting the parasite components), which was devel-
oped in (Lazar and De Keyser, 2004) by applying the theory of (Kassakian
et al., 1992), is used to obtain a prediction model:

xm
k+1 =

[
xm

1,k + T
L
xm

2,k − T
L
(xm

2,k − Vin)um
k

−T
C

xm
1,k + T

C
xm

1,ku
m
k + (1 − T

C
)xm

2,k

]
, k ∈ Z+, (7.11)

where xm
k = [xm

1,k xm
2,k]

⊤ ∈ R2 and um
k ∈ R are the state and the input,

respectively. xm
1 (iL) represents the current flowing through the inductor, xm

2

(vo) the output voltage and um represents the duty cycle (i.e. the fraction of
the sampling period during which the transistor is kept ON). The sampling
period is T = 0.65 milliseconds. The parameters of the circuit are the
inductance L = 4.2mH, the capacitance C = 2200µF, the load resistance
R = 165Ω and the source input voltage vin, with nominal value Vin = 15V.

The control objective is to reach a desired steady state value of the output
voltage, i.e. xss

2 , as fast as possible and with minimum overshoot. From xss
2

one can obtain the steady state duty cycle and inductor current as follows:

uss =
xss

2

xss
2 − Vin

, xss
1 =

xss
2

R(uss − 1)
. (7.12)

Furthermore, the following physical constraints must be fulfilled at all times
k ∈ Z+:

xm
1,k ∈ [0.001, 5], xm

2,k ∈ [−20, 0], um
k ∈ [0.1, 0.9]. (7.13)

To implement Algorithm 7.2.3, we first perform the following coordinate
transformation on (7.11):

x1,k = xm
1,k − xss

1 , x2,k = xm
2,k − xss

2 , uk = um
k − uss. (7.14)

We obtain the following nonlinear system description

xk+1 =

[
x1,k + αx2,k + (β − T

L
x2,k)uk

(T
C

x1,k + γ)uk + (1 − T
RC

)x2,k + δx1,k

]
, (7.15)

where the constants α, β, γ and δ depend on the fixed steady state value xss
2

as follows

α =
T

L
(1 − xss

2

xss
2 − Vin

), β =
T

L
(Vin − xss

2 ),

γ =
T

RCVin
xss

2 (xss
2 − Vin), δ =

T

C

(
xss

2

xss
2 − Vin

− 1

)
.
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Using (7.14) and (7.12), the constraints given in (7.13) can be converted to:

x1,k ∈ [bx1 , b
x1

], x2,k ∈ [bx2 , b
x2

], uk ∈ [bu, b
u
], (7.16)

where

bx1 = 0.001 − 1

RVin
xss

2 (xss
2 − Vin), b

x1
= 5 − 1

RVin
xss

2 (xss
2 − Vin),

bx2 = −20 − xss
2 , b

x2
= −xss

2 , bu = 0.1 − xss
2

xss
2 − Vin

, b
u

= 0.9 − xss
2

xss
2 − Vin

.

The control objective can now be formulated as to stabilize (7.15) around
the equilibrium (0, 0) while fulfilling the constraints given in (7.16).

Next, to compute an ∞-norm Lyapunov function via Lemma 7.2.5, we
linearize system (7.15) around the equilibrium (0, 0) (for zero input uk = 0 ∈
[bu, b

u
]). The linearized equations are given by

∆xk+1 = A∆xk + B∆uk, (7.17)

where ∆xk and ∆uk represent “small” deviations from the equilibrium (0, 0)
and zero input uk = 0, respectively. The matrices A and B are given by

A ,
∂f

∂x

∣∣
x=0,

u=0
=

[
1 α

δ 1 − T
RC

]
, B ,

∂f

∂u

∣∣
x=0,

u=0
=

[
β

γ

]
.

For the linear model corresponding to a steady state output voltage xss
2 =

−4V (which yields uss = 0.2105 and xss
1 = 0.0307A), by applying one of the

methods presented in Section 6.5.3 to find the matrix PV and the feedback
gain K satisfying (7.8) for QV = [ 0.001 0

0 0.001 ], we have obtained the solution

PV =

[
0.9197 −0.6895
−0.5815 1.8109

]
, K =

[
−0.4648 0.4125

]
.

The MPC cost matrices have been chosen as follows, to ensure a good per-
formance:

P =

[
1 0
0 4

]
, Q =

[
1 0
0 2

]
, Ru = 0.1.

To assess the real-time applicability of the developed theory for this type
of very fast system with a sampling period well below one milisecond, we
chose N = 1 and, for the nonlinear model (7.15), we formulated the op-
timization problem in Step 1 of Algorithm 7.2.3 as a Linear Programming
(LP) problem. The resulting LP problem has 3 optimization variables and
18 constraints.
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In one simulation, we tested first the start-up behavior (see Figure 7.2
column one) and then, after reaching the desired operating point, we tested
the disturbance rejection (see Figure 7.2 column two). The dynamics were
simultaneously affected by an asymptotically decreasing additive disturbance
of the form w = [ 1

k
0]⊤ and a 50% drop of the load (i.e. R=82.5Ω) for

k = 80, 81, . . . , 180 (or from time instant 0.052 until time instant 0.117 - in
seconds). For k > 180 the disturbance was set equal to zero and the load was
set to its nominal value (i.e. R=165Ω) to show that the closed-loop system
is ISS, i.e. that asymptotic stability is recovered when the disturbance input
vanishes. The trajectories over the time interval [0 0.1495] (in seconds, or
230 sampling periods T ) of the state and sub-optimal NMPC control input
are plotted in Figure 7.2. Moreover, in Figure 7.2 (first plot in the second
column) one can observe that during the disturbance rejection phase of the
simulation, the output voltage is well within the operating margin required
in industry for DC-DC converters, i.e ±3% of the desired operating value.

Note that, although the simulations were performed for the transformed
system (7.15), we chose to plot all variables in the original coordinates cor-
responding to system (7.11), which have more physical meaning.

The LP problem equivalent to the sub-optimal NMPC optimization pro-
blem in Step 1 of Algorithm 7.2.3 was always solved2 within the allowed
sampling interval, with an worst case CPU time of 0.6314 milliseconds over
20 runs. The very good closed-loop performance obtained for N = 1 col-
laborated with the computational time estimate is encouraging for further
development of the real-time application of the presented theory to control
DC-DC power converters, especially using faster platforms, such as Digital
Signal Processors (DSP).

7.5 Concluding remarks

Two new computationally friendly sub-optimal MPC algorithms with an a
priori input-to-state stability guarantee were presented. The first one em-
ploys a contraction constraint on the norm of the closed-loop system state,
while the second algorithm uses an ∞-norm based artificial Lyapunov func-
tion. For both sub-optimal MPC schemes, the input-to-state stabilization
constraints can be written as a finite number of linear inequalities. For the
class of PWA systems, it is shown how the sub-optimal MPC scheme based

2The simulation platform was Matlab 7.0.4 (R14) (CDD Dual Simplex LP solver)
running on a Linux Fedora Core 5 operating system powered by an Intel Pentium 4 with
a 3.2 GHz CPU.
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Figure 7.2: State trajectories and sub-optimal NMPC input histories for N =
1 - solid lines, desired steady state values, input constraint (in first column,
bottom plot) and industrial operating margins for DC-DC converters (±3%
of the desired output voltage, in second column, first plot) - dashed lines.

on an artificial Lyapunov function can be modified to ensure input-to-state
stability with respect to measurement noise. This modified scheme is par-
ticularly relevant because it can be used in interconnection with an input-
to-state stable observer, resulting in an asymptotically stable closed-loop
system. Methods for computing such artificial Lyapunov functions off-line
for linear or PWA models were also indicated. A case study on the control of
a Buck-Boost DC-DC power converter includes preliminary real-time nume-
rical data was also presented to illustrate the applicability of the developed
theory.
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8

Conclusions

8.1 Contributions 8.2 Ideas for future research

A summary of the main contributions and a collection of several possible
directions for future research conclude this thesis.

8.1 Contributions

The major contributions are in the domains of

• Stability Theory of Hybrid Systems;

• Stabilizing Model Predictive Control;

• Robust Model Predictive Control;

• Set Invariance Theory;

• Linear Matrix Inequalities in Control.

We discuss the obtained results in more detail below.

8.1.1 Stability Theory of Hybrid Systems

Classical stability results on Lyapunov asymptotic stability, input-to-state
stability (ISS) and input-to-state practical stability (ISpS) are revisited in
the hybrid context, where one has to deal with discontinuous dynamics and
discontinuous Lyapunov functions. It is shown that, for discrete-time, pos-
sibly discontinuous nonlinear systems, continuity at the equilibrium point
rather than continuity on a neighborhood of the equilibrium point of the sy-
stem and the candidate (ISS) Lyapunov function is sufficient for Lyapunov
stability and input-to-state stability. For system dynamics that are also
discontinuous at the equilibrium point, the input-to-state practical stabili-
ty framework can be employed to establish robustness. Several relaxations
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with respect to the existing results are presented. The usefulness of these
relaxations for stability theory of hybrid systems has been demonstrated via
various simple examples of hybrid systems, for which the classical stability
(robust stability) arguments that rely on continuous system dynamics and
continuous Lyapunov functions do not apply. Stability and input-to-state
stability can be established for these examples via the new results derived in
this thesis.

The concept of norms as Lyapunov functions, mostly employed for linear
systems (Polanski, 1995), has been extended to hybrid systems. Techniques
for computing Lyapunov functions defined using ∞-norms for piecewise af-
fine (PWA) systems are presented in Chapter 3, as a new way to compute
a suitable terminal cost for MPC algorithms based on PWA prediction mo-
dels. Lyapunov functions based on ∞-norms are particularly attractive, as
opposed to the popular quadratic Lyapunov functions, since their level sets
are polyhedral positively invariant sets.

A warning has been issued via the construction of a globally exponen-
tially stable piecewise affine system that has zero robustness to arbitrarily
small additive disturbances. The absence of a continuous Lyapunov func-
tion is the main reason for this phenomenon. Although such examples are
known for nonlinear systems (Grimm et al., 2004; Kellett and Teel, 2004),
this is the first example of zero robustness in PWA systems. This result,
presented in Chapter 4, is very important as stability is often established for
piecewise affine systems via discontinuous Lyapunov functions. In particu-
lar, this is also the case of model predictive control of hybrid systems, which
typically produces a discontinuous piecewise affine closed-loop system and a
discontinuous MPC value function (which is usually used as the candidate
Lyapunov function to establish stability in MPC). The practical relevance
of this warning cannot be overstated, since controllers that are designed to
be nominally stabilizing, can result in closed-loop systems that have zero
robustness when applied in practice, where disturbances are always present.

To prevent this undesired situation in real-life applications, the concept of
input-to-state stability has been employed in the fourth chapter for piecewise
affine and hybrid systems to develop sufficient conditions for robust stability.
Techniques based on linear matrix inequalities for solving the global input-
to-state stability and stabilization problem for piecewise affine systems have
also been developed in Chapter 4. This methodology, that is applicable
to discontinuous systems, can be used to synthesize piecewise linear state-
feedback controllers for PWA systems that a priori guarantee input-to-state
stability for the closed-loop system. Therefore, these controllers can be safely
implemented in practice, as they will not result in undesired phenomena, such
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as zero robustness.

The LMI methods for computing piecewise quadratic ISS Lyapunov func-
tion as well as input-to-state stabilizing state-feedbacks for PWA systems
presented in Chapter 4 contribute to the domain of Linear matrix ine-

qualities in control. The contribution consists in a new technique for
applying the Schur complement block wise, without changing any of the
matrix elements that are not part of a desired block.

8.1.2 Stabilizing Model Predictive Control

A general theorem on stability of non-smooth nonlinear model predictive
control, which unifies and extends many of the previous stability results in
MPC is presented in Chapter 3. This theorem explicitly allows for discon-
tinuous system dynamics and MPC value functions and therefore, can be
directly applied to establish Lyapunov stability for model predictive control
of hybrid systems. Until now, a proof of Lyapunov stability for hybrid MPC
in its full generality was missing in the literature.

In the third chapter, new methods for computing a terminal cost that
satisfies the developed stabilization conditions are presented for the class of
piecewise affine systems and MPC costs based on both quadratic forms and
1,∞-norms. These methods also contribute to the field of Linear matrix

inequalities in control, as for quadratic MPC costs, the stabilization con-
ditions are expressed as a linear matrix inequality. This approach can be
employed for both simple stabilizing state-feedback synthesis and terminal
cost and local controller computation in stabilizing MPC. The existing LMI
methods for computing piecewise quadratic Lyapunov functions for PWA
systems cannot offer a solution for the terminal cost and local controller
MPC stabilization problem.

New methods for computing a terminal constraint set that satisfies the
developed stabilization conditions are also presented in Chapter 3. An essen-
tial condition that the terminal constraint set must satisfy is the condition
of positive invariance. This brings us to the contributions of this thesis in
the domain of Set invariance theory.

Computing invariant sets for piecewise affine systems is a notoriously
difficult problem, but of great interest. In general, invariant sets for PWA
systems are not convex, and they are usually obtained, via standard control-
lability or reachability based recursive algorithms, as the union of a number
(possibly very large or even infinite) of polyhedra. Chapter 3 presents new
techniques for computing positively invariant sets for piecewise affine systems
that have two very attractive properties:
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• they are piecewise polyhedral positively invariant sets - i.e. they consist
of a union of a finite number of polyhedra;

• they have a low complexity - i.e. the number of polyhedra that form
the positively invariant set is at most equal to the number of affine
sub-systems of the piecewise affine system.

A method for computing convex and polyhedral positively invariant sets for
PWA systems is also presented. Such sets are extremely appealing for use in
optimization problems, as the hybrid MPC problems, and also for estimation
of domains of stability, due to their low complexity.

An optimization technique for computing Lyapunov functions based on
1,∞-norms is presented in Chapter 3. The sublevel sets of such functions
are implicitly polyhedral (or piecewise polyhedral) invariant sets. Therefore,
this technique can be employed to calculate 1,∞-norm induced positively
invariant sets for PWA systems.

Apart from these results keyed to the particular class of PWA systems,
a new approach to the computation of invariant and contractive sets for
general, possibly discontinuous nonlinear systems is also presented. The
only requirement for the implementation of this method is that the system
admits a quadratic or piecewise quadratic Lyapunov function. This method,
due to its unique geometrical approach that is independent of the system
dynamics, can be applied to a wide class of relevant systems including linear
systems subject to input saturation, linear systems affected by parametric
uncertainties and/or additive disturbances, switched linear systems under
arbitrary switching and conewise piecewise linear systems. We prove that a
solution to the problem of computing a polyhedral or piecewise polyhedral
invariant (contractive) set can be obtained by solving a finite number of
quadratic programs (QP). An explicit upper bound on the number of QP
problems that have to be solved is also derived.

8.1.3 Robust Model Predictive Control

The input-to-state stability framework is employed in Chapter 5 to investi-
gate the robustness of discrete-time (discontinuous) PWA systems in closed-
loop with MPC.

Inherent robustness issues

A strong warning is issued by showing via an example that hybrid MPC
can generate (discontinuous) MPC values functions that are not input-to-
state Lyapunov functions. Therefore, one should be careful in drawing
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conclusions on robustness from nominal stability in hybrid MPC, as earlier
examples presented in Chapter 4 showed that the absence of a continuous
Lyapunov function can lead to the zero robustness phenomenon.

The fifth chapter provides an a posteriori test for checking robustness
of nominally stable hybrid MPC schemes (and, in principle, of any PWA
system), given a discontinuous MPC value function. This test comes down
to solving a finite number of linear programs.

Robust MPC via tightened constraints

However, if the a posteriori robustness test fails for a specific hybrid MPC
closed-loop system, there are no systematic ways available that can be used
to modify the nominally stabilizing MPC schemes so that robustness is en-
sured. A new design method for setting up hybrid MPC schemes with an
a priori ISS guarantee with respect to bounded additive disturbance inputs
is presented in Chapter 5. This method restricts the predicted future sta-
tes to a tightened, possibly disconnected subset of the state-space, and does
not require continuity of the MPC value function, nor of the PWA system
dynamics.

Robust MPC via min-max formulations

Chapter 6 employs the ISS framework to derive new sufficient conditions
for robust asymptotic stability of min-max nonlinear MPC. It is shown that
in general, only input-to-state practical stability can be a priori ensured for
min-max nonlinear MPC. This is because the min-max MPC controller takes
into account the effect of a non-zero disturbance input, even if the distur-
bance input vanishes in reality. However, explicit bounds on the evolution of
the min-max MPC closed-loop system state are derived and ultimate boun-
dedness is proven for the closed-loop system.

ISS is achieved via a dual-mode approach and using a new technique
based on KL-estimates of stability. This result is important because it unifies
in one MPC scheme the properties of the MPC controllers of (Limon et al.,
2006) and (Mayne, 2001), i.e. it guarantees both input-to-state practical
stability (ultimate boundedness) in the presence of persistent disturbances
and robust asymptotic stability in the presence of asymptotically decaying
disturbances (without a priori assuming that this property holds for the
disturbances).

New techniques for calculating a terminal cost and local state-feedback
controller such that the developed robust stabilization conditions for min-
max MPC are satisfied are presented in Chapter 6. These techniques employ



192 Conclusions

linear matrix inequalities for quadratic MPC costs and norm inequalities
for MPC costs based on 1,∞-norms. The proposed stabilization method
works for systems affected by both time-varying parametric uncertainties
and additive disturbances. One of its advantages is that the resulting MPC
cost function is continuous, convex and bounded, which is desirable from an
optimization point of view. Also, the techniques for computing a terminal
cost presented in this chapter do not depend on the type of min-max MPC
numerical set-up. They can be employed to ensure robust stability or input-
to-state stability for a wide variety of both open-loop and feedback min-max
MPC schemes existing in the literature.

Robust sub-optimal MPC

Most of the stabilization methods developed within the MPC framework
rely on the assumption of optimality. Clearly, when dealing with nonlinear or
hybrid prediction models and hard constraints, it is difficult if not impossible
to guarantee this assumption in practice, where numerical solvers usually
provide, in the limited computational time available, a feasible, sub-optimal
input sequence, rather than a globally optimal one.

Chapter 7 proposes methods for designing input-to-state stabilizing, but
computationally friendly sub-optimal MPC algorithms for nonlinear and hy-
brid systems. This is achieved via new, simpler stabilizing constraints, that
can be implemented as a finite number of linear inequalities. Two sub-
optimal nonlinear MPC algorithms that are ISS with respect to additive
disturbances are presented. The first one is based on a contraction argu-
ment, while the second MPC scheme resorts to an ∞-norm based artificial
Lyapunov function.

For the class of PWA systems, in the seventh chapter it is shown how
the sub-optimal MPC scheme based on an artificial Lyapunov function can
be modified to ensure input-to-state stability with respect to measurement
noise. This modified scheme is particularly relevant because it can be used in
interconnection with an asymptotically stable observer, resulting, if cascade
conditions are satisfied, in an asymptotically stable closed-loop system.

Application to the control of DC-DC converters

Power circuits are widely used in the computer industry and in consumer
electronics including cameras and they are critical for mission success on
space platforms. Some of the most important circuits within the family
of power circuits are the DC-DC converters. They are employed in power
supplies for electronic equipment to control the energy flow between two DC
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systems. The control problem for DC-DC converters is usually tackled using
PID (PI to be more specific) controllers. However, this approach has its
limitations, due to the highly nonlinear characteristic of DC-DC converters.
That is why there is an increasing interest for advanced control of DC-DC
converters (Lazar and De Keyser, 2004). An efficient predictive controller
for DC-DC converters is designed in Chapter 7, where successful preliminary
real-time computational data is also provided for this “very fast” system (with
a sampling period well below one millisecond). This opens up a complete
new application domain, next to the traditional process control for typically
slow systems.

8.2 Ideas for future research

There are several interesting research directions possible on the basis of the
results presented in this thesis. In what follows we will briefly present some
future lines of research that can be pursued.

8.2.1 Stability Theory of Hybrid Systems

In this thesis we have considered PWA systems with the switching triggered
by the state only. In practice however, it is also the case that the switching
between the affine sub-systems is triggered by both the state and the input.
The extension of the stability results developed in Chapter 3 and Chapter 4
is not immediate. It would be of interest to investigate how the developed
stabilization results for PWA systems can be extended to this case.

Another practically relevant, more general class of PWA systems is the
one where the affine sub-models can have different state dimensions. This
situation arises, for example, in optimal control of energy management of
electrical power networks that have limited transporting capacities, as multi-
dimensional PWA systems provide a good way to approximate the associated
nonlinear costs (Jokic et al., 2006). Therefore, it is worth exploring how the
stability results presented in this thesis can be transferred to such multi-
dimensional PWA systems.

For simplicity and clarity of exposition, in Chapter 4 we employed pie-
cewise quadratic candidate ISpS (ISS) Lyapunov functions. However, the
results can be extended to piecewise polynomial or piecewise affine candida-
te ISpS (ISS) Lyapunov functions. Extensions to PWA systems affected by
time-varying parametric uncertainties and the use of norm based candidate
ISS Lyapunov functions are also of interest.
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8.2.2 Set Invariance Theory

Recently, an increased interest has been shown in the development of effi-
cient numerical algorithms for computing polyhedral robust invariant sets
for perturbed linear and PWA systems. In this thesis we have presented
a number of approaches to address this problem. One of them, that uses
norm Lyapunov functions to induce polyhedral invariant sets, is of particu-
lar interest. In Chapter 6 we have presented solutions for the computation of
norm based ISS Lyapunov functions. It would be interesting to investigate
how norm based ISS Lyapunov functions can be employed to induce robust
invariant sets for perturbed linear and PWA systems.

8.2.3 Robust Model Predictive Control

A topic of great interest to robust model predictive control is how to design
computationally efficient feedback min-max MPC schemes. Several solutions
exist for linear and continuous piecewise affine systems that either rely on
numerical solutions for solving the standard feedback min-max MPC opti-
mization problem presented in Chapter 6, or on new ways for introducing
feedback to the disturbance. The challenge is to design computationally ef-
ficient feedback min-max MPC algorithms for discontinuous PWA systems.
The corresponding MPC optimization problem is numerically too complex
in the hybrid case, so the route of searching for new methods to introduce
feedback to the disturbance seems more appropriate.

The inherent drawback of the robust sub-optimal MPC algorithms pre-
sented in this thesis is that recursive feasibility of the optimization problem
is difficult to be guaranteed a priori. Therefore, it is of great interest to
develop methods for estimating positively invariant regions of feasibility for
the sub-optimal MPC schemes presented in Chapter 7. This seems to be
possible for the sub-optimal MPC algorithm based on an ∞-norm artificial
Lyapunov function. The sublevel sets of this function can be used in combi-
nation with the computation of robust one-step controllable sets to obtain a
priori a polyhedral robust invariant set of feasible states for the closed-loop
system.

The real-life implementation of the predictive controller for DC-DC con-
verters will be pursued in the near future by employing the LP based nonli-
near MPC controller on a DSP.
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Samenvatting

Model gebaseerd voorspellend regelen

voor hybride systemen

- stabiliteit en robuustheid -

Dit proefschrift behandelt de stabilisatie en de robuuste stabilisatie van
zogenaamde hybride systemen door middel van model gebaseerd voorspel-
lend regelen oftewel “Model Predictive Control” (MPC). Hybride systemen
zijn in hun algemeenheid dynamische systemen, die zowel een discreet (vaak
beschreven middels een eindige automaat) als een continu (beschreven door
differentie- of differentiaalvergelijkingen) karakter hebben. Deze systemen
ontstaan onder meer door tijd-continue processen te koppelen aan digitale
tijd-asynchrone regelsystemen (embedded systemen). Andere voorbeelden
van hybride dynamica worden gevonden in veel toepassingsgebieden en on-
derzoekspecialismen, zoals schakelende elektrische netwerken, mechanische
en biologische processen, economie, etc. Deze systemen zijn inherent niet-
lineair en discontinu. Bovendien vertonen ze verschillende werkgebieden (ook
wel “modes” of “discrete toestanden” genoemd), die elk hun eigen karakte-
ristieke bewegingsvergelijkingen hebben. Dientengevolge zijn de bestaande
technieken voor stabiliteitsanalyse en synthese van (robuuste) stabiliserende
regelaars voor lineaire en niet-lineaire (gladde) systemen niet toepasbaar in
de hybride context. Dit vormt een belangrijke motivatie voor het ontwikke-
len van een nieuwe systematische methode van regelaarontwerp, die om kan
gaan met discontinu systeem gedrag.

Model gebaseerd voorspellend regelen (kortweg MPC) is een regelstra-
tegie, die zeer aantrekkelijk is voor het regelen van tijd-discrete lineaire of
niet-lineaire systemen en wordt al succesvol toegepast in de industrie, met
name in de proces industrie. MPC voorspelt op basis van een model van het
te regelen proces wat het toekomstig effect van een keuze van ingangssignalen
over een bepaalde (vaak eindige) tijdshorizon is en selecteert vervolgens een
optimaal ingangssignaal op basis van een kostenfunctie, die geminimaliseerd
dient te worden. De eerste ingangswaarde in het optimale ingangssignaal
wordt vervolgens geïmplementeerd op het proces en op basis van nieuwe
metingen van uitgangssignalen van het proces wordt het optimalisatiepro-
bleem opnieuw opgelost. Een van de redenen van het succes van MPC is de
mogelijkheid om te gaan met harde beperkingen op de regelingangen, toe-
standen en uitgangssignalen van het systeem. Onmisbaar voor praktische



implementatie zijn de stabiliteit en robuustheid van de regellus. Deze twee
eigenschappen vormen dan ook de eigenschappen van MPC regelaars, die het
meest bestudeerd zijn en een complete theorie is dan ook voorhanden in de
context van lineaire en (gladde) niet-lineaire systemen. Echter, deze resul-
taten zijn niet overdraagbaar naar de situatie van hybride systemen op een
eenvoudige wijze. Dit vormt dan ook een van de uitdagingen, die onderwerp
van studie zijn in dit proefschrift.

Als startpunt wordt in hoofdstuk 2 een theoretische kader ontwikkeld
voor stabiliteit en ingang-naar-toestand stabiliteit (“input-to-state stability”
afgekort tot ISS), dat om kan gaan met discontinue en niet-lineaire dynamica.
Deze resultaten vormen de theoretische basis van het proefschrift, die het
mogelijk maakt om voor hybride systemen en verschillende MPC strategieën
(robuuste) stabiliteit te onderzoeken.

Het (nominale) stabiliteitsprobleem voor hybride systemen geregeld door
MPC wordt in zijn algemeenheid opgelost in hoofdstuk 3. De focus is vervol-
gens op een belangrijke klasse van hybride systemen, die stuksgewijs lineaire
systemen (“piecewise affine” systemen, afgekort tot PWA systemen) genoemd
worden. Deze klasse van hybride systemen is zeer aantrekkelijk, daar ze van
de ene kant een eenvoudige mathematische structuur heeft en van de andere
kant een verscheidenheid aan praktisch relevante processen kan modelleren.
Voor PWA systemen en bepaalde keuzes van MPC kostenfuncties worden
nieuwe algoritmes gepresenteerd voor het berekenen van de kosten aan het
eind van de horizon (“terminal costs”), die aan de ontwikkelde stabilisatie
condities voldoen. Voor de bepaling van de toestandsbeperkingen (“termi-
nal set”), die opgelegd dienen te worden aan de toestand aan het eind van
de horizon, worden ook nieuwe methodes gepresenteerd. Hierbij wordt er
nadrukkelijk opgelet dat de complexiteit van deze toegevoegde toestands-
beperkingen eenvoudig zijn. Zeker ten aanzien van bestaande algoritmes
wordt een significante reductie in complexiteit bewerkstelligd. Dit betekent
dat naast de studie van de fundamentele eigenschappen van stabiliteit en
robuustheid, ook het doel is om regelalgoritmen te ontwikkelen met een lage
complexiteit zodanig dat praktische implementatie haalbaar is.

Voordat we robuuste stabilisatie bekijken in hoofdstuk 5, worden twee
voorbeelden beschreven in hoofdstuk 4. Deze voorbeelden laten twee PWA
systemen zien die beiden een discontinue stuksgewijs kwadratische Lyapunov
functie toelaten en beiden exponentieel stabiel zijn. Echter, een van de twee
is globaal ISS, terwijl de andere geen enkele robuustheid heeft. Deze voor-
beelden laten zien dat men behoedzaam moet zijn om nominaal stabiliseren-
de regelingen in de praktijk toe te passen, aangezien het gebrek aan robuuste
stabiliteit ongewenste effecten kan opleveren. Voor het robuuste voorbeeld is



het mogelijk om ISS aan te tonen middels een discontinue stuksgewijs kwa-
dratische Lyapunov functie, maar niet via een continue. Dit impliceert dat
het gebruik van continue Lyapunov functies conservatief is in de studie van
hybride systemen en dat er dus een noodzaak is voor een framework waar-
in discontinue Lyapunov robuuste stabiliteit kunnen aantonen. Dit is het
onderwerp van hoofdstuk 4. Voor PWA systemen worden er dan ook con-
dities afgeleid voor globale ISS in termen van lineaire matrix ongelijkheden,
die efficient opgelost kunnen worden. Deze kunnen zowel gebruikt worden
voor de analyse van de robuuste stabiliteit voor geregelde PWA systemen als
het synthetiseren van stuksgewijs lineaire toestandsterugkoppeling, die ISS
garanderen.

In hoofdstuk 5 wordt het probleem van robuuste stabilisatie van PWA
systemen middels MPC bestudeerd. In de bestaande MPC literatuur is dit
probleem alleen opgelost voor het geval waarbij de dynamica van het PWA
systeem continu verondersteld is. Dit is een zeer beperkende aanname in
het geval van hybride systemen. In hoofdstuk 5 wordt dan ook een ISS
MPC strategie voorgesteld voor PWA systemen gebaseerd op aanscherping
van toestandsbeperkingen. Het voordeel van deze nieuwe aanpak - naast het
feit dat het de eerste robuust stabiliserende MPC strategie voor discontinue
PWA systemen is - is dat de resulterende MPC optimalisatieproblemen nog
steeds via standaard numerieke algoritmen als toegepast binnen de hybride
MPC opgelost kunnen worden.

Een zogenaamde “min-max” aanpak van robuuste stabilisatie van alge-
mene niet-lineaire systemen middels MPC is het onderwerp van hoofdstuk 6.
Alhoewel min-max MPC rekentechnisch intensiever is, levert deze terugkop-
peling aan de verstoring, hetgeen kan leiden tot beter prestaties van het ge-
regelde systemen, wanneer deze aan verstoringen onderhevig is. In het alge-
meen kan slechts ingang-naar-toestand praktische stabiliteit (“input-to-state
practical stability” of kortweg ISpS) realiseren voor verstoorde niet-lineaire
systemen geregeld door min-max MPC strategieën. Echter, door gebruik
te maken van een geschakelde regelstructuur (zogenaamde “dual-mode”) kan
toch ISS behaald worden. Ook hier worden nieuwe methodes gepresenteerd
waarmee de toe te voegen kosten en de toestandsbeperkingen aan de eind
van de horizon efficient berekend kunnen worden.

Het laatste deel van het proefschrift bekijkt het ontwerp van robuust
stabiliserende sub-optimale MPC regelingen met een lage complexiteit ten
aanzien van on-line rekencapaciteit. Dit doel wordt bereikt voor hybride sys-
temen via eenvoudigere stabiliteitscondities, die uitgedrukt kunnen worden
als lineaire vergelijkingen. Het potentieel voor praktische applicaties wordt
aangetoond via een case study op het gebied van het regelen van Buck-



Boost DC-DC converters, een voorbeeld van een vaak gebruikt schakelend
elektrisch circuit. Initiële real-time resultaten zijn bemoedigend, aangezien
de MPC optimalisatieproblemen altijd binnen de gewenste sample tijd, die
onder de 1 milliseconde ligt, opgelost worden.

Concluderend, dit proefschrift geeft een volledig kader voor het ontwerp
van model gebaseerd voorspellende (MPC) regelaars voor hybride systemen,
die leiden tot stabiele en robuuste geregelde systemen. Deze eigenschappen
zijn onmisbaar voor elke toepassing van deze regelalgoritmen in de praktijk.
Een duidelijke nadruk bij het ontwikkelen van de MPC strategieën lag op
lage complexiteit van de optimalisatieproblemen, zodanig dat real-time im-
plementatie mogelijk wordt. Het voorbeeld van de DC-DC converter toont
aan dit inderdaad mogelijk is voor (zeer) snelle systemen. De ontwikkelde
analyse en synthese methodieken voor MPC van hybride systemen bieden
dan ook veel perspectief voor toekomstige praktische applicaties.
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