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Model Predictive Control of Regulation Services from Commercial Buildings to the Smart Grid

Mehdi Maasoumy†, Borhan M. Sanandaji∗, Alberto Sangiovanni-Vincentelli∗, and Kameshwar Poolla∗

Abstract— We first demonstrate that the demand-side flexi-
bility of the Heating Ventilation and Air Conditioning (HVAC)
system of a typical commercial building can be exploited for
providing frequency regulation service to the power grid using
at-scale experiments. We then show how this flexibility in
power consumption of building HVAC system can be leveraged
for providing regulation service. To this end, we consider a
simplified model of the power grid with uncertain demand
and generation. We present a Model Predictive Control (MPC)
scheme to direct the ancillary service power flow from buildings
to improve upon the classical Automatic Generation Control
(AGC) practice. We show how constraints such as slow and
fast ramping rates for various ancillary service providers, and
short-term load forecast information can be integrated into
the proposed MPC framework. Finally, we provide extensive
simulation results to illustrate the effectiveness of the proposed
methodology for enhancing grid frequency regulation.

I. INTRODUCTION

A sustainable energy future requires widespread and sig-

nificant penetration of Renewable Energy Sources (RESs).

Several states in the U.S. and countries around the world

have set ambitious targets for penetration of RESs by the

next few years. The state of California, as an example,

has targeted a 33% RES portfolio by 2020 [1]. However,

volatility, uncertainty, and intermittency of RESs present a

challenge for integrating such resources into the power grid

in a large scale as proper functioning of the grid requires

continuous power balance between supply and demand.

In addition to the need for maintaining balance between

generation and load, the power flows through individual

transmission lines and facilities should also be continuously

controlled by adjusting generation or load. Instantaneous

matching between generation and load is even more chal-

lenging when considering uncertainties and randomness in

demand. Short-term load variability results from a random

switching of millions of individual loads. Longer-term vari-

ability results from predictable factors such as the daily and

seasonal load patterns as well as less predictable events such

as shifting weather patterns. Traditional generators may also

cause unexpected fluctuations due to a range of equipment

failures and aging [2].

Electricity storage is widely believed to be a solution to

this problem by absorbing the variability associated with

RESs. However, storage has two important drawbacks. It is

expensive and it is not environmentally friendly. There is

an emerging consensus that flexible loads with thermal stor-

age capabilities such as Thermostatically Controlled Loads
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(TCLs) will play an important role in regulating the grid

frequency and consequently in enabling deep penetration

of RESs. It has been reported that about 20% of the total

electricity consumption in the United States is used by

residential TCLs such as air conditioners, heat pumps, water

heaters, and refrigerators [3], [4]. Recently, [5], [6] showed

that flexible loads such as TCLs are good candidates for

providing ancillary services since their aggregate flexibility

has the characteristic of a stochastic battery.

These recent papers also demonstrate that TCLs have a

great potential for providing fast regulating reserve services;

speed is indeed beneficial, especially in the context of recent

regulations such as Federal Energy Regulatory Commission

(FERC) Order 755 [7]. In fact, these new federal regulations

require scheduling coordinators to procure and compensate

more for regulation resources with faster ramping rates.

There is an emerging consensus that future regulation ser-

vices will be distinguished and compensated by capabilities

of which ramping rate is one component.

Modeling, estimation, and control of aggregated hetero-

geneous TCLs for ancillary services have been discussed

in [8], [9]. TCLs are particularly well-suited for Direct

Load Control (DLC) and Demand Response (DR) programs

that require loads to both decrease and increase power

consumption because they are capable of storing thermal

energy, much like a battery stores chemical energy. Fully

responsive load control is highlighted in [10] in the context

of TCLs and plug-in Electric Vehicles (EVs). Despite several

challenges of using loads for system services, several key

advantages include: 1) Reducing overall grid emissions by

using loads to provide system services [11]. 2) Instantaneous

response of loads to operator requests, versus slow response

of generators to make significant output changes [12], and 3)
Less variability associated to a very large number of small

loads with respect to that of a small number of large gener-

ators [12]. It may soon be the case that the only technical

impediment to reliable utilization of loads for system services

is the development of the necessary load models and control

strategies and the development of inexpensive and scalable

communication and sensing infrastructure. [13].

In this paper, we first quantify (by means of empirical data

analysis) the demand-side flexibility of a typical commercial

building. Then we show that such flexibility can be tapped

for providing fast frequency regulation service to the power

grid. We then show the effectiveness of such “fast” ramp-

ing rates on the overall frequency regulation performance

in the event of transient fluctuations in the load. To this

end, we consider a simplified model of the power grid

with uncertain demand and generation. We present a Model

Predictive Control (MPC) scheme to control the ancillary
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Fig. 1. Schematics of the experiment testbed (Sutardja-Dai Hall on UC
Berkeley campus).
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Fig. 2. Fan power consumption can vary as quickly as in a few seconds
by up to 25% by changing the SDSP set-point.

service power flow from buildings to improve on the classical

Automatic Generation Control (AGC) practice, by integrating

information such as ramping rates of various sources of

regulation services, and short term load forecast into the

control algorithm. We provide extensive simulation results

to illustrate the effectiveness of the proposed methodology

for enhancing grid frequency regulation.

The paper is organized as follows. A high-level description

of the test bed, a summary and the results of the experi-

ments performed on the test bed is provided in Section II

which quantifies the amount of flexibility of the building

power consumption. The mathematical model describing the

dynamics of the power system is followed in Section III.

AGC is explained in Section IV. Our proposed MPC scheme

is explained in details in Section V. We provide extensive

simulation results in Section VI. Future work and conclusion

remarks are provided in Section VII.

II. FAST ANCILLARY POWER FROM BUILDINGS

Commercial buildings consume more than 35% percent

of electricity in the US [14]. About 15% of electricity

consumption in commercial buildings is related to the fans

of the heating, ventilation and air conditioning (HVAC)

systems. HVAC fans are essential parts of HVAC systems in

buildings that move the conditioned air from the air handling

units (AHU) to the room level for ventilation, heating and

cooling of building indoor climate [15]–[17]. For instance,

the main supply fans that feed Sutardja-Dai Hall (SDH) on

the UC Berkeley campus can spin at variable speeds. Power

consumption is proportional to the cube of fan speed, with
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Fig. 3. SDSP set-point, outside air temperature, and temperature of 15
randomly selected rooms are shown for one day before (May 16, 2013) and
the day of the experiment (May 17, 2013).

the maximum rated power of 134 KW or about 14% of the

maximum power consumed in that building. Moreover, more

than 30% of commercial buildings have adopted Building

Energy Management System (BEMS) technology, which

facilitates a fine control of the building HVAC components

as well as the communication with the grid system operators.

The majority of commercial buildings are also equipped with

variable frequency drives, which in coordination with BEMS,

can manipulate the HVAC system power consumption very

frequently (in the order of seconds).

The supply fans to the building consume a large amount

of power and have inherent flexibility in how they consume

electricity. Hence, as shown in [18] we can directly modulate

HVAC power consumption, within a safe envelope, without

imposing extra cost to the building operation, and violat-

ing occupant comfort constraints. This flexibility in power

consumption can be either upward (consuming more) or

downward (consuming less), making it an ideal candidate

for regulation services.

A. Experiment Results

To demonstrate this potential of commercial building

HVAC system, we performed at-scale experiments on the

HVAC system of Sutardja-Dai Hall on the UC Berkeley

campus. The goal of the experiment was to quantify this

flexibility, and to examine the effects of supply-fan speed

modulation on the internal temperature of the rooms in

the building. More details on the experiments is reported

in [19]. Here we present a summary and the results of the

experiments to set a foundation for the rest of the paper.

Fig. 1 shows a high-level schematics of our experiment

set-up including the main fans that feed Sutardja-Dai Hall.

The speed of the fans is indirectly controlled by setting

the Supply-Duct Static Pressure (SDSP) set-point value. The

main challenges in performing this experiment include 1)

keeping the pressure in the air ducts within a specific safety

boundary and 2) minimizing the changes on the internal

temperature that may make occupants uncomfortable. Be-

cause of the first concern, we used the SDSP set-point

to control fan speed, instead of directly changing the fan



speed by over-writing its control logic. The safety margin

for the pressure set-point ranges between [1.2 − 1.9] (Inch

of Water Column). By changing the SDSP set-point, the fan

speed either increased or decreased to adhere to the specified

pressure value. We also tested the response speed of the fans

to respond to changes to the pressure set-point and model

the response. We run a number of experiments where we

vary the speed of the fan at different rates and for different

lengths of time. We show that supply-fan speed modulation,

over short time periods, has little effect on the comfort of the

building occupants. In fact, the effects are not observable on

the internal temperature of the spaces. We also show that the

supply fan responds very quickly to a change in the pressure

set-point, indicating that this is a viable option for providing

grid-level ancillary response services.

The experiment results are shown in Fig. 2 and Fig. 3.

Fig. 2 shows the SDSP set-point signal, as the input of

the experiment and the power consumption of the fan, as

the output of the experiment. It is observed that the fan

power consumption can vary by up to 25% within a few

seconds around its nominal power consumption at each time

(which itself is prescribed by the control logic running the

HVAC system). Fig. 3 on the other hand shows the SDSP

set-point, the outside air temperature and temperature of

15 randomly selected rooms in the building. This figure is

provided to show that the performed experiment created no

significant and human-sensible change in the temperature of

the building, and the building temperature was kept within

the comfort zone at all times. Data of one day before the

experiment (May 16) and the day of experiment (May 17) is

provided for comparison. Based on the experiment results it

was estimated in [19] that in average, each fan can provide

about 18% of its nominal power as flexibility. This equals

12 kW out of 67 kW power draw for each fan, and in total

24 kW for the whole SDH building.

B. Total Ancillary Power From All US Commercial Buildings

According to the latest survey on energy consumption

of commercial buildings, performed in 2003 [14], there are

4.9 million commercial buildings in the US which cover a

total area of about 72 billion square feet. Almost 30% of

these buildings are equipped with variable frequency drive

fans. Assuming the same fan power consumption flexibility

per square foot for these buildings to that of SDH, we

estimate that at least 4 GW of fast ancillary service is readily

available in the US at almost no cost, based on the 2003

data. Commercial building floor space is expected to reach

103 billion sq. ft. in 2035 [20]. With the same assumption of

the above calculations, about 5.6 GW of regulation reserve

will be available in 2035.

We also identify a Single-Input Single-Output (SISO)

Auto Regressive with eXogenous input (ARX) model of the

fan with SDSP as input and fan power consumption as output

based on the empirical data from SDH building. In order to

track the SDSP signal, the two fans change their speeds and

consequently their power consumption changes. A detailed

Fig. 4. Block diagram of power system and its relation to governor, turbine,
generator, and the AGC signal for each control area.

description of the experiments and analysis on the results has

been reported in [19].

III. MATHEMATICAL MODELS OF POWER SYSTEM

COMPONENTS

In this section, we develop mathematical models of power

system components. These models, along with the esti-

mations on the amount of available ancillary power from

buildings, obtained from the experiment results of Section II,

and the proposed control algorithm of Section V, will be used

to demonstrate how commercial buildings flexibility can be

utilized for frequency regulation provision in the smart grid.

Detailed models of power system elements have been

developed in the literature. In this paper, we use the model

developed by [21]–[23]. We present a detailed governor,

turbine, and generator model in this section. The intercon-

nection of these components of the power system is shown in

the block diagram of Fig. 4. δPC is a control input which acts

against increase or decrease in the power demand to regulate

the system frequency. δPD denotes the fluctuations in the

power demand which is considered here as an exogenous

input (disturbance). We present a model of the power system,

with the following underlying assumptions:

• The resistance of the transmission lines are ignored.

• Transmission line between area i, and j is characterized

by a reactance Xtieij .

• Reactive power flows are ignored.

• Voltage of bus i, denoted by Vi is considered constant.

Under steady state, we have: ω = ωo, Vt = V o
t , and

PM = PG = P o
M , where ωo, V o

t , and P o
M are the nominal

values for rated frequency, terminal voltage and mechanical

power input. Basic variables of a power system which are

used in the following formulations with a short description

of each variable are reported in Table I.

A. Governor Model

A general model of a governor contains three time con-

stants. The overall input-output transfer function is given by

TGov(s) =
(1 + sT2)

(1 + sT1)(1 + sT3)
. (1)

Mechanical-hydraulic governors have T2 = 0 with typical

values of T1 ∈ [0.2, 0.3] and T3 = 0.1. Electro-hydraulic

governors without steam feedback have typical time con-

stants as follows: T1 = T2 = 0 and T3 ∈ [0.025, 0.1].
Electro-hydraulic governors with steam feedback utilize a



TABLE I

BASIC POWER SYSTEMS NOMENCLATURE

Variables Description

PM Mechanical power input
P o

M
Desired real power generation

PG Generated real electric power
δPG Increase in demand (at rated generator MVA)
Vt Terminal voltage
PD Load (Power Demand)
δPD Input disturbance due to load changes
δPC Speed changer position feedback control signal
ω Angular speed and frequency
ωo Rated (desired) frequency

Parameters Description

D Damping coefficient. Range: 0.01 - 0.1 [-]
M Machine inertia constant. Range: 100 - 1000 [MW s]
R Speed regulation constant. Range: 0.05 [p.u.]
Ti Time constant for power system components. Range:

{0,0.01-10} [s]
Ki Fraction of total mechanical power outputs associated

with different operating points of the turbine. Range:
{0,0.1-1} [-]

feed-forward mechanism. Typical time constant values under

these assumptions are as follows: T1 = 2.8, T2 = 1.0, and

T3 = 0.15 [21].

B. Turbine Model

Turbines are grouped into steam and hydro turbines. The

input-output transfer function model for turbines is given by

δPM

PGV

= K1F1+K3F1F2+K5F1F2F3+K7F1F2F3F4, (2)

where F1, F2, F3, and F4 are transfer functions correspond-

ing to steam chest, piping system, re-heaters, and cross-over

mechanisms, respectively, and are given by

F1(s) =
1

1 + sT4
, F2(s) =

1

1 + sT5
, (3)

F3(s) =
1

1 + sT6
, F4(s) =

1

1 + sT7
. (4)

The basic time constant associated with steam turbines is

T4 which corresponds to that of the steam chest. For non-

reheat steam turbines, this is the only time constant needed.

The time constants T5, T6, and T7, are associated with

time delays of piping systems for re-heaters and cross-over

mechanisms. The coefficients K1, K3, K5, and K7 represent

fractions of total mechanical power outputs associated with

very high, high, intermediate, and low pressure components,

respectively. Typical values of steam turbine time constants

and fractions are reported in [21].

C. Generator Model

The dynamics of the generator is given by the following

transfer function

FGen =
1

D + sM
, (5)

where constants D and M represent the damping coefficient

and the inertia of the governor, respectively.

Fig. 5. Two control area system. Each control area includes a generation
unit. δPDi

and δPanci
are load (demand) and ancillary power in area i.

D. Two Area System Model

Consider the interconnected system shown in Fig. 5. It

consists of two areas connected by a tie line with reactance

Xtie. The power flow on the tie line from area 1 to area

2 is shown by Ptie. A positive δPtie represents an increase

in power transfer from area 1 to area 2. This in effect is

equivalent to increasing the load of area 1 and decreasing

the load of area 2. Each area consists of the subsystems

shown in Fig. 4.

Next, we present the mathematical model of the entire

system. Note that the superscript refers to the control area (i
or j = 1, 2 in the case of two interconnected areas), and the

subscript indexes the state in each area.

dxi
1

dt
=

(−Dixi
1 + δP i

M − δP i
D − δP ij

tie + δP i
anc)

M i
x

(6a)

dxi
2

dt
=

(xi
3 − xi

2)

T i
7

(6b)

dxi
3

dt
=

(xi
4 − xi

3)

T i
6

(6c)

dxi
4

dt
=

(xi
5 − xi

4)

T i
5

(6d)

dxi
5

dt
=

(P i
GV − xi

5)

T i
4

(6e)

dxi
6

dt
=

(xi
7 − xi

6)

T i
3

(6f)

dxi
7

dt
=

(−xi
7 + δP i

C − xi
1/R

i)

T i
1

(6g)

where

δP i
M = Ki

1x
i
5 +Ki

3x
i
4 +Ki

5x
i
3 +Ki

7x
i
2 (7)

P i
GV = (1− T2/T3)x

i
6 + (T2/T3)x

i
7 (8)

In formulation (6), the first state represents the frequency

increment, xi
1 = δωi. All the seven states are derived using

the mathematical model of each subsystem as presented

in (1)–(5). Note that when the time constant representing the

system pole is zero, the corresponding differential equation

becomes an algebraic equation. For instance, when T5 = 0,

the equation
dxi

4

dt
= 1/T5(x

i
5 − xi

4) becomes xi
5 = xi

4 = 0.



The real transferred power from bus i to bus j is governed

by P ij
tie ≈ ViVjbijcos(θi − θj). Since here we are concerned

with incremental changes in all variables, the incremental

change in P ij
tie is given by δP ij

tie = νij(θi − θj) where at the

nominal operating points, θoi , i = 1, 2, the transmission line

stiffness coefficient νij is given by

νij = −ViVjbijcos(θ
o
i − θoj ). (9)

In terms of the incremental state variables used, we have:

δP i
tie =

n
∑

j=1

νij(x
i
8 − xj

8), (10)

where the state variable xi
8 is the integral of the frequency

increment of area i, i.e.,

dxi
8

dt
= xi

1. (11)

The state space model (6)-(11) can be written in compact

form as follows:

dx(t)

dt
= A′x(t) +B′

1usc(t) +B′

2uanc(t) + E′d(t). (12)

In the case of two areas, states are stored in x, input signals

to the speed changers are usc = [δPC1
δPC2

]T , the ancillary

inputs buildings are uanc = [δPanc1 δPanc2 ]
T , and the

exogenous input (disturbance) (i.e. variations in demands)

are denoted by d = [δPD1
δPD2

]T .

E. Load Modeling

Many loads are frequency-sensitive. In this case, the

incremental change in load will have a frequency-dependent

part, i.e.

δPD = δP o
D + D̄δω (13)

where D̄ = ∂PD

∂ω
represents the sensitivity of the load to

frequency changes at the nominal value of the load. In this

case, Di in (6a) is replaced by Di+D̄i, and δPD is replaced

by δP o
D.

F. Discretization of the Continuous Model

We discretize the state space dynamics of the system using

the forward Euler discretization scheme. We show the result

of the equation for ẋi
1. The discretized dynamics for the rest

of the states can be obtained in similar way. At time tn we

approximate the derivative of xi
1 by

dxi
1(tn)

dt
≈

xi
1(tn + δt)− xi

1(tn)

δt
(14)

Hence the discretized version of (6a) is

xi
1(tn+1) = (1−

Di
xδt

M i
x

)xi
1+

δt

M i
x

[

δP i
M − δP i

D − δP ij
tie + δP i

anc

]

,

where tn+1 = tn + δt and δt is the discretization time step.

The discrete-time state-space model is obtained as

x[k + 1] = Ax[k] +B1usc[k] +B2uanc[k] + Ed[k]. (15)

We use this state update equation in Section V where we

present the MPC formulation.

IV. AUTOMATIC GENERATION CONTROL

AGC is the main control function of a utility’s energy

control section. The purpose of an AGC is to track the

load variations while maintaining the system frequency, net

tie-line interchanges, and optimal generation level close to

scheduled values [21]. This function is referred to as

Load-Frequency Control (LFC). A secondary objective is

to distribute the required change in generation among units

to minimize operating cost [23]. In the case where several

utilities are interconnected, each will perform its own AGC

independent of the others.

With primary speed control action, a change in the system

load will result in a steady-state frequency deviation, de-

pending on the governor droop characteristics and frequency

sensitivity to the load. All generating units on speed control

will contribute to the overall change in generation, irrespec-

tive of the location of the load change. Restoration of system

frequency to nominal value requires supplementary control

action which adjusts the load reference set-point (through

the speed-changer motor). Therefore, the basic means of

controlling prime-mover power to match variations of system

load in a desired manner is through control of the load

reference set-points of selected generating units. As system

load is continually changing, it is necessary to change the

output of generators automatically.

A. AGC in Interconnected Power Systems

In the classical AGC, a simple PI control is utilized to

regulate the frequency of the grid. The Area Control Error

(ACE) is defined to be

ACEi = δP i
tie + βixi

1, (16)

where δP i
tie = P i

tie − P i
tie,scheduled, and βi is the bias

coefficient of area i. The standard industry practice is to

set the bias βi at the so-called Area Frequency Response

Characteristic (AFRC) which is defined as βi = Di +1/Ri.

The integral of the ACE is then used to construct the speed

changer position (δP i
C) feedback control signal. A new state

xi
9, is defined as

dxi
9

dt
= ACEi. (17)

Consequently the control input δP i
C is given by

δP i
C = −Kixi

9, (18)

where Ki is the feedback gain. We propose a methodology

for the ancillary services from buildings to help with the

primary control of AGC as describe in V.

V. MODEL PREDICTIVE CONTROL OF ANCILLARY

SERVICES

We present an MPC scheme to control the available

ancillary service from commercial buildings to improve on

the classical AGC practice. This optimization-based control

framework is utilized as a higher-level control in a “hierar-

chical” fashion on top of the low-level classical AGC control.

Consider the n-control area network shown in Fig. 6.



Fig. 6. Schematic of n control areas with their corresponding tie power
transfers and reactances.

A. Control Architecture

The schematic of the power system is depicted in Fig. 7.

Electric power is generated by the turbo-generators, and is

fed to the power system. The power system transmits and

distributes the power to the end use.

As mentioned earlier, the recent FERC Order 755 re-

quires scheduling coordinators to procure and compensate

more for regulation resources with faster ramping rates.

To this end, we particularly address such constraints in

our proposed MPC framework. In total, we consider the

ramping rate constraint, |Panc[k+1]−Panc[k]|, the maximum

capacity, max(Panc[k]) > 0, and the minimum capacity,

min(Panc[k]) < 0, on the characteristics of the ancillary

service signal from commercial buildings. We should men-

tion that buildings can provide both positive and negative

power flow to the grid, for frequency regulation purposes.

When there is a power deficit, buildings will temporarily

use less power, and when there is as surplus of power, they

will temporarily use the extra power. We assume that the rate

of power supply by the buildings is limited by

|∆Panc| ≤ λ, (19)

where

∆Panc := Panc[k + 1]− Panc[k].

B. MPC Algorithm

At each time step k, we solve the following optimization

problem:

min
Uanc[k]

n
∑

i=1

H−1
∑

j=0

(ACEi[k + j|k])2 (20)

s.t. x[k + j + 1|k] =

Ax[k + j|k] +B2uanc[k + j|k] + Ed[k + j|k]

π[k + j|k] ≤ uanc[k + j|k] ≤ π[k + j|k]

|uanc[k + j + 1|k]− uanc[k + j|k]| ≤ λ[k + j|k]

where

Uanc[k] = (uanc[k|k], uanc[k+1|k], . . . , uanc[k+H−1|k])

is the vector of inputs from k to k + H , n is the number

of areas that participate in this regulation program, and

Fig. 7. Schematic of power system and its relation to turbo-generator
and and other sectors including the building sector, along with the control
architecture. The thick arrows represent the flow of power and the thin
arrows represent frequency and control signals. The dashed arrows indicate
the additional signals and power flows proposed in this paper.

TABLE II

PARAMETERS FOR THE TWO AREAS USED IN THE SIMULATIONS

Control Area Parameters

Area 1 T1 = 0.1, T3 = 0.1, T4 = 1.0
K1 = 1.0
M = 132.6 (MW.sec)
D = 0.0265 (p.u.)

Area 2 T1 = 0.2, T3 = 0.3, T4 = 0.1, T5 = 0.5
K1 = 0.2, K3 = 3
M = 663.13 (MW.sec)
D = 0.1325 (p.u.)

H is the prediction horizon of MPC. Notation x[k + j|k]
means that at each time step k, predictions of x for future

times k + j are obtained at time k. All the constraints of

problem (20) should hold for j = 0, 1, . . . , H − 1. The cost

function of this optimization problem minimizes the ℓ2 norm

of the ACE signal in areas i = 1, 2, ..., n, by exploiting

the ancillary service available form buildings, taking into

account the system dynamics and constraints. The constraints

of the optimization problem are π[k + j|k] > 0 maximum

positive power and π[k + j|k] < 0 maximum negative power

provided by the participating set of buildings in each area

in the contract. Here, “positive” and “negative” refer to the

flow of power from generation to consumption. These values

are estimated on the building side and sent to the utility

periodically. λ[k + j|k] is the maximum limit on the rate

of change of ancillary service provided by the building side.

Note that in the state-space model used in the MPC problem,

we do not incorporate B1usc[k] as usc is assumed to be

constant and is regulated by the local PI controller. Fig. 7

illustrates the structure of our MPC implementation with

regards to other components of the power system.

VI. SIMULATION RESULTS

We consider two interconnected control areas with param-

eters of their models presented in Table II, and with inter-area

stiffness coefficient of ν = 1.0 (p.u.). The main generation

unit for area 1 is a non-reheat turbo generator (TG) system

and the main generation unit for area 2 is a hydro TG

system. Some metrics such as root mean square (rms) values

of frequency and ACE signal are considered to compare

the performances of the proposed controller. We use time-

invariant bounds on the maximum and minimum ancillary

power π[k] = π[k] = π, and maximum rate of change of

ancillary power λ[k] = λ, in the following simulations.
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Fig. 8. Disturbance to load in area 1.
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Fig. 9. Frequency of areas 1 and 2 in response to the disturbance are
shown. Prediction horizon is H = 10 and maximum ancillary power is
max(Panc) = 0.5 (p.u.). Results are for various values of rate of change
of ancillary power such that max|∆Panc| = λ.

The resulting quadratic program (QP) obtained in Sec-

tion V-B was formulated using YALMIP [24] and solved with

ILOG CPLEX Barrier Optimizer [25] for a time horizon of

100 s and a sampling time Ts = 1 s. On a 4-core 2.67-GHz

Intel processor with 3.86 GB of memory, the average and

maximum solver times were 0.02 s and 0.03 s, respectively,

for a prediction horizon of H = 10.

We consider a disturbance in the load of area 1, and no

disturbance in the load of area 2, as shown in Fig. 8. We as-

sess the performance of the proposed controller considering

the following scenarios:

Scenario 1: The maximum ancillary service available in

each area is 0.5 per unit (p.u.) of power. We consider a

prediction horizon of H=10 time steps. As shown in Fig. 9

by increasing the maximum rate of change of ancillary

power (also known as ramping rate for generation units)

the resulting frequency deviation decreases. Ramping rate

of λ = 0.05 (p.u./s) is associated with large power generator

size, ramping rate of λ = 0.1 (p.u./s) is associated with

smaller size generators and high ramping rates such as

λ = 0.3 (p.u./s) is associated with fast ancillary service such

as the one provided by building HVAC system fan.

Scenario 2: We consider a fixed ancillary ramping rate of

λ = 0.9 (p.u./s), and show the frequency deviations in cases

with different maximum available ancillary power in each

area. The ramping rate is considered very high to eliminate
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Fig. 10. Prediction horizon is H = 10 and the maximum ancillary power
is max(∆Pancs) = 0.9 (p.u.). Figure shows frequency of control areas 1
and 2. In each case, we change max|Panc| = π.

the effects of slow ramping rates on the results, so that

we can perform a fair comparison which only concerns the

effect of maximum ancillary power. As shown in Fig. 10

by increasing the maximum available ancillary power, the

frequency deviation decreases. Although the disturbance in

load of area 1 affects both interconnected areas, the change

of frequency in area 1 is larger than that of area 2.

Scenario 3: We consider a stronger disturbance and

compare the overall frequency and area control error in

rms sense. We consider a zero mean disturbance to both

areas with a maximum absolute value of ancillary power

of π = 0.4 (p.u.) as shown in Fig. 11. We then perform

a mass simulation using various maximum ancillary power

available in each area within the range [0.1 0.9] (p.u.), and

various rate of change of ancillary service within the range

[0.05 0.9] (p.u./s), and prediction horizons ranging from 1 to

20 time steps.

As shown in Fig. 12, the highest and lowest ACErms are

obtained for the set {π = 0.1, λ = 0.02}, and the set {π =
0.9, λ = 0.9}, respectively.

Finally we present the results on the effect of integrating

load forecast in the MPC framework. We consider a constant

maximum available ancillary power of π = 0.9 (p.u.)

and present the results of rms of frequency deviation for

various values of rate of change of ancillary power λ versus

prediction horizon as shown in Fig. 13. Short term load

forecast can be very valuable and can dramatically improve

the performance of the controller. for prediction values up to

about H = 10, the performance keeps improving, while for

longer load forecasts, the improvement is not as significant.

VII. CONCLUSION AND FUTURE WORK

We proposed an MPC framework acting in collabora-

tion with a conventional AGC. The proposed MPC inte-

grates information such as different ramping rates of various

providers of regulation services, and load forecast to im-

prove the overall system performance. Based on simulation

results, we showed how the proposed MPC-based control



10 20 30 40 50 60 70 80 90 100
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5

Time (s)

D
is

tu
rb

an
ce

 to
 lo

ad
 (

p.
u.

)

 

 

Area 1 Area 2

Fig. 11. Disturbance in load of area 1 and 2 used for the mass simulations.
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Fig. 12. Result of mass simulation for various maximum ancillary power
and maximum rate of change of ancillary power for Prediction horizon of
20 time steps.
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Fig. 13. Root mean square of frequency deviation for various λ values for
a constant π = 0.9 versus prediction horizon.

scheme manages regulation services offered by commercial

buildings.

Since it is very difficult to accurately forecast power

consumption, as future work, we plan to develop a robust

MPC framework to address the uncertainties associated with

imperfect predictions of load.
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