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Abstract— A preliminary study on the application of a model-  storage tank enables load shifting to off-peak hours togedu
based predictive control (MPC) of thermal energy storage in peak demand, the lack of an optimized operation results
building cooling systems is presented. We focus on buildings conservatively over-charging the tank where conductive

equipped with a water tank used for actively storing cold . L . .
water produced by a series of chillers. Typically the chillers losses erode efficiency. The objective of this paper is to

are operated each night to recharge the storage tank in order design a predictive controller in order to minimize energy
to meet the buildings demand on the following day. A MPC for consumption while satisfying the unknown but bounded
the chillers operation is designed in order to optimally store the  cooling demand of the campus buildings and operational
thermal energy in the tank by using predictive knowledge of constraints.

building loads and weather conditions. This paper addresses L _ .
real-time implementation and feasibility issues of the MPC The main idea of predictive control is to use the model of

scheme by using a (1) simplified hybrid model of the system, the plant to predict the future evolution of the system [7],
(2) periodic robust invariant sets as terminal constraints and [8], [13]. At each sampling time, starting at the current
(3) @ moving window blocking strategy. state, an open-loop optimal control problem is solved over
| INTRODUCTION a finite horizon. The _opt|mal command S|gn_al is applied to
) o . . the process only during the following sampling interval. At
According to the statistics complied by Environmentale next time step a new optimal control problem based
Protection Agency (EPA) in 2004, buildings in the Unitedy, new measurements of the state is solved over a shifted
States account for 39% of total energy usage, 12% of the t0§glyion. The resultant controller is referred to as Reagdin
water consumption, 68% of total electricity consumptionygrizon Controller (RHC). A receding horizon controller
and 38% of the carbon dioxide emissions. It is thereforgare the finite time optimal control law is computed by
economically, socially and environmentally significant t0so|ying an on-line optimization problem is usually referte
reduce the energy consumption of buildings. ~as Model Predictive Control (MPC). For complex constrained
Reductions of 70% in energy use in buildings are requireg, ,jivariable control problems, model predictive contnais
to achieve the goals for the building sector set by a numbgg:ome the accepted standard in the process industriéss[S]:
of organizations, including the California Public Uté8 gccess is largely due to its almost unique ability to handle
Commission. Achieving this goal requires the developmendimny and effectively, hard constraints on control andesta
of highly efficient heating and cooling systems, which are ajnough this paper focuses on the specific architecture of
more challenging to control than conventional systems [l}e yc Merced Campus, the main ideas and methodologies
[2], [15], [14], [6]. For a wide range of innovative heating can pe applied to a wider class of buildings systems which
and cooling systems, their enhanced efficiency depends Q8e thermal energy storage. In particular our contribstion
the active storage of thermal energy. are: (i) the development of a simple, yet descriptive bimodal
This paper focuses on the modeling and the control Qfyiiching nonlinear model of the overall cooling systéii),
the thermal energy storage on the campus of the Universifife development of a MPC scheme for minimizing energy
of Callfo”rnl_a, Merced, UﬁA- The campus has been designgdnsumption(iii) the presentation of preliminary simulation
to be a _ living Iabora_ltor)_/ and has a significantly enhancedggits showing a potential 10% energy saving compared to
level of instrumentation in order to support the developmerburrenﬂy adopted policies.
and demonstration of energy-efficient technologies and-pra  particular attention is given to the real-time implementa-
tices. It consists of a chiller plant (three chillers redanty  +on and feasibility issues of MPC:
configured as two in series, one backup in parallel), an array ;A gyal stage optimization is used in order to efficiently
of cooling towers, a 7008 chilled water tank, a primary solve a mixed-integer nonlinear program [16], [3]: the
dIStI’IbUtI(.)n. system and secondary dlstr|butlon Ioop_s isgrv first stage selects when to charge the tank by incorpo-
each building of the campus. The two series chll!ers are rating heuristics on the plant operation and its cost; the
operated each night to recharge the ;torage tank which meets ¢o.qng stage optimally controls the chillers during the
campus cooling demand the following day. Although the charging period. In the second stage a periodic moving
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vary building cooling demand. Persistent feasibility is
obtained in our scheme by using a time-varying periodic
robust invariant set as terminal constraint. Such periodic
invariant sets are computed base on the algorithm pro-
posed in [4] and on experimental data.

We remark that the evaluation of optimal controllers for
active and passive building thermal storage has been studie
in the past by several authors (see [9], [17], [11], [10] and
references therein). In particular in [9] the authors itigede
a three-story office building equipped with two chillers lwit
constant coefficient of performance and a thermal energy
storage system. An optimal controller is designed in order
to compute the cooling produced by the two chillers without
accounting for pump power. Experimental results are pre-
sented in [17] where the optimal controller is implemented
in a receding horizon fashion on an unoccupied test bed.

The paper is organized as follows. In Section Il a general
introduction to the system, and develops a simplified hybrid
model of the system. In Section Ill the MPC control algo-
rithm is outlined together with the dual stage strategy, the
move blocking strategy as well as the terminal constraints
computation. Simulation results are presented in Seckion |
Finally, conclusions are drawn in Section V.

Il. SYSTEM MODEL

In this section we describe the main components of the UC
Merced Campus used to generate and store thermal energy.
UC Merced campus has been built with a vision to create
living laboratories for energy research. In this paper weifo
on the higher level control systems which actuates three
electric chillers that are operated at night to take adwnta
of nighttime electricity rates and lower ambient tempeamtu
when filling up two-million-gallon tank of chilled water. Eh
following day, the chilled water is pumped from the tank an

parameters  description
P fluid density [kg/n¥]
Ac: cross sectional area of tankif]
ki: heat transfer coefficient to ambient [W/K]
ka: heat transfer coefficient between
cool and warm mass of water [W/K]
specific heat of water [JC' ]
radius of the tank [m]
S: Weight on the energy consumption
R: Weight on the control input
Length of prediction horizon
Length of control horizon

TABLE I: Parameters

variables  description

specific enthalpy [J/kg]
enthalpy flow rate [W]
mass flow rate [kg/s]
pressure [Pa]

power [W]

Internal energy of water [J]
heat flow transferred from one
medium to another [W]
Temperature [K]

mass of water

height of water [m]

cooling load [W]

in oSyeIEy

O

TABLE II: Variables

subscriptions  description
b water below thermocline
‘an water above thermocline
‘emp: campus

campus return
campus supply

‘emp,r-.

‘emp,s-

“CHWS: chilled water supplied from the chillers
"CHWR. chilled water returning to the chillers
camb: ambient
wh- wet bulb

TABLE IlI: Subscripts

dA" Nomenclature

distributed throughout the campus. Secondary pumps drawThe following variables, parameters and subscripts will be
water from the distribution system into each building, weherused in this paper.

it runs through a set of air-handler units (AHUs) and returns

to the tank. Figure 1 shows the main scheme of the systefd. Simplifying Assumptions

The system consists of a condenser loop, a primary logR1]
a secondary (campus) loop, and several tertiary (building)
loops. The chilled water is generated via chillers and ogpli
towers within the the primary and condenser loops. The
chilled water is stored in a stratified thermal energy stor-
age tank. The chilled water is distributed to the buildings
throughout campus via the secondary loop. The tertiary loop
uses pumps and valves within each building to distribute the
chilled water for consumption by the cooling coils and air
handling units (AHUS). The chilled water is warmed by the
air-side cooling load of the buildings and returned to the
secondary loop.

The next section presents a dynamic model of the system.
Our objective is to develop a simplified yet descriptive mode
which can be used for real time optimization in a MPC
scheme.

The water in the tank is subject to minor mixing
and thus can be modeled as a stratified system with
layers of warmer water (285 K) at the top and cooler
water (277 K) at the bottom. Figure 2 depicts the
temperature of the water measured inside the tank
at different heights at 8:30am on the 29th of Nov.
2007. One can observe a steep temperature gradient
over the height of the tank, which is known as a
thermocline. For this reason we lump warmer water
above the thermocline and cooler water below the
thermocline to obtain a 4-state system describing the
height and temperature of the warmer and cooler water,
respectively. Note that in this paper cooler (warmer)
water means water that is cooler (warmer) than the
thermocline.
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Fig. 1: Scheme plot of the chilling system
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Fig. 2: Temperature distribution of water in the tank

between controlled variables and references so that:

Tews = Tcows,ref (1a)
MoHWS = MCOHW S, ref (1b)
Teaws = TocHWS,ref (1c)

[A3] Pipes are frictionless and insulated.

[A4] The campus is considered as a lumped disturbance in
terms of heat flux required to cool down all buildings
over the campus.

C. Main subsystems of the cooling system

Next we detail the main system components and their
models.

1) Chillers and Cooling Towers ModeBased on assump-
tion A2, the power used by the pumps, chillers and the
cooling towers is modeled as a static functionZ@fy v s,
Tews, moaws, Topwr (defined in assumption A2):

P = Power(Tcaws, Tews, mcaws, Tws: TcHWR)-

(2)
where T, is the temperature read from a wet bulb ther-
mometer. The wet bulb temperature physically reflects the
temperature and humidity of the ambient air.

The functionPower(-) is implemented as a 5-D look-up
table (/ x 6 x 6 x 5 x 7) obtained by extensive simulations
of a high fidelity model under various initial conditions.

2) Thermal Energy Storage TankVe use assumption Al,
and also assume that the tank is part of a closed hydronic
loop, that is, the mass flow rate entering (exiting) the tank
is equal to the mass flow rate exiting (entering) the tank.
Subsequently, the height of water in the tank+ z, is a
constantz; g,k

The tank can operate in two modes depending on the
control inputs and the disturbances.

a) Charging: If the flow rate produced by the chiller is
greater than campus flow rate...,, s, the difference will be
charging the tank. By simple mass and energy conservation
law, the dynamic of the tank in charging mode can be
modeled as:

Hy, = 1m,CyTonws (3a)
H, = 1m,C,T, (3b)
Tcmp,s = TC'HWS (30)

Tcmp,rmcmp,r - Tama (3d)

Teuwr =

[A2] Lower-level controllers actuate chillers and cooling ) . MCHWR
towers in order to achieve a desired temperature of MCHWS 2 Memp,s (3e)

condensed water produced by cooling towEt$y s,

mass flow rate of chilled water Supp"ed by chillers where the variables have been defined in Tables I, II, IlI.

mcaws,ref and chilled water temperatu@: v s e f-

b) Discharging: If the flow rate produced by the chiller

We neglect the dynamics of controlled chillers ands less than campus flow rate.,,, s, tank will be discharged.
cooling towers and assume that there is no tracking errdhe following equations model the dynamic of the tank in



25 D. Control Variables
s | 1) Tews,rer: Reference temperature of the water exiting
g the cooling tower.
% 4
ISy .
g 2) mcgws: Mass flow rate of the chiller water supply.
g It is a disconnected set. The mass flow rate is 0 when
§ 1 chiller is off, and[2, 235] while the chiller is operating.
0 10 15 20 25 3) Teaws,res. Reference temperature of the water out
Time (hour) of the chiller.

Fig. 3: Campus Load

E. Measured Variables

charging mode. 1) Torwr: Temperature of the water flowing back to
i, = 110Cy Tomapr (4a) the chiller.
Hy = 1y Cp Ty (4b) 2) T, Temperature of the cool water in the tank.
T _ Tenwsincuaws — Ty (4c)

emp,s Memp 3) Ty: Temperature of the warm water in the tank.

TCHWR - Tcmp,r (4d) X .
. < 4 4) Z,: Height of the warm water in the tank above the
MOHWS = Memp,s (4e) thermocline.

Independently of the mode, the mass and internal energy5) Z,: Height of the cool water in the tank below the

conservation laws always hold: thermocline.
Zy = (mCHWS - mcmp,s)/p/Ac§ (53)
Za 4+ 2 =0: (5b) F. Operation Constraints
Uo = Ho + Qv>a + Qamb>a; (5¢) The following constraints avoid the malfunction of the
Uy = Hy + Ousp + O ampob: (5d) system components.

. TCWS,ref € [285,295]K

WhereQ amp>a (Qamp>s) is the heat transfer from ambient | i, s € {0} UJ[20, 235)kg /5.
to the warmer (cooler) water in the tank:

QAmb>a - (Tamb - Ta)(Q'/TrtankZa)kl ¢ TCHWS,ref € [2765’ 2804}K

andQ,>1 (Qv>.) is the heat conducted from warmer (cooler) o Tepwr € [283,295]K.
water to cooler (warmer) water in the tank:

Qa>b = (Ta - Tb)(ﬂ—r?ank)k2

3) Campus Model:We use assumption A4 along with a
simple energy balance equation, and the campus load can bdy collecting Equations (3)—(6), and also descretizing the

o Jp € [0.1, 1}Ztank-

G. Model Summary

represented as: system with sampling time of 1 hour, the dynamic equations
. . can be compacted as following:
Qcmp = mc’mpcp (Tcmp,’r - Tc?np,s) (6)
Whereri,,, is mass flow rate to the campuk;,,, s is the ot +1) = f(@(t), u(t), d(t)) (73)
temperature of water supplied to the camlis,,, , denotes y(t) = g(x(t), u(t), d(t)); (7b)

the temperature of water returning to the camp@g,tnp IS \where
the summation of the heat load required from each campus L )
building. We use historical data @t.y,s, Temp,r aNd1itcn, _ { (z(t),u(t),d(t)); if merws < Memp

fi

fQ(I'(t), u(t), d(t)), if MCHWS > mcmp
Tews,res;meaws; Tecawsref] € U

[

in order to compute the possible range @f,,,. Figure 3
plots historical daily campus load during Sep. 2008, and we u(
observe that the load has a period of one day. It is reasonable a(
to model the load as a periodic disturbance with periodic (
envelope constraints (the bounds are represented witkethic

lines in Figure 3). y(



SUMMER Period A (May 1st though Oct. 31st)
Peak 12:00-18:00 except holidays . MPC PROBLEM FORMULATION

Partial-peak  8:30-12:00 except holidays ) . )
AND 18:00-9:30 This section presents the design of a MPC control whose
Off-peak  21:30-8:30 Mon. through Fi. objective is to find the optimal control sequence so that we
ALL DAY Sat., Sun, and holidays can satisfy the required cooling load while receiving the
WINTER Period B (Nov. 1st though Apr. 30st) .. q . 9 . L 9
Partial-peak  8:30-21:30 except holidays lowest electricity bills. Consider the following optimizan
Off-peak 21:30-8:30 Mon. through Fri. problem:
ALL DAY Sat., Sun, and holidays
TABLE IV: Definition of time periods N-1
" . .
T @)= min IO+ DBy, uie)ls
Oty " »UM—1|t .
Total Demand Rates ($ per kW) ! =1
Maximum Peak Demand Summer $12.40 + luie |l r} (9a)
Maximum Part-Peek Demand Summer $ 2.74
Maximum Demand Summer $ 7.52 s.t.
Maximum Part-Peak Demand Winter $1.04 ) - .
Maximum Demand Winter $ 7.52 Yile € Y, VZ. 1,2, N (9b)
TABLE V: Total Demand Rates Uile © Uvi=12--,N (90)
ynpe € Yp(t); (9d)
Total Energy Rates ($ per kWh) E(xir. w,) = Power(z:i,. w1, )AT 9e
Peak Summer $0.13593 E it 7’“), , (il "’;), A,( )
Part-Peak Summer $ 0.09204 [wopps =+ s un—1e) = B @ Im[ig), -+ 5 Wpr—y),]
Off-Peak Summer $ 0.07392 (9f)
Part-Peak Winter $ 0.08155
Off-Peak Winter $ 0.07118 Tyt = f(@p)es wg)e, d(k)); (99)
TABLE VI: Total Energy Rates Ynjt = Q(Ik\b Ut d(k)); (9h)
d(k) e D(k),Vk=1,2,--- |N (90)

U is the feasible control input set defined in Section II-F;

Y is the feasible output set defined in Section 113B{t)  whereY (t) is the terminal constraint sef;(t) is the energy
refers to the time-variant disturbances ranges and is dbfingrice at timet, AT = 1 hour, S is the weight on the energy
in Figure 3. consumption, andr is the weight of the control inputs.

Let U, nye = {uf), - ufiy_y;} be the optimal
solution of Problem (9) at time, and J; (z(t)) the corre-
sponding value function. Then, the first eIemenUgLHN‘t

The energy price mainly refers to the unit price of the eleds implemented to the system (7):
tricity power consumed by the chilling system. UC Merced
is currently enrolled in a special plan, electric schedule u(t) = uz, (20)
E-20, which is designated for customers with maximum
demands of 1000 kilowatts or more. The customer’s monthiyhe optimization Problem (9) is repeated at time- 1,
charge for the service under Schedule E-20 is the sum based on the new state ., = =(t + 1), yielding a
a customer charge, demand charges, and energy chargasying or receding horizon contratrategy. The proposed
and all the unit price varies depending on the period d¥IPC controller uses a move blocking strategy to reduce the
time. Table IV shows the definition of the time periods. Theeomputational time required for its real time implemerdafi
customer charge is a flat monthly fee, which is a constant invhich will be detailed later. The control sampling time isson
dependent of time. Schedule E-20 has three demand chardemsr, and prediction horizon is set to 24h (one day).

a maximum-peak-period demand charge, a maximum-part-

peak-peri_od demand Cha_lrge, and a maximum-dem_and Charﬂ.e'Dual Stage Optimization

The maximum-peak-period-demand charge per kilowatt ap-

plies to the maximum demand during the month’s peak hour, Problem (9) is a MINLP (Mix Integer Nonlinear Program),
the maximum-part-peak-demand charge per kilowatt appli@ghose complexity limits real time implementation. We solve
to the maximum demand during the months part-peak hourthie Problem (9) by using a tailored branch and bound
and the maximum-demand charge per kilowatt applies to tistrategy. In the first stage, we choose the tank operation
maximum demand at any time during the month. Table Vhode profile, and in the second stage, with a fixed tank
lists all the demand rates according to the specific period.operation mode, the problem is recast to a NLP (nonlinear
The energy charge is the sum of the energy charges fropnogram) problem which can be solved by optimization
the peak, partial-peak, and off-peak periods. We denote tipackages available such B$SOL[12].

unit electricity price defined by Table V as the functioit). In this paper, the results presented use a fixed tank operatio
The customer pays for energy by the kilowatt hour (kWh)mode profile shown in Figure 4, where 1 means charging
The detailed energy rates refers to Table VI mode and -1 indicates discharging mode.

H. Energy Price



Tank operation mode profile length matrices for each step. In this work, we chobge=

! [2, 2, 18, 1, 1, 0], and Algorithm 1 will give
of ] Li=[1,2 18 1, 1, 1]
b | Ly =12, 18, 1, 1, 2, 0]
0 5 10 15 20 Ls=11, 18, 1, 1, 2, 1]
time(hour) [ }

Fig. 4: Tank Operation Mode Profile

_ Loy =12, 2,18, 1, 1, 0]
B. Move Blocking Strategy C. Terminal Constraints

The prediction horizon of the pr MP ntroller . .
e prediction horizon of the proposed C controle It is well known that stability and feasibility are not

is 24 hours, and the control sampling time is one hour. As ) . .
' Ping nsured by the MPC law without terminal cost or termi-

a result, there would be total 72 optimization variables as . ) .
P nal constraints. Usually the problem is augmented with a

the control input dimension is 3. It is common practice toerminal cost and a terminal constraint &t Tvoicall
reduce the degrees of freedom by fixing the input or itS . ; . . F. Typically
¢ is a robust control invariant set which guarantees that

derivatives to be constant over several time steps [19hif t if Problem (9) is feasible for a givemy, then it is always
paper, we are using the Moving Window Blocking approac b asible fort > 0 9 o y

Eg;g:)es (:)? O\I/?di[r?g]t’hZVZI ggrsithrr]nezi et(;] e following deflmtlonsA formal definition of robust control invariant sets follows

Deon (st kg aign s DONOD 9 (FobstConol mvaran seth e
B € {0,1}"¥*M s an admissible blocking matrix if y

M < N, and one entry in each row of B is equal to 1, thefor every
elements of the matrix are arranged in an "upper staircase(k) € C, Ju(k) € U| f(z(k),u(k),d(k)) CC Vd(k) €D
form, i.e. if the column in which a 1 occurs in the i'th row

is The setC, is said to be thenaximalrobust control invariant

o ‘ if it is robust control invariant and contains all robust toh
3*(i) == {j|Bi; = 1} invariant set contained iX. Where f(z(k), u(k), d(k)) is
defined in Equation (7).

A treatment of sufficient conditions which guarantees gersi
tent feasibility of MPC problems goes beyond the scope of
o ) ) .. this work and can be found in the surveys [18]; Since the
Definition 2 (Blocking Length Vector)Given an admissi- yiqy rhance is periodic, the idea proposed by F. Blanchini

ble blocking .matri>§B € {0, 1}, the _blocking Ien_gth and W. Ukovich in [4] can be applied to the proposed MPC
vector L(B) is defined as the columnwise summation ofqyoler. The invariant sets, if it exists, will be timeriant

the_ matrix B._ An admissible_ block vector corresponds to and periodic with the same period as the disturbances.

unique quckmg Iength maltrlx. In order to guarantee that the tank has enough cold water to

The following algorithm is in the proposed MPC. gqiisfy the demand, we use the algorithm proposed in [4] to
Algorithm 1 (Moving Window Blocking)Given an initial  cajculate the CPI (Controlled Periodic Invariant) setstfer

thenj*(i+1) > j*(4) forall i € {1,2,--- ,N — 1}. Where
B; ; denotes the element of ith row and jth column of
matrix B.

blocking length matrixLo; system described in Equations (5a). The system is a simple
1) leti=0; buffer plant subject to constraints in Section II-F and peic
disturbance modeled in Figure 3.
2) if L;(1) > 1, We implemented the algorithm proposed in [4] and Fig-
ure 5 plots the lower bound of the computed periodic set
Livy = Ls; Y (t). If the height of the cooler water in the tank is greater
Lit1(1):=L;i(1) - 1; than the lower bounds, there exists a feedback control law
Lis1(end) := Li(end) + 1. th_at will sat_isfy any dis’Furbance belonging_to the envel'mpe
Figure 3 without violating the states and inputs constraint
if Li(1) =1, IV. SIMULATION RESULTS
Lis1 = [Li(2: end), L;y(1),0]. Define the one day Electricity Bill as
t=24
3) if L; = Ly, stop. Otherwise, go to next step; Bill = Z Pr(t)Power(zs, us) AT (12)
t=0
4) leti:=i+1, and go to step 2. where AT is the sampling time (1 hour).
Where L;(end) is the last element of ;. Next we simulate system (7) in closed loop with the

By following Algorithm 1, we can get a series of blocking MPC controller (9), (7) and compare the results with current



Lower bound of the CPI sets
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1) Current Manual Operation: The cooling system in time (hour)

UC Merced is operated manually with following control
input sequences. The temperatures set-pdipts s .., and
Teaws,rey are kept constant t@86.26/K and 277.04K
respectively, and the chiller will be ON around 10pm to 2a Tews

every two days to charge the tank to full with a constant me 292 ‘ ‘
flow rate of 138K g/s and the chiller is off the rest of time. e
Simulation results plotted in Figure 6 shows that the syste 290} g
converges to a periodic operation. The tank will is charg€
to full during the night, and discharged at daytime. Based % 288l 1
Equation (12), the average bill in one day for this heurist™

control sequence i8174.54. e s Ll

Fig. 7: Simulation result of MPC controller
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2) Operation With MPC Controller:Simulation results = | __ _ | __ _ll__ _ Wl __W___W___ll - __
plotted in Figure 7 shows that the system converges to 276 i
periodic operation. Figure 8 reports the control inputs o
heuristic control logic and MPC controller. The systemestat 72 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
evolution is shown in Figure 7. We can observe that th 0 20 40 60 80 100 120 140 160 180
height and the temperature of the cold water in the tann © Comrof'mgtf?%'[){ws
behaves periodically over the time. The optimal MPC policy
does not charge the tank to the full capacity an thus avoiding Fig. 8: MPC Control Sequence

tank losses. Instead, the tank is preferably chargegb{o
of the tank volume to achieve better efficiency. Also, the



resulting bill under the MPC policy (at periodic steady s}at [15]
in one day is$131.71, which corresponds to a saving of
24.5% compared to the heuristic controller. [16]
V. CONCLUSIONS

In this paper, we introduced a simplified model of the chill-
ing system at UC Merced and a Model Predictive Control
algorithm. Periodic invariant sets, moving block strategyl
dual stage optimization have been used to tackle complexifyo]
and feasibility issues of the resulting scheme. Prelinyinar
simulation results showed that the daily electricity bdhde 20]
reduced of24.5% compared to the current heuristic manual
control sequence. The results is very promising and current
work is focusing on model validation in order to confirm
that a similar range of performance improvement could be
obtained for the actual plant. In particular the buildingdo
model requires further investigation and validation. Oeam
future work will also involve experimental validation ofeh
proposed scheme at UC Merced.

[17]
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