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Abstract— A preliminary study on the application of a model-
based predictive control (MPC) of thermal energy storage in
building cooling systems is presented. We focus on buildings
equipped with a water tank used for actively storing cold
water produced by a series of chillers. Typically the chillers
are operated each night to recharge the storage tank in order
to meet the buildings demand on the following day. A MPC for
the chillers operation is designed in order to optimally store the
thermal energy in the tank by using predictive knowledge of
building loads and weather conditions. This paper addresses
real-time implementation and feasibility issues of the MPC
scheme by using a (1) simplified hybrid model of the system,
(2) periodic robust invariant sets as terminal constraints and
(3) a moving window blocking strategy.

I. INTRODUCTION

According to the statistics complied by Environmental
Protection Agency (EPA) in 2004, buildings in the United
States account for 39% of total energy usage, 12% of the total
water consumption, 68% of total electricity consumption,
and 38% of the carbon dioxide emissions. It is therefore
economically, socially and environmentally significant to
reduce the energy consumption of buildings.

Reductions of 70% in energy use in buildings are required
to achieve the goals for the building sector set by a number
of organizations, including the California Public Utilities
Commission. Achieving this goal requires the development
of highly efficient heating and cooling systems, which are
more challenging to control than conventional systems [1],
[2], [15], [14], [6]. For a wide range of innovative heating
and cooling systems, their enhanced efficiency depends on
the active storage of thermal energy.

This paper focuses on the modeling and the control of
the thermal energy storage on the campus of the University
of California, Merced, USA. The campus has been designed
to be a ”living laboratory” and has a significantly enhanced
level of instrumentation in order to support the development
and demonstration of energy-efficient technologies and prac-
tices. It consists of a chiller plant (three chillers redundantly
configured as two in series, one backup in parallel), an array
of cooling towers, a 7000m3 chilled water tank, a primary
distribution system and secondary distribution loops serving
each building of the campus. The two series chillers are
operated each night to recharge the storage tank which meets
campus cooling demand the following day. Although the
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storage tank enables load shifting to off-peak hours to reduce
peak demand, the lack of an optimized operation results
in conservatively over-charging the tank where conductive
losses erode efficiency. The objective of this paper is to
design a predictive controller in order to minimize energy
consumption while satisfying the unknown but bounded
cooling demand of the campus buildings and operational
constraints.

The main idea of predictive control is to use the model of
the plant to predict the future evolution of the system [7],
[8], [13]. At each sampling time, starting at the current
state, an open-loop optimal control problem is solved over
a finite horizon. The optimal command signal is applied to
the process only during the following sampling interval. At
the next time step a new optimal control problem based
on new measurements of the state is solved over a shifted
horizon. The resultant controller is referred to as Receding
Horizon Controller (RHC). A receding horizon controller
where the finite time optimal control law is computed by
solving an on-line optimization problem is usually referred to
as Model Predictive Control (MPC). For complex constrained
multivariable control problems, model predictive controlhas
become the accepted standard in the process industries [5]:its
success is largely due to its almost unique ability to handle,
simply and effectively, hard constraints on control and states.

Although this paper focuses on the specific architecture of
the UC Merced Campus, the main ideas and methodologies
can be applied to a wider class of buildings systems which
use thermal energy storage. In particular our contributions
are:(i) the development of a simple, yet descriptive bimodal
switching nonlinear model of the overall cooling system,(ii)
the development of a MPC scheme for minimizing energy
consumption,(iii) the presentation of preliminary simulation
results showing a potential 10% energy saving compared to
currently adopted policies.

Particular attention is given to the real-time implementa-
tion and feasibility issues of MPC:

• A dual stage optimization is used in order to efficiently
solve a mixed-integer nonlinear program [16], [3]: the
first stage selects when to charge the tank by incorpo-
rating heuristics on the plant operation and its cost; the
second stage optimally controls the chillers during the
charging period. In the second stage a periodic moving
window blocking strategy is used in order to reduce
the computational time associated with the resulting
nonlinear constrained optimization.

• Persistent feasibility requires that the tank has always
enough energy to satisfy an unknown but bounded time-



vary building cooling demand. Persistent feasibility is
obtained in our scheme by using a time-varying periodic
robust invariant set as terminal constraint. Such periodic
invariant sets are computed base on the algorithm pro-
posed in [4] and on experimental data.

We remark that the evaluation of optimal controllers for
active and passive building thermal storage has been studied
in the past by several authors (see [9], [17], [11], [10] and
references therein). In particular in [9] the authors investigate
a three-story office building equipped with two chillers with
constant coefficient of performance and a thermal energy
storage system. An optimal controller is designed in order
to compute the cooling produced by the two chillers without
accounting for pump power. Experimental results are pre-
sented in [17] where the optimal controller is implemented
in a receding horizon fashion on an unoccupied test bed.

The paper is organized as follows. In Section II a general
introduction to the system, and develops a simplified hybrid
model of the system. In Section III the MPC control algo-
rithm is outlined together with the dual stage strategy, the
move blocking strategy as well as the terminal constraints
computation. Simulation results are presented in Section IV.
Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL

In this section we describe the main components of the UC
Merced Campus used to generate and store thermal energy.
UC Merced campus has been built with a vision to create
living laboratories for energy research. In this paper we focus
on the higher level control systems which actuates three
electric chillers that are operated at night to take advantage
of nighttime electricity rates and lower ambient temperature
when filling up two-million-gallon tank of chilled water. The
following day, the chilled water is pumped from the tank and
distributed throughout the campus. Secondary pumps draw
water from the distribution system into each building, where
it runs through a set of air-handler units (AHUs) and returns
to the tank. Figure 1 shows the main scheme of the system.

The system consists of a condenser loop, a primary loop,
a secondary (campus) loop, and several tertiary (building)
loops. The chilled water is generated via chillers and cooling
towers within the the primary and condenser loops. The
chilled water is stored in a stratified thermal energy stor-
age tank. The chilled water is distributed to the buildings
throughout campus via the secondary loop. The tertiary loop
uses pumps and valves within each building to distribute the
chilled water for consumption by the cooling coils and air
handling units (AHUs). The chilled water is warmed by the
air-side cooling load of the buildings and returned to the
secondary loop.

The next section presents a dynamic model of the system.
Our objective is to develop a simplified yet descriptive model
which can be used for real time optimization in a MPC
scheme.

parameters description
ρ: fluid density [kg/m3]

Ac: cross sectional area of tank [m2]
k1: heat transfer coefficient to ambient [W/K]
k2: heat transfer coefficient between

cool and warm mass of water [W/K]
Cp: specific heat of water [J/◦C ]

rtank: radius of the tank [m]
S: Weight on the energy consumption
R: Weight on the control input
Hp: Length of prediction horizon
Hu: Length of control horizon

TABLE I: Parameters

variables description
h: specific enthalpy [J/kg]
Ḣ: enthalpy flow rate [W]
ṁ: mass flow rate [kg/s]
p: pressure [Pa]
P : power [W]
U : Internal energy of water [J]
Q̇: heat flow transferred from one

medium to another [W]
T : Temperature [K]
m: mass of water
z: height of water [m]
Q̇l: cooling load [W]

TABLE II: Variables

subscriptions description
·b: water below thermocline
·a: water above thermocline

·cmp: campus
·cmp,r : campus return
·cmp,s: campus supply
·CHWS : chilled water supplied from the chillers
·CHWR: chilled water returning to the chillers
·amb: ambient
·wb: wet bulb

TABLE III: Subscripts

A. Nomenclature

The following variables, parameters and subscripts will be
used in this paper.

B. Simplifying Assumptions

[A1] The water in the tank is subject to minor mixing
and thus can be modeled as a stratified system with
layers of warmer water (285 K) at the top and cooler
water (277 K) at the bottom. Figure 2 depicts the
temperature of the water measured inside the tank
at different heights at 8:30am on the 29th of Nov.
2007. One can observe a steep temperature gradient
over the height of the tank, which is known as a
thermocline. For this reason we lump warmer water
above the thermocline and cooler water below the
thermocline to obtain a 4-state system describing the
height and temperature of the warmer and cooler water,
respectively. Note that in this paper cooler (warmer)
water means water that is cooler (warmer) than the
thermocline.



Fig. 1: Scheme plot of the chilling system
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Fig. 2: Temperature distribution of water in the tank

[A2] Lower-level controllers actuate chillers and cooling
towers in order to achieve a desired temperature of
condensed water produced by cooling towersTCWS,ref ,
mass flow rate of chilled water supplied by chillers
ṁCHWS,ref and chilled water temperatureTCHWS,ref .
We neglect the dynamics of controlled chillers and
cooling towers and assume that there is no tracking error

between controlled variables and references so that:

TCWS = TCWS,ref (1a)

ṁCHWS = ṁCHWS,ref (1b)

TCHWS = TCHWS,ref (1c)

[A3] Pipes are frictionless and insulated.

[A4] The campus is considered as a lumped disturbance in
terms of heat flux required to cool down all buildings
over the campus.

C. Main subsystems of the cooling system

Next we detail the main system components and their
models.

1) Chillers and Cooling Towers Model:Based on assump-
tion A2, the power used by the pumps, chillers and the
cooling towers is modeled as a static function ofTCHWS ,
TCWS , ṁCHWS , TCHWR (defined in assumption A2):

P = Power(TCHWS , TCWS , ṁCHWS , Twb, TCHWR).
(2)

where Twb is the temperature read from a wet bulb ther-
mometer. The wet bulb temperature physically reflects the
temperature and humidity of the ambient air.

The functionPower(·) is implemented as a 5-D look-up
table (7 × 6 × 6 × 5 × 7) obtained by extensive simulations
of a high fidelity model under various initial conditions.

2) Thermal Energy Storage Tank:We use assumption A1,
and also assume that the tank is part of a closed hydronic
loop, that is, the mass flow rate entering (exiting) the tank
is equal to the mass flow rate exiting (entering) the tank.
Subsequently, the height of water in the tankza + zb is a
constantztank.

The tank can operate in two modes depending on the
control inputs and the disturbances.

a) Charging: If the flow rate produced by the chiller is
greater than campus flow ratėmcmp,s, the difference will be
charging the tank. By simple mass and energy conservation
law, the dynamic of the tank in charging mode can be
modeled as:

Ḣb = ṁbCpTCHWS (3a)

Ḣa = ṁaCpTa (3b)

Tcmp,s = TCHWS (3c)

TCHWR =
Tcmp,rṁcmp,r − Taṁa

ṁCHWR

(3d)

ṁCHWS ≥ ṁcmp,s (3e)

where the variables have been defined in Tables I, II, III.

b) Discharging: If the flow rate produced by the chiller
is less than campus flow ratėmcmp,s, tank will be discharged.
The following equations model the dynamic of the tank in
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Fig. 3: Campus Load

charging mode.

Ḣa = ṁaCpTcmp,r (4a)

Ḣb = ṁbCpTb (4b)

Tcmp,s =
TCHWSṁCHWS − Tbṁb

ṁcmp

(4c)

TCHWR = Tcmp,r (4d)

ṁCHWS ≤ ṁcmp,s (4e)

Independently of the mode, the mass and internal energy
conservation laws always hold:

żb = (ṁCHWS − ṁcmp,s)/ρ/Ac; (5a)

ża + żb = 0; (5b)

U̇a = Ḣa + Q̇b>a + Q̇Amb>a; (5c)

U̇b = Ḣb + Q̇a>b + Q̇Amb>b; (5d)

WhereQ̇Amb>a (Q̇Amb>b) is the heat transfer from ambient
to the warmer (cooler) water in the tank:

Q̇Amb>a = (Tamb − Ta)(2πrtankza)k1

andQ̇a>b (Q̇b>a) is the heat conducted from warmer (cooler)
water to cooler (warmer) water in the tank:

Q̇a>b = (Ta − Tb)(πr2
tank)k2

3) Campus Model:We use assumption A4 along with a
simple energy balance equation, and the campus load can be
represented as:

Q̇cmp = ṁcmpCp(Tcmp,r − Tcmp,s) (6)

Whereṁcmp is mass flow rate to the campus;Tcmp,s is the
temperature of water supplied to the campus;Tcmp,r denotes
the temperature of water returning to the campus;Q̇cmp is
the summation of the heat load required from each campus
building. We use historical data ofTcmp,s, Tcmp,r andṁcmp

in order to compute the possible range ofQ̇cmp. Figure 3
plots historical daily campus load during Sep. 2008, and we
observe that the load has a period of one day. It is reasonable
to model the load as a periodic disturbance with periodic
envelope constraints (the bounds are represented with thicker
lines in Figure 3).

D. Control Variables

1) TCWS,ref : Reference temperature of the water exiting
the cooling tower.

2) ṁCHWS : Mass flow rate of the chiller water supply.
It is a disconnected set. The mass flow rate is 0 when
chiller is off, and[2, 235] while the chiller is operating.

3) TCHWS,ref : Reference temperature of the water out
of the chiller.

E. Measured Variables

1) TCHWR: Temperature of the water flowing back to
the chiller.

2) Ta: Temperature of the cool water in the tank.

3) Tb: Temperature of the warm water in the tank.

4) Za: Height of the warm water in the tank above the
thermocline.

5) Zb: Height of the cool water in the tank below the
thermocline.

F. Operation Constraints

The following constraints avoid the malfunction of the
system components.

• TCWS,ref ∈ [285, 295]K.

• ṁCHWS ∈ {0}
⋃

[20, 235]kg/s.

• TCHWS,ref ∈ [276.5, 280.4]K.

• TCHWR ∈ [283, 295]K.

• Zb ∈ [0.1, 1]ztank.

G. Model Summary

By collecting Equations (3)–(6), and also descretizing the
system with sampling time of 1 hour, the dynamic equations
can be compacted as following:

x(t + 1) = f(x(t), u(t), d(t)) (7a)

y(t) = g(x(t), u(t), d(t)); (7b)

where

f =

{

f1(x(t), u(t), d(t)); if ṁCHWS ≤ ṁcmp

f2(x(t), u(t), d(t)); if ṁCHWS > ṁcmp

u(t) = [TCWS,ref ; ṁCHWS ;TCHWS,ref ] ∈ U

x(t) = [Ua;Ub; za; zb]

d(t) = [ṁcmp,s] ∈ D(t)

y(t) = [TCHWR; zb] ∈ Y.



SUMMER Period A (May 1st though Oct. 31st)
Peak 12:00–18:00 except holidays
Partial-peak 8:30–12:00 except holidays

AND 18:00–9:30
Off-peak 21:30–8:30 Mon. through Fri.

ALL DAY Sat., Sun, and holidays

WINTER Period B (Nov. 1st though Apr. 30st)
Partial-peak 8:30–21:30 except holidays
Off-peak 21:30–8:30 Mon. through Fri.

ALL DAY Sat., Sun, and holidays

TABLE IV: Definition of time periods

Total Demand Rates ($ per kW)
Maximum Peak Demand Summer $ 12.40
Maximum Part-Peek Demand Summer $ 2.74
Maximum Demand Summer $ 7.52
Maximum Part-Peak Demand Winter $ 1.04
Maximum Demand Winter $ 7.52

TABLE V: Total Demand Rates

Total Energy Rates ($ per kWh)
Peak Summer $ 0.13593
Part-Peak Summer $ 0.09204
Off-Peak Summer $ 0.07392
Part-Peak Winter $ 0.08155
Off-Peak Winter $ 0.07118

TABLE VI: Total Energy Rates

U is the feasible control input set defined in Section II-F;
Y is the feasible output set defined in Section II-F;D(t)
refers to the time-variant disturbances ranges and is defined
in Figure 3.

H. Energy Price

The energy price mainly refers to the unit price of the elec-
tricity power consumed by the chilling system. UC Merced
is currently enrolled in a special plan, electric schedule
E-20, which is designated for customers with maximum
demands of 1000 kilowatts or more. The customer’s monthly
charge for the service under Schedule E-20 is the sum of
a customer charge, demand charges, and energy charges,
and all the unit price varies depending on the period of
time. Table IV shows the definition of the time periods. The
customer charge is a flat monthly fee, which is a constant in-
dependent of time. Schedule E-20 has three demand charges,
a maximum-peak-period demand charge, a maximum-part-
peak-period demand charge, and a maximum-demand charge.
The maximum-peak-period-demand charge per kilowatt ap-
plies to the maximum demand during the month’s peak hour,
the maximum-part-peak-demand charge per kilowatt applies
to the maximum demand during the months part-peak hours,
and the maximum-demand charge per kilowatt applies to the
maximum demand at any time during the month. Table V
lists all the demand rates according to the specific period.
The energy charge is the sum of the energy charges from

the peak, partial-peak, and off-peak periods. We denote the
unit electricity price defined by Table V as the functionC(t).
The customer pays for energy by the kilowatt hour (kWh).
The detailed energy rates refers to Table VI

III. MPC PROBLEM FORMULATION

This section presents the design of a MPC control whose
objective is to find the optimal control sequence so that we
can satisfy the required cooling load while receiving the
lowest electricity bills. Consider the following optimization
problem:

J⋆(x(t), t) = min
û0|t,··· ,ûM−1|t

N−1
∑

i=1

{‖C(t + i)E(xi|t, ui|t)‖S

+ ‖ui|t‖R} (9a)

s.t.

yi|t ∈ Y,∀i = 1, 2, · · · , N (9b)

ui|t ∈ U,∀i = 1, 2, · · · , N (9c)

yN |t ∈ Yf (t); (9d)

E(xi|t, ui|t) = Power(xi|t, ui|t)∆T (9e)

[u′
0|t, · · · , u′

N−1|t]
′ = B ⊗ Im[û′

0|t, · · · , û′
M−1|t]

(9f)

xk+1|t = f(xk|t, uk|t, d(k)); (9g)

yk|t = g(xk|t, uk|t, d(k)); (9h)

d(k) ∈ D(k),∀k = 1, 2, · · · , N (9i)

whereYf (t) is the terminal constraint set,C(t) is the energy
price at timet, ∆T = 1 hour,S is the weight on the energy
consumption, andR is the weight of the control inputs.

Let U⋆
t→t+N |t = {u⋆

t|t, · · · , u⋆
t+N−1|t} be the optimal

solution of Problem (9) at timet, and J⋆
t (x(t)) the corre-

sponding value function. Then, the first element ofU⋆
t→t+N |t

is implemented to the system (7):

u(t) = u⋆
t|t (10)

The optimization Problem (9) is repeated at timet + 1,
based on the new statext+1|t+1 = x(t + 1), yielding a
moving or receding horizon controlstrategy. The proposed
MPC controller uses a move blocking strategy to reduce the
computational time required for its real time implementation,
which will be detailed later. The control sampling time is one
hour, and prediction horizon is set to 24h (one day).

A. Dual Stage Optimization

Problem (9) is a MINLP (Mix Integer Nonlinear Program),
whose complexity limits real time implementation. We solve
the Problem (9) by using a tailored branch and bound
strategy. In the first stage, we choose the tank operation
mode profile, and in the second stage, with a fixed tank
operation mode, the problem is recast to a NLP (nonlinear
program) problem which can be solved by optimization
packages available such asNPSOL[12].
In this paper, the results presented use a fixed tank operation
mode profile shown in Figure 4, where 1 means charging
mode and -1 indicates discharging mode.
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B. Move Blocking Strategy

The prediction horizon of the proposed MPC controller
is 24 hours, and the control sampling time is one hour. As
a result, there would be total 72 optimization variables as
the control input dimension is 3. It is common practice to
reduce the degrees of freedom by fixing the input or its
derivatives to be constant over several time steps [19]. In this
paper, we are using the Moving Window Blocking approach
proposed in [20], We first need the following definitions
before providing the algorithm used.

Definition 1 (Admissible Blocking Matrix):A matrix
B ∈ {0, 1}N×M is an admissible blocking matrix if
M < N , and one entry in each row of B is equal to 1, the
elements of the matrix are arranged in an ”upper staircase”
form, i.e. if the column in which a 1 occurs in the i’th row
is

j⋆(i) := {j|Bi,j = 1}

thenj⋆(i + 1) ≥ j⋆(i) for all i ∈ {1, 2, · · · , N − 1}. Where
Bi,j denotes the element of i’th row and j’th column of
matrix B.

Definition 2 (Blocking Length Vector):Given an admissi-
ble blocking matrixB ∈ {0, 1}N×M , the blocking length
vector L(B) is defined as the columnwise summation of
the matrix B. An admissible block vector corresponds to a
unique blocking length matrix.
The following algorithm is in the proposed MPC.

Algorithm 1 (Moving Window Blocking):Given an initial
blocking length matrixL0;

1) let i = 0;

2) if Li(1) > 1,

Li+1 := Li;

Li+1(1) := Li(1) − 1;

Li+1(end) := Li(end) + 1.

if Li(1) = 1,

Li+1 := [Li(2 : end), Li(1), 0].

3) if Li = L0, stop. Otherwise, go to next step;

4) let i := i + 1, and go to step 2.

WhereLi(end) is the last element ofLi.
By following Algorithm 1, we can get a series of blocking

length matrices for each step. In this work, we chooseL0 =
[2, 2, 18, 1, 1, 0], and Algorithm 1 will give

L1 = [1, 2, 18, 1, 1, 1]

L2 = [2, 18, 1, 1, 2, 0]

L3 = [1, 18, 1, 1, 2, 1]

L4 = [18, 1, 1, 2, 2, 0]

...

L24 = [2, 2, 18, 1, 1, 0]

C. Terminal Constraints

It is well known that stability and feasibility are not
ensured by the MPC law without terminal cost or termi-
nal constraints. Usually the problem is augmented with a
terminal cost and a terminal constraint setYf . Typically
Yf is a robust control invariant set which guarantees that
if Problem (9) is feasible for a givenx0, then it is always
feasible fort ≥ 0.
A formal definition of robust control invariant sets follows.

Definition 3 (Robust Control Invariant Set):A setC ⊆ X

is said to be a robust control invariant set for system (7) if
for every

x(k) ∈ C, ∃u(k) ∈ U| f(x(k), u(k), d(k)) ⊆ C ∀d(k) ∈ D

The setC∞ is said to be themaximalrobust control invariant
if it is robust control invariant and contains all robust control
invariant set contained inX. Wheref(x(k), u(k), d(k)) is
defined in Equation (7).
A treatment of sufficient conditions which guarantees persis-
tent feasibility of MPC problems goes beyond the scope of
this work and can be found in the surveys [18]; Since the
disturbance is periodic, the idea proposed by F. Blanchini
and W. Ukovich in [4] can be applied to the proposed MPC
controller. The invariant sets, if it exists, will be time variant
and periodic with the same period as the disturbances.
In order to guarantee that the tank has enough cold water to
satisfy the demand, we use the algorithm proposed in [4] to
calculate the CPI (Controlled Periodic Invariant) sets forthe
system described in Equations (5a). The system is a simple
buffer plant subject to constraints in Section II-F and periodic
disturbance modeled in Figure 3.

We implemented the algorithm proposed in [4] and Fig-
ure 5 plots the lower bound of the computed periodic set
Yf (t). If the height of the cooler water in the tank is greater
than the lower bounds, there exists a feedback control law
that will satisfy any disturbance belonging to the envelopein
Figure 3 without violating the states and inputs constraint.

IV. SIMULATION RESULTS

Define the one day Electricity Bill as

Bill =

t=24
∑

t=0

Pr(t)Power(xt, ut)∆T (12)

where∆T is the sampling time (1 hour).
Next we simulate system (7) in closed loop with the

MPC controller (9), (7) and compare the results with current
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manual operation over 7 days. The load of the campus is
chosen to be the maximum of the load shown in Figure 3 in
order to test the robustness of the controller. The temperature
of wet bulb is extracted from the historical data and will be
replaced by the data from weather stations in future work.

1) Current Manual Operation:The cooling system in
UC Merced is operated manually with following control
input sequences. The temperatures set-pointsTCWS,ref and
TCHWS,ref are kept constant to286.26K and 277.04K
respectively, and the chiller will be ON around 10pm to 2am
every two days to charge the tank to full with a constant mass
flow rate of138Kg/s and the chiller is off the rest of time.
Simulation results plotted in Figure 6 shows that the system
converges to a periodic operation. The tank will is charged
to full during the night, and discharged at daytime. Based on
Equation (12), the average bill in one day for this heuristic
control sequence is$174.54.
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2) Operation With MPC Controller:Simulation results
plotted in Figure 7 shows that the system converges to a
periodic operation. Figure 8 reports the control inputs of
heuristic control logic and MPC controller. The system states
evolution is shown in Figure 7. We can observe that the
height and the temperature of the cold water in the tank
behaves periodically over the time. The optimal MPC policy
does not charge the tank to the full capacity an thus avoiding
tank losses. Instead, the tank is preferably charged to35%
of the tank volume to achieve better efficiency. Also, the
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Fig. 7: Simulation result of MPC controller
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Fig. 8: MPC Control Sequence



resulting bill under the MPC policy (at periodic steady state)
in one day is$131.71, which corresponds to a saving of
24.5% compared to the heuristic controller.

V. CONCLUSIONS

In this paper, we introduced a simplified model of the chill-
ing system at UC Merced and a Model Predictive Control
algorithm. Periodic invariant sets, moving block strategyand
dual stage optimization have been used to tackle complexity
and feasibility issues of the resulting scheme. Preliminary
simulation results showed that the daily electricity bill can be
reduced of24.5% compared to the current heuristic manual
control sequence. The results is very promising and current
work is focusing on model validation in order to confirm
that a similar range of performance improvement could be
obtained for the actual plant. In particular the building load
model requires further investigation and validation. Our near
future work will also involve experimental validation of the
proposed scheme at UC Merced.
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