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Model predictive control of urban drainage systems:
A review and perspective towards smart real-time water
management

Nadia Schou Vorndran Lund a, Anne Katrine Vinther Falk b, Morten Borup a,
Henrik Madsen b, and Peter Steen Mikkelsen a

aDepartment of Environmental Engineering (DTU Environment), Technical University of Denmark,
Bygningstorvet, Kgs. Lyngby, Denmark; bDHI, Hørsholm, Denmark

ABSTRACT

Model predictive control (MPC) can be used to manage
combined urban drainage systems more efficiently for
protection of human health and the environment, but examples
of operational implementations are rare. This paper reviews
more than 30 years of partly heterogeneous research on the
topic. We propose a terminology for MPC of urban drainage
systems and a hierarchical categorization where we emphasize
four overall components: the “receding horizon principle”, the
“optimization model”, the “optimization solver”, and the
“internal MPC model”. Most of the reported optimization models
share the trait of a multiobjective optimization based on a
conceptual internal MPC model. However, there is a large variety
of both convex and non-linear optimization models and
optimization solvers as well as constructions of the internal MPC
model. Furthermore, literature disagrees about the optimal
length of the components in the receding horizon principle. The
large number of MPC formulations and evaluation approaches
makes it problematic to compare different MPC methods. This
review highlights methods, challenges, and research gaps in
order to make MPC of urban drainage systems accessible for
researchers and practitioners from different disciplines. This will
pave the way for shared understanding and further
development within the field, and eventually lead to more
operational implementations.

KEYWORDS

Model predictive control;
real-time operation; urban
drainage systems

1. Introduction

Urban drainage systems convey stormwater and wastewater out of cities, and are

therefore key infrastructure elements in any modern society. Urban drainage
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systems are mostly composed of sewers in terms of pipes and tunnels but may also

include channels and ditches. Along with clean water pipes, sewers are a key ele-

ment in the “sanitary revolution”, which is based on passive protection against

health hazards by separating clean and dirty water and is considered among the

most important medical milestones since 1840 (Ferriman, 2007). Sewers can be

separate systems, meaning that stormwater and wastewater flows in distinct pipe

systems, or combined systems that convey both types of water in the same pipes.

Combined systems are predominant in old city centers in Europe and North

America. In these systems, polluted water flows to a wastewater treatment plant

(WWTP) before being discharged to the environment; this usually works well dur-

ing dry weather and even during minor rain events. However, infiltration-inflow

and rainy periods can cause flows to increase beyond the inlet capacity of WWTPs,

leading to unavoidable bypass, while heavy rain storms can cause combined sewer

systems to fill up and surcharge, leading to flooding of basements and streets and

to combined sewer overflows (CSOs) into the environment through overflow

structures (CSO structures). In both cases, diluted but untreated wastewater is

released into the environment, which can have severe consequences. From an envi-

ronmental perspective, the effects include eutrophication and oxygen depletion in

receiving waters and toxic impacts on the aquatic environment (Lijklema et al.,

1993). Furthermore, humans can come in contact with polluted water – for exam-

ple, when bathing close to CSO outlets after rain storms or if extreme rain has

caused flooding of streets and basement – and this constitutes a health risk.

Urban drainage systems were developed in the 1850s and their purpose at that

time was to secure public hygiene and prevent flooding. From 1960s onwards, pol-

lution loads and environmental impacts became a focus and WWTPs were

expanded and upgraded to decrease the discharge of pollutants to natural water

bodies. Since then, many governments and environmental protection agencies

have implemented regulations to reduce the frequency and magnitude of CSO

events, mainly through expansion of the pipe systems and construction of storage

basins. On top of stricter legislation, recent research shows that cities are growing

and becoming denser, while many parts of the world are expected to receive more

intense rainstorms in the next decades (Arnbjerg-Nielsen et al., 2013; Kaspersen

et al., 2017; Sørup et al., 2016). These developments force us to rethink how to

manage stormwater and wastewater in the future. There are three different means

of addressing the challenges of increased runoff and stricter legislation:

– Preventing stormwater from entering the urban drainage system, typically

by using locally placed stormwater control measures (SCM) that utilize a

combination of the hydrological processes storage, infiltration, evapotrans-

piration, and delayed runoff.

– Expanding existing structures in the combined sewer system, including

pipes, basins, and overflow structures.

– Implementing more advanced control strategies for the combined sewer

system, based on actuators such as pumps and moveable gates.
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Several authors have recently advocated the use of advanced control strategies as a

measure to improve the performance of urban drainage systems (Garc�ıa et al., 2015;

Mollerup, 2015; Mollerup et al., 2012; Ocampo–Martinez and Puig, 2010; Vezzaro

et al., 2014b). Smart cities is an emerging concept in which cities develop from being

static to flexible systems and where most information can be monitored, transferred,

stored, and finally used to facilitate a more intelligent real-time management of the

city as a whole. By focusing on the latter of the three means listed previously, a smart

city strategy enables sewer systems to evolve from being passive to active adaptive

units that can respond differently depending on the given situation (Kerkez et al.,

2016). Real-time control (RTC) can be used to make the sewer systems “smart” by

using system observations and numerical modeling to enhance the use of the existing

systems. This reduces the need for investments in extra storage volume (Eggimann

et al., 2017), which is an attractive factor in densely populated areas with limited space

for new constructions (Gelormino and Ricker, 1994; Mollerup, 2015).

One way of performing advanced RTC of urban drainage systems is by applying

model predictive control (MPC). MPC for combined sewer systems is an adaptive

control strategy in which the optimal control is recalculated recursively as new

information about the state of the sewer system and new rainfall forecasts become

available. The amount of literature published within this field has increased during

the past 5 years, produced by authors from disciplines such as civil, chemical, and

environmental engineering, as well as hydrology and meteorology, computer sci-

ence, and control engineering. This has led to a lot of innovation, but also to linguis-

tic uncertainty and ambiguity, which means that a literature review is both timely

and appropriate. The present paper aims to provide an overview of methods and

tools for performing MPC within the field of urban drainage and the main benefits

that can be achieved. This is expected to lay a foundation for a more efficient prog-

ress towards MPC of urban drainage systems becoming a mature technology in the

decades to come. The review will focus on MPC implemented for combined sewer

systems and mostly disregard literature considering integrated control of sewer sys-

tems, WWTPs, and receiving water bodies. After this introduction, Section 2 pro-

vides an overview of concepts and terms used in the MPC literature related to

combined urban drainage systems and proposes a consistent terminology. Sections

3–6 go into details regarding the four most important elements of MPC: the reced-

ing horizon principle (Section 3), optimization models (Section 4), optimization

solvers (Section 5), and internal MPC models (Section 6). Section 7 addresses key

considerations when evaluating and implementing MPC and discusses the termi-

nology and research gaps, before conclusions are drawn in Section 8.

2. Methodology and overview of the field

2.1. Literature study

This review is based on a total of 113 references from 1983 to 2018, of which more

than 60 percent are addressing MPC of urban drainage systems. Some of these
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references were previously known internally in the author group, whereas others

emerged during invaluable discussions with professionals in the industry and aca-

demia. The remaining references have been found in a systematic literature search

conducted using DTU Findit1 and Scopus2 as search engines and a combination of

search terms related to MPC and urban drainage, such as “model predictive con-

trol”, “receding horizon control”, or “rolling horizon control” together with “urban

drainage” or “sewer”. We also consulted the reference lists of the reviewed publica-

tions in order to obtain additional literature. Scopus was used to find literature cit-

ing some of the key publications, which revealed newer publications. Figure 1

shows the distribution of the publication years for the MPC literature used in this

review. The number of publications has been increasing steadily over the past four

decades and the number of publications on MPC of urban drainage systems has

more than doubled during the past 5 years, which again highlights the relevance

and timeliness of this review.

2.2. Control of urban drainage systems in general

2.2.1. Passive control and RTC

Control of urban drainage systems can be done either by passive control or RTC.

In passive control, diversion elements such as weirs, gates, and valves are con-

trolled by fixing each of them to a certain static setting. This setting is considered

permanent but can be adjusted to a better setting if, for example, an offline model-

based optimization of the system is performed (Vitasovic, 2006). In RTC, actua-

tors, including movable diversion elements and pumps, are controlled by convert-

ing real-time measurements from the system into operational decisions by rules

and algorithms of varying complexity. This requires the installation of sensors and

controllers in the sewer system, together with the implementation of a telemetry

system and a supervisory control and data acquisition (SCADA) system (Campi-

sano et al., 2013; Cembrano et al., 2004; Puig et al., 2009). The literature on RTC of

Figure 1. Number of publications addressing MPC of urban drainage systems per 5 years.

1Search engine by the Technical University of Denmark, http://findit.dtu.dk/
2Search engine by Elsevier, https://www.elsevier.com/solutions/scopus
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urban drainage systems is abundant. Beeneken et al. (2013), Garc�ıa et al. (2015),

Schilling (1989), Sch€utze et al. (2004), and Sch€utze and Muschalla (2013) provide a

good starting point for understanding RTC in more general terms, whereas

Sch€utze et al. (2008) suggested a procedure for assessing the RTC potential for a

given system.

RTC consists of control loops where a controller changes the manipulated vari-

able of an actuator with either continuous or discrete settings based on the differ-

ence between the set-point value and controlled variable (Campisano et al., 2013;

Sch€utze et al., 2003, 2004). The sensor can be placed at the actuator site or further

away. Table 1 describes these different control terms in more detail.

There are several ways of performing control and Table 2 categorizes con-

trol methods into degree of control, degree of automation, physical extension,

system-wise extension, RTC strategies, and timing of input. RTC can generally

be divided into heuristic and optimization-based control (Garc�ıa et al., 2015).

Heuristic approaches can be appealing because the resulting control seems

rational; however, it can be difficult to obtain an optimal solution in this man-

ner (Cen and Xi, 2009; Garc�ıa et al., 2015; Marinaki and Papageorgiou, 1999;

Mollerup et al., 2013; Papageorgiou, 1983, 1988). Optimal control is also diffi-

cult to achieve with passive control due to the dynamic loading of the system;

this is especially evident during spatially and time-wise unevenly distributed

rainfall (Garc�ıa et al., 2015; L€owe et al., 2016; Marinaki and Papageorgiou,

1998, 1999, 2001). Urban drainage systems are most often controlled by pas-

sive control, rule-based (local) control, or manually by an operator. However,

better control can usually be achieved by using global RTC (Cen and Xi,

2009; Giraldo et al., 2010; Leirens et al., 2010; L€owe et al., 2016; Marinaki and

Papageorgiou, 1998, 1999; Ocampo-Martinez and Puig, 2009a; Ocampo-

Martinez et al., 2008; Papageorgiou, 1983, 1988, Pleau et al., 1996, 2005,

Rauch and Harremo€es, 1996, 1999). Hence, it is likely that suboptimal control

is currently implemented in many places.

Table 1. RTC terms. Physical devices in italic and bold and their modeling counterparts in italic.

Terms Description

Sensors Monitor system states, such as flow, water level, or water quality.

Set-points The desired state values for a certain place in the sewer system, such as a downstream pipe
flow.

Controlled variables The variables that should obtain a certain set-point.

Actuators Controllable devices, such as pumps, gates, weirs, and valves.
Manipulated

variables
The variables that can be changed actively in the control, such as a pump rate.

Controllers Devices such as the programmable logic controller (PLC) and remote terminal unit (RTU) that
adjust the actuators based on sensor values. These are the hardware on which different
“software” controllers/algorithms can be implemented.

PID controller A common controller for varying the settings of the actuator continuously is the proportional-
integral-derivative (PID) controller.

Two-point
controller

A common controller for discrete settings is the two-point (on/off) controller that has only the
option of being “on” or “off” (for example, for a pump) or “open” or “closed” (for example,
for a gate).
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2.2.2. Operational goals for RTC

There are many possible reasons for implementing control and the resulting opera-

tional goals can be quantified using different metrics. In a system-wide urban

drainage context, advanced RTC will most often be performed in order to mini-

mize one or more of the following:

– CSO to the environment (measured in water volumes, pollutant loads, result-

ing oxygen concentration in recipient, damage cost, or risk).

– Flooding of the urban landscape (measured in water volumes, pollutant loads,

damage cost, or risk).

– Energy consumption or operational cost (measured in energy usage or cost).

– Wear and tear of actuators to increase their lifespan (measured in usage, set-

tings variation, or cost).

The first two of the listed operational goals will probably have higher priority

than the latter two. Furthermore, Campisano et al. (2013) and Vitasovic (2006)

suggested avoiding sediment deposition in sewer systems; managing flows in case

of, for example, construction work or equipment failures; and managing the flow

to the WWTP as potential operational goals.

Table 2. Categorization of control methods.

Category Control method Description

Degree of control Passive control Diversion elements are fixed to a static setting.
Real-time control (RTC) The settings of actuators are changed dynamically based on

real-time measurements from the system.

Degree of automation Manual An operator adjusts the actuators in the system.
Supervisory Actuators are adjusted automatically but the set-points or

the direct settings of the actuator are specified/
approved by an operator/supervisory system.

Automatic The entire system is operated automatically.

Physical extension Local The control is performed independently for each actuator
based on measurements from the immediate
surroundings.

Global The control is based on observations throughout the system
and all actuators are regulated at once from a global
perspective.

System-wise extension System-wide control Global control only considering the urban drainage system.
Integrated (system-wide)

control
Global control considering several subsystems alongside

the urban drainage system; for example, wastewater
treatment plants and receiving water bodies.

Plant-wide control Control only considering the wastewater treatment plant.

RTC strategies Heuristic control The control is based on experience, which includes fuzzy-
logic control, static rules optimized offline (rule-based
control), or systems that are controlled manually by an
operator.

Optimization-based control The control is modeled as a dynamic optimization problem,
which includes linear-quadratic regulators, evolutionary
strategies, MPC and population dynamics-based control.

Timing of input Reactive control The control is determined only based on measurements.
Predictive control The control is determined based on predictions of the

future system state.
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2.2.3. Impediments to implementation of RTC

RTC has been used in urban drainage systems for more than 40 years, but the

development of more sophisticated methods has been limited due to unreliable

sensors, actuators, and communication systems, together with insufficient compu-

tational power. Many of these limitations have now been overcome to such a

degree that it is possible to implement more efficient control strategies (including

MPC). In addition, there is an increased interest in automated operation of urban

drainage systems (Meseguer and Quevedo, 2017) stemming from a stronger orga-

nization of utilities due to corporatization of the water sector and improved rainfall

forecasts using weather radar and numerical weather prediction (NWP) models.

Despite this, the use of MPC as a control strategy within urban drainage is limited

to a few examples of real-life operations and concepts that are ready for implemen-

tation (see Fiorelli et al., 2013; Pleau et al., 2005; Vezzaro and Grum, 2014), which

indicates that we still face challenges that limit both the implementation and fur-

ther development of MPC techniques. These challenges include organizational

issues such as the lack of trust from operators (Vitasovic, 2006) or lack of coopera-

tion between planning and operation departments; proper choice of control equip-

ment (Campisano et al., 2013); adaption to the limited computational power and

uncertainty of the rain input that requires a mathematically rigorous formulation

of the control problem to facilitate an efficient solution (Dong et al., 2017); and lin-

guistic uncertainties, which make it difficult to exchange knowledge and experien-

ces across research institutes, industries, and disciplines.

2.3. The basic principles of MPC

MPC was first described theoretically in the 1960s, but not applied until the 1970s

(Qin and Badgwell, 2003). The fact that the underlying MPC concept is relatively

easy to understand has led to the expansion of its application in some industries

(Maciejowksi, 2002). It has been used across a large variety of technical fields,

including the production of pulp and paper, food processing, in chemical plants,

and in the automotive and aerospace industries (Qin and Badgwell, 2003).

Overall, MPC is optimization in a discretely forward moving time window and

consists of two key aspects: the receding horizon principle, which means that the

optimization of the control actions is repeated recursively within a finite time hori-

zon; and optimization, which involves choosing the best sequence of control

actions possible within this horizon. This optimization is composed of an optimi-

zation model (which describes the optimization problem), an internal MPC model

(which models the dynamics of the relevant parts of the urban drainage system),

and an optimization solver (which performs the actual optimization of the control

actions).

In MPC, the system states are computed by the internal MPC model from the

time of forecast and into the future by incorporating input predictions in the form

of rain, runoff, and/or sewage from other parts of the sewer system (Fig. 2). The
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operational goals are defined in the optimization model, on which basis the opti-

mization solver computes the control actions. Only the first part of the optimized

control is carried out in reality; in the meantime, a new optimization is performed.

New information about the system state and input can be incorporated at every

reoptimization.

In principle, MPC is capable of dealing with complex, multivariable systems, of

including transport times, and of considering operational as well as physical con-

straints, such as actuator and pipe flow limitations. Hence, MPC is suitable as a

global (system-wide) control scheme, but can also be applied locally. MPC is espe-

cially advantageous as a control strategy for large and complex urban drainage sys-

tems with multiple overflow structures, multiple WWTPs, and a complex network

of actuators and storage basins distributed in different parts of the sewer system,

where constraints on flows, volumes, and water levels need to be respected, and in

case of a heterogeneously distributed rainfall (Cembrano et al., 2004; Gelormino

and Ricker, 1994; Ocampo-Martinez and Puig, 2009a, 2010; Pleau et al., 2005; Puig

et al., 2009). By applying input predictions, MPC is capable of anticipating prob-

lems arising from a limited capacity of structures; thus, the control becomes proac-

tive (Duchesne et al., 2001, 2004; Garc�ıa et al., 2015; van Overloop et al., 2008;

Puig et al., 2009; Sch€utze et al., 2004).

2.4. Linguistic uncertainty in MPC literature

MPC was used by industry long before it was used in academia (Maciejowksi,

2002). Consequently, this has led to linguistic uncertainty within MPC of urban

Figure 2. The concept of MPC, including the receding horizon principle and optimization. The
terms “prediction horizon” and “sampling interval” are explained in Section 3. TOF D time of
forecast.

286 N. S. V. LUND ET AL.



drainage systems. The lack of common terminology and inconsistency in which

information is provided to the reader makes it difficult to obtain a full understand-

ing of the applied MPC methods and the experiences gained from using them.

This has slowed progress in the field, made collaboration with other fields more

challenging, and made it more difficult to implement MPC in real-life operations.

Terminology is contextual and sometimes influenced by both the spatial and

temporal scale of the considered system; that is, it becomes profession- or appli-

cation-area-oriented. An example of a contextual term is the term “system-wide

control” (Table 2). The focus of this review is the sewer system; thus, “system-

wide” refers to the entire sewer system of a city, town, or urban area. In other

systems – which may include receiving waters and WWTPs – the meaning of

“system-wide” is extended and the urban drainage system will be perceived as a

single subsystem. Examples of profession-influenced terms are the use of “virtual

tanks” and “disturbances”, which are applied in some of the reviewed literature,

but clearly originate from other technical fields than urban drainage. The term

“virtual tanks” probably has its origin in process engineering and, in an urban

drainage context, is usually referred to as “linear reservoirs”, inspired by hydrol-

ogy. Similarly, the term “disturbances” is widely used within control engineering,

although rain, runoff and sewage are not considered as disturbances in urban

drainage, but rather as the driving force of all the occurring processes; therefore,

we denote this as “input” or “forcing”. In some of the reviewed literature, “input”

is contrarily used for the control actions, because these often act as inputs to the

controllers in the system. Hence, it can be difficult, but all the more important,

to reach a common understanding of the applied terms within each field. Table 3

clarifies the terms that are used in this review, their definitions, and how they

relate to the terms used across the reviewed literature. The terms are divided into

general terms, terms related to the receding horizon principle, and terms about

optimization. The individual terms are explained and discussed in more detail in

the table and/or in the following sections.

2.5. Categorization tree for MPC

Figure 3 shows a categorization tree for the different components of MPC.

Both the receding horizon principle and optimization contain multiple sub-

components, which are highly interconnected. For example, the objectives cho-

sen to reflect the operational goals in the optimization model will set certain

requirements for the internal MPC model. The internal MPC model may be

either a complex non-linear model or a simple linear model. This choice,

together with the choice of optimization model, will then place restrictions on

the chosen optimization solver, and the computational time of the optimiza-

tion and the available forecast quality will together affect the setup of the

receding horizon principle. Therefore, it is not trivial to assess these compo-

nents individually and make generalizations, although this is what we have
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Table 3. Overview of terminology used in this review and in the literature and definitions of the
term.

Term used in this review Alternative terms used in literature

General terms Control strategy or control scheme
The overall control such as passive control,

rule-based control, model predictive control,
etc.

Passive control
All diversion elements are fixed to a static

setting

No control, static control, fixed control, and static
management

Model predictive control (MPC)
Consists of a receding horizon principle and an

optimization of the control actions

Model-based predictive control, receding horizon
control, moving horizon optimal control,
optimization with rolling horizon, certainty
equivalent open-loop feedback control and
global predictive control, and global optimal
control explicitly for global MPC

MPC technique, MPC method, or MPC
scheme

The specific MPC set-up
Control actions, manipulated variables, or

optimization variables
The optimized future control which will form a

control trajectory (also called “control
signal”)

Input model Disturbance model
Provides the input forecasts to the internal

MPC model
High-fidelity (HiFi) model
Detailed, distributed model replicating reality

with high fidelity

System model, hydraulic model, realistic
simulation model, physically-based model,
simulator, hydraulic sewer routing model,
hydraulic simulation model, and distributed
urban drainage model (DUDM)

Receding horizon
principle

Receding horizon principle
The recursive re-optimization of the control in

a forward-moving time window, including
the prediction horizon, forecast horizon,
control horizon, sampling interval, and
setting duration

Prediction horizon
Interval in which the internal MPC model is run

and for which the objective function
calculates the cost of a given control

Optimization horizon, operational time horizon,
optimization window, optimization time
horizon, and output horizon

Forecast horizon
Interval in which input forecasts are available.

Hereafter, a predefined input algorithm is
applied.

Control horizon
Interval in which the control can be altered by

the optimization. Hereafter, a predefined
control strategy is applied.

Collective horizon
The collective name when the prediction,

forecast, and control horizon are of equal
length

Sampling interval
Interval between the control re-optimization

Sampling period, control period, control interval,
sampling time, repetition period, optimization
time step, sampling time interval, control step,
sampling control period, and control sample time

Setting duration
The length of each control action in the control

trajectory

Control period, control interval, control horizon,
aggregation horizon, and blocks

(Continued on next page )
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attempted in this review. The color scheme applied in Fig. 3 acts as a reading

guide for the remaining part of the review.

3. The receding horizon principle

The receding horizon principle is a recursive optimization in a forward-moving

time window and this window can, according to Rauch and Harremo€es (1999), be

broken down to three time horizons: the prediction horizon, the forecast horizon,

and the control horizon. They also defined the sampling interval (sampling time),

and we additionally see the need to define the setting duration as an additional

time window. These five time windows are elaborated below.

The “prediction horizon” denotes the period in which the internal MPC model

is run into the future (see Fig. 4), and the value of the objective function is calcu-

lated for this entire interval; thus, the performance of a given set of control actions

is quantified. There might not be reliable input forecasts for the entire prediction

horizon and the period in which the inputs are trusted is denoted as the “forecast

horizon”. A predefined algorithm may give the input for the remaining part of the

prediction horizon (for example, by letting the inflow fade from the last forecasted

value to dry weather flow; see Section 6.2). Furthermore, the prediction horizon

might be so long that the required computational time for the optimization of the

control actions exceeds what is possible in a real-time framework. The actual

period in which the control actions are optimized is denoted as the “control

Table 3. (Continued )

Term used in this review Alternative terms used in literature

Optimization Optimization
Consist of an optimization model, internal MPC

model, and optimization solver
Optimization model
Consist of an objective function, constraints,

and optimization variables
Objective function Cost function and performance criterion
Function that quantifies the objectives in the

control optimization
Penalties Weights
Used to prioritize between objectives in the

objective function
Optimization solver Optimizer, solver
The implementation of the algorithm that

searches for the optimal solution
Internal MPC model
The model used for predicting the system

dynamics. Has a model structure and uses
inputs and initial conditions

Simplified model, operational model, sewer
system model, system model, prediction
model, control model, control-oriented model,
optimal control model, simplified network
model, phenomenological simulator, surrogate
model, and simulation model

Inputs
The driving force of the model, for example,

rain or flow forecasts

Disturbances, external inflows, loadings, nowcast
(in meteorological contexts), and forcing

Initial conditions
The start values for the internal MPC model at

each new control re-optimization
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horizon”, whereas predefined control actions (such as not changing the control

actions from the last value within the control horizon) are used to calculate the

value of the objective function for the remaining part of the prediction horizon

(Maciejowksi, 2002; Rauch and Harremo€es, 1999).

The optimization of the control actions is repeated after a specified period

– called the “sampling interval” (Fig. 4) – and only the control actions

within this period are actually carried out. At each control reoptimization,

observations from the system are taken into account as well as new rain

and/or runoff forecasts when available (Joseph-Duran et al., 2014b;

Papageorgiou, 1988). The sampling interval is also often seen to represent

the frequency with which the control actions change value (Rauch and

Harremo€es, 1999). However, some studies have made a distinction between

the length of the sampling interval and this frequency, which we define as

the “setting duration”. Thus, the setting duration describes the level of detail

of the control trajectory.

3.1. Time windows in the context of MPC

The receding horizon principle requires the selection of the length of the five time

windows. Ideally, the prediction horizon should be long enough to cover all conse-

quences of any conducted control. For system-wide control of urban drainage sys-

tems, it should be long enough for the water to propagate through the system and

for the basins to empty. When it is computationally too expensive to let the predic-

tion horizon cover basin emptying explicitly, the effect of a sufficiently long predic-

tion horizon can be emulated by adding a penalty in the objective function that is

dependent on the remaining volume in the basins or on the equal filling of basins,

as applied by, for example, Cembrano et al. (2004), Cen and Xi (2009), Fiorelli and

Figure 3. Hierarchical categorization of MPC components. A solid line indicates that a component
consists of subcomponents, while a dashed line indicates the presence of an external subcompo-
nent. The color scheme can be used as a reading guide for the remaining part of the paper.
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Schutz (2009), Gelormino and Ricker (1994), and Pleau et al. (1996); see Sec-

tion 4.2.1. The length of the forecast horizon is bound by the reliability of the rain

or runoff forecasts, whereas the control horizon is constrained by the computa-

tional demands imposed by the optimization (hereunder, the length of the time

windows, the size of the optimization problem, and the choice of optimization

solver).

Most of the reviewed literature does not distinguish the length of the prediction,

forecast, and control horizons. The length chosen to cover all three horizons will

become a trade-off between the availability of reliable forecasts and computational

power, on one hand, and the extent to which the effects of the control are quantified,

on the other. This trade-off can, in a worst-case scenario, lead to “myopic control”,

meaning that the control is only optimal within the considered horizon, but might

lead to a very poor control in the longer run (Cembrano et al., 2004; Duchesne et al.,

2001, 2004; Papageorgiou, 1988; Puig et al., 2009; Rauch and Harremo€es, 1999). It is

most often seen that only one linguistic term is applied collectively for all three hori-

zons. Usually, the term “prediction horizon” or “control horizon” is used, which

makes it difficult to understand the details of the applied MPC scheme. In the pres-

ent review, we have denoted this as the “collective horizon” to underline that the

three horizons are not distinguished and have been merged into one.

The length of the sampling interval must take into account the computa-

tional power and the sampling interval of the telemetry system, while the set-

ting duration is bound by the computational power and the speed at which

the settings of the actuators can change in reality (Cembrano et al., 2004;

Puig et al., 2009).

3.2. Experiences from the literature

The length of the time windows will be dependent on many factors, which are

input-, case-, and modeling-specific.

Figure 4. Time windows used in the receding horizon principle. The lengths of the time windows
are only an example. Here, the sampling time is twice as long as the setting duration, as in Fig. 2.
Inspired by Rauch and Harremo€es (1999).
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A sampling interval in the range of 1 to 10 min is normally applied in the

reviewed literature, with 5 min being the most commonly used interval. The setting

duration is seen to be both shorter than the sampling interval in order to get more

detailed control (Joseph-Duran et al., 2013a; Papageorgiou, 1988) and longer to

save computational time (Cen and Xi, 2009; Gelormino and Ricker, 1994; Giraldo

et al., 2010). The most extreme version of the latter case is the optimization of a

constant trajectory throughout the entire horizon, implemented in, for example,

Meneses et al. (2018), Mollerup (2015) and Vezzaro and Grum (2014). This means

that only one control action value is calculated for the entire control horizon

instead of a time-varying trajectory of control actions. Courdent et al. (2015) used

a varying setting duration that became coarser with time. The setting duration is

often not reported explicitly in the reviewed literature, probably because the

authors use the modeling time step (which is often not given either) or the sam-

pling interval as the setting duration, but omit this information.

A value in the range of 30–120 min is normally used for the collective horizon,

where 30 min (also supported by Meseguer and Quevedo (2017)) or 120 min are the

most common values. These lengths coincide with the forecast ability of many radar

nowcast products (Thorndahl et al., 2017), which is probably why longer forecasts

are normally not applied. Courdent et al. (2015) used rain from a NWP model as

input to the internal MPC model, allowing for a collective horizon of 13 hr.

Fiorelli et al. (2013), Pleau et al. (2005), and Vezzaro and Grum (2014) are the

only reviewed papers to report that MPC is either in or ready for operation; they

used sampling intervals of 10, 5, and 2 min, respectively, setting durations of 10, 5,

and 120 min, and all applied a collective horizon of 2 hr.

3.3. Significance on performance

Figure 5 shows how the collective horizon, sampling interval, and setting

duration may differ from each other. In theory, a long collective horizon and

a short sampling interval and setting duration will increase the performance

of the model (Rauch and Harremo€es, 1999); however, only a few studies have

investigated how much this improves the performance. Gelormino and Ricker

(1994) found that it is possible to apply a longer collective horizon without

increasing the problem size when using a setting duration that is larger than

the sampling interval, and that this does not have a significant influence on

the total CSO volume. In addition, the performance was not increased signifi-

cantly by increasing the collective horizon from 10 to 200 min, a finding that

was explained by the exclusion of transport time in the model (that is, the

internal MPC model was too simple to gain from and increased collective

horizon). Mollerup (2015) obtained a decreasing performance as the collective

horizon was increased and explained this with the choice of having a constant

trajectory. This constant trajectory will represent a best “average” control and

increasing the horizon length will decrease the model’s ability to adjust to the
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fast dynamics associated with rain events. Duchesne et al. (2003), Marinaki

and Papageorgiou (2001), Nelen (1992), and Papageorgiou (1988) all included

both transport time and time-varying control actions and found that a longer

collective horizon did, indeed, influence the results positively. However, Nelen

(1992) and Papageorgiou (1988) stated that there is an upper limit above

which the performance does not increase significantly (60 and 100 min,

respectively). Likewise, there is a lower limit under which myopic control is

present (25 min found by Papageorgiou (1988)). Marinaki and Papageorgiou

(2001) found that the largest effect is not obtained by increasing the length of

the collective horizon, but by going from passive control to MPC, and the

model performance is more sensitive to changes in the length of the sampling

interval (here, 3–9 min) than the length of the collective horizon (here 1–4

hr). Furthermore, Duchesne et al. (2003) found that the increase in perfor-

mance due to a longer collective horizon is most pronounced when surcharged

pipes are not allowed. Allowing surcharged pipes made it possible to apply a

shorter collective horizon without negatively affecting the performance, as

pressurized flow travels faster through the system; however, they also found

that surcharged pipes cause constraint violations.

4. Optimization models

The task of the optimization model is to identify the best control trajectory for each

actuator during the upcoming control horizon. The best set of control trajectories

(one for each actuator) is the one that optimizes the objectives within the given

constraints. The general formulation of an optimization model is (for an in-depth

reference, see Boyd and Vandenberghe (2009)):

min J.u/

subject to f i.u/�bi; iD 1; . . . ;m
(1)

where J.u/ is the objective function for the optimization variables u, whereas f i.u/�bi
are the constraint inequalities, where f i.u/ is the constraint function representing the

Figure 5. The difference between the collective horizon, sampling interval, and setting duration. In
(a) the sampling interval is longer than the setting duration; in (b) they are equally long; and in (c)
the sampling interval is shorter.
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constrained control or system output at index i and bi is the bound for the constraint.

This description of the optimization model is very general and the following sections

aim to describe how researchers engaged in urban drainage have dealt with selecting

optimization variables, objective function, and constraints.

4.1. Optimization variables

The optimization variables are gathered in a vector u, which holds the control

actions for the upcoming control horizon for all actuators in the sewer system.

Thus, optimization variables, control actions, and manipulated variables are all

terms for the same concept. The control trajectory for a single actuator is a

sequence of control actions within the control horizon; each is as long as the set-

ting duration. In the reviewed literature, the control trajectory consists of a

sequence of flows, which acts as set-points for actuators in a local control loop con-

trolled by, for example, a proportional-integral-derivative (PID) controller (see

Section 7.2 for more details).

The solving time of the optimization model increases with the number of opti-

mization variables. Especially for non-linear optimization (see Section 4.4), it is

important to keep the number of optimization variables as low as possible, as the

solving time for these generally grows fast with an increasing number of variables.

A common approach to reduce the number of optimization variables is to force

the control action to remain the same during a time span, which is larger than the

sampling time, as discussed in Section 3.2. In control theory, this is known as

blocking, as the control action is blocked from moving.

4.2. Objective functions

The objective function quantifies the cost of a set of control trajectories by

evaluating how future outputs or control actions in the system deviate from

the desired values, which are denoted “references”. This requires a definition

of the references, a model of how the state of the system evolves (the inter-

nal MPC model), and a way of penalizing the deviation from the reference

values.

4.2.1. Operational goals

The first step in designing an objective function is to define operational goals.

Some objectives directly target the desired operational goals, whereas others act

indirectly. The most commonly used objectives are listed in Table 4, of which CSO

minimization is by far applied the most.

Fiorelli et al. (2013), Fiorelli and Schutz (2009), and Gill�e et al. (2008) have

listed pros and cons for the first three objectives in Table 4 and offered sug-

gestions for improvement. They concluded that the efficiency of CSO minimi-

zation is highly dependent on the quality of the input forecasts and that this

objective is especially useful when CSO mitigation is not equally important at
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all CSO locations. They also found that meeting the WWTP inflow capacity

can cause the outflow from basins to oscillate and that it can be difficult to

set one value for the WWTP capacity. Instead, they suggested limiting the

rate of change of the outflows (objective 5 in Table 4) and having a dynami-

cally varying value for the WWTP capacity. These studies, furthermore, con-

cluded that obtaining equally filled storage basins can be a disadvantage when

the basins are located far apart, have very different emptying times, or when

most of the storage basins are full.

Some less common objectives include:

– Adherence to specific flow references (that is, a desired flow at a specific loca-

tion in the network) (Cembrano et al., 2004) or a certain basin filling degree

(Joseph-Duran et al., 2014b; Mollerup et al., 2016).

– Minimization of the operational costs by, for example, minimizing the con-

trol action itself (Farahani et al., 2017; Garc�ıa et al., 2015; Ocampo-Martinez

et al., 2007, 2008). This can also be applied to on/off control by using discrete

states (Leirens et al., 2010).

– Minimization of the monetary cost related to a CSO event. This can also

include the uncertainty related to the forecasted input and thus the risk asso-

ciated with a CSO event, which was applied in the Dynamic Overflow Risk

Assessment (DORA) method (Courdent et al., 2015; L€owe et al., 2016;

Meneses et al., 2018; Vezzaro and Grum, 2012, 2014; Vezzaro et al., 2013,

2014a, 2014b).

– Preservation of system behaviors that are not included in the internal MPC

model, such as ensuring that overflows can only occur from filled basins and

that the set-points of local controllers are respected (Pleau et al., 1996) or

including transport time in pipes (Fiorelli and Schutz, 2009; Fiorelli et al.,

2013).

– Duration of overflow (Farahani et al., 2017).

– Optimization of water quality parameters, such as the dissolved oxygen

concentration. Water volumes are often used to represent this objective,

but Rauch and Harremo€es (1999, 1998, 1996) showed that the water

Table 4. Commonly applied objectives, operational goals, and associated metrics.

Objective Operational goal Metric

1) Minimize CSO Directly targets CSO minimization. Volumes
2) Maximize the use of the WWTP capacity Indirectly targets flooding and CSO minimization by

minimizing the amount of water stored in
basins; hereby, preparing for the next rain event.

Volumes

3) Distribute water to obtain equally filled
basins

Indirectly targets flooding and CSO minimization. Volumes

4) Minimize flooding Directly targets flooding minimization. Volumes
5) Minimize changes in the control action by

penalizing the rate of change
Directly targets the increase in actuator lifespan. Usage

6) Minimize the water volume in the basins Indirectly targets flooding and CSO minimization by
minimizing the amount of water stored in
basins; hereby, preparing for the next rain event.

Volumes
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quality objective cannot necessarily be represented by water volumes;

however, it is difficult to include water quality aspects due to the com-

plexity of the required models and the scarcity of data for model calibra-

tion (Duchesne et al., 2003, 2004). The models will often be integrated

models and are, therefore, outside the scope of this review. However,

Vezzaro et al. (2014b) indirectly included water quality aspects in a sys-

tem-wide control model by using a time-dynamic overflow cost as pen-

alty. Mahmoodian et al. (2017) also included water quality in a strict

system-wide setting by modeling the concentration of pollutants in the

sewer system and using objectives 1–3 from Table 4 in the objective

function, with both volumes and concentrations (with uncertainty estima-

tion) as metrics.

4.2.2. Quantifying deviations from objectives

The next step in designing the objective function is to develop measures to

quantify the deviation from the reference (that is, the desired value that

should be obtained, or “tracked”). This deviation can be quantified at a spe-

cific location as either the absolute (Eq. 2), the squared (Eq. 3), or the maxi-

mum (Eq. 4) deviation from the reference:

X

Hp

iD 1

Pi j ŷ i¡ ri j (2)

X

Hp

iD 1

Pi ŷ i¡ ri
� �2

(3)

max
1�i�Hp

Pi j ŷ i¡ ri j
� �

(4)

ŷ i denotes the predicted output value (for example, a CSO volume) at time i and

ri is the reference value. In Eqs. 2 and 3, the deviations are summed over the pre-

diction horizon Hp and weighed over time by the penalty Pi.

Linear terms (Eq. 2) can be used when the objective is a linear function of the

variable (Gelormino and Ricker, 1994) or if the total sum should be minimized

(Ocampo-Martinez et al., 2008). Quadratic terms (Eq. 3) can indicate that this

objective is more important than a linear term (Cembrano et al., 2004) and will, to

a larger extent, cause the penalized deviations to be distributed over space and

time, making the operation more smooth (Darsono and Labadie, 2007). Finally,

the infinity norm (Eq. 4) can be used to target peak minimization (Ocampo-Marti-

nez et al., 2008). Most studies have either applied entirely linear or entirely qua-

dratic terms in the objective function, although some (Cembrano et al., 2004;

Farahani et al., 2017; Gelormino and Ricker, 1994; Mailhot et al., 1999; Ocampo-

Martinez et al., 2008) applied a mixture.
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4.2.3. Prioritization between objectives

In most cases, the objective function consists of multiple individual objectives. This

case is referred to as a “multi-objective” or “multi-goal” optimization. The individ-

ual objectives may be conflicting, and there exist several ways of indicating which

of the included objectives that are most important to comply with. Scalarization

turns a multiobjective optimization problem into a single-objective optimization

problem by assigning different penalties, or weights, to different objectives

(Ocampo-Martinez et al., 2008; Vitasovic, 2006). The lexicographic approach

avoids defining penalties by ranking the individual objectives in advance. The opti-

mization model is then solved considering only the most important objective at

first, and then proceeds to lower-ranking objectives (Ocampo-Martinez et al.

(2008)). Neither do approaches that calculate the Pareto frontier need predefined

weights on the individual objectives, as an entire set of solutions that spans “the

space of weight combinations” is calculated (Deb, 2001). This section focuses

mostly on scalarization, as this is the most commonly applied method in the

reviewed literature.

Eq. 5 shows an example of a scalarized objective function, which is assembled

from purely quadratic terms. The first term relates to output deviations and the

second term relates to the control actions.

J.û/D
X

Hp

iD 1

X

Ny

jD 1

Py;j.ŷ i;j¡ ry;j/
2

C

X

Hp ¡ 1

iD 0

X

Nu

jD 1

Pu;j.ûi;j ¡ ru;j/
2 C

X

NDu

jD 1

PDu;jDû
2
i;j

0

@

1

A (5)

ŷ i;j are the predicted outputs (controlled variables), whereas ûi;j are the control

actions (manipulated variables) and Dûi;j are the rate of change of control actions.

At each setting duration i, the deviations from the reference values, ry;j and ru;j,

and the rate of change, Dûi;j, are calculated and scaled by the penalties Py;j, Pu;j and

PDu;j. These are summed over the length of the prediction horizon, Hp, for all Ny

considered outputs and up to Hp¡1 for the Nu considered control actions and NDu

control actions where the rate of change of the control actions is taken into

account. In many cases, the predicted output ŷ i;j has a one-to-one correspondence

to the predicted state; for example, “reservoir volume” is often used as state vari-

able and is also an output of interest.

Penalties are often chosen through a trial-and-error process and it is generally

observed that flooding and CSO volumes are given the highest penalties. It is possi-

ble to give the same type of objective the same penalty value, but the penalties can

also be used to distinguish between, for example, different WWTPs or different

CSOs with regard to receiving water sensitivity (Courdent et al., 2015; Duchesne
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et al., 2004; Fiorelli and Schutz, 2009; Fiorelli et al., 2013; Joseph-Duran et al.,

2014b; L€owe et al., 2016; Patry, 1983; Pleau et al., 1996, 2005; Vezzaro and Grum,

2014).

A common way of prioritizing is to use a factor of 10 between the penalty values

(see, for example, Joseph-Duran et al., 2014a; Marinaki and Papageorgiou, 1998;

Ocampo-Martinez and Puig, 2010). However, the model performance is only sen-

sitive to changes in the penalties until a certain level, after which the benefits of

additional tuning will be insignificant (Mollerup, 2015; Vezzaro and Grum, 2014).

If metrics have different order of magnitude, such as flows and volumes, it can be

difficult to make a clear prioritization between them by using penalties, as

highlighted by Mahmoodian et al. (2017). Ideally, the assigned penalties should be

based on the sensitivity of the receiving waters or other case-specific considera-

tions; hence, the penalties could be determined as a relative weighing performed

by the urban water managers (Duchesne et al., 2004; Vezzaro and Grum, 2014).

This, however, may be difficult if the objectives are not directly physically relatable.

Some studies use dynamically variable penalties. Courdent et al. (2015),

Gelormino and Ricker (1994) and Pleau et al. (1996, 2005) defined penalties on

the CSO volume that decrease over the prediction horizon in order to postpone

CSO, with the reasoning that the far future is more uncertain than the near future.

Furthermore, some authors vary the penalties from one optimization to the next

depending on the input and system state; for example, the amount of rain (Fiorelli

et al., 2013; Giraldo et al., 2010). The penalties can also be changed when some-

thing happens that changes the cost of deviating from the reference value for the

remainder of an event; for example, at a specific CSO location after an overflow

has already occurred or when the first flush volume has passed through the

WWTP (Patry, 1983; Vezzaro et al., 2014a). Courdent et al. (2015) not only

changed the penalty values, but also constructed different “modes” with individual

objective functions, which were applied based on the system state and the fore-

casted rain. Pleau et al. (2005) also used input-dependent modes to shift between

passive control (for dry weather periods) and MPC (for wet-weather conditions).

The trial-and-error approach for choosing penalties can be time-consuming and

adapting penalties to changes in the system can be difficult.

An alternative to scalarization is to use a lexicographic approach, where penal-

ties are avoided and the prioritization between the different objectives instead is

made a priori. Ocampo-Martinez et al. (2008) compared scalarization to the lexico-

graphic approach for the Barcelona catchment and found that the lexicographic

approach mostly gave a reduction in CSO volume and increase in water volume

treated at the WWTP.

Yet another alternative is to apply multiobjective optimization algorithms based

on Pareto dominance. The advances in using Pareto dominance optimization for

water management problems is reported by Nicklow et al. (2010). These algo-

rithms provide a set of Pareto (or non-dominated) solutions according to the

trade-offs between the different objectives. The advantage of using Pareto
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dominance optimization is that one does not have to specify preferences (or penal-

ties) to any of the objectives. Instead, one can choose a preferred solution among

the Pareto optimal solutions by balancing objectives and one can also bring in

additional information that is not explicitly included in the optimization. A signifi-

cant drawback is the computational requirements, which may be excessive when

many objectives are considered. In addition, it can be difficult to interpret the set

of Pareto solutions in order to choose a preferred solution, especially when many

objectives are included. These drawbacks are particularly challenging for real-time

optimization, and we are not aware of any publications on use of Pareto optimiza-

tion for MPC of urban drainage systems; however, Fiorelli et al. (2013) used Pareto

optimization on historical events to investigate and choose penalties for a scalar-

ized objective function MPC.

4.3. Hard and soft constraints

Constraints can restrict the optimization variables and the future system outputs

and thus represent limitations of the considered system. For a sewer system, obvi-

ous physical constraints are minimum and maximum basin volumes, flows at

certain locations, flow through an actuator, and maximum rate of change of the

flow through an actuator. Formulating the constraints might be straightforward in

case the constraint represents, for example, a maximum pump rate. Without using

a high-fidelity (HiFi) model it may, however, be difficult to assess bounds on future

system outputs, such as the maximum flow capacity of a pipe, and some actuator

capacities, such as the maximum flow through gates. In general, the constraints

can be written as:

Constraints on outputs: ymin�y�ymax (6)

Constraints on control actions: umin�u�umax (7)

Constraints on rate of change of control action: Dumin�Du�Dumax (8)

Each of the three boxed inequalities in Eqs. 6–8 can be split in two “less-or-

equal” inequalities, which fit the general formulation of the constraints in Eq. 1.

The constraints in Eqs. 6–8 are “hard”, which means that they cannot be vio-

lated in the optimization model. If no solution exists that satisfies all constraint

inequalities, the optimization model is infeasible. Gelormino and Ricker (1994)

described how their model became infeasible in dry-weather situations because

inaccurate inflow predictions led to negative storage volumes. They dealt with this

by simply removing the lower bound on the storage volume (essentially allowing

negative volumes).

Another approach is to allow constraint violation by turning hard constraints

into “soft” constraints. Taking the upper limit on the output as an example, a slack
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variable, si, is added to the upper bound in each of the constraint inequalities as

ŷ i�ymax C si; iD 0; . . . ;Hp (9)

This means that the vector of control trajectories is augmented by the slack vari-

ables; thus, the constraint can be violated. The size of the constraint violation

enters the optimization model as an optimization variable. This violation is then

penalized by adding the term S
Hp

iD 1S
Ns

jD 1Ps;jsi;j to the objective function (Eq. 5),

where si;j is the exceedance/undershoot of the Ns soft constraints, and Ps;j is the

penalty. Both Duchesne et al. (2003) and Pleau et al. (2005) relaxed the constraints

and thus allowed for their violation. It will often not make sense to give Ps;j a phys-

ical meaning, so it must be tuned to make up for the inadequacy of the internal

MPC model. In these cases, the inclusion of soft constraints should be the last

resort.

4.4. Convex versus non-linear programs

There are basically two ways of formulating the optimization model: either the

optimization model is formulated as a convex program (convex optimization) or

as a non-linear program (non-linear optimization). The major reason for choosing

a convex program is that it is fast to solve, with a guarantee of finding the global

optimum; however, the shortcoming is that the system dynamics must be pro-

foundly simplified in order to adhere to the convexity. The major reason for choos-

ing a non-linear optimization program is its ability to take a non-linear model of

the system dynamics into account. The downside is that a non-linear program can

handle fewer optimization variables, requires more computation time, and may be

“trapped” in a local optimum without finding the global optimum. The trade-off

is, therefore, between a detailed and efficient optimization of highly approximated

system dynamics and a slower, coarse optimization based on more detailed system

dynamics. As we will outline in detail in the upcoming sections, and further discuss

in Section 7.1, there is no unique answer to which type of optimization model to

prefer.

4.4.1. The convexity criterion

The optimization model is a convex program if both the constraint and

objective functions are convex. Optimization models where either the objective or

constraint functions are not convex are non-linear programs (Boyd and Vanden-

berghe, 2009). For both the objective and constraint functions, the convexity crite-

rion reads:

f j.au1 Cbu2/�af j.u1/Cbf j.u2/ u1; u2�R
n
; aCbD 1; a�0; b�0 (10)
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For an optimization model for a sewer system, the functions f j (one for the

objective function and numerous for the constraints) are constructed using the sys-

tem dynamics described by the internal MPC model. f j : R
n!R is a mapping of a

control trajectory u to a single number. The dimension (n) of the control trajectory

is the number of control actions inside the control horizon (control horizon

divided by setting duration) multiplied by the number of locations with a con-

trolled flow. The convexity criterion states that the value of the function for any

linear combination of control trajectories .f j.au1C bu2// must be less than or

equal to the linear combination of the individual function values

.af j.u1/Cbf j.u2//. The coefficients a and b used to create the linear combinations

must be non-negative and sum up to unity.

4.4.2. Convex programs

Linear programs (LP) and quadratic programs (QP) are well-known subsets of

convex programs. Linearity is a special case of the convexity criterion (Eq. 10). If

the internal MPC model dynamics are linear, then all future outputs are linear

functions of the control actions and bounding the future output from below or

above will consequently result in linear inequalities. Therefore, a typical and easy

way to obtain convex constraint functions is to define linear system dynamics in

the internal MPC model.

A convex program is computationally much more efficient to solve than a non-

linear program. Therefore, convex optimization programs can deal with large

amounts of optimization variables (tens to hundreds of thousands), which implies

that the control trajectory can be optimized with a fine-grained time resolution.

Using a convex program also ensures that the global optimum is found. The draw-

back of a convex program is that it can be difficult to formulate convex constraints

when the dynamics of the system change at thresholds. Such a shift in the flow

domain can be very difficult to include in the internal MPC model when formulat-

ing a convex program (see Section 6). Therefore, many authors investigate non-lin-

ear programs.

4.4.3. Non-linear programs

Non-linear constraint or objective functions result in a non-linear program. Non-

linear constraint functions are obtained if the internal MPC model is non-linear.

In case the non-linear internal MPC model is described as a mixed logical dynam-

ical (MLD) system (see Section 6.1), a mixed integer program (MIP) is obtained,

which can either be a mixed integer linear program (MILP) or a mixed integer

quadratic program (MIQP).

Non-linear programs have one major advantage: they can embrace non-linear

system dynamics. The introduction of non-linearities allows for a more detailed

system description, leading to an enhanced model performance. However, by

introducing non-linearities into the model, the optimization may converge towards

a local optimum. Therefore, the enhanced performance should be weighed against
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the loss of optimality occurring because a global optimum is not guaranteed

(Joseph-Duran et al., 2014b; Marinaki and Papageorgiou, 1998; Ocampo-Martinez

et al., 2007, 2008; Papageorgiou, 1988) and against the increased computational

time (Ocampo-Martinez and Puig, 2009a). Furthermore, it is important that the

improvements obtained from including non-linearities are large compared to the

errors stemming from the uncertain rainfall–runoff predictions (Ocampo-

Martinez et al., 2008). In the original formulation of DORA (Vezzaro and Grum,

2014), the non-linearities stem from an abrupt exceedance of basin volumes (lead-

ing to overflow) and the inclusion of input uncertainty, and the application of a

genetic algorithm here reduces the risk of getting trapped in a local optimum.

5. Optimization solvers

The optimization solver is the piece of software, which implements the algorithm

that solves the optimization model. The algorithm is the “recipe for solving”, and

different implementations of the same algorithm may exhibit differences in perfor-

mance, both with respect to finding the optimum and with respect to computa-

tional cost. The reviewed literature reports the use of solver implementations

ranging from commercial products (for example, Joseph-Duran et al. (2014c))

over open-source solvers (for example, Vezzaro and Grum (2014)) to implementa-

tions made by the authors themselves (for example, Zimmer et al. (2015)). Optimi-

zation algorithms and their implementation in optimization solvers is a scientific

field in itself and much too comprehensive to treat thoroughly in this review.

The optimization solver is an essential part of MPC because it governs how the

internal MPC model and the objective function are used to find the desired opti-

mum of the optimization model. The same optimization model can be solved by

different solvers with very different computational cost, and sometimes also with

different outcome. The most important factor when deciding for a solver is

whether to pose the optimization problem as convex or non-linear. In the follow-

ing, we outline the characteristics of solving convex and non-linear programs,

respectively.

A convex program can be solved in a computationally efficient manner by using

the interior point algorithm by Nesterov and Nemirovskii (1994). This algorithm

can handle tens or even hundreds of thousands of optimization variables and still

be computationally feasible.

Non-linear programs are typically solved by simulation–optimization based

algorithms like genetic algorithms or gradient decent based algorithms. These

algorithms require repeated simulations of the system dynamics with candidate

sets of optimization variables. In most cases, it will be too time consuming to base

the optimization on simulations with a detailed hydraulic model, and simplified

models must be derived (see the discussion about internal MPC models in Section

6). Even with simplified (though non-linear) system dynamics, all simulation–opti-

mization based algorithms have the large computational burden as their weak spot.
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Optimization algorithms that assume continuous gradients (for example, gradient

decent methods) may experience difficulties in case of rapid changes in system

state, where the gradient becomes discontinuous. Heuristic optimization algo-

rithms (for example, genetic algorithms and simulated annealing) handle these

types of discontinuities better, but represent more computational challenges.

Genetic algorithms have been widely used within water management optimization

(see the review by Nicklow et al. (2010)), and Zimmer et al. (2015) tested different

genetic algorithms for MPC of urban drainage systems.

Convex and non-linear optimization algorithms also treat the constraints on

outputs (for example, a limit on the future values of the basin volume) differently.

Constraints on outputs indirectly limit the possible choices of control trajectories,

as some choices will lead to constraint violations. A convex optimization program

forces the constraints on outputs to be formulated as a convex function of the ini-

tial conditions and the control trajectory. This will tell the interior point algorithm

to limit the search space to combinations of control actions that fulfill the con-

straint inequalities, without the need for first running the candidate control trajec-

tory through a simulation. A simulation–optimization based algorithm cannot

take constraints on outputs into account when choosing the next candidate control

trajectory, because the output is not an explicit function of the initial conditions

and the control trajectory. Therefore, it is not known whether the candidate con-

trol trajectory fulfills the output constraints until a simulation has been run.

6. Internal MPC models

The internal MPC model represents the dynamics of the urban drainage sys-

tem and is used to predict the future state of the system, given the initial con-

ditions of the system, the input such as rainfall and sewage, and the control

actions. It is important that the internal MPC model in combination with the

optimization model runs fast enough to allow the optimization solver to opti-

mize the control actions within the available time frame. In sewer systems,

flow can be described by the Saint–Venant equations, which are composed by

a continuity equation and a momentum equation (see, for example, Butler

and Davies, 2011; Chow et al., 1988). These give a detailed, non-linear mathe-

matical description of the flow in the urban drainage system and are used in

HiFi models, together with the hydraulic equations for the different hydraulic

structures. There is a broad consensus on the application of the HiFi models

(for example, MIKE URBAN or SWMM) for design and analysis purposes

within the urban drainage community (Elliott and Trowsdale, 2007), but they

are too complex to be used as internal MPC models. Instead, simpler models

are used; however, there is much less consensus on how to construct lumped-

conceptual models and even less on internal MPC models. Finding an appro-

priate model description that captures the important dynamics of the system

is one of the most important tasks when designing RTC for urban drainage
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systems, as this accuracy is directly reflected in the quality of the optimized

control (Joseph-Duran et al., 2014a, 2014b, Ocampo-Martinez and Puig,

2009a, 2010; Papageorgiou, 1983; Pleau et al., 1996; Sch€utze et al., 2004). This

trade-off between computational cost and the accuracy of the model is quanti-

fied by Mollerup (2015), who showed that more detailed models have better

model performances, but also longer computational times.

It is not a trivial task to simplify reality, or a HiFi model, down to an internal

MPC model that is computationally feasible yet sufficiently accurate. Such a task

includes considerations about important physical structures and processes, opera-

tional goals, whether the program is convex or not, and the applied optimization

solver.

6.1. Model structure

In the reviewed literature, the internal MPC models range from rather detailed

models to conceptual models that are constructed by analyzing the layout of the

sewer system and then deciding on a set of model elements that can be used as rep-

resentatives. The latter category is by far the most used approach. A list of model

elements has been compiled from the reviewed literature and listed in Table 5.

Actuators are conceptually embedded in these model elements, where gates, weirs,

and valves, for example, are implicitly part of the complex diversion elements,

while pumps, for example, can be represented as the manipulated outflow from a

basin.

The model elements shown in Table 5 can be used to represent different

complex phenomena that occur in the urban drainage system, for example,

when the sewer network gradually fills up and reaches its capacity, hereby

going from free flow to pressurized flow. These complex phenomena include

internal overflows, external overflows, and backwater effects. The term “inter-

nal overflow” is usually used for overflows that take place inside the sewer sys-

tem; however, the same mechanism can be used to model flooding that, after a

period of storage above ground, returns to the sewer system; as these two are

not always separable in the literature, we have denoted both as internal over-

flows. “External overflow” will be used as term for the CSOs and flooding that

does not return to the sewer system, whereas the term “backwater effects”

describes the accumulation of water upstream in the sewer system due to, for

example, a downstream flow limitation.

Table 6 provides an overview of the model elements used in the reviewed litera-

ture and the linearity of both the overall model and each model element. The table

also notes whether the phenomena of backwater effects and internal and external

overflows are included. Some of the applied MPC methods, including the model

elements and phenomena, are not described thoroughly in the reviewed literature;

thus, it either requires expert knowledge within control theory or additional infor-

mation to understand the methods in depth. Hence, Table 6 is constructed based
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on our best interpretation of what has been done and should merely serve as a

guideline for inspiration. The table also visualizes that an urban drainage system

can be conceptualized in many different ways, even within the same group of

authors. The differences between linear and non-linear internal MPC models will

be elaborated in the following.

6.1.1. Linear internal MPC models

As stated earlier, convex constraint functions can be obtained by formulating

the internal MPC model in a linear way, and most of the linear elements in

Table 6 can be formulated by a collection of discrete-time state-space mod-

els:

x.kC 1/DAx.k/CBuu.k/CBdd.k/

y.k/DCx.k/ (11)

where x is a vector of the states in the system, u is a vector of the control actions,

d is the input that cannot be controlled, y is the system outputs, while A, Bu, Bd,

and C are the coefficient matrices and k is the modeling time step (Garc�ıa et al.,

2015; Maciejowksi, 2002; Marinaki and Papageorgiou, 1998). Modeling of the

different elements are summarized in Table 7, while a more thorough description

can be found in the individual papers listed in Table 6.

An external overflow can be modeled by a linear model by defining a manipu-

lated flow out of a given element. This flow enters the optimization model as opti-

mization variables with a relatively large penalty in the objective function such that

the overflow only occurs when no other option exists (Fiorelli and Schutz, 2009;

Fiorelli et al., 2013; Gelormino and Ricker, 1994). Overflows can also implicitly be

modeled linearly, either by including slack variables as done by Ocampo-Martinez

et al. (2008) or by including a specific overflow term in the objective function, as

Table 5. Description of model elements used in internal MPC models.

Model element Description

Real basins Storage tanks.
Pipes Used to represent transport time and/or the flow capacity of the sewer

system.
Collectors (also called “interceptor

pipes” or “trunk sewers”)
Large pipes that can be modeled to account for the in-line storage capacity.

Simple pipe junctions Summation or diversion locations without any passive elements or
actuators.

Complex diversion elements Diversion locations with passive elements or actuators; for example,
overflow structures (internal and external weirs), gates, or valves.

Linear reservoirs (also called “virtual
tanks”)

Used to represent a large part of the sewer network; thus, the volume of
water stored in the linear reservoirs represents the water volume stored
in the pipes in this part of the system.

Wastewater treatment plants Included to represent the maximum inflow capacity; however, these are
only rarely used as individual elements; thus, they are left out in the
remainder of this paper.
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done by Mailhot et al. (1999). In these two cases, the phenomena are no longer

embedded in the internal MPC model; thus, they are not shown in Table 6. Addi-

tionally, one may question whether they represent reality sufficiently well as the

overflow water never leaves the internal MPC model. Backwater effects are disre-

garded in all linear models.

6.1.2. Non-linear internal MPC models

Most internal and external overflows, such as the flow over a weir, are inher-

ently non-linear and depend on the state of the system. Therefore, it can be

useful to make a more realistic model description of these phenomena by

including non-linearities in the internal MPC model. In most cases, the

Table 7. Model techniques applied for different linear model elements.

Model element Modeling technique

Real basins Modeled by simple mass balances where the discharge from the basins is manipulated. Here,
an example from Ocampo-Martinez et al. (2007) is given:

vi kC 1ð ÞD vi.k/CDt .q
in
i kð Þ¡ qouti kð Þ

� �

where vi is the volume for basin i at time k, Dt is the sampling interval while qini and qouti are
the inflow and outflow.

Pipes May only represent a flow capacity to enable the modeling of an overflow, or include travel
time by using a flow equation where the outflow of the pipe is depending linearly on the
inflow at previous modeling time steps. Here an example from Joseph-Duran et al. (2014a)
is shown where the current flow is based on the travel time, ki, and a weighing factor, ai :

qouti kð ÞD aiq
in
i k¡ kið ÞC 1¡ aið Þqini .k¡ ki ¡ 1/

The travel time will depend on the flow, and Fiorelli et al. (2013) recommend using full
flowing pipes for calibrating travel times. The time delay can also be included in the
objective function as in Fiorelli and Schutz (2009); thus, it is not an element in itself and it
is in this case not shown in Table 6.

Simple pipe
junctions

Modeled as simple summations (merging flow) or diversions into predefined ratios (splitting
flow). Ocampo-Martinez and Puig (2009a) provided an example of a merging flow:

qouti D
Pn

iD 0q
in
i

where n is the number of inflows. The splitting flow can be modeled by applying a predefined
partitioning of the flow (Joseph-Duran et al., 2014d; Ocampo-Martinez and Puig, 2009a).

Complex diversion
elements

Modeled as a mass balance in Ocampo-Martinez et al. (2008), where it is denoted a
“redirection gate”:

qouti kð ÞDQi kð ÞC
P

j u
j
i.k/

where qouti is the outflow from the basin that flows to the diversion element, j is an index over
all manipulated flows coming from the diversion element, and Qi is a flow path having a
limited flow capacity. Exceedance of this capacity leads to an overflow event.

Linear reservoirs Modeled as a mass balance where the outflow from the linear reservoirs is linearly dependent
on the volume (see, for example, Chow et al., 1988). Here, an example from Ocampo-
Martinez et al. (2007) is shown:

vi kC 1ð ÞD vi.k/CDtfiSiPi.k/CDt q
in
i kð Þ¡ qouti kð Þ

� �

qouti kð ÞDbivi.k/
where Dt is the sampling interval, the second term on the right side is a simple input model

with fi as the runoff coefficient, Si as the surface area of the catchment and Pi as the rain
intensity, and bi as the volume/flow conversion coefficient.
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equations representing the model elements from Table 7 are simply expanded

to include the non-linear overflow description. The following aims to provide

an overview of different techniques for dealing with the non-linearities that

arise when including non-linear phenomena. More information can be found

in the papers listed in Table 6.

The elements representing internal and external overflow phenomena can

be modeled in a non-linear way by using hybrid model predictive control

(HMPC), where the system is described as a combination of continuous and

discrete dynamics. HMPC systems include the MLD systems, linear comple-

mentary (LC) systems, min-max-plus scaling (MMPS) systems, and piecewise

affine (PWA) systems. MLD systems have been applied in numerous papers

and are often constructed by adding logical conditions to the otherwise linear

descriptions shown in Table 7, which determine whether the capacity of the

element has been exceeded. This enables the system dynamics to be modeled

by both a continuous part and a logical part, where the latter makes the

modeling of non-linear state depending phenomena possible (Joseph-Duran

et al., 2013b, 2014b; Ocampo-Martinez et al., 2007). In order to give a better

understanding of the MLD systems, two (slightly modified) examples of over-

flows are taken from Ocampo-Martinez et al. (2007). The first example is the

modeling of a diversion element with a passive weir, which can be formulated

as

qouti kð Þ D
qini kð Þ if qini .k/�qouti

qouti otherwise

(

qoverflowi .k/ D qini kð Þ¡ qouti kð Þ (12)

where qouti kð Þ is the outflow, qini kð Þ is the inflow, qouti is the capacity of the pipe

while qoverflowi .k/ is the overflow. The second example is directly relatable to the

linear formulation for linear reservoirs in Table 7. Now, an overflow will occur

from the storage basin when the storage capacity of the basin, v i, is reached.

Therefore, an extra overflow term is added to the mass balance:

vi.kC 1/D vi.k/CDt qini .k/¡ qouti .k/¡ qoverflowi .k/
� �

qouti kð ÞD
biv i if vi kð Þ�v i

bivi kð Þ otherwise

�

qoverflowi kð ÞD
vi kð Þ¡ v i

Dt
if vi kð Þ�v i

0 otherwise

8

<

:

(13)
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If the overflow represents an internal overflow, it is normally either directed

straight to another part of the system (see, for example, Ocampo-Martinez and

Puig, 2010), or the water is stored in a fictive basin to represent street flooding

from where it can return to the network (see, for example, Joseph-Duran et al.,

2014a).

Ocampo-Martinez and Puig (2010) introduced piecewise linear function-based

(PWLF) MPC in order to exclude the logical variables that lead to computational

cost issues in the MLD systems. The PWLF-based model was shown to comply

with the time constraints, but led to a less optimal control than the MLD modeling

approach. The internal and external overflows can also be modeled by non-linear

smoothing, by applying a constraint branching algorithm and by using the general

disjunctive programming framework, as Joseph-Duran et al. (2014b) did.

Duchesne et al. (2001, 2003, 2004) and Pleau et al. (2005) included backwater

effects in their internal MPC model by modeling pipe flow with the Saint–Venant

equations, while Duchesne et al. (2001, 2003, 2004) also allowed surcharge. Those

studies used different approximations of the Saint–Venant equations (kinematic

wave model, diffusion wave model, and the full dynamic wave model) based on

the system states; thus, the non-linear phenomena were not modeled by expanding

the elements in Table 7. Duchesne et al. (2001, 2003, 2004) used 18 pipes to repre-

sent the »17 km long collector and the model is still not considered to be a full

HiFi model. Much of the literature disregards the use of the Saint–Venant equa-

tions; however, Duchesne et al. (2004) stated that their model runs at least

10,000 times faster than the real flow process and Pleau et al. (2005) mentioned

that the optimization problem on average is solved in less than 1 min, allowing the

internal MPC model to be used in an MPC context. Leirens et al. (2010) also

applied the Saint–Venant equations to describe the flow in pipes, but they stated

that this is a costly process and that future work should look at the practical time

constraints.

Zimmer et al. (2015) used an internal model which had been derived as a tabulated

metamodel of a SWMMmodel by Zimmer et al. (2013). Thus, this model was not based

on the elements in Table 7. The metamodel was able to model domain shifts from free

flow to pressurized flow and ran about twice as fast as the corresponding SWMMmodel.

6.2. Inputs

Input to the internal MPC model includes rain, runoff, and/or sewage from other

part of the urban drainage system. Some studies (including Cembrano et al., 2004;

Ocampo-Martinez et al., 2013; Ocampo-Martinez and Puig, 2010; and Puig et al.,

2009) transformed measured rain data from rain gauges into flow data directly in

the internal MPC model. However, most studies have excluded the part of the

sewer system not affected by changes in the control from the internal MPC model.

Instead, the flows entering the internal MPC model from these parts of the net-

work are represented by flow time series taken either from historically measured
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flow (for example, Gelormino and Ricker, 1994) or generated by input models that

transform rain data to flow data (see Fig. 6). When doing the initial design and

setup of an MPC controller, the inflow time series are either measured or generated

by an offline input model. Of course, this approach can only be used for offline

testing and not in a real-time operation where real-time input models are needed

to produce the inflows to the internal MPC model based on meteorological data.

6.2.1. Meteorological data and rain forecasts

Rainfall observations are the most important input when modeling urban runoff

and, therefore, also for MPC of urban drainage systems. It is most common to use

rain gauge data as input when doing offline historical simulations. This is partly

due to historical reasons and data availability, but also because rain gauge data usu-

ally result in more accurate runoff predictions than radar data, even for detailed

distributed models that can utilize the spatially distributed information in radar

data (see, for example, Goormans and Willems (2013)). However, data from net-

works of rain gauges are not well suited for generating the rainfall forecasts

required for operational MPC applications and, therefore, operational MPC appli-

cations are likely to be based on rainfall forecasts either from extrapolated radar

rainfall estimates (Thorndahl et al., 2017), called nowcasts among meteorologists,

or from NWP models (Courdent et al., 2018). Generally, radar nowcasts perform

better for short time horizons up to a couple of hours, whereas NWP is required

for longer time horizons (Thorndahl et al., 2013). In a review of multiple studies,

McMillan et al. (2012) found that it is to be expected that radar rainfall data can be

30–50 percent off compared to the rain rate on hourly scale if radar data is the

only source of rain data. On shorter time scales, this error is much larger because

the error of radar rainfall estimates grows significantly when the spatial and tem-

poral resolution is increased (Seo and Krajewski, 2010).

Figure 6. Relation between a HiFi model and an internal MPC model and its input, exemplified for a
catchment in Copenhagen, Denmark. (a) The HiFi model used as starting point. (b) The relevant part
of the HiFi model containing the sewer system affected by the control optimization, which may
contain backwater effects and internal and external overflows. (c) The conceptual, internal MPC
model of the relevant part of the sewer system with flow input from measurements or generated
by a (simplified or HiFi) input model.
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Most MPC studies apply ex-post rainfall forecasts (that is, historical measure-

ments used as forecasts; Beven and Young (2013)) from either rain gauges or radar

over the forecast horizon (for example, Fiorelli et al., 2013; Gelormino and Ricker,

1994; Joseph-Duran et al., 2014b; Marinaki and Papageorgiou, 2001; Ocampo-

Martinez et al., 2008; Vezzaro et al., 2014b), while a few have applied synthetic

data (hypothetical rain series or Chicago Design Storms) (for example, Mollerup,

2015; Papageorgiou, 1988). To the best of our knowledge, the only paper that

clearly states that actual rainfall forecast data has been used when evaluating MPC

is L€owe et al. (2016). Furthermore, the rainfall input can either be spatially distrib-

uted as applied by, for example, Joseph-Duran et al. (2014b), L€owe et al. (2016),

and Pleau et al. (2005), or homogeneously distributed in space as applied by, for

example, Fiorelli et al. (2013), Mollerup et al. (2016), and Vezzaro and Grum

(2014); however, this information is often omitted.

6.2.2. Input models and input predictions

The separation between input model and internal MPC model requires the deter-

mination of the boundaries between the two models (the red boundary in Fig. 6).

This is not a trivial task due to overflow structures, backwater effects, and state-

dependent changes in the dynamics. In theory, real-time input models can be

either HiFi models or simplified models, but HiFi models will often be computa-

tionally too expensive. Nevertheless, most of the reviewed literature either uses

flow time series obtained from offline HiFi models to generate input to the internal

MPC model, for example Joseph-Duran et al. (2013a, 2013c) or does not state the

origin of the flow time series in detail. Simplified input models are rarely encoun-

tered in the reviewed MPC literature, but can be found in some studies (for exam-

ple, Fiorelli et al., 2013; Joseph-Duran et al., 2014b; L€owe et al., 2016; Vezzaro and

Grum, 2014). However, to our knowledge only L€owe et al. (2016) used the input

model directly in a simulated MPC operation. This indicates that the focus in the

reviewed literature has been on the internal MPC models only, which underlines

how far we are from an actual implementation where real-time input models are

vital. The construction of input models is a research field in itself and is beyond

the scope of this review.

In a real-life operation, the input models will produce input predictions. These

predictions will be uncertain but the effects of this uncertainty are theoretically

reduced by the recursive control optimization if new inputs are obtained and initial

conditions in the internal MPC model are updated for each sampling interval

(Fiorelli et al., 2013; Marinaki and Papageorgiou, 1998, 1999, 2001; Papageorgiou,

1983, 1988; Sch€utze et al., 2004). Overly uncertain input forecasts are not useful;

therefore, some of the reviewed literature investigated the effect of having a fore-

cast horizon shorter than the prediction horizon (thus, having incomplete input

information). Here, the ex-post flow is applied within the forecast horizon and a

predefined input algorithm is subsequently used to compute the flow in the

remaining part of the prediction horizon. In the most extreme cases, the forecast
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horizon is set to 0; thus, the forecasts for the entire prediction horizon are based on

the predefined input algorithm. Examples of prolongation schemes are to:

– Let the input linearly fade to zero from the present value (Vazquez et al.,

1997).

– Let the input increase or decrease for the next one or two modeling time steps

with the average slope of the last four modeling time steps and then let it

decrease to dry weather flow during the next 30 min (Papageorgiou, 1988).

– Let the input constantly equal the present value. Here, the present value can

either represent the true state (Fiorelli and Schutz, 2009; Fiorelli et al., 2013;

Gelormino and Ricker, 1994; Ocampo-Martinez et al., 2008) or the uncer-

tainty of the state can be included (Fiorelli and Schutz, 2009; L€owe et al.,

2016).

– Use the three last modeling time steps to predict the input for the next 20 min

by linear regression and subsequently let the inflow decrease to dry weather

flow over the next 20 min (Marinaki and Papageorgiou, 2001).

– Set the input equal to five times the dry weather flow (Fiorelli et al., 2013).

The reviewed literature has contradictory conclusions regarding the effect that

the quality of the input has on the control performance; this may be due to the fol-

lowing reasons:

1) The use of a predefined input algorithm will lead to a worse input quality

and thus also a worse control; however, it is a subjective matter how much

the control can acceptably deteriorate before it can be concluded that the

input quality is important.

2) The importance of accurate forecasts will be affected by factors such as the

spatial distribution and size of the rain event, the size of the catchment, and

the methodology and accuracy of the applied predefined input algorithms.

This is supported by Fiorelli et al. (2013) and Rauch and Harremo€es (1999).

Due to forecast uncertainties, there is a risk of taking action because the model

anticipates an input that will never take place (Raso et al., 2014); thus, it is benefi-

cial to include the forecast uncertainty in the optimization of the control, as also

shown by Vezzaro et al. (2014a). The input uncertainty can be included in the con-

trol optimization itself by, for instance, incorporating the fact that the far future is

more uncertain than the near future in the objective function, as was described in

Section 4.2.3. However, this only includes a fixed decrease in the trust in forecast

over time. Farahani et al. (2017) also include input uncertainty in the objective

function, but in a time-varying manner that allows for the optimization of the

“worst case scenario”. A complete representation of the time-varying trust in fore-

casts can be included by, for example, applying stochastic gray-box models (Brein-

holt et al., 2011, 2012) or by wrapping an uncertainty propagation layer around

the existing deterministic models in the form of Monte Carlo simulations (Sch€utze

et al., 2004). An example of using gray-box models to incorporate the uncertainty

of the forecasts in the control optimization is given by L€owe et al. (2016). Here, the
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uncertainty of the runoff forecast is estimated by taking into account the uncer-

tainty regarding rainfall data, model structure, and system observations.

6.3. Initial conditions

The internal MPC model can be kept in touch with reality (or at least affected by it)

by updating the initial conditions at each sampling interval. The recursive updating

can reduce the negative effects of the simplicity of the model structure and ensure

that the internal MPC model is kept on track; this is also known as “re-aligning”

(Maciejowksi, 2002). Few studies in the reviewed literature have updated initial

conditions from either online measurements or HiFi models that run in real-time:

– Measured data can be used as new initial conditions when observations relate

directly to states in the model, as done by Courdent et al. (2015), and in the

more general case by using data assimilation methods such as the Kalman fil-

ter, as done by L€owe et al. (2016), Pleau et al. (1996), and Vezzaro et al.

(2013), or a variational state estimation approach, as suggested by Joseph-

Duran et al. (2015, 2014c). Puig et al. (2009) did not update the initial condi-

tions and instead used measurements from the system to autocalibrate the

internal MPC model parameters at every time step.

– The initial states of the internal MPC model can also be taken directly from a

HiFi model after the HiFi model has been run with the MPC optimized control

for one sampling interval, as done by Cembrano et al. (2004), Joseph-Duran

et al. (2014a), and Marinaki and Papageorgiou (2001), under the assumption

that the HiFi model reflects reality sufficiently well. HiFi models themselves are

not usually updated with measurements, but it can be done (Borup et al., 2014).

7. Discussion

As we have shown, MPC is a complex matter and there are many choices to make

regarding the specific MPC method, operational implementation, and linguistics.

It is also important to document likely improvements before investing in MPC.

This section will highlight some key considerations that should be addressed when

dealing with MPC in urban drainage, and answer the following questions:

1) How do I choose between a convex and a non-linear program?

2) How does MPC interact with other control layers, such as local PID

controllers?

3) How big improvements can be gained from implementing MPC?

4) Can you compare different MPC methods?

5) Which research gaps and challenges do we face next?

7.1. Convex versus non-linear programs – an essential question

Deciding between a convex and a non-linear program is crucial because it governs

many other connected aspects of MPC. This should be settled early in the process
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as it can be difficult, or at least time-consuming, to change later, and the choice will

put restrictions on the applied optimization solver. Roughly speaking, the choice is

between the two following options:

– Deciding a fine-resolution control trajectory based on simplified model

dynamics (convex program).

– Making a coarse-resolution control trajectory – maybe even an average deci-

sion for the entire control horizon – based on a more detailed description of

the system dynamics and/or the uncertainty (non-linear program).

There is a trade-off between the time resolution of the control trajectory and the

degree of detail in the model of the system dynamics. Obviously, detailed optimiza-

tion makes no sense if the system dynamics are too simple, and detailed system

dynamics will not save the day if the optimization model is too coarse. The flow

chart in Fig. 7 is based on the routes that the reviewed publications have taken

from control problem to optimal control actions.

Often, a non-linear internal MPC model is selected for one of two reasons.

It may include (1) complex inherently non-linear system dynamics such as

flow over thresholds, as has been encountered in a large proportion of the

reviewed literature (for example, Joseph-Duran et al., 2014a; Marinaki and

Papageorgiou, 2001; Ocampo-Martinez et al., 2007). It may also include (2)

non-linear uncertainty considerations in the control optimization, as in

DORA (Vezzaro and Grum, 2014) regarding input uncertainty and by Mah-

moodian et al. (2017) regarding uncertainty of modeled concentrations.

Uncertainty can also be included in a convex formulation, but this has not

been encountered in the reviewed literature and it is, therefore, not shown in

Fig. 7. The choice of a non-linear program due to a complex dynamics

description requires a reduction in the number of optimization variables in

order to stay within the time constraints in a real-time application, which

could limit how large a physical system can be considered in the optimization

and/or how detailed the control trajectory can be. Even with a limited number

of optimization variables, the solving is still computationally more demanding

than it is for a convex program (Boyd and Vandenberghe, 2009).

Choosing a linear internal MPC model to describe the system dynamics

provides linear (and thereby convex) constraint functions. The benefit of a

convex program is that it can be solved very quickly, even for tens of thou-

sands of optimization variables, which facilitates a fine resolution of the con-

trol trajectory. Also, the optimization solver algorithm of a convex program

explicitly takes constraints on future outputs into account. The drawback is

that the system dynamics must be simplified to the extent that constraint and

objective functions are explicit (and convex) functions of the optimization var-

iables. The difficult part here is the formulating of the important non-linear

phenomena (for example, overflow thresholds) in linear models in a manner

that reasonably represents reality.
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7.2. Control hierarchies

Having a clear strategy for making the control setup compatible with a real-world

implementation is obviously important. Figure 8 shows a slightly modified version

of the time-scale dependent control hierarchy proposed by Mollerup et al. (2017).

This hierarchy breaks down the overall control problem into four distinct hierar-

chical levels that can be managed independently and have clear communication

interfaces.

The hierarchical layers are distinguished based on differences in time scale of

the process dynamics and possible control actions taking place, and each layer

takes care of different aspects of the control problem. Layer 4 considers the man-

agement of objectives; thus, it defines overall objectives and constraints for the

operation of the sewer system, which may, for example, change seasonally or

depend on forecasted rainfall intensities (see, for example, Courdent et al., 2015;

Fiorelli et al., 2013; Giraldo et al., 2010). Layer 3 takes care of the system-wide or

global optimization; thus, it finds the optimal control based on operation objectives

and constraints (defined at Layer 4) for the entire urban drainage system and

determines the overall set-points that are sent to the controllers at the coordinating

Level 2. This level is typically decentralized and considers both interaction between

different local control loops, as well as local flow and water level constraints. Layer

Figure 7. Different routes to take from control problem to optimal control actions.
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1 takes care of the regulatory control; thus, it ensures that the set-points received

from higher layers are followed.

Mollerup et al. (2017) placed MPC at the second layer. In practice MPC is often

placed in a merged second and third layer, where it computes the overall global

(system-wide) set-points. Local controllers placed in the first, regulatory control

layer turn these local set-points determined by the system-wide MPC, such as a

gate flow, into settings for the individual actuators, such as the gate opening. How-

ever, we argue that MPC could also be used both as local controller in Layer 1 and

for overall management of objectives in Layer 4.

Most practical implementations of RTC in sewer systems include only Layer 1;

that is, only local rule-based control loops, which may be robust in operation but

very difficult to configure to achieve optimal system-wide control (Mollerup et al.,

2013). Failing to distinguish the different hierarchical layers and allowing the overall

MPC optimization at any layer above the first to influence actuators directly can

lead to control systems that are vulnerable to, for example, communication failures

between central and local control stations and are, therefore, unacceptable to opera-

tors. Thus, including a regulatory control layer in advanced control systems based

on a hierarchy, as outlined in Fig. 8, will increase robustness to communication fail-

ure where predefined control rules can take over locally. In case this also fails, actua-

tors can automatically be set to predefined, fixed levels. The need for a combination

of local and global control schemes is acknowledged in the MPC literature (see, for

example, Duchesne et al., 2004; Fiorelli et al., 2013; Frier et al., 2013; Garc�ıa et al.,

2015; Joseph-Duran et al., 2014b; Mollerup et al., 2017; Ocampo-Martinez et al.,

Figure 8. Time-scale dependent control hierarchy for sewer systems. The indication of control strat-
egies used at each layer in the hierarchy is slightly modified from Mollerup et al. (2017) based on
the terminology and structure developed in this review.

316 N. S. V. LUND ET AL.



2008; Papageorgiou, 1983; Pleau et al., 2005). However, the lower control levels are

only rarely included in the model setup and evaluation in the reviewed literature.

Fail-safety measures are applied in the MPC implementations reported by Fior-

elli et al. (2013), Frier et al. (2013), and Pleau et al. (2005), where the control sys-

tem automatically shifts to a different mode in case of irregular behavior. The

control system described by Frier et al. (2013) is set up such that the fallback to a

lower level occurs automatically, whereas operator intervention is required to

increase the level again (Bassø, 2016). Guerra et al. (2007) and Ocampo-Martinez

and Puig (2009b) constructed fault-tolerant control that can be applied in the

MPC concept, making the control scheme more robust and able to detect and

account for faults in system components such as the actuators.

Mollerup (2015) and Mollerup et al. (2016) described a methodology for design-

ing the different layers in a sewer system control hierarchy based on temporal

decomposition. However, operational goals might also differ depending on the

considered spatial scale, so it can be beneficial to establish a spatial decomposition

of the control system. This approach was investigated by Zamora et al. (2010),

who discussed how local control loops can be coordinated.

7.3. Obtained MPC performances in literature

Table 8 shows how MPC performs as reported in the reviewed literature. The

decrease in CSO and flooding volume are listed together with the increase in flow

to the WWTP and decrease in the monetary cost related to a CSO event (CSO

cost). Table 8 also lists the number of events that the performance evaluations are

based on, together with the location, areal extent, number of controlled actuators,

length of time windows (collective horizon, sampling interval, setting duration),

and whether the overall control problem is solved using a linear, quadratic, or

non-linear program. The table also notes the investigated control scheme and the

baseline control strategy.

Table 8 shows that MPC is mostly investigated for European or North American

cities, and the studies include between one and 685 rain events to evaluate the per-

formance. Most commonly, 10 or fewer actuators are MPC-controlled, with the

highest two numbers being 24 and 47. All of the listed references use CSO volume

as an evaluation measure, whereas only 25 percent use the remaining three meas-

ures (flood volume, flow to WWTP, and CSO cost). Table 8 shows the perfor-

mance as an interval (illustrating the variation for different rain events) and/or an

accumulated value for a series of rain events (that is, the total amount of CSO and

flood volume, etc.), depending on the information given in the reviewed papers. In

general, the studies minimize the volume of CSO and flooding and the cost of CSO

while maximizing the volume treated at the WWTP. The MPC schemes sometimes

lead to a complete avoidance of overflow or flooding for individual events and,

therefore, achieve a 100 percent decrease, although some of the schemes also per-

form worse than the baseline control for some events. The latter is seen in two
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cases: (1) if a more important objective is used with a higher penalty and/or (2)

when multiple rain events are used to evaluate the MPC scheme. The use of multi-

ple rain events will increase the probability of facing a rain situation that the MPC

scheme cannot manage well; thus, applying multiple rain events may result in an

overall worse performance than applying only one or a few rain events. None of

the reviewed studies test how the MPC method performs in cases where the base-

line control strategy does not give an overflow. This is a clear limitation as it is

important to document whether the MPC create, for example, a CSO even though

the baseline control strategy does not.

Some references use other objectives to optimize the control actions, which are

not listed in Table 8. Mahmoodian et al. (2017) considered pollutant loads directly

and achieved a reduction in the overflow pollutant mass of 14 percent compared

to optimizing overflow volumes only. Some references (for example, Fiorelli et al.,

2013; Marinaki and Papageorgiou, 2001; Ocampo-Martinez et al., 2008), include

the rate of change of control actions in the objective function, but a corresponding

evaluation measure has not been encountered in literature; thus, the trade-off

between a rate-of-change constraint and other control objectives have not been

properly evaluated.

The spatial scale of the investigated catchments ranges from very small catch-

ments of a few square kilometers to large catchments in the range of hundreds of

square kilometers, spanning the major part of a city. Only 40 percent of the listed

references give information about the spatial scale of the investigated urban drain-

age system, but a slight positive correlation between average CSO reduction and

catchment size is evident from these data.

7.4. Challenges in comparing MPC schemes

In this section, we highlight the factors that we believe are most important when

comparing different MPC schemes. Implementing MPC involves many choices, all

of which may significantly affect the performance of the applied MPC method.

Some of these choices relate to the details of the specific MPC method, while others

relate to the evaluation of the method, including comparison with the baseline con-

trol strategy, whether the computational cost is considered or not, and which case

study and rain data are used. The fact that the reviewed studies made different

choices regarding these evaluation factors makes it very difficult to compare the

different MPC methods; thus, the improvement percentages reported in Table 8

should be interpreted with care.

7.4.1. Evaluation model

It may be necessary to implement and test an MPC scheme on a real system in

order to convince practitioners that it actually works and should be trusted in the

continuation, but this is not possible when the purpose is to benchmark different

control strategies against each other. Reality cannot be rerun; thus, the
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performance of the simulated MPC scheme must be compared with another simu-

lated (baseline) control strategy by using models. These control strategies should

ideally be compared using models with identical underlying structures that repre-

sent the dynamics of the actual system with sufficient accuracy.

Some of the reviewed literature states that the baseline control scheme and

investigated MPC method have been evaluated using different models (for exam-

ple, Ocampo-Martinez et al., 2007; Ocampo-Martinez and Puig, 2010). Other pub-

lications have not described the applied baseline evaluation model (for example,

Cembrano et al., 2004; Giraldo et al., 2010; Joseph-Duran et al., 2014a), and it is

therefore unclear whether both control schemes are evaluated using the internal

MPC model (as done by, for example, Fiorelli et al., 2013; Mollerup et al., 2016;

Ocampo-Martinez et al., 2008) or whether the baseline control is evaluated using a

HiFi model while the investigated scheme is evaluated using the internal MPC

model. Borsanyi et al. (2008) propose a benchmark methodology framework and

recommend using an RTC model validated by a HiFi model for both baseline con-

trol and investigated RTC method. However, we presume that the simplified inter-

nal MPC model is likely to overestimate its own performance, which would yield

an unrealistic picture of the performance. Therefore, the most optimal comparison

of control schemes is obtained when they are both evaluated using a HiFi model

by running the internal MPC model and HiFi model simultaneously, although this

is performed in only a few of the reviewed publications (see publications marked

with an asterisk (�) in Table 8).

The reviewed literature uses passive, local, or heuristic control as a baseline.

However, it is sometimes unclear if the baseline control is a simulation of the real

system control and if not, whether the chosen baseline control scheme then has

been through an offline optimization or is just chosen arbitrarily (for example,

Duchesne et al., 2004; Rauch and Harremo€es, 1998; Vezzaro and Grum, 2012). It

is important that the baseline control is properly defined and described when

benchmarking the MPC performance.

7.4.2. Computational cost, available time, and accuracy

In order to make a fair comparison between MPC methods, it is essential to know

whether they comply with the time constraints of an operational implementation.

Some of the case studies listed in Table 8 only deal with a subset of the real system,

and the MPC method’s scalability to larger problems should be considered when

evaluating the computational cost. The computational cost is not always stated in

the reviewed literature, which makes it hard to judge the applicability of the MPC

method in an operational setting.

There is a trade-off between the accuracy in the description of the system

dynamics in the internal MPC model and the computation time it takes to

solve an optimization model that encloses these dynamics. The two extremes

in the reviewed literature are the papers by Zimmer et al. (2015) and Joseph-

Duran et al. (2014c). In the high end with respect to computation time,
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Zimmer et al. (2015) reported computation times in the order of 0.5 to 1.5 hr

for solving a 1-hr control horizon problem using genetic algorithms. In the

low end, Joseph-Duran et al. (2014c) solved a mixed-integer linear program

for a 40-min control horizon in, on average, less than 1 sec. Zimmer et al.

(2015)’s optimization model had in total 16 optimization variables compared

to almost 10,000 optimization variables used by Joseph-Duran et al. (2014c),

but nevertheless the time for solving the optimization model with only 16 var-

iables is orders of magnitude higher. Zimmer et al. (2015) used a highly accu-

rate (though still simplified) model of the system dynamics. This model

(described by Zimmer et al. (2013)) had a simulation time that was approxi-

mately 50 percent of the simulation time of the corresponding HiFi model

(SWMM), and the computation time for one model realization alone was 3 to

6 sec. The MLD used by Joseph-Duran et al. (2014c) can probably not resem-

ble the dynamics quite as accurately, and this might lead to suboptimal con-

trol signals. However, the impact of less accurate dynamics can be reduced by

frequent recurrence of the MPC optimization, as also discussed in Section 6.3.

On the other hand, the computation time found by Zimmer et al. (2015) was

of the size of the control horizon. Although the efficiency of their optimiza-

tion could probably be improved by further parallelization of the genetic algo-

rithm implementation, it will produce a long lag time between the time of

forecast and the actual implementation of the control.

7.4.3. Case study used for evaluation

It can be useful to test the MPC method on a small system with only few controlla-

ble devices in order to obtain a proof-of-concept and valuable information about

the control mechanisms. However, it is necessary to implement MPC on a larger

system in order to assess the true performance potential and the actual computa-

tional cost of the applied MPC scheme. Mollerup et al. (2016) encountered a situa-

tion where a lower-level control scheme performed better than MPC and this was

explained by, for example, the use of spatially homogeneous rain and a limited

complexity and physical extent of the case study (the internal MPC model covered

a 3 £ 5 km area).

The obtained MPC results also depend on the specific layout of the case study,

such as the steepness of the pipe system, the available storage capacity, the location

of actuators, etc. Borsanyi et al. (2008) recommended the construction of two vir-

tual test cases with different properties and RTC potentials for benchmarking RTC

strategies in a benchmark methodology framework. Furthermore, the applied case

study will determine the operational goals of the control. Obviously, only control

strategies with similar operational goals can be compared as supported by Borsanyi

et al. (2008).

Mauricio-Iglesias et al. (2015) and Mollerup et al. (2015) investigated ways of

making a more optimal pairing between the actuators (manipulated variables) and

the measurements (controlled variables) in the regulatory layer by self-optimizing
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control and singular value decomposition, respectively, whereas Duchesne et al.

(2003) investigated how the MPC performance is affected by the location of the

controllable devices in the system. Overall, they found that it is important to con-

sider these aspects in order to obtain a robust control with a high performance.

7.4.4. Rain data used for evaluation

It is important to evaluate the performance of the applied MPC scheme using a

long historical record of rainfall events, as the system will perform differently

under different hydraulic loadings, even if the total rain depth of the events is the

same (Vezzaro and Grum, 2012). This is also recommended in the benchmark

methodology framework proposed by Borsanyi et al. (2008), where one year long

historical rain series from European cities with different climatic archetypes are

applied. The performance enhancement obtained by applying the MPC strategy

will deteriorate for large rain events as the sewer system fills up; thus, there is no

capacity left in the system to control (Duchesne et al., 2004; Gelormino and Ricker,

1994; Nelen, 1992; Rauch and Harremo€es, 1996). It is also expected that MPC will

reach its highest potential when there is a large spatial variability of the rain, as

this will enable the MPC strategy to, for example, empty storage basins in a more

efficient way than what can be done with passive or local control. Thus, the

applications that assume homogenously distributed rain are likely to obtain a lower

performance improvement. This will be especially evident for sewer systems with a

large spatial extent. The benefits of spatially distributed rain information are dis-

cussed by Nelen (1992).

In some cases, myopic control may result from the use of rainfall input products

for the MPC scheme with a shorter forecast horizon than the relevant system

dynamics. Ex-post forecasts are often used in the reviewed literature, which

neglects uncertainty and favors MPC compared to other control schemes that are

not using rainfall forecasts. Therefore, the rainfall data used as forecasted rainfall

in the evaluation should differ from the rainfall used as true rainfall for the baseline

control scheme. However, we only found one study (L€owe et al., 2016) that used

real forecasts for evaluating MPC.

7.5. Suggestions for future research

MPC is not a new technique within urban drainage, but there are still areas of dis-

pute and research gaps, as Garc�ıa et al. (2015) also recognized. A major research

gap concerns how to gain a better overview of which MPC methods are suitable

for different conditions, but this avenue of study remains stalled due to the points

listed in Section 7.4. In order to overcome some of the issues with the non-compa-

rability of the MPC methods, it could be possible to select a set of benchmarking

case studies that provide MPC researchers with a HiFi model, possibly predefined

operational goals and rainfall time series; enabling the comparison of different

MPC methods in respect to both computational costs and performance across
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research groups. The results from such an approach would be case-specific and the

conclusions may not necessarily be transferable to other case studies. However, it

would form an initial platform that makes it possible to extract further knowledge

of the possibilities and limitations of different MPC methods, including, for exam-

ple, how to represent different structures of the sewer system in the internal MPC

model. In addition, we found that some of the most important areas for further

research regard the applied input and its uncertainty, data assimilation in both the

input and internal MPC models, the operational implementation, and alternative

applications for MPC in the context of smart cities. We also propose an alternative

way of interpreting “MPC” and underline the importance of consistent reporting

of technical MPC implementation details and evaluation results.

7.5.1. Input and its uncertainty

It is necessary to investigate the relation between the quality of rainfall forecasts

and the resulting control performance in order to clarify the importance of accu-

rate input models. Input models are a research field in themselves and current

research includes the use of rainfall forecasts from both radar and NWP models.

Radar nowcasting may provide lead times of 30–120 min, whereas NWPs may pro-

vide lead times of several hours and even days, representing temporal scales for a

range of operational objectives; this has promise of optimization objectives that

have not yet been fully explored. The current clear distinction between radar now-

casts and NWP is, however, likely to vanish in the near future as the NWP’s

becomes faster. This facilitates a real-time merging between radar data and NWP

models (Korsholm et al., 2015), meaning that the nowcast is likely to be produced

by an NWP model. Future research should aim at reducing the impact of the

uncertainty from radar and NWP forecast products, for example, by updating the

input model (see Section 7.5.2), and on making the spatial and temporal resolution

of the rainfall forecast products fine enough to be used effectively in an urban

setting.

Rainfall forecasts and input models will always be uncertain and in case the

input quality is found to be important for the performance of MPC, this uncer-

tainty information should be used in the control optimization to enhance the

decision-making. The DORA algorithm (Vezzaro and Grum, 2014) has already

shown that uncertainty can be efficiently included in MPC optimization. The use

of input uncertainty in MPC has been studied for controlling river and reservoir

systems (for example, Raso et al., 2014; van Overloop et al., 2008). However, it

may not be straightforward to apply these methods in an urban drainage context

because the physical systems are different; urban drainage systems generally

include more thresholds and non-linearities than natural water systems.

7.5.2. Data assimilation

Only a few papers have actually updated their internal MPC models in real time

with either measurements or results from a HiFi model. Joseph-Duran et al.
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(2014d) and Marinaki and Papageorgiou (2001) updated the initial conditions of

the internal MPC model with results from a HiFi model run in real time, while

Joseph-Duran et al. (2015), L€owe et al. (2016), Pleau et al. (1996), and Vezzaro

et al. (2013) assimilated measurements into the internal MPC model. It is also

possible to assimilate measurements into HiFi models in real time (Borup et al.,

2014), which could be used to update the initial conditions of the internal MPC

model, but this has not yet been encountered in the MPC literature for urban

drainage systems. Examples of autocalibration or updating of initial conditions

with measurements can also be found for input models (see, for example, Breinholt

et al. (2011) and Pedersen et al. (2016)), which will diminish the uncertainty

induced by the rainfall data. This uncertainty might be reduced by forcing the

input models up to the time of forecast with rain gauge data instead of using radar

and NWP products. This does, however, result in temporal displacements in the

hydrological response because data from a point is assigned to a large area. This

temporal displacement counteracts data assimilation to such an extent that even

uncertain, low quality radar rainfall estimates may be the better choice compared

to rain gauge data once system observations are assimilated into the model (Borup

et al., 2013). The choices of rainfall product and data assimilation method are thus

entangled, and it is still unresolved in literature how to best solve this issue.

7.5.3. Operational implementation of MPC

Two aspects are important considering the operational implementation:

1) Practical implementation: It should be investigated how MPC can be

robustly and efficiently implemented in real-world systems. This includes

the development of procedures for spatial decomposition of the control

(especially important for implementations in large systems), which should

be applied in combination with time-scale dependent decomposition, as dis-

cussed in Section 7.2. In addition, the possibility of using decomposition to

reduce the computational cost could be further investigated. The regulatory

control layer is not taken into account in any of the reviewed publications

and a poor regulatory layer will ultimately disrupt the performance of a well-

functioning MPC implementation; thus, it is also important to consider this

lower layer in an operational implementation. Acquiring rain data in the

right temporal resolution, spatial scale and quality in real time is also an

essential part of going into operation. This is not a trivial task even though

prototype systems to facilitate this do exist (Hill et al., 2011). Likewise, the

construction of operational input models is crucial.

2) Operator acceptance: As stated previously, one further impediment for

the implementation of advanced control strategies is the lack of trust

from operators. The control strategy obtained by the MPC may at times

be contraintuitive for the operator. Combined with a lack of trust, this

can result in the operator switching from automatic to manual control.

Therefore, we need a stronger focus on how to make the operators feel
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confident working with advanced, automated algorithms. The research

may include (1) higher involvement of the local operators in the devel-

opment of the MPC strategy and possibly the incorporation of their

experiences in the control strategy; (2) better training of the operators;

(3) development of proper control dashboards with enough information

about the underlying control optimization to support the best possible

decision making and/or; (4) a transition period with real-time, but off-

line, MPC operation where the operators can compare the current con-

trol with MPC or the construction of pilot-scale facilities where MPC

can be compared to other control strategies online. Research in this field

requires not only the knowledge from MPC specialists but also the col-

laboration with experts from a range of other fields such as social scien-

tists and people working with human–computer interfaces.

7.5.4. Alternative applications of MPC

Until now, MPC of urban drainage systems has mainly been about controlling

water volumes and loads; however, most applications that are using a reactive

control could benefit from MPC. An example of such an alternative use of

MPC is Liu et al. (2016) who experimented with using MPC for dosing chem-

icals into the sewer system to mitigate sulfide-induced corrosion. The emerg-

ing smart cities concept will furthermore pave the way for new applications of

MPC, including controlling urban drainage systems with a view to ensuring

bathing-quality water in harbor areas, controlling inlets to the sewer system in

case of surface flooding of the urban terrain, controlling interactions between

the sewer system and stormwater control measures installed to retain storm-

water locally, and controlling traffic in case of flood risk. The operational

goals can be expanded from only considering damage control and economic

optimization to also include amenity values, giving the control a completely

new dimension.

7.5.5. Alternative interpretation of MPC

We would like to take this opportunity to suggest a reassessment on how MPC is

interpreted. The vast majority of the reviewed MPC literature uses schemes that

apply a dynamic optimization with an objective function to optimize the control

and describes this as a vital part of MPC; thus, most people consider MPC to

belong to the subgroup of optimization-based control strategies (see Table 2).

However, the linguistic term MPC only refers to control that is determined based

on model predictions; thus, in principle MPC could also cover heuristic or rule-

based control that build on model predictions, but do not include a dynamic opti-

mization. Although no examples of this have been found in the literature on sys-

tem-wide control of urban drainage systems, there are examples of rule-based

MPC without dynamic optimization in an integrated control context. For example,

Sharma et al. (2013) described the potential for switching of a WWTP into wet-
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weather mode based on runoff models driven by radar rainfall forecasts. By

requiring dynamic optimization with an objective function to be a part of the

MPC concept, we not only risk limiting future applications of MPC, but we also

make it difficult to categorize control algorithms that are based on model predic-

tions but do not fit into the current MPC definition. Nevertheless, we acknowledge

that the interpretation of MPC is already well-founded, not only within urban

drainage, but in many other areas. We, therefore, suggest that a prefix can be added

to the MPC term as an indication of the exclusion of dynamic optimization. For

instance, “rule-based MPC” can be introduced as a term when static rules

Table 9. Checklist for writing MPC papers within urban drainage. Example literature is given where
[1] Vezzaro and Grum (2012) is a conference article containing less information than the journal arti-
cle [2] Vezzaro and Grum (2014). @ means that the information is included, (@) that it is partly
included, ‘ that it is missing, and n.r. that it is not relevant information in this specific paper.

Example
literature

Information 1 2

Receding horizon principle Is the length of prediction horizon, control horizon, forecast horizon,
sampling interval, setting duration and modeling time step
stated?

‘ (@)

If the forecast horizon is shorter than the prediction horizon, which
input data has then been used for the remaining prediction
horizon?

n.r. n.r.

If the control horizon is shorter than the prediction horizon, which
predefined control has then been used for the
remaining prediction horizon?

n.r. n.r.

Optimization model and
solver

What are the operational goals and objectives, how is the deviation
from the reference values quantified, and how are
the objectives prioritized?

@ @

What is the number of decision variables per sampling interval? ‘ ‘

What is the applied optimization solver and the computational cost? ‘ ‘

Internal MPC model Which model elements are included, how are they modeled and are
they linear or non-linear?

@ @

Which phenomena are represented in the model elements and how
are they modeled?

@ @

Has the internal MPC model been calibrated (and how)? n.r. n.r.
Are the initial states updated from measurements, a HiFi model or

not at all?
‘ ‘

Is historical rain, design rain, hypothetical rain, or rainfall forecast
applied as input?

@ @

Is the input spatially distributed? @ @

Does the conversion from rain to flow take place in a simple input
model, a HiFi model, or in the internal MPC model itself, and are
the inputs generated online or offline?

(@) @

If a simple input model is used, is it then validated? ‘ @

MPC performance Is the MPC optimized control transferred to a HiFi model for
performance calculations?

‘ ‘

Is the baseline control taken from a HiFi model, is it the current or a
fictive control strategy and has this strategy been optimized
before comparison with MPC?

‘ ‘

What is the case study area and its physical extent and how many
rain events have been applied?

@ @
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optimized offline are used in combination with forecast information instead of

dynamic optimization.

7.5.6. Consistent reporting

We have created a checklist (Table 9) to encourage the inclusion of comprehensive

information about the MPC implementation in future publications. Although this

checklist is certainly not complete, it does contain the elements that we find most

important and most often lacking in the literature. As examples, we have included

two references and marked which information they have included and which they

have left out. We would also like to stress the need to use a clear and consistent ter-

minology throughout both the individual papers and the urban drainage field as a

whole to make it easier to understand new literature and to avoid misconceptions

and misunderstandings.

8. Conclusions

Research in MPC of urban drainage systems started in the early 1980s, but has

increased significantly in the past 5 years, as judged by the published litera-

ture. We conclude that MPC of urban drainage systems may play an essential

role in the “smart water cities” of the future, where sewage infrastructure

evolves from being passive to adaptive units that can proactively respond dif-

ferently depending on the given situation. However, only a few instances have

been reported of MPC methods that are either ready for implementation or

are already in operation. Computational costs, uncertainty of input forecasts,

lack of consensus on best practice within MPC, a confusing MPC terminology

at the interface between many disciplines, and the lack of institutional capacity

are all factors that continue to impede implementation and further research in

the field. In this paper, we propose a unifying terminology in order to estab-

lish a common ground for understanding, which we hope will be used or at

least challenged by other authors. Furthermore, we propose a hierarchical cat-

egorization of MPC for urban drainage systems and emphasize four overall

components that are subject to in-depth analysis in the review:

– Five distinct time windows ideally play roles in the receding horizon

principle for urban drainage systems, where the optimization of control

actions is repeatedly carried out within a finite time horizon. The predic-

tion horizon (in which the objective function is calculated), the forecast

horizon (in which reliable inputs are available), and the control horizon

(in which control actions are optimized) are not distinguished clearly in

the literature; thus, we refer to them jointly as the “collective horizon”.

In the reviewed literature, the collective horizon is generally in the order

of 30–120 min. This coincides with the typical forecast ability of many

radar-based rainfall forecast products, but is not long enough to repre-

sent all the relevant system dynamics. The sampling interval (1–10 min

CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 329



in literature) defines how often the optimization of control actions is

repeated, and the setting duration (5–120 min in literature) defines how

often the control actions change values. There seems to be no consensus

in the literature regarding how these time windows are best determined

in practice, considering the size of the control problem and computa-

tional demands.

– The optimization model identifies the best control trajectory for each actua-

tor during the upcoming control horizon and consists of an objective

function (defining the operational goals of the optimization), a set of optimi-

zation variables (control actions for all actuators in the system), and a set of

constraints (boundaries for the optimization variables and future system out-

puts). Much of the literature optimizes the control actions by using an objec-

tive function based on volumes and/or flows. CSO minimization is most

often targeted but other objectives are also used.

– The optimization solver is the piece of software that obtains the optimal

control trajectory, and the choice of optimization solver depends highly

on the convexity of the optimization problem. Optimization solvers are

only discussed briefly as we acknowledge that it is too comprehensive to

treat thoroughly in this review; however, we encourage others to under-

take this task.

– The internal MPC model should capture the dynamics of the relevant parts

of the urban drainage system. All reviewed papers use simplified models

either in a non-linear or convex optimization, due to the computational bur-

den involved when applying HiFi models; however, there is little consensus

about how to conceptualize reality or a detailed HiFi model into an internal

MPC model that is computationally feasible but still sufficiently accurate.

Convex optimization often makes use of linear discrete-time state-space

models and represents overflows either in the internal MPC model by using

slack variables or as a specific overflow term in the objective function. Flow

over weirs are often modeled using mixed logical systems in non-linear opti-

mization. Some studies have omitted important details about the internal

MPC model, along with considerations of realistic input and input models

representing the part of urban drainage system not affected by changes in the

control. Many studies have used ex-post rainfall forecasts in combination

with a HiFi model to construct inflow time series, even though this is not fea-

sible in an operational setup. The degree to which the updating of initial con-

ditions of the internal MPC model improves the MPC performance is not

reported in the literature, even though this updating is normally an essential

part of MPC.

MPC of an urban drainage systems is a complex matter and many mutually

interdependent choices are required. Below, we highlight four key considerations

based on our review:
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– The formulation of the optimization model is a key choice from the begin-

ning and involves a trade-off between the number of optimization variables

and the degree of detail in the internal MPC model. Convex programs that

use linear internal models and constraint functions can be solved explicitly

and quickly, but there is no consensus yet on how to formulate important

non-linear phenomena such as overflow thresholds in a manner that repre-

sents reality reasonably well. non-linear optimization allows the inclusion of

overflows, flooding, etc. in the internal MPC model, but it is computationally

more demanding and perhaps, in some cases, infeasible for real-time

applications.

– There is a need to decompose an overall control system into different layers

based on the time scale of the process dynamics and control setup. Here we

propose distinguishing between four layers, each of which can be designed to

take care of different aspects of the control. Spatial decomposition determin-

ing how local and global control can support each other also appears neces-

sary, but is not dealt with in the literature, apart from the acknowledgement

of local PID controllers.

– MPC has mostly been reported for European and North American cities,

covering small (a few square kilometers) to very large (hundreds of

square kilometers) catchments and having from 10 or fewer to almost 50

actuators. Studies generally show a reduction of CSO volumes, flooding,

and CSO cost while maximizing the volume sent to the treatment plant.

Performance evaluations are mostly based on very few or even synthetic

events and only few studies have evaluated the performance based on

long-term simulations covering a year or more. This study shows that

MPC for CSO mitigation may work better for larger catchments and that

it is efficient for small and medium-sized events where storage is avail-

able for optimization, whereas large events are virtually unaffected by

MPC.

– It is difficult to compare different MPC methods as these are documented

using different evaluation schemes, input, case studies, etc., all of which affect

the obtained model performance. MPC performance evaluations should ide-

ally be based on simulations with a detailed HiFi model that fully represents

the relevant system features and dynamics and can be used to simulate both

the considered control strategy and a baseline strategy used for comparison.

However, these details are often left out of the reviewed literature; thus, it is

not always clear whether the evaluation model is the same as the internal

MPC model, which would likely overestimate the performance of MPC. Per-

formance evaluations should also use rainfall input data that realistically rep-

resent intensity variations and spatial variability for a range of hydraulic

loadings.

Finally, we list important areas for further research related to MPC of urban

drainage systems:
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– A better overview of which MPC methods are suitable for different condi-

tions is needed. Selecting a set of benchmarking may help overcome some of

the issues with non-comparability of MPC methods.

– Including uncertainty in the optimization of the control actions can lead to a

more robust control and is an almost untouched area within urban drainage.

– There is a distinct lack in the MPC literature on urban drainage systems of

methods for assimilating on-line observations to initialize internal MPC

models or input models.

– The final steps towards implementing MPC in real-time operational systems,

such as clarifying which input models should be used, how MPC should

interact with other control schemes in both temporal and spatial control hier-

archies, and how to overcome operator reluctance, are missing, which shows

that MPC is still far from being a mature technology that is ready for stan-

dard implementation.

– The smart cities concept may lead to a range of new operational goals where

MPC can be instrumental in changing urban drainage systems from passive

conventional infrastructure systems to proactive adaptive systems based on a

high level of automation. These include securing bathing water quality, con-

trolling the interaction between sewers and surface flooding, controlling the

interaction with local stormwater control measures, and controlling traffic in

case of flood risk.

– We provide a checklist to encourage the inclusion of comprehensive informa-

tion about the MPC implementation and performance evaluation in future

publications.
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