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Abstract. We propose a two-layer scheme to control a set of vehicles
moving in a formation.

The first layer, the trajectory controller, is a nonlinear controller since
most vehicles are nonholonomic systems and require a nonlinear, even
discontinuous, feedback to stabilize them. The trajectory controller, a
model predictive controller, computes centrally a bang-bang control law
and only a small set of parameters need to be transmitted to each vehicle
at each iteration.

The second layer, the formation controller, aims to compensate for
small changes around a nominal trajectory maintaining the relative po-
sitions between vehicles. We argue that the formation control can be, in
most cases, adequately carried out by a linear model predictive controller
accommodating input and state constraints. This has the advantage that
the control laws for each vehicle are simple piecewise affine feedback laws
that can be pre-computed off-line and implemented in a distributed way
in each vehicle.

Although several optimization problems have to be solved, the control
strategy proposed results in a simple and efficient implementation where
no optimization problem needs to be solved in real-time at each vehicle.

1 Introduction

In this chapter we propose a control scheme for a set of vehicles moving in a
formation. Vehicle formations are used in several applications, both in military
and civilian operations, such as surveillance, forest fire detection, search missions,
automated highways, exploration robots, among many others (see e.g., [20]).
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The control methodology selected is a two-layer control scheme where each
layer is based on model predictive control (MPC). Control of multi-vehicle for-
mations and/or distributed MPC schemes have been proposed in the literature.
See the recent works [5,22] and references therein.

The reason why two-layers are used in the control scheme is because there are
two intrinsically different control problems:

– the trajectory control problem: to devise a trajectory, and corresponding
actuator signals, for the formation as a whole.

– maintain the formation: change the actuator signals in each vehicle to com-
pensate for small changes around a nominal trajectory and maintain the
relative position between vehicles.

These control problems are intrinsically different because, on the one hand, most
vehicles (cars, planes, submarines, wheeled vehicles) are nonholonomic (cannot
move in all directions). On the other hand, while the vehicles are in motion, the
relative position between them in a formation can be changed in all directions
(as if they were holonomic).

As an example consider a vehicle whose dynamics we are familiar with: a car.
Consider the car performing a parking maneuver or performing an overtaking
maneuver. See figures 1 and 2.

Fig. 1. Car in a parking maneuver: cannot move sideways

In the first situation, we are limited by the fact that the car cannot move
sideways: it is nonholonomic. It is a known result that we need a nonlinear
controller, allowing discontinuous feedback laws, to stabilize this system in this
situation [23,3].

In the second, the vehicle is in motion and small changes around the nomi-
nal trajectory can be carried out in all directions of the space. In an overtaking
maneuver we can move in all directions relative to the other vehicle. This fact
simplifies considerably the controller design. In fact, a linear controller is an ap-
propriate controller to deal with small changes in every spatial direction around
a determined operating point.
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Fig. 2. Car in an overtaking maneuver: can move in all directions relative to the other
car

For a different approach that also decouples the path following from the inter-
vehicle coordination problem see [11].

The other option here is to design and use controllers based on the Model
Predictive Control technique. Several reasons support this option.

MPC is known to be a technique that deals appropriately and explicitly with
constraints. In fact, many researchers argue that the capacity of dealing naturally
and effectively with constraints is the main reason for the industrial success of
MPC; see e.g., [18,15,21].

In the problem of controlling a vehicle formation, the constraints on the tra-
jectory are an important problem characteristic:

– to avoid collisions between the vehicles in the formation;
– to avoid obstacles in the path; and,
– for other reasons of safety or reliability of operation (e.g., minimum altitude

or velocity in a plane).

Therefore, constraints should be appropriately dealt with. A possible way to
deal with constraints is to use unconstrained design methods combined with a
“cautious” approach of operating far from the constraints (e.g., imposing large
distances between the vehicles in the formations). But, such procedures would,
in general, reduce the performance that would be achievable by operating closer
to the limits [12].

Another possible approach is to push the trajectory away from the constraints
by penalizing a vehicle close to an obstacle or other vehicle (e.g., potential field
approaches, or other optimization-based approaches that do not impose explicitly
the constraints), but these methods do not guarantee that the constraints will
be satisfied.

Here, we use MPC imposing explicit constraints both on the vehicle inputs
and on the vehicle trajectory.

Another advantage of MPC is that, because MPC is an optimization-based
method, it has desirable performance properties according to the performance
criteria defined. In addition, it has intrinsic robustness properties [17].
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The major concern in using such a technique is often the need to solve opti-
mization problems in real-time which might be difficult for fast systems. However,
there are recent results on particular parameterizations for the optimal control
problems involved that allow MPC to address fast systems (see e.g., [1]). We shall
see that the control strategy proposed appropriately deals with this problem.

2 The MPC Framework

Consider a nonlinear plant with input and state constraints, where the evolution
of the state after time t0 is predicted by the following model.

ẋ(s) = f(s, x(s), u(s)) a.e. s ≥ t0, (1a)
x(t0) = xt0 ∈ X0, (1b)
x(s) ∈ X ⊂ IRn for all s ≥ t0, (1c)
u(s) ∈ U a.e. s ≥ t0. (1d)

The data of this model comprise a set X0 ⊂ IRn containing all possible initial
states at the initial time t0, a vector xt0 that is the state of the plant measured
at time t0, a given function f : IR × IRn × IRm → IRn, and a set U ⊂ IRm of
possible control values.

We assume this system to be asymptotically controllable on X0 and that for
all t ≥ 0 f(t, 0, 0) = 0. We further assume that the function f is continuous and
locally Lipschitz with respect to the second argument.

The construction of the feedback law can be accomplished by using a sampled-
data MPC strategy [10]. Consider a sequence of sampling instants π := {ti}i≥0,
with a constant inter-sampling time δ > 0 such that ti+1 = ti + δ for all i ≥ 0.
Consider also the control horizon and predictive horizon, Tc and Tp, with Tp ≥
Tc > δ, and an auxiliary control law kaux : IR×IRn → IRm. The feedback control
is obtained by repeatedly solving online open-loop optimal control problems
P(ti, xti , Tc, Tp) at each sampling instant ti ∈ π, every time using the current
measure of the state of the plant xti .

P(t, xt, Tc, Tp): Minimize

∫ t+Tp

t

L(s, x(s), u(s))ds + W (t + Tp, x(t + Tp)), (2)

subject to:

ẋ(s) = f(s, x(s), u(s)) a.e. s ∈ [t, t + Tp], (3)
x(t) = xt,

x(s) ∈ X for all s ∈ [t, t + Tp],
u(s) ∈ U a.e. s ∈ [t, t + Tc],
u(s) = kaux(s, x(s)) a.e. s ∈ [t + Tc, t + Tp],
x(t + Tp) ∈ S. (4)
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The domain of this optimization problem is the set of admissible processes,
namely pairs (x, u) comprising a control function u and the corresponding state
trajectory x which satisfy the constraints of P(t, xt, Tc, Tp). A process (x̄, ū) is
said to solve P(t, xt, Tc, Tp) if it minimizes (2) among all admissible processes.

Note that in the interval [t + Tc, t + Tp] the control value is determined by
kaux and therefore the optimization decisions are all carried out in the interval
[t, t + Tc].

We call design parameters those variables present in the open-loop optimal
control problem that are not from the system model (i.e., variables we are able
to choose); these comprise the control horizon Tc, the prediction horizon Tp, the
running cost function L, the terminal cost function W , the auxiliary control law
kaux, and the terminal constraint set S ⊂ IRn. The choice of these variables is
important to obtain certain properties for the MPC strategy, such as stability,
robustness, or performance (see e.g., [19,7,9] for a discussion on to choose the
design parameters).

The MPC algorithm performs according to a receding horizon strategy, as
follows.

1. Measure the current state of the plant x∗(ti).
2. Compute the open-loop optimal control ū : [ti, ti + Tc] → IRn solution to

problem P(ti, x∗(ti), Tc, Tp).
3. Apply to the plant the control u∗(t) := ū(t; ti, x∗(ti)) in the interval [ti, ti+δ)

(the remaining control ū(t), t ≥ ti + δ is discarded).
4. Repeat the procedure from (1.) for the next sampling instant ti+1 (the index

i is incremented by one unit).

The resultant control law u∗ is a “sampling-feedback” control since during
each sampling interval, the control u∗ is dependent on the state x∗(ti). More
precisely, the resulting trajectory is given by

x∗(t0) = xt0 , ẋ∗(t) = f(t, x∗(t), u∗(t)) t ≥ t0, (5)

where
u∗(t) := ū(t; �t�π, x∗(�t�π)) t ≥ t0, (6)

and the function t �→ �t�π gives the last sampling instant before t, that is

�t�π := max
i

{ti ∈ π : ti ≤ t}. (7)

Similar sampled-data frameworks using continuous-time models and sampling
the state of the plant at discrete instants of time were adopted in [4,7,8,6,16]
and are becoming the accepted framework for continuous-time MPC. It can
be shown that with this framework it is possible to address — and guarantee
stability, and robustness of the resultant closed-loop system — a very large class
of systems, which are possibly nonlinear, time-varying, and nonholonomic.
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3 The Two-Layer Control Scheme

As discussed, we propose a two-layer control scheme. The top layer, the trajec-
tory controller, is applied to the group of vehicles as a whole. The trajectory
controller is a nonlinear controller since most vehicles are nonholonomic sys-
tems and require a nonlinear, even discontinuous, feedback to stabilize them.
The main ideas for the controller used in this section follow closely the results
from [9].

The bottom layer, the formation controller, is computed and applied to
each vehicle individually. The formation controller aims to compensate for small
changes around a nominal trajectory maintaining the relative positions between
vehicles. We argue that the formation control can be adequately carried out by
a linear model predictive controller accommodating input and state constraints.
This has the advantage that the control laws for each vehicle are simple piece-
wise affine feedback laws that can be pre-computed off-line and implemented
in a distributed way in each vehicle. The main reference for this controller
is [2].

4 The Vehicle Formation Models

4.1 Nonholonomic Vehicle Model for the Trajectory Controller

The framework developed here could easily be adapted to vehicles moving in 2D
or 3D and having various dynamics. Nevertheless, we will explore a simple case of
a a differential-drive mobile robot moving on a plane, Figure 3, and represented
by the following kinematic model:

ẋ(t) = (u1(t) + u2(t)) · cos θ(t) (8)
ẏ(t) = (u1(t) + u2(t)) · sin θ(t) (9)
θ̇(t) = (u1(t) − u2(t)), (10)

with θ(t) ∈ [−π, π], and the controls u1(t), u2(t) ∈ [−1, 1].
The coordinates (x, y) are the position in the plane of the midpoint of the axle

connecting the rear wheels, and θ denotes the heading angle measured from the x-
axis. The controls u1 and u2 are the angular velocity of the right and left wheels,
respectively. If the same velocity is applied to both wheels, the robot moves
along a straight line (maximum forward velocity when u1 = u2 = umax = 1).
The robot can turn by choosing u1 
= u2 (when u1 = −u2 = 1 the robot turns
counter-clockwise around the midpoint of the axle).

The velocity vector is always orthogonal to the wheel axis. This is the non-slip
or nonholonomic constraint

(ẋ, ẏ)T (sin θ, − cos θ) = 0. (11)

Therefore, the vehicle model is a nonholonomic system. It is completely control-
lable but instantaneously it cannot move in certain directions. It is known that
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Fig. 3. A differential-drive mobile robot

this class of systems requires a nonlinear controller to stabilize it. Furthermore,
the controller must allow discontinuous (or alternatively time-varying) feedback
control laws. See [13] for a discussion on the control of nonholonomic systems,
[3,23] for the need to use discontinuous feedbacks, and [8] for MPC of nonholo-
nomic systems.

4.2 Linearized Vehicle Model for the Formation Controller

For the reasons explained above, to control the relative position between the
vehicles in the formation, compensating for small deviations around a nominal
trajectory, we might use linear control methods.

Consider that one of the vehicles is the reference vehicle. It might be the for-
mation leader, or any of the vehicles in the formation, or we might even want to
consider an additional nonexistent vehicle for modeling purposes. Consider that
the formation moves at the nominal linear velocity vn = (u1n + u2n)/2, with
u1n = u2n being the nominal velocities of the wheels. Let vl be the linear veloc-
ity added to the nominal linear velocity, and vw the angular velocity. Assume
that θ is small, so that cos θ � 1 and sin θ � θ. We thus have the simplified
model

ẋ(t) = (vn(t) + vl(t)) (12)
ẏ(t) = (vn(t) + vl(t))θ(t) (13)
θ̇(t) = vw(t). (14)

We consider a linearized model for each of the differential drive mobile robots
with the z1 axis aligned with the velocity of the reference vehicle .⎡

⎣ ż1
ż2
ż3

⎤
⎦ =

⎡
⎣0 0 0

0 0 vn

0 0 0

⎤
⎦

⎡
⎣ z1

z2
z3

⎤
⎦ +

⎡
⎣1 0

0 0
0 1

⎤
⎦

[
vl

vw

]
(15)
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Fig. 4. Reference frame for the Linearized vehicle model aligned with the reference
trajectory

For computation purposes, it is convenient to use a discrete-time model here.
The discrete-time model, converted using zero order hold with sample time h, is

⎡
⎣ z1(t + h)

z2(t + h)
z3(t + h)

⎤
⎦ =

⎡
⎣1 0 0

0 1 vnh
0 0 1

⎤
⎦

⎡
⎣ z1(t)

z2(t)
z3(t)

⎤
⎦ +

⎡
⎣h 0

0 0
0 h

⎤
⎦

[
vl(t)
vw(t)

]
(16)

which we will simply denote as

ż(t + h) = Az(t) + Bv(t). (17)

4.3 Formation Connections Model

Consider M vehicles and a reference vehicle (that might not exist) that follows
exactly the trajectory predicted by the trajectory controller.

Consider that the M + 1 vehicles are nodes of a directed graph G = (V, E),
which is a directed tree rooted at the reference vehicle. That is, all vertices are
connected, there are no cycles, and all edges are directed in a path away from
the root. Associate to each vertex i a triplet zi(t) = (zi

1(t), z
i
2(t), z

i
3(t)) with the

relative position with respect to the reference vehicle at time t. Also, associate
with each edge (i, j) ∈ E a pair z̃ij = (z̃ij

1 , z̃ij
2 ) with the desired position in

the plane of vehicle j with respect to vehicle i. The desired relative positions
are defined a priori and define the geometry of the formation that we want to
achieve. For node i we define its parent node Pi = j such that (i, j) ∈ E. See
Figure 5.

The objective of the formation controller is to maintain the geometry of the
formation, that is, the relative positions between the vehicles should be kept
as close as possible to the desired relative positions. We define for each vehicle
i with parent j a performance index that penalizes the difference between the
desired and actual relative positions of the vehicles.
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Fig. 5. A tree modelling the formation connections

J i =‖(z̃ij
1 , z̃ij

2 , 0) − (zj(N) − zi(N))‖2
P +

+
N−1∑
t=1

‖(z̃ij
1 , z̃ij

2 , 0) − (zj(t) − zi(t))‖2
Q + ‖(v(t), w(t))‖2

R. (18)

5 The Controllers

5.1 Trajectory Controller

The controller used here follows closely the results in [9]. We use bang-bang
feedback controls. That is, for each state, the corresponding control must be at
one of the extreme values of its range. The exception is the target set Θ (here a
small ball centered at the origin) where the control is chosen to be zero.

The feedbacks, when outside the target set, are defined by a switching surface
σ(x) = 0. The control will attain its maximum or minimum value depending
on which side of the surface the state is. More precisely, for each component
j = 1, . . . , m of the control vector, define

kj(x) =

⎧⎨
⎩

0 if x ∈ Θ,
umax

j if σj(x) ≥ 0,
umin

j if σj(x) < 0.
(19)

The function σj is a component of the vector function σ, and is associated with
the switching surface σj(x) = 0 which divides the state-space in two.

These surfaces must be parameterized in some way to be chosen in an opti-
mization problem. Therefore, we define them to have a fixed part σaux, possibly
nonlinear, and a variable part σΛ which is affine and defined by the parameter
matrix Λ.

σ(x) = σaux(x) + σΛ(x). (20)

For each component j = 1, 2, . . . , m, the equation σΛ
j = 0 is the equation of a

hyperplane which is defined by n + 1 parameters as

σΛ
j (x) := λj,0 + λj,1 x1 + . . . + λj,n xn. (21)
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The half-spaces σΛ
j (x) ≥ 0 and σΛ

j (x) < 0 are not affected by multiplying all
parameters by a positive scalar, therefore we can fix one parameter, say λj,0, to
be in {−1, 0, 1}. In total, for all components of the control vector, there will be
m × (n + 1) parameters to choose from. By selecting the parameter matrix

Λ :=

⎡
⎣ λ1,0 · · ·λ1,n

· · ·
λm,0 · · ·λm,n

⎤
⎦ , (22)

we define the function

σΛ(x) = Λ

[
1
x

]
, (23)

and therefore we define the switching function σ by (20) and we define the feedback
law kΛ by (19). Each component of the feedback law can be described as

kΛ
j (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if x ∈ Θ,

umax
j if

[
σaux(x) + Λ

[
1
x

]]
j

≥ 0,

umin
j if

[
σaux(x) + Λ

[
1
x

]]
j

< 0.

(24)

In our example the switching surfaces, for each control component, are planes
in the state-space IR3 and can be described by 4 real parameters. The surface,
and therefore the feedback, are defined by a parameter matrix Λ ∈ IR2×4.

The feedbacks are obtained by solving, in a receding horizon strategy, the
following optimal control problems with respect to matrices Λ ∈ IR2×4.

MinimizeΛ1,...,ΛNc∈IR2×4

∫ t+Tp

t

L(x(s), u(s))ds + W (x(t + Tp)) (25)

subject to (26)
x(t) = xt,

ẋ(s) = f(x(s), u(s)) a.e. s ∈ [t, t + Tp], (27)
x(s) ∈ X for all s ∈ [t, t + Tp],
x(t + Tp) ∈ S, (28)

where

u(s) = kΛi(x(�s�π)) s ∈ [t + (i − 1)δ, t + iδ), i = 1, . . . , Nc, (29)
u(s) = kaux(x(�s�π)) s ∈ [t + (i − 1)δ, t + iδ), i = Nc + 1, . . . , Np. (30)

In this optimal control problem, the control horizon Tc and prediction horizon
Tp satisfy Tc = Ncδ and Tp = Npδ with Nc, NP ∈ IN and Nc ≤ Np.
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The guarantee of stability of the resulting closed loop system can be given
by a choice of design parameters satisfying a sufficient stability condition. The
following set of design parameters [9] guarantees stability:

L(x, y, θ) = x2 + y2 + θ2, (31)

W (x, y, θ) =
1
3
(r3 + |θ|3) + rθ2 with r =

√
x2 + y2, (32)

Tp =
2π

3
, (33)

S := {(x, y, θ) ∈ IR2 × [−π, π] : φm(x, y) ≤ θ ≤ φM (x, y)∨
∨ (x, y, θ) ∈ Θ ∨ (x, y) = (0, 0)}. (34)

5.2 Formation Controller

For each vehicle i, with parent j, compute the control solving the constrained
linear quadratic optimal control problem:

Minimize over sequences {v1, . . . , vN−1}

J =‖(z̃ij
1 , z̃ij

2 , 0) − (zj(N) − z(N))‖2
P +

+
N−1∑
t=1

‖(z̃ij
1 , z̃ij

2 , 0) − (zj(t) − z(t))‖2
Q + ‖v(t)‖2

R (35)

subject to

z(t + h) = Az(t) + Bv(t) t = 0, . . . , N − 1,

z(0) = z0,

vmin ≤ v(t) ≤ vmax t = 0, . . . , N − 1, (36)
(zij

1 , zij
2 , 0) ≤ z(t) − zj(t) ≤ (z̄ij

1 , z̄ij
2 , 0) t = 1, . . . , N, (37)

Dz(t) ≤ d t = 1, . . . , N. (38)

Here, constraints (36) are limits on the inputs. Constraints (37) set a
maximum and minimum distance to the parent vehicle, and inequalities (38)
are general constraints to accommodate, for example, forbidden zones of the
state-space.

The matrices involved in the performance index are chosen to satisfy Q =
Q′ � 0, R = R′ � 0, and P solving the Lyapunov equation P = A′PA + Q.
This strategy has, for each vehicle and in the conditions stated, guaranteed
exponential stability [2,19].

One of the major advantages of this controller is the fact that the feedback
laws obtained from solving the linear quadratic regulator with constraints are



382 F.A.C.C. Fontes, D.B.M.M. Fontes, and A.C.D. Caldeira

Fig. 6. State-space regions for the reference vehicle PWA control law

continuous piecewise affine (PWA) functions [2], i.e. , for a certain region of the
state-space Rk (which is a polytope) the control law is affine

u(t) = Fkz(t) + Gk if z(t) ∈ Rk. (39)

In Figure 6 we can see the different state-space regions (195 polytopes) corre-
sponding to different affine control laws for the reference vehicle.

This way, the parameters of the PWA feedback (matrices Fk and Gk for each
region Rk) can be determined explicitly a priori, off-line, by multi-parametric
programming (e.g., using MPT - Multi Parametric Matlab Toolbox [14]). Each
vehicle just has to store the parameters of the PWA feedback function. No opti-
mization nor other complex computations are involved in real-time. Only lookup
table operations are needed for each vehicle.

The stability of the whole formation is easy to establish. This is because, with
the strategy above, the trajectory of each vehicle is exponentially stable with
respect the desired relative position to its parent vehicle. As there is exactly one
path from each vehicle to the reference vehicle, stability of any vehicle easily
follows recursively.

If more general graphs are allowed, comprising not only trees but also admit-
ting loops, the stability analysis is considerably more complex. For results on
stability considering more general graphs see [5].

5.3 Integration of the Two Control Layers

In each vehicle, the control given by the Trajectory Controller plus the control
given by the Formation Controller are applied. Therefore, we have to consider
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control limits in each layer in such a way that the physical limits are respected.
The Trajectory Controller (bang-bang feedback) can only use part of the limit
(70% in our simulations) leaving the rest to the Formation Controller.

For the Trajectory Controller, the bang-bang feedback is computed centrally
and then the switching surface parameters (a 2×4 matrix per sampling period)
are communicated to each vehicle. The frequency of update might be relatively
low, and is dictated by the information from the outside (the formation) world
of new obstacles in the trajectory, possibly identified by the sensors, that might
alter the main path.

For the Formation Controller, the PWA feedback law is computed a priori,
off-line, and implemented in each vehicle.

6 Conclusions

Model Predictive Control was shown to be an adequate tool for control of vehicles
in a formation: it deals explicitly and effectively with the constraints that are
an important problem feature; recent results on parameterized approaches to
the optimal control problems allow addressing fast systems as well as allowing
efficient implementations.

Although several optimization problems have to be solved, none need to be
solved in real time by each of the vehicles. Part of the problem can be solved a
priori, off-line, and an explicit control law can be implemented in each vehicle as
a lookup table; the other part can be solved centrally and only a few parameters
(a 2×4 matrix) need to be transmitted to all vehicles in each sampling period.
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6. Findeisen, R., Imsland, L., Allgöwer, F., Foss, B.: State and output feedback nonlin-
ear model predictive control: an overview. European Journal of Control 9, 190–206
(2003)

7. Fontes, F.A.C.C.: A general framework to design stabilizing nonlinear model pre-
dictive controllers. Systems & Control Letters 42, 127–143 (2001)



384 F.A.C.C. Fontes, D.B.M.M. Fontes, and A.C.D. Caldeira

8. Fontes, F.A.C.C.: Discontinuous feedbacks, discontinuous optimal controls, and
continuous-time model predictive control. International Journal of Robust and
Nonlinear Control 13(3–4), 191–209 (2003)

9. Fontes, F.A.C.C., Magni, L.: Min-max model predictive control of nonlinear sys-
tems using discontinuous feedbacks. IEEE Transactions on Automatic Control 48,
1750–1755 (2003)

10. Fontes, F.A.C.C., Magni, L., Gyurkovics, E.: Sampled-data model predictive con-
trol for nonlinear time-varying systems: Stability and robustness. In: Allgower,
F., Findeisen, R., Biegler, L. (eds.) Assessment and Future Directions of Nonlin-
ear Model Predictive Control. Lecture Notes in Control and Information Systems,
vol. 358, pp. 115–129. Springer, Heidelberg (2007)

11. Ghabcheloo, R., Pascoal, A., Silvestre, C., Kaminer, I.: Non-linear co-ordinated
path following control of multiple wheeled robots with bidirectional communication
constraints. International Journal of Adaptive Control and Signal Processing 21,
133–157 (2007)
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