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Abstract

A formulation for Model Predictive Control is pre-
sented for application to vehicle maneuvering problems
in which the target regions need not contain equilib-
rium points. Examples include a spacecraft rendezvous
approach to a radial separation from the target and a
UAV required to fly through several waypoints. Pre-
vious forms of MPC are not applicable to this class
of problems because they are tailored to the control
of plants about steady-state conditions. Mixed-Integer
Linear Programming is used to solve the trajectory op-
timizations, allowing the inclusion of non-convex avoid-
ance constraints. Analytical proofs are given to show
that the problem will always be completed in finite
time and that, subject to initial feasibility, the opti-
mization solved at each step will always be feasible in
the presence of a bounded disturbance. The formula-
tion is demonstrated in several simulations, including
both aircraft and spacecraft, with extension to multiple
vehicle problems.

1 Introduction

This paper extends Model Predictive Control (MPC)
to applications in vehicle maneuvering problems. MPC
is a feedback control scheme in which a trajectory op-
timization is solved at each time step [5]. The first
control input of the optimal sequence is applied and
the optimization is repeated at each subsequent step.
Because the on-line optimization explicitly includes the
operating constraints, MPC can operate closer to con-
straint boundaries than traditional control schemes [5].
The resulting efficiency gains have made MPC popu-
lar for process control. In the field of aerospace con-
trol, MPC has been used to stabilize an aerodynamic
system [13] and for spacecraft maneuvers [14]. Other
work [1] has used the combination of MILP and MPC
to stabilize general hybrid systems around equilibrium
points.

The first innovation of this work is the formulation of
MPC with general terminal constraints. When MPC
is used for steady-state control, terminal constraints
are applied to ensure stability. It has been shown [6]
that stability depends on the terminal state lying in an
invariant set. That is, a feasible feedback control law
may be identified that would keep the state within that
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Fig.1: Control System Overview

set once it had been entered. For maneuvering prob-
lems, it is natural that the terminal set be the target
region for the maneuver. However, it is restrictive to
enforce this set to be invariant. For example, a space-
craft rendezvous may require the chaser vehicle to be
at a certain position relative to the target, moving to-
wards it with a certain velocity. All of these quantities
are specified with some tolerance, forming a target re-
gion in the state space. When the chaser enters that
region, a physical connection would be made and the
maneuver is complete. However, since the target ve-
locity is non-zero, the region is not invariant. The for-
mulation presented in this paper replaces the notion of
stability with completion: given an arbitrary target set
in the state space, the system will reach the set in finite
time.

Fig. 1 shows an overview of the control scheme pro-
posed in this work. As well as the dynamic states x
and inputs u, a finite state machine is included in the
system model, with discrete state y and input v. The
state y = 0 implies that the maneuver has been com-
pleted, y = 1 otherwise. In the model, constraints on
v couple the continuous and discrete systems such that
the transition y → 0 can only occur when the vehicle
states x are in the prescribed target region. MPC acts
upon the combined, hybrid system to drive the com-
bined state (x, y) to the terminal set y = 0 in finite
time. The method can be extended to include multiple
vehicles and multiple targets, allowing the scheme to be
used for UAV maneuvers combining trajectory control
and waypoint assignment [10].

The new formulation extends existing MPC methods.
Previous work [16] has shown that allowing the horizon
length to vary leads to finite-time completion. For the



single-vehicle, single-target case, the formulation in this
paper provides a way of encoding this variation. Other
work has shown that MPC can reach an invariant set in
finite time [11]. In this paper, the set y = 0 is invariant
by construction. By coupling entry to this set with
presence in the target region, finite-time arrival in an
arbitrary set is accomplished.

The inputs to the discrete state machine vk are binary
variables in a Mixed-Integer Linear Program (MILP).
The use of MILP optimization offers significant advan-
tages beyond the inclusion of the discrete state model.
Previous work has shown that MILP can design tra-
jectories for complex maneuvers, including non-convex
constraints such as collision avoidance and waypoint
assignment [2, 9]. Although a relatively complicated
optimization form, MILP problems can be solved by
a branch-and-bound algorithm [15] and efficient soft-
ware [4] exists for this purpose. In addition, problem-
specific techniques can be used to solve trajectory de-
sign MILPs rapidly [9].

The second innovation is a new method of achieving
robust feasibility. This is a concern when using MPC,
since it tends to operate the systems close to the con-
straint boundaries. While this is beneficial for perfor-
mance, it means that small disturbances could ‘push’
the state beyond the feasible region. If this happens,
the optimization becomes infeasible, and no control
is defined. To avoid this situation, modifications are
derived such that the trajectory optimization is al-
ways feasible, provided the disturbance remains within
known bounds. Previous appraches to MPC robustness
have involved min-max problems [16] or invariant set
methods [7]. The new approach restricts control effort
at later steps in the plan, equivalent to planning conser-
vatively for the far future, in preparation for compensa-
tion by future feedback action. This guarantees robust
feasibility without increasing the size of the problem,
which is a drawback of many existing methods [5].

Three simulation examples are included. The first in-
volves a spacecraft rendezvous with a space station,
requiring approach to a non-equilibrium target. This
demonstrates the finite-time completion for general
maneuver problems. The second example involves a
single aircraft traversing an obstacle field to a fixed
target region. It illustrates the robust feasibility in the
presence of unmodeled disturbance. The final example
extends the problem to two aircraft, demonstrating the
application to multiple vehicles.

2 Controller Formulation

This section presents the formulation of the controller
and its proof of finite-time completion. For clarity,
the single vehicle, single objective case is shown first.
The extension to multiple vehicles and targets is then
demonstrated.

2.1 Single Vehicle Case
Problem Statement The aim is to control a vehicle,
with discretized dynamics

xk+1 = Axk + Buk (1)

where u ∈ <m and x ∈ <n, such that it passes through
the target region at some time step

∃k Pxk ≤ q (2)

where P ∈ <(l×n) and q ∈ <l are given parameters.
For example, a UAV problem might require the vehicle
to pass within 10 units of the origin at any altitude,
requiring four constraints (l = 4). A spacecraft ren-
dezvous problem might require additional constraints
on the velocity, which can also be written in this form.

Throughout the maneuver, the system is required to
obey various operating constraints, both convex and
non-convex, applied to the states and control. Exam-
ples include control limits and obstacle avoidance [2, 9].
All such constraints can be expressed in the following
linear constraint form

C1x + C2u + C3δ + C4 ≥ 0 (3)

where δ is a vector of auxiliary binary variables and 0
is a suitably-sized vector whose entries are zero. The
objective function is a combination of time, counted in
units of time steps, and the one norm of the input (i.e.
the fuel use, for spacecraft), weighted by α

J =
KF∑
k=0

(1 + α|uk|) (4)

where KF is the final step of the maneuver.

MPC Formulation At each time step k, the model
predictive control problem is to design an input se-
quence {uk|k . . .uk|(k+N)} for the horizon N , where
uk|j denotes the control designed at time k for applica-
tion at time j. Then the first element of that sequence
is applied. The optimization includes a model of the
dynamics

∀j ∈ [k . . . (k + N)] xk|(j+1) = Axk|j + Buk|j (5)

In the optimization model, the system state is aug-
mented with a single discrete state, y ∈ {0, 1}, where
y = 0 implies, by definition, that the target has been
reached at the current step or earlier. The dynamics of
y are described by a discrete-time state-space model

∀j ∈ [k . . . (k + N)] yk|(j+1) = yk|j − vk|j (6)

The discrete input sequence vk|j ∈ {0, 1} ∀j ∈ [k . . . (k+
N)] is an additional decision variable in the optimiza-
tion. Since these variables are binary, integer optimiza-
tion is required. The following constraint couples the



discrete input v to the continuous states, thereby link-
ing the discrete state machine to the continuous system.

∀j ∈ [k . . . (k + N)]
P(Axk|j + Buk|j) ≤ q + 1M(1− vk|j)

(7)

where 1 is a vector of suitable size whose entries are
one and M is a large positive integer. If vk|j = 1, the
target constraint defined by (2) is met at the step j+1,
otherwise the constraint is relaxed. Also, if vk|j = 1,
the discrete state y makes the transition from 1 to 0
between steps j and j +1, according to (6). Therefore,
the model of the discrete state is consistent with its def-
inition: y = 0 implies that the target has been reached.
Since v is restricted to take only integer values, the con-
tinuous constraints 0 ≤ yk|j ≤ 1 are sufficient to ensure
that y takes only values 0 or 1. It is not necessary to
specify y as an additional integer decision variable in
the problem.

The operating constraints (3) are represented in the
optimization in the following form

∀j ∈ [k . . . (k + N)]
C1xk|j + C2uk|j + C3δk|j + 1M(1− yk|j) ≥ 0 (8)

in which the constraints are relaxed if y = 0. This
relaxation of the constraints after completion of the
problem means the plan incurs no cost after passing
through the target. This is an important property for
the proof of completion, shown later in this section.

The initial conditions are taken from the current state
values. The discrete state yk is propagated outside
the controller according to its dynamics model (6) (see
Fig. 1)

xk|k = xk (9)
yk|k = yk (10)

The terminal constraint is that the discrete state yk = 0

yk|k+N+1 = 0 (11)

The objective function (4) is represented in the opti-
mization by the following

J∗ = min
{x,u,y,v}

(k+N)∑
j=k

(α|uk|j|+ yk|j) (12)

in which the one-norm |u| can be found using slack
variables and the inclusion of yk|j in the summation
represents the penalty on time, since yk = 1 before
completion and 0 after.

MPC Algorithm At each time step:

1. Solve the minimization of (12) subject to con-
straints (5)–(11);

2. Apply the first element of the continuous-system
control sequence uk|k to the vehicle;

3. Propagate discrete state yk by applying the first
element of the discrete control sequence vk|k to
its dynamics model (6);

4. Repeat from 1 until yk = 0.

Proposition: The control resulting from the algo-
rithm above drives the system to the target region (2)
in finite time.

Proof : Assume the system is in state (xk, yk) and the
optimization solved at this point yields the following
optimal sequences

{ uk|k . . .uk|(k+N) }
{ vk|k . . . vk|(k+N) }
{ xk|k . . .xk|(k+N) xk|(k+N+1)}
{ yk|k . . . yk|(k+N) yk|(k+N+1)}

where xk|k = xk and yk|k = yk, according to the initial
conditions of the optimization, and yk|(k+N+1) = 0 to
suit the terminal constraints. Let the cost of this se-
quence be J∗

k . After the applying the first elements of
this sequence, the system state equals the second state
of the sequence (xk|(k+1), yk|(k+1)). Then the follow-
ing sequence is feasible for the next optimization, at
step k + 1. It consists of the completion of the pre-
vious problem, followed by zero control input on the
final step k + N + 1. The relaxation of the constraints
(8) after completion ensures that this new final step is
admissible.

{ uk|(k+1) . . .uk|(k+N) 0}
{ vk|(k+1) . . . vk|(k+N) 0}
{ xk|(k+1) . . .xk|(k+N) xk|(k+N+1) Axk|(k+N+1)}
{ yk|(k+1) . . . yk|(k+N) yk|(k+N+1) 0}

The cost value of this candidate sequence is given by
Ĵ(k+1) = J∗

k − α|uk|k| − yk|k, since the additional steps
at the end of the sequence incur no cost. It is an upper
bound on the cost of the optimal solution, hence

J∗
(k+1) − J∗

k ≤ −α|uk| − yk (13)

This shows that the cost J∗
k decreases by at least one

unit per time step while yk = 1. Since J∗
k must be pos-

itive by construction, then yk → 0 must occur before
k → k̄, where k̄ is the smallest integer larger than the
initial cost J∗

0 . Due to the coupling (7), yk → 0 implies
that the target region has been reached. Therefore, the
maneuver must be completed in fewer than k̄ steps. 2

2.2 Multi-Vehicle, Multi-Target Case
The formulation in the previous section naturally ex-
tends to multiple vehicles and targets. Let there be
NT targets and NV vehicles. Each vehicle p has input
upk and state xpk, with its own dynamics model and
constraints in the optimization, similar to (1) and (3).
Each target q is defined by an equation similar to (2)
with its own parameters Pq and qq. There is an ob-
jective state yq for each target. The modified objective
dynamics are

yqk|(j+1) = yqk|j −
∑

p

vpqk|j (14)



while the coupling constraints become

Pq(Apxpk|j + Bpupk|j) ≤ qq + 1M(1− vpqk|j) (15)

where vpqk|j = 1 implies that vehicle p visits target q
at step j + 1 in the plan made at step k. From (14),
this means that yq changes from 1 to 0 at that step.

Capability constraints [10] can also be included in this
framework. An entry in the capability matrix Kpq = 1
implies that vehicle p can be assigned to target q. The
additional constraints are

∀p, q, j vpqk|j ≤ Kpq (16)

The terminal set for the optimization is now “all ob-
jectives met”. This corresponds to having all elements
of y set to zero. The infinity-norm of y is found by the
constraint

∀q ẑk|j ≥ yqk|j (17)

and the terminal constraint is therefore ẑ = 0, imply-
ing y = 0. Using a proof very similar to that in the
previous section, it can be shown that ẑ → 0 in finite
time, implying that all the targets are visited.

3 Robust Feasibility

The on-line optimization in MPC leads to state trajec-
tories at the very limits of the operating constraints.
While this offers improved efficiency, it also raises con-
cerns over robustness: a disturbance could ‘push’ the
state outside the operating region, making the opti-
mization infeasible. The property of robust feasibil-
ity [5] is achieved if, given a solution from the initial
condition, all subsequent optimizations will be feasi-
ble. In this section, the formulation is modified to
achieve this property under the action of an unknown
but bounded disturbance.

The analysis below identifies expressions for the correc-
tions to the disturbance at each time step, such that
the new plan rejoins the previous plan after two time
steps. The two-step correction is chosen because it can
be exactly calculated for second-order systems, which
are typically used for vehicles. It is not necessarily
desirable to correct in two steps, but the existence of
this solution ensures that the optimization is feasible.
While the exact disturbance is not known, the distur-
bance bounds can be used to derive control bounds
such that the corrections are always feasible. There-
fore, there is always at least one feasible solution at the
new time step. Note that the immediate two-step cor-
rection is not necessarily implemented: the optimiza-
tion will usually find a less costly correction spread over
a longer period.

Assume the system is in state xk. An optimization is
solved with the following dynamic constraints

xk|(k+1) = Axk +B1uk|(k
xk|(k+2) = Axk|(k+1) +B1uk|(k+1)

xk|(k+3) = Axk|(k+2) +B1uk|(k+2)

(18)

The first control step uk|(k is executed and a random
disturbance wk acts, moving the system to the new
state

x(k+1) = Axk + B1uk|k + B2wk (19)

At the next time step, a new plan is sought to satisfy

x(k+1)|(k+2) = Ax(k+1) +B1u(k+1)|(k+1)

x(k+1)|(k+3) = Ax(k+1)|(k+2) +B1u(k+1)|(k+2)

(20)
We seek the solution to the new planning problem such
that the new plan rejoins the old plan at the third step,
satisfying

x(k+1)|(k+3) = xk|(k+3) (21)

Combining (18) - (21), the new plan can be expressed
as perturbations to the control terms of the previous
plan[

u(k+1)|(k+1) − uk|(k+1)

u(k+1)|(k+2) − uk|(k+2)

]
= −[AB1 B1]−1A2B2wk

(22)
Note that the invertibility of the matrix [AB1 B1] fol-
lows from the two-step controllability of the system,
and illustrates the choice of the two-step correction.
Given a norm bound on the disturbance ‖w‖ ≤ W̄ ,
the following bounds on the control perturbations can
be found

‖u(k+1)|(k+1) − uk|(k+1)‖ ≤ β1

‖u(k+1)|(k+2) − uk|(k+2)‖ ≤ β2
(23)

where the associated induced norms are used to calcu-
lated the β values as follows

β1 = ‖[I 0][AB1 B1]−1A2B2‖ W̄
β2 = ‖[0 I][AB1 B1]−1A2B2‖ W̄

(24)

These norm bounds are used to restrict control actions
on later plan steps as follows

∀k : ‖uk|k‖ ≤ Ū
‖uk|(k+1)‖ ≤ Ū − β1

‖uk|j‖ ≤ Ū − β1 − β2 ∀j > k + 1
(25)

The effect of these constraints is illustrated in Fig. 2.
When planning at step k, the control for step k + 1
is restricted to be β1 below the maximum available Ū .
Therefore, at the next step, the new plan may increase
the control at k+1 by up to β1 units, even if the previ-
ous plan used the maximum available control for that
step. A similar addition of up to β2 is allowed at step
k + 2. Therefore, it is always feasible to add the per-
turbations in (22) and rejoin the previous plan in two
steps. This solution is likely to be very expensive, and
may not be the solution chosen by the optimization,
but its existence guarantees that the problem is feasi-
ble. Therefore, if a feasible solution exists at step k,
this implies feasibility at step k +1 for all disturbances
wk with ‖wk‖ ≤ W̄ .



Fig.2: Illustration of Robustness Technique

The states at the first two steps are also perturbed by
the action of the disturbance and the resulting correc-
tion. Since the initial state is fixed in the optimization
(9), the constraints on this first step may be completely
relaxed. The state perturbation to the second plan step
can be expressed and bounded by

x(k+1)|(k+2) − xk|(k+2) =
{I−B1[I 0][AB1 B1]−1A}AB2wk

(26)

hence
‖x(k+1)|(k+2) − xk|(k+2)‖ ≤ α (27)

α = ‖{I−B1[I 0][AB1 B1]−1A}AB2‖ W̄ (28)

Since the state constraints may be non-convex, for
example enforcing collision avoidance, simple norm
bounds of the form (25) cannot be used. Instead, the
perturbation is included as a design variable and its
norm is limited. If the nominal state constraints are

C1xk|j + C3δk|j + C4 ≥ 0 (29)

where δk|j are auxiliary binaries for avoidance, then the
constraints are revised to include a perturbation vector
∆ as follows

C1xk|j + C1∆k|j + C3δk|j + C4 ≥ 0 (30)

and the norm of the perturbation is limited to suit the
robustness constraints.

∀k : ‖∆k|k‖ ≤ M
‖∆k|(k+1)‖ ≤ α

‖∆k|j‖ ≤ 0 ∀j > k + 1
(31)

Note that this represents a relaxation of the nominal
state constraints. Depending on the problem, it might
be necessary to alter the parameters Ci to ensure this
relaxation does not violate the real constraints on the
system. Also note that the large number M is used as
the constraint for the first state perturbation, since the
initial state constraints are completely relaxed.

4 Implementation

MILP optimizations are solved using CPLEX soft-
ware [4]. The problem is translated into the AMPL
modeling language [3]. Simulation is performed in

Fig.3: Spacecraft Rendezvous with ISS under Maneu-
vering MPC

MATLAB, along with the data interface to AMPL. The
constraint and dynamics matrices are written to data
files at the start of each simulation. At each step, the
initial conditions are written to separate data files, and
an AMPL script is invoked to combine the relevant
model and data, invoke CPLEX and return the result
to MATLAB.

5 Examples

5.1 ISS Rendezvous
This section demonstrates the application of the de-
scribed MPC technique to the problem of autonomous
rendezvous of a spacecraft with a space station. Fig. 3
shows a spacecraft maneuvering under MPC from its
given starting point to a target state xT on the radial
axis, marked by a star. The station was modeled as
the boxes shown in the figure. The control time step
was 90 s, with a horizon length of 30 steps. The space-
craft reached the target after just over 2800 seconds
maneuvering time.

Fig. 4 shows the optimization costs from the solution
at each control step. Analysis predicts that the cost
should decrease by at least one unit per control step.
The dashed line in the figure shows this rate of decrease
starting from the initial cost, representing the upper
bound on convergence. Not only is the cost function
below this line, but its gradient is always the same or
steeper, as predicted by the analysis.

Fig. 5 shows the same simulation using MPC with the
simple terminal constraint xk|(k+N) = xT , instead of
the discrete state model described in this paper. Had
xT been an equilibrium, the control would have been
stabilizing, as proven in Ref. [1]. In this case, after
9000 seconds of simulated time, the chaser craft has not
reached the target and does not appear to be converg-
ing. This demonstrates the significance of the MPC
formulation presented in this paper: the target region
need not be invariant.
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Fig. 4: Optimization Costs during Maneuver. The
dashed line shows the upper bound on convergence
from the first step.

Fig. 5: Rendezvous Simulation as Fig. 3 using MPC
with Simple Terminal Constraint

5.2 Robust Control of Aircraft
To demonstrate the effect of the robustness formula-
tion, multiple simulations of the same maneuver were
performed with random disturbances applied. The ma-
neuver can be seen in Fig. 6, simulating control of a
single aircraft traversing an obstacle field to a fixed
target [12]. A random disturbance force, with magni-
tude limited to 15% of the turning force, was applied
at each time step. First, twelve simulations were per-
formed using the basic MILP/MPC formulation, with-
out modifications for robustness. In every case, the
system reached a state in which the optimization was
infeasible, occurring between 3 and 11 time steps af-
ter the start. When the modifications for robustness
were included, a further 12 simulated maneuvers were
all completed successfully. Fig. 6 shows the trajectories
from six of the simulations using the robustly-feasible
method. The trajectories encroach upon the obstacles,
due to the discrete-time enforcement of avoidance and
the relaxation of the constraints for robustness. How-
ever, these incursions are bounded and the obstacles
can be enlarged accordingly.

Fig. 6: Six Simulations using Robustly-Feasible Con-
troller. Without the robustness modifications, the con-
troller was unable to complete the maneuver without
becoming infeasible.

5.3 Robust Collision Avoidance for Two Air-
craft
This section shows the robust controller formulation
applied to a multiple-vehicle problem. Two vehicles
are required to visit two waypoints, as shown in Fig. 7.
The capabilities are constrained such that the assign-
ment is fixed to that shown, i.e. K = I in (16). The
dynamics and disturbances for both vehicles are the
same as in the previous example. In the absence of
collision avoidance constraints, the two vehicles would
travel in straight lines to their assigned destinations,
leading to a collision in the center.

Six simulations were performed using MPC without
robustness modifications, including collision avoidance
constraints. In very case, the optimization become in-
feasible after two or three steps. In some cases, feasibil-
ity was regained later in the simulation, but constraints
had been violated and the paths were erratic. Fig. 7
shows the trajectories from six simulations with robust-
ness modification included. All optimizations were fea-
sible throughout. Both vehicles make diversions from
the straight paths in order to avoid collision while min-
imizing overall flight time.

Fig. 8 shows the separation distance between the ve-
hicles, expressed as the infinity-norm of the separation
vector, through each of the six simulations. The con-
straints were set to require a minimum separation of
four units, marked by the dashed line. The two vehicles
encroach upon this region, since the constraints are ap-
plied at discrete intervals and the robustness formula-
tion allows limited relaxation of the constraints. How-
ever, knowing the disturbance, maximum speed and
time step length, this incursion can be shown to be less
than 0.6 units. This level is shown by the dash-dot line
in the figure. The predicted separation is maintained
throughout.
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Conclusions

A new formulation for Model Predictive Control has
been presented that guarantees finite-time completion
of vehicle maneuvers. The targets can be arbitrary
regions in state-space, generalizing existing MPC for-
mulations which require equilibrium target states for
stability. The system model is augmented with a finite
state machine, each state recording whether or not a
particular target has been visited. The terminal con-
straints can then be expressed in terms of the discrete
states. Modifications to the constraints also ensure that
the controller is robustly feasible: if an initial solution
can be found, and a bounded disturbance acts on the
system, the optimization problems at subsequent steps
are guaranteed to be feasible. The controller analy-
sis is supported by simulations, involving aircraft and
spacecraft examples. The combination of guaranteed
completion and robust feasibility allow the benefits of
MPC – feedback compensation while operating close
to constraint boundaries – to be achieved in vehicle
maneuvering applications.
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