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Model Predictive Control Schemes for Consensus in Multi-Agent
Systems with Single- and Double-Integrator Dynamics

Giancarlo Ferrari-Trecate,Member, IEEE, Luca Galbusera, Marco Pietro Enrico Marciandi, Riccardo Scattolini

Abstract—In this paper we address the problem of driving
a group of agents towards a consensus point when the agents
have a discrete-time single- or double-integrator dynamics and
the communication network is time-varying. We propose decen-
tralized Model Predictive Control (MPC) schemes that take into
account constraints on the agents’ input and show that they
guarantee consensus under mild assumptions. Since the global
cost does not decrease monotonically, it cannot be used as a
Lyapunov function for proving convergence to consensus. For
this reason, our proofs exploit geometric properties of theoptimal
path followed by individual agents.

Index Terms—Networked autonomous agents, Consensus prob-
lems, Decentralized model predictive control.

I. I NTRODUCTION

T HIS paper deals with consensus problems for dynam-
ically decoupled agents described by a discrete-time

single- or double-integrator model and subject to possible
time-varying interconnections. The objective is to define de-
centralized control strategies guaranteeing that the states of all
agents converge to a common value, calledconsensus point,
which generally speaking depends on the agents’ state and
on the communication network. This problem is relevant in
many fields,e.g.in computer graphics, unmanned autonomous
vehicles, sensor networks and, generally speaking, in the
control of cooperating systems (see [1] and the references
therein; see also [2] for a more general definition of consensus
in presence of unknown but bounded disturbances).
In recent years, many control laws have been proposed for
networks of dynamic agents with different models and com-
munication topologies, seee.g. [3], [4], [5], [6], [7], [8], [9].
Most of them do not exploit optimal control ideas and, with the
exception of [3] and [7], do not account for input constraints,
which in many cases have to be included in the problem
formulation due to actuators limitations.
In this paper we propose innovative solutions based on Model
Predictive Control (MPC), which is a widely used approach in
view of its ability to handle control and state constraints.This
method can be applied in a distributed fashion to the control
of a group of agents by letting each agent solve, at each step,a
constrained finite-time optimal control problem involvingthe
state of neighboring agents. Moreover, following the so-called
Receding-Horizon principle, at each time step the controller
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only applies the first input of the computed control sequence.
Stabilizing MPC algorithms for decentralized and distributed
systems have been proposed in [10], [11], [12], [13], [14], [15],
[16] for dynamically coupled and decoupled systems. However
these approaches heavily rely on the fact that all agentsa
priori know a common set point, with the notable exception
of [17], where the properties of the proposed algorithm are
demonstrated by means of simulation experiments. On the
contrary, the methods described in this paper can be formally
proved to guarantee (asymptotic) consensus under control
constraints and for time-varying communication networks.

Specifically, we first propose an MPC solution for consensus
when agents have a single-integrator dynamics with bounded
inputs. Notably, the proof of consensus under this scheme does
not rely on the standard arguments used in predictive control
to guarantee closed-loop stability, seee.g. [18], [19], since
the global cost to be minimized by the MPC algorithm is not
monotonically decreasing and, as such, it cannot be used as
a Lyapunov function. Rather, we exploit geometric properties
of the optimal path followed by individual agents and rely on
the general results described in [3] for analyzing consensus.
As a further matter, on the basis of this technique we develop
other MPC solutions for consensus. We first modify the cost
function adopted in the previous scheme and add a specific
constraint on the state of the system. This constraint is called
“contractive” because it mimics, in a multi-agent system
domain, the state constraint proposed in [20] for the control of
nonlinear systems. The main advantage of this approach is that
it can be extended to agents with double-integrator dynamics,
eventhoughthe techniques used for proving consensus in this
case are more sophisticated.

In our schemes, because of the Receding-Horizon technique,
the value of the consensus point depends not only on the initial
conditions of the system, but also on the sequence of agents’
states along time and on the communication network along
time.

The paper is organized as follows: Section II is devoted to
the definition of a model for the communication network and
summarizes some key results on convergence in multi-agent
systems presented in [3] and used in this paper. Section III de-
scribes the first MPC technique we propose for consensus in a
network of integrators with time-varying communication. The
contractive MPC solutions for single- and double-integrators
are presented, respectively, in Sections IV and V. Simulation
examples confirm the results obtained by applying the control
laws we propose. Section VI is devoted to conclusions. Finally,
the Appendixcontains technical results used in the proofs of
consensus.



II. BASIC NOTIONS AND PRELIMINARY RESULTS

We consider a team ofn agents indexed by the elements
of the setNG = {1, . . . , n}. The communication network is
represented by a weighted directed graphG = (NG, EG, wG),
whereEG ⊆ {(i, j) : i, j ∈ NG, j 6= i} is the set of edges and
wG : EG 7→ R>0 associates to each edge(i, j) ∈ EG a
strictly positive weight denoted bywij . G is bidirectional if
(i, j) ∈ EG ⇔ (j, i) ∈ EG

1 and unweightedif, ∀(i, j) ∈ EG,
wij = 1. In the latter case, the graph can be simply represented
by the pair(NG, EG). From now on we will generally refer to
directed orbidirectionalgraphs assuming implicitly that they
can be weighted. If,∀i, j ∈ NG, (i, j) ∈ EG, the graph is
complete.

A nodei ∈ NG is connectedto a nodej ∈ NG\{i} if there
is a path fromi to j in the graph following the orientation
of the arcs. The graphG is strongly connectedif, ∀(i, j) ∈
NG × NG, i is connected toj. A directed graph is said to
have aspanning treeif and only if ∃i ∈ NG such that there
is a path fromi to any other nodej ∈ NG.

The creation and loss of communication links can be
modeled by means of a time-dependent collection of graphs
G = {G(k) = (NG, EG(k), wG(k)), k ∈ N} where all
graphsG(k) share the same set of nodes.G is a collection
of bidirectional graphs if and only if,∀k ∈ N, G(k) is
bidirectional. Otherwise, it is referred to as a collection of
directed graphs.

In the sequel, discrete-time intervals will be denoted with
[k1, k2] = {k : k1 ≤ k ≤ k2} assuming implicitly that0 ≤
k1 ≤ k2 ≤ +∞.

Definition 1 [21] A collection of graphs{G(1), . . . , G(m)} is
jointly connectedif (NG,∪m

k=1EG(k)) is a strongly connected
graph. The agents arelinked togetheracross the interval
[l, m] if the collection of graphs{G(k), k ∈ [l, m]} is jointly
connected. A nodei is connected to all other nodes across a
time setT ⊆ N if i is connected to all other nodes in the
graph (NG,

⋃

k∈T
EG(k)).

If (j, i) ∈ EG we say thatj is neighbor to i and thej-th
agent transmits instantaneously its state to thei-th agent. The
set of neighbors to the nodei ∈ NG is Ni(G) = {j ∈ NG :
(j, i) ∈ EG} and |Ni| is the valency of thei-th node.

We define thecommunication matrixK̃(G) = [k̃ij ]i,j∈NG
,

K̃(G) ∈ R
n×n, where:

k̃ij =







wji

1+
P

h∈Ni(G) whi
if j ∈ Ni(G),

1
1+

P

h∈Ni(G) whi
if i = j,

0 otherwise.

(1)

K̃(G) is a stochastic matrix (i.e. it is square and nonnegative
and its row sums are equal to1, see [21]), whose entry(i, j)
is non null if and only if i = j or (j, i) ∈ EG. We also
defineK(G) = K̃(G) ⊗ Id where⊗ denotes the Kronecker
product andId is the identity matrix of orderd. Moreover
we denote byKi(G) ∈ R

d×dn the i-th block of the matrix

1As remarked in [3], weightswij and wji can be different. If they are
equal, one recovers the notion of undirected graphs.

K(G), partitioned asK(G) = [KT
1 (G) · · ·KT

n (G)]T . Note
that if x(k) = [xT

1 (k) · · ·xT
n (k)]T , with xi(k) ∈ R

d, one has

Ki(G(k))x(k) ∈ Ci(G(k)) =

Co({xi(k)} ∪ {xj(k), j ∈ Ni(G(k))})
(2)

whereCo(A) is the convex hull of the setA (see [21]).
For sake of completeness, next we summarize some results

provided in [3] that will enable us to prove consensus under
the MPC schemes we will propose in the sequel. Assume that
agents obey the general closed-loop dynamics

x(k + 1) = f(k, x(k)) (3)

wherex(k) = [x1(k)T · · ·xn(k)T ]T and xi(k) ∈ R
d, ∀i ∈

NG. The nodes of the network have reachedconsensusif and
only if xi = xj , ∀i, j ∈ NG, i 6= j. The corresponding state
value is calledconsensus point. The consensus subspaceis
Φc =

{
x ∈ R

nd : x1 = x2 = · · · = xn

}
.

Definition 2 [3] Let Φ ⊆ R
dn be a set of equilibria for(3).

System(3) is globally attractive w.r.t.Φ if for each φ1 ∈ Φ,
∀c1, c2 > 0 and ∀k0 ∈ N, ∃T ≥ 0 such that every solutionζ
to (3) has the following property:

‖ζ(k0)−φ1‖ < c1 ⇒ ∃φ2 ∈ Φ : ‖ζ(k)−φ2‖ < c2, ∀k ≥ k0+T

where‖·‖ denotes the Euclidean norm. The system is uniformly
globally attractive w.r.t.Φ if it is globally attractive w.r.t.Φ
and the constantT is independent ofk0.

Note that, as described in [3], global attractivity impliesthat
all solutions to (3) converge to a point inΦ as k → +∞.
However, the vice-versa isnot true.

Definition 3 Assume that the set of equilibria associated to
the multiagent system(3) is Φc. Then, consensus is asymptot-
ically reached if one of the following conditions holds:

1) G is a collection of directed graphs and(3) is uniformly
globally attractive w.r.t.Φc;

2) G is a collection of bidirectional graphs and (3) is
globally attractive w.r.t.Φc,

The consensus results stated in [3] hinge on the following
assumption.

Assumption 1 For every graphG(k) ∈ G, agenti ∈ NG and
statex ∈ Xn, X ⊆ R

d, there is a compact setei(G(k))(x) ⊆
X such that:

1) fi(x, k) ∈ ei(G(k))(x), ∀k ∈ N, ∀x ∈ Xn;
2) ei(G(k))(x) = {xi} if xi = xj , ∀j ∈ Ni(G(k));
3) whenever the states of agenti and agentsj ∈ Ni(G(k))

are not all equal,ei(G(k))(x) ∈ Ri(Ci(G(k))), where
Ri(A) denotes the relative interior of the setA;

4) the set-valued functionei(G(k))(x) : Xn 7→ 2X is
continuous (2X is the power set ofX).

The main theorem on consensus we will use is stated next
and exploits the following assumptions.



Assumption 2 For the collectionG of directed graphs there
exists a non-negative integerT ≥ 0 such that,∀k0 ∈ N, there
is a node connected to all other nodes across[k0, k0 + T ].

Assumption 3 For the collectionG of bidirectional graphs
and for all k0 ∈ N, all agents are linked together across the
interval [k0, +∞).

Theorem 1 [3] Let G be a collection of directed [resp.bidi-
rectional] graphs and assume thatf in (3) verifies Assumption
1. Then, system(3) asymptotically reaches consensus if and
only if Assumption 2 [resp. Assumption 3] holds.

For further comments and examples clarifying the mini-
mality of the assumptions of Theorem 1 as well as the links
between uniform global attractiveness [resp. global attractive-
ness] and directed [resp.bidirectional] graphs, wedefer the
reader to [3].

III. MPC FOR CONSENSUS AMONG AGENTS WITH A

SINGLE-INTEGRATOR DYNAMICS

In this section we consider a system ofn agents, each
one described by the following discrete-time single-integrator
model

xi(k + 1) = xi(k) + ui(k), i ∈ NG (4)

with initial condition xi(0) = xi0. The vectorui(k) ∈ R
d is

control input of agenti at timek.
As an example, considering a group of autonomous vehicles

moving in ad-dimensional geometric space,xi(k) describes
the position of agenti. We will also assume that the communi-
cation topology is time-varying and captured by the collection
of graphsG.

Given a generic vector-valued signaly(·) and a positive
integer N , let us denote by the capitalized vectorY (k) =
[yT (k), · · · , yT (k +N −1)]T the values ofy(·) over the time
interval [k, k + N − 1].

Let N ≥ 1 denote the length of the prediction horizon. We
associate to thei-th agent the input sequenceUi(k) and the
cost

Ji(x(k), Ui(k)) = Jx
i (x(k), Ui(k)) + Ju

i (Ui(k)) (5)

Jx
i (x(k), Ui(k)) = αi

N∑

j=1

‖xi(k + j) − zi(k)‖2 (6)

Ju
i (Ui(k)) = βi

N−1∑

j=0

‖ui(k + j)‖2 (7)

where
zi(k) = Ki (G(k))x(k) (8)

defines thetarget point for the i-th agent andαi, βi > 0 are
weights. Note that from (2), one haszi(k) ∈ Ci(G(k)) and, in
particular,zi(k) is just the barycenter of{xi(k)}

⋃
{xj(k), j ∈

Ni(k)} when the graph is unweighted.
Cost (5) is decentralized, because the termzi(k) depends

only on the states of neighbors to thei-th agent at timek.

Consider the following Constrained Finite-Time Optimal Con-
trol (CFTOC) problem for agenti ∈ NG:

min
Ui(k)

Ji(x(k), Ui(k)) (9)

subject to the following constraints:

(a) the agent dynamics (4);
(b) the input constraint

‖ui(k + j)‖ ≤ ui,max, (10)

with ui,max > 0, j ∈ [0, N − 1].

Optimal inputs computed at timek will be denoted with
Uo

i (k|k) and we will investigate the consensus properties
provided by the receding-horizon control law

uRH
i (k) = κRH

i (k, zi(k)), κRH
i (k, zi(k)) = uo

i (k|k) (11)

Note that uRH
i (k) coincides with the first input

sample appearing in the vector Uo
i (k|k) =

[
uoT

i (k|k), uoT
i (k + 1|k), · · · , uoT

i (k + N − 1|k)
]T

. Note
also that the state-feedbackκRH

i is time-varying when the
communication network changes over time. Problem (9) is
always feasible sinceUi(k) = 0 is a feasible input sequence.
We are now in a position to state the main result of this
Section. Its proof is based on the application of Theorem
1 and the geometrical properties of discrete-time paths
introduced inthe Appendix.

Theorem 2 Let G be a sequence of directed [resp.bidirec-
tional] graphs. The closed-loop multi-agent system given by
(4) and (11) asymptotically reaches consensus if and only if
Assumption 2 [resp. Assumption 3] holds.

Proof: Consider the closed-loop multi-agent system cor-
responding to equations (4) and (11), that can be represented
by

x(k + 1) = f(x(k)), (12)

where

f(x(k)) =






f1 (x(k))
...

fn (x(k))




 , fi(x(k)) = xi(k)+κRH

i (k, zi(k))

Apparently, from (9), (10) and (11) one hasκRH
i (k, zi(k)) =

0, ∀i ∈ NG if and only if x(k) ∈ Φc. Hence,Φc collects the
consensusequilibria of (12). Next, we show that the mapf
fulfills Assumption 1.

With the notations used in Assumption 1, we setX = R
d

and ei(G(k))(x) = {fi(x)}. Then point 1 of Assumption 1
is trivially verified. For point 2, whenxi(k) = xj(k), ∀j ∈
Ni(G(k)), then zi(k) = xi(k). From the definition of the
cost Ji, it is immediate to verify thatJi(x(k), 0) = 0 and
hence the optimal inputsUo

i (x(k)) are zero. This implies that
fi(x) = xi, and point 2 is verified.
Thecorepart of the proof consists in verifying point 3. To this
purpose we will use the tools and the terminology for paths
described inthe Appendix.

If there existsj ∈ Ni(G(k)) such thatxi(k) 6= xj(k) one
hasxi(k) 6= zi(k). Let Xi(x(k), Ui(k)) be the sequence of



states of thei-th agent generated by the initial statex(k) and
the input sequenceUi(k), with ui(k + j), j ∈ [0, N − 1]
fulfilling the constraint (10).
As a first step we show thatXo

i (x(k), Uo
i (k)) =

[xoT
i (k) · · ·xoT

i (k + N)]T is a path pointing towardszi(k).
Note that, because of the single-integrator dynamics (4), the
term Ju

i can be rewritten as:

Ju
i (k) = βi

N−1∑

j=0

‖xi(k + j + 1) − xi(k + j)‖2 (13)

Assume by contradiction thatXo
i (x(k), Uo

i (k)) is not pointing
towardszi(k). Theorem 5(see the Appendix)shows that there
is anN -pathX̂i(k) = [x̂T

i (k) · · · x̂T
i (k + N)]T with x̂i(k) =

xo
i (k) pointing towardszi(k) and such that,∀j = 0, . . . , (N −

1), both the following inequalities hold simultaneously:

‖x̂i(k + j + 1) − zi(k)‖ ≤ ‖xo
i (k + j + 1) − zi(k)‖ (14)

‖x̂i(k + j + 1) − x̂i(k + j)‖ ≤ ‖xo
i (k + j + 1) − xo

i (k + j)‖
(15)

Inequality (15) implies that the input vector̂Ui(k), pro-
ducing X̂i(x(k)), fulfills the constraint (10). Moreover (14)
implies that Jx

i (x(k), Ûi(k)) ≤ Jx
i (x(k), Uo

i (k)) and (15)
that Ju

i (Ûi(k)) ≤ Ju
i (Uo

i (k)). HenceXo
i (x(k), Uo

i (k)) is not
optimal. One therefore concludes that the optimal state path
Xo

i (x(k), Uo
i (k)) is necessarily pointing towardszi(k).

As a second step, we show thatxi(k) 6= zi(k) implies
that uo

i (k) 6= 0. This will be proved by first showing, by
contradiction, thatUo

i (x(k)) 6= 0. Assume thatUo
i (x(k)) =

0 is the optimal input sequence. ThenJi(x(k), Uo
i (k)) =

Nαi ‖xi(k) − zi(k)‖2. Consider the input sequencēUi(k) =
[δ(zi(k) − xi(k))T 0T · · · 0T ]T , 0 < δ ≤ 1, where δ is
such that‖δ(zi(k) − xi(k))‖ ≤ ui,max, and let X̄(k) =
[x̄(k) · · · x̄(k + N)] be the corresponding state path. One has

Ji(x(k), Ūi(k)) =Nαi(1 − δ)2 ‖xi(k) − zi(k)‖2

+ βiδ
2 ‖xi(k) − zi(k)‖2 (16)

For δ < 2Nαi

Nαi+βi
one hasJ(x(k), Ūi(k)) < J(x(k), Uo

i (k)).
Such a choice is always feasible since2Nαi

Nαi+βi
> 0. Therefore

Uo
i (k) = 0 cannot be the optimal input sequence.
Now we prove thatuo

i (k) 6= 0 by contradiction. Assume
that the optimal input sequence isUo

i (k) = [0T uoT
i (k +

1) · · · uoT
i (k+N −1)]T , with uoT

i (k+1) 6= 0. Now consider
the inputŪi(k) = [uoT

i (k + 1) · · · uoT
i (k + N − 1) 0T ]T . We

observe that all input samples in̄Ui(k) verify the constraint
(10), as those ofUo

i (k) do. Then,

J(x(k),Ūi(k)) − J(x(k), Uo
i (k))

= αi

∥
∥
∥
∥
∥
∥

xi(k) +
N−1∑

j=0

uo
i (k + j) − zi(k)

∥
∥
∥
∥
∥
∥

2

− αi ‖xi(k) − zi(k)‖2
< 0

(17)

Inequality (17) follows from the fact that some inputuo
i (k +

j), j = 0, . . . , (N − 1) is non null and every input makes the
state follow a path that points towardszi(k).
The property of stochasticity of the matrixK(G(k)), together
with the assumptions thatNi(G) 6= ∅ and xi(k) 6= zi(k)

implies that zi(k) ∈ Ri(Ci(G(k))). When alsoxi(k) ∈
Ri(Ci(G(k))) it is trivial to conclude that the optimal trajectory
belongs toRi(Ci(G(k))). Whenxi(k) belongs to the boundary
of Ci(G(k)), by applying theline segment principle[22] the
same conclusion follows because the optimal trajectory is
totally included in the relatively open segment connecting
xi(k) andzi(k).
Finally, also point 4 in Assumption 1 is verified. In fact,
since we have proved that the optimal state trajectory
Xo

i (xi(k), Uo
i (k)) is pointing towardszi(k), it is possible to

write: xi(k + 1) = xi(k) + η(k)L(k)(zi(k)− xi(k)), ∀k ∈ N,
where 0 ≤ L(k) ≤ 1 (specifically, L(k) = 0 only when
zi(k) = xi(k)) and

η(k) =

{
1 if L(k) ‖zi(k) − xi(k)‖ ≤ ui,max

ui,max

L(k)‖zi(k)−xi(k)‖
otherwise

It is then apparent that the functionfi(x) is continuous, and
thereforeei(G(k))(x) is also continuous.
In conclusion, Assumption 1 holds and the rest of the proof
is a straightforward application of Theorem 1.

Remark 1 By suitably choosing the weightsαi andβi in (6)
and (7), respectively, it is possible to tune the behavior of
each agent. For instance, given an unweighted orbidirectional
graph, it is possible to mimic behaviors of the agents typically
obtained by using weighted or directed graphs. This feature
is illustrated in Example 1 where it is shown how to achieve,
approximately, leader-following.

Example 1 We consider a set ofn = 5 agents moving in a
two dimensional space, with initial statesx1(0) = [−30 30]T ,
x2(0) = [−25 35]T , x3(0) = [65 −75]T , x4(0) = [70 −68]T ,
x5(0) = [100 − 25]T . The prediction horizon isN = 3. The
weights in the cost function(5) are αi = 1, i = 1, . . . , 5,
β1 = 100, βi = 1, i = 2, . . . , 5. The communication network
is described by the time-invariant unweightedbidirectional
graph represented in Fig. 1, that corresponds to the following
communication matrix:

K̃(G) =









1
2

1
2 0 0 0

1
3

1
3

1
3 0 0

0 1
3

1
3

1
3 0

0 0 1
3

1
3

1
3

0 0 0 1
2

1
2









(18)

The input constraints(10) are given byui,max = 100, i =

1 52 43

Fig. 1. Communication network used in Examples 1, 2 and 3

.

1, . . . , 5. The simulation in Fig. 2 shows asymptotic con-
vergence towards a consensus point. Sinceβ1 ≫ βi, i =
2, 3, 4, 5, agent1 behaves approximately as a leader, hence
moving much less than the others from its initial po-
sition. In this case, input constraints are never active.
It is important to notice that in this example both cost
functions J1(x

o(k), Uo
1 (k|k)) and Jo(xo(k), Uo(k|k)) =
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Fig. 2. Example 1: Evolution of agents’ state.

∑5
i=1 Ji(x

o(k), Uo
i (k|k)), wherex0(k) is the state sequence

given by(4) and (11), are not monotonically decreasing over
time (see Fig. 3). This implies that the global cost function
Jo(x(k)) cannot be used as a Lyapunov function and classical
arguments for proving the stability of MPC algorithms (see
e.g.[18], [19]) cannot be adopted. This justifies the necessity
of an alternative technique to prove convergence, as the one
we propose, based on geometrical concepts and on Theorem
1.
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Fig. 3. Example 1: the bold line represents the global cost
Jo(xo(k), Uo(k|k)). The other lines represent the cost of individual agents.

Example 2 We use the same setting of Example 1, but we now
chooseβi = 1, i = 1, . . . , 5 and ui,max = 5. We also assume
that the communication network is time-varying and fulfillsAs-
sumption 3. More in detail, we generated a random sequence
of unweightedbidirectional graphs such that all agents are

linked together across the interval[k0, +∞), ∀k0 ∈ N. As seen
in Fig. 4, consensus is asymptotically achieved, in accordance
with Theorem 2, even though input constraints are active at
timesk ≤ 10, as shown in Fig. 5. Notice that the value of
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Fig. 5. Example 2: Control inputs of individual agents.

the asymptotic consensus point in this example differs fromthe
one in the previous one, though the initial conditions of the
system are the same in both cases.

IV. A CONTRACTIVE MPC SCHEME FOR AGENTS WITH

SINGLE-INTEGRATOR DYNAMICS

The CFTOC problem (9) does not include constraints on
the agents’ state. We now introduce an alternative MPC law
requiring periodic communication among agents and using
specific state constraints in order to guarantee consensus.This
solution has the advantage that it can be easily extended to



agents with double-integrator dynamics (see Section V). The
control scheme is inspired by the MPC technique proposed in
[20], where a “contractive” constraint is imposed on the state
to guarantee stability.

For the i-th agent, whose dynamics is described by (4),
consider the following cost2:

Ji(xi(k), zi(p(k)N), Ui(k)) =

Jx
i (xi(k), zi(p(k)N), Ui(k)) + Ju

i (Ui(k))
(19)

where

Jx
i (xi(k), zi(p(k)N), Ui(k)) =

αi

N∑

j=1

‖xi(k + j) − zi(p(k)N)‖2 (20)

andJu
i is defined as in (7).The functionp(·) is defined as

p(k) =

⌊
k

N

⌋

(21)

where⌊ξ⌋ denotes the greatest integer lower bound toξ ∈ R;
a representation ofp(k) is provided in Fig. 6 forN = 4.

Fig. 6. Functionp(k) for N=4.

We associate tok ∈ N the p-interval P (k) =
[p(k)N, (p(k) + 1)N − 1]. Note thatp(k) is constant over
eachp-interval.

Consider the following CFTOC problem for agenti ∈ NG:

min
Ui(k)

Ji(xi(k), zi(p(k)N), Ui(k)) (22)

subject to the following constraints:
(A) the agent dynamics (4);
(B) the input constraint

‖ui(k + j)‖ ≤ ui,max, (23)

with ui,max > 0, i ∈ NG, j ∈ [0, N − 1];
(C) the state constraint

xi((p(k) + 1)N) = zi(p(k)N). (24)

where the target pointzi(k) has been defined in (8).
The corresponding receding-horizon control law will be de-
noted as

uRH
i (k) = κRH

i (k, xi(k), zi(p(k)N)),

κRH
i (k, xi(k), zi(p(k)N)) = uo

i (k|k)
(25)

2With a little abuse of notation we use here the same symbolJi appearing
in (5).

Constraint (24) is such that:

• it is defined on the multi-agent system state at the first
time instant after the end ofP (k);

• it changes when the current timek switches from ap-
interval to the next one;

• it is the same for allk ∈ P (k); consequently, whilek
approaches the end of ap-interval, the difference between
the next time at which the state is constrained andk

decreases.

Equation (24) can be interpreted as a “contractive” constraint
because, under suitable conditions on the communication
network, it forces the shrinking of the convex hull spanned by
the agents’ state, as it will be shown in the sequel. Note that
when k = Nl, (24) is also a terminal constraint. Obviously
the fact that this constraint can be fulfilled or not depends on
the kind of application we consider.

Remark 2 For l ∈ N and k ∈ [lN + 1, (l + 1)N − 1] the
cost (19) is independent of the graphG(k) and the states
xi(k), i ∈ Ni(k). This implies that agents are required to
transmit their state to neighbors only at timeslN, l ∈ N.

Remark 3 Note that if at timeslN, l ∈ N the CFTOC
problem (22) is feasible, then it is feasible also at times
lN + j, j ∈ [1, N −1]. Indeed letXo

i (x(lN), Uo
i (lN |lN)) be

the sequence of states produced byxi(lN) and Uo
i (lN |lN).

Uo
i (lN |lN) steersxi(lN) into xi(lN +N) = zi(lN) in order

to fulfill constraint (C). Hence, at timek = lN+j the sequence

Ui(lN + j) =













uo
i (lN + j|lN)

...
uo

i (lN + N − 1|lN)
0
...
0













(26)

is feasible (since it steersxo
i (lN + j) into xo

i ((l + 1)N) =
zi(lN)) and optimal (by Bellman’s principle, see [23]). This
means that in the nominal case, problem(22) needs to be
solved just at timeslN, l ∈ N. However, resorting to a
receding-horizon strategy allows one to apply at any time a
state-feedback control law.

The following result shows that an appropriate choice of
the prediction horizonN always ensures the feasibility of the
control problem.

Lemma 1 The CFTOC problem(22)with constraints (A), (B),
(C) is feasible at all times ifN ≥ maxi∈NG

Ni where

Ni =

⌈
maxj∈NG

‖xi(0) − xj(0)‖

ui,max

⌉

(27)

and ⌈ξ⌉ denotes the least integer upper bound toξ ∈ R
+.

Proof: In view of Remark 3, we focus only on feasibility
at time instantslN . Because of the integrator dynamics (4),
at timek = 0 agenti can reach inÑi steps all states̄xi ∈ R

d



verifying ‖x̄i − xi(0)‖ ≤ Ñiui,max. Therefore, constraint (C)
with k = 0 can be met if an horizoñN is chosen, where

Ñ ≥ max
i∈NG

Ñi (28)

Ñi =

⌈
‖zi(0) − xi(0)‖

ui,max

⌉

(29)

Using the fact thatKi(G(0))x(0) ∈ Ci(G(0)), one has

‖zi(0) − xi(0)‖ ≤ max
∀i,j∈NG

‖xi(0) − xj(0)‖ (30)

and therefore,Ni ≥ Ñi, ∀i ∈ NG and N ≥ Ñ . Hence,
feasibility at timek = 0 holds. Let nowl ≥ 1. Using the same
rationale, the CFTOC problem (22) is feasible if an horizon
Ñl is chosen wherẽNl ≥ maxi∈NG

Ñi,l and

Ñi,l =

⌈
‖zi(lN) − xi(lN)‖

ui,max

⌉

(31)

Note thatx(lN) is the state produced by the optimal inputs
and thenxi(lN) = Ki(G((l − 1)N))x((l − 1)N). It is
easy to prove that,∀i ∈ NG, xi(lN) ∈ Ci(G((l − 1)N))
and proceeding backwards, one hasxi(lN) ∈ X0 and then
zi(lN) ∈ Ci(G(0)). Hence,

‖zi(lN) − xi(lN)‖ ≤ max
∀i,j∈NG

‖xi(0) − xj(0)‖ (32)

and therefore one hasNi ≥ Ñi,l, ∀i ∈ NG andN ≥ Ñl, ∀l ∈
N, l ≥ 1. This completes the proof.

We are now in a position to state the main results of this
section.

Theorem 3 Let F = {G(lN), l ∈ N} be a collection of
directed [resp.bidirectional] graphs and assume thatN is
such that the CFTOC problem(22) with constraints(A), (B)
and (C) is feasible at all times. Then, the closed-loop multi-
agent system given by(4) and (25) asymptotically reaches
consensus if and only if Assumption 2 [resp. Assumption 3]
holds withG replaced byF . Furthermore, denoting withxo

i (k)
the optimal states, one has that
P.1 xo

i (k) ∈ xo
i (p(k)N)zi(p(k)N), where AB is the line

segment connecting pointsA and B;
P.2 for all l ∈ N, d(j|lN) = ‖zi(lN) − xo

i (lN + j)‖ is a
non-increasing function ofj ∈ [0, N).

Proof: For the sake of readability the proof is split in
three parts.

Part 1. The contractive constraint (24) only depends on
K(G(·)) at timeslN ∀l ∈ N. It therefore holds

xo((l + 1)N) = K(G(lN))xo(lN) (33)

It is simple to verify that system (33) fulfills Assumption
1. Therefore, Theorem 1 proves that the update map (33) is
uniformly globally attractive [resp. globally attractive] with
respect toΦc if and only if Assumption 2 [resp. Assumption
3] holds. If N = 1, this completes the proof of the whole
theorem.

Part 2. When N > 1, we show properties (P.1) and (P.2)
using the tools provided inthe Appendix. First, note that, in
view of Remark 3, (P.1) and (P.2) are equivalent to the fact that

for all l ∈ N the optimal state pathXo
i (x(lN), Uo

i (lN)) =
[xoT

i (lN), . . . , xoT
i ((l + 1)N)]T points towardszi(lN) (see

Definition 8). To show this, one can use Theorem 5, where
xo

i (lN+j) = Bj , ∀k andTA is associated to a generic feasible
state path. Note that, due to the contractive constraint (24), one
hasAN = BN = 0.

Part 3. We finally show that when the components ofxo(k)
fulfill (P.1) then system (4) and (11) is uniformly globally
attractive [resp. globally attractive] with respect toΦc if and
only if (33) has the same property.

The “only if” part is obvious sincexo(lN) is a subsequence
of xo(k). For the “if” part we are assuming that

∀φ̃1 ∈ Φc, ∀c̃1, c̃2 > 0, ∀l0 ∈ N, ∃L ≥ 0 :

‖xo(l0N) − φ̃1‖ < c̃1 ⇒ ∃φ̃2 ∈ Φc : ‖xo(lN) − φ̃2‖ < c̃2,

∀l ≥ l0 + L.

(34)

and the goal is to show that

∀φ1 ∈ Φc, ∀c1, c2 > 0, ∀k0 ∈ N, ∃T ≥ 0 :

‖xo(k0) − φ1‖ < c1 ⇒ ∃φ2 ∈ Φc : ‖xo(k) − φ2‖ < c2,

∀k ≥ k0 + T.

(35)

Fix φ1, c1, c2 in (35). Using the triangle inequality, one obtains

‖xo(l0N)−φ̃1‖ ≤ c̃1, c̃1 = ‖xo(l0N)−xo(ko)‖+‖xo(ko)−φ̃1‖

where we have chosenl0 = p(k0) and φ̃1 = φ1. Set c̃2 = c2

2 .
Formula (34) guarantees that

∃L ≥ 0, ∃φ̃2 ∈ Φc : |xo(lN) − φ̃2| < c̃2, ∀l ≥ l0 + L. (36)

Note that, in property (P.1),z(p(k)N) = xo((p(k) + 1)N).
Moreover (P.1) implies that

‖xo(k)− φ̃2‖ ≤ ‖xo(p(k)N)− φ̃2‖+‖xo((p(k)+1)N)− φ̃2‖
(37)

and hence, for allk such thatp(k) ≥ l0 + L (i.e. k ≥ (l0 +
L)N ), formulae (36) and (37) yield‖xo(k)− φ̃2‖ < 2c̃2 = c2.
Therefore, (35) holds withT = (lo +L)N − ko andφ2 = φ̃2.

Remark 4 If there existsk ∈ N such that G(p(k)N) is
complete, consensus is reached at time(p(k) + 1)N . In fact,
in this case,∀i, j ∈ NG

Ki(G(p(k)N))x(p(k)N) = Kj(G(p(k)N))x(p(k)N)

as it can be readily seen from the definition of the matrices
Ki(G). We also highlight that the consensus point, in the case
of the contractive technique, does only depend on the set of
communication graphs{G(p(k)), k ∈ N} (see [21] for the
case of unweighted graphs).

Example 3 We apply the contractive MPC scheme using the
same setting as in Example 1, with the exception that the
prediction horizon isN = 10. Simulations depicted in Figures
7-8 confirm the expected tendency of agents to consensus.
Notice that, quite differently from Example 1, the control
eliminates the quasi-“leader-follower” behavior. This isdue



to the presence of the contractive constraint, which forces
agents to reach states which are not dependent on the weights
αi and βi. Nevertheless, a leader-follower behavior could be
approximated, also with abidirectional graph, usingsuitably
weighted graphs.
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Fig. 7. Example 3: Evolution of agents’ state.

In this examplewe assumeui,max = ∞, ∀i. The cost
functions associated to each agent and the global cost function
have sudden growths at the beginning of eachp-interval, due
to the changes inK(G(p(·)N)).
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Fig. 8. Example 3: Optimal cost of individual agentsJi(xo(k), Uo
i (k|k))

and global optimal costJo(xo(k)) =
P5

i=1 Ji(xo(k), Uo
i (k|k)) (bold line).

Example 4 We consider the setting of Example2, with the
differencethat here the prediction horizon isN = 5 and
ui,max = 20. Moreover, the collection of graphsF is struc-
tured as follows:

F = { G1
︸︷︷︸

1

G2 G1 G1
︸ ︷︷ ︸

2

G2 G1 G1 G1
︸ ︷︷ ︸

3

G2 · · · }

where

K̃(G1) =

0

B

B

B
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2
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Note thatF is a collection of unweighted directed graphs
that does not fulfill the assumptions of Theorem 3. In fact,
the communication graphG1, which has no spanning tree,
is active over time intervals of increasing length. Therefore
asymptotic consensus is not achieved (see Fig. 9).
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Fig. 9. Example 4: Evolution of agents’ state.

V. A CONTRACTIVE MPC SCHEME FOR AGENTS WITH

DOUBLE-INTEGRATOR DYNAMICS

We now consider a set ofn agents with discrete-time
dynamics

ri(k + 1) = ri(k) + vi(k) (38a)

vi(k + 1) = vi(k) + ui(k) (38b)

where ri(k), vi(k), ui(k) ∈ R
d, xi(k) = [rT

i (k), vT
i (k)]T

is the state of thei-th agent andxi(0) = xi0 are the
initial conditions. We also define the collective vectors
r(k) = [rT

1 (k), · · · , rT
n (k)]T , v(k) = [vT

1 (k), · · · , vT
n (k)]T

and x(k) = [xT
1 (k), · · · , xT

n (k)]T . The statesri and vi can
be used, for example, to describe position and velocity of a
point mass moving in ad-dimensional space. Next, we present
an extension of the contractive technique proposed in Section
IV for guaranteeing consensus. For system (38) we adopt the
following definition of consensus that is mildly weaker than
Definition 3.



Definition 4 The multi-agent system (38) asymptotically
reachesr-consensusif the associatedset of equilibria is given
by

Φ0 ={[rT
1 , vT

1 , · · · , rT
n , vT

n ]T : (39)

r1 = r2 = · · · = rn, v1 = v2 = · · · = vn = 0}

and for all initial conditions, the states converge to a point in
Φ0 as k → +∞.

Correspondingly, we definezr
i (k) as

zr
i (k) = Ki(G(k))r(k) (40)

and introduce the following cost for agenti:

Ji(xi(k), zr
i (p(k)N),Ui(k)) =

Jr
i (ri(k), zr

i (p(k)N),Ui(k)) + Jv
i (v(k), Ui(k)) + Ju

i (Ui(k))
(41)

where

Jr
i (ri(k), zr

i (p(k)N)Ui(k)) =

αi

N+1∑

j=2

‖ri(k + j) − zr
i (p(k)N)‖2 (42)

Jv
i (v(k), Ui(k)) = βi

N∑

j=1

‖vi(k + j)‖2 (43)

Ju
i (Ui(k)) = γi

N−1∑

j=0

‖ui(k + j)‖2 (44)

and αi, βi, γi > 0. We consider the optimization problem
associated to agenti

min
Ui(k)

Ji(xi(k), zr
i (p(k)N), Ui(k)) (45)

subject to the following constraints:

(I) the agent dynamics (38);
(II) the input constraint‖ui(k + j)‖ ≤ ui,max, ui,max >

0, j ∈ [0, N − 1] ;
(III) the contractive state constraints

ri((p(k) + 1)N) = zr
i (p(k)N) (46a)

vi((p(k) + 1)N) = 0. (46b)

We denote the corresponding receding-horizon control law
by

uRH
i (k) = κRH

i (k, xi(k), zr
i (p(k)N)),

κRH
i (k, xi(k), zr

i (p(k)N)) = uo
i (k|k)

(47)

Due to the double-integrator dynamics of the agents, we
require thatN ≥ 2 in order to guarantee that system (38)
is reachable. The constraints (46a) and (46b) imply that each
agent is periodically forced to arrive to the position givenby
(46a) with zero velocity. We highlight that, the possibility of
fulfilling the constraint (46b) depends on the nature of the
agent.

Remark 5 Reasoning like in Remark 3, one has that if
problem(45) is feasible at timeslN , l ∈ N then it is feasible at
all times. Moreover, from Bellman’s optimality principle one
has that for all l ∈ N the optimal inputs computed by the
solving problem(45) at timeslN + j, j ∈ [1, N −1] are given
by (26).

Next we formulate a sufficient condition showing that by
choosingN big enough, problem (45) is feasible at all time
instants.

Lemma 2 For given initial conditionsxi0, i ∈ NG and
boundsui,max, there exist integersNi such that if N ≥
maxi∈NG

Ni, the CFTOC problem(45) with constraints (I),
(II), (III) is feasible at all times.

Proof: We first highlight the following properties ofi-th
agent:

(i) at time k let N̂i be an integer verifying

N̂iui,max ≥ ‖vi(k)‖ (48)

Then, the input sequenceui(j) = − vi(k)

N̂i
, j ∈ [k, k+

N̂i − 1] fulfills ‖ui(j)‖ ≤ ui,max and steersvi(k) to
vi(k + N̂i) = 0;

(ii) at time k assume thatvi(k) = 0 and choose a target
stater̄i ∈ R

d. Let Ñi be an integer verifying

Ñ2
i ui,max ≥ ‖r̄i − ri(k)‖ (49)

Then, the input sequenceui(j), j ∈ [k, k + 2Ñi − 1]
given by

ui(m) =
r̄i − ri(k)

Ñ2
i

, m ∈ [k, k + Ñi − 1]

ui(m + Ñi) = −ui(m)

fulfills ‖ui(j)‖ ≤ ui,max, steersri(k) to ri(k +
2Ñi) = r̄i and guarantees thatvi(k + 2Ñi) = 0.

Next, we prove the feasibility of (45) at all times. In view
of Remark 5, without loss of generality we can focus on times
k = lN , l ∈ N. At time k = 0 consider the input sequence
[
VT

i,1 VT
i,2 VT

i,3

]T
where

• Vi,1 collectsNi,1 input samples chosen as in point (i),
for k = 0. In particular, one hasNi,1ui,max ≥ ‖vi(0)‖

andVi,1 steersxi(0) to xi(Ni,1) =
[

rT
i (Ni,1) 0T

]T
.

Note thatNi,1 andri(Ni,1) depend only uponxi(0) and
ui,max.

• Vi,2 collects Ni,2 input samples chosen as in point
(ii), for k = Ni,1 and r̄i = ri(0). Therefore, one
has N2

i,2ui,max ≥ ‖ri(0) − ri(Ni,1)‖ and henceNi,2

depends only uponxi(0) andui,max. Moreover, it holds
vi(Ni,1 + 2Ni,2) = 0.

• Vi,3 collectsNi,3 input samples chosen as in point (ii),
for k = Ni,1 + 2Ni,2 and r̄i = zr

i (0). In particular, we
pick Ni,3 verifying

N2
i,3ui,max ≥ dmax = max

i,j∈NG

‖ri(0) − rj(0)‖ (50)



In order to show that this choice is possible, one has to
prove that

N2
i,3ui,max ≥ ‖zr

i (0) − ri(0)‖ (51)

as required by (49).
To this purpose, we highlight that for alll ∈ N and
N > 0 one haszi(lN) ∈ Co({ri(lN)} ∪ {rj(lN), j ∈
Ni(G(lN))}) and then

‖zr
i (lN) − ri(lN)‖ ≤ max

i,j∈NG

‖ri(lN) − rj(lN)‖ (52)

Moreover, for later use, we also highlight that from (46a)
one hasri(lN) ∈ Co({ri((l−1)N)}∪{rj((l−1)N), j ∈
Ni(G((l − 1)N))}), ∀l ≥ 1, and hence

max
i,j∈NG

‖ri(lN)−rj(lN)‖ ≤ max
i,j∈NG

‖ri(0)−rj(0)‖ (53)

Inequalities (50), (52) and (53) show thatNi,3 verifies
(51). From (50) it follows thatNi,3 depends only upon
xi(0) andui,max.

Hereafter, we setNi = Ni,1 + 2Ni,2 + 2Ni,3, N =
maxi∈NG

Ni and show a way to build feasible input sequences
of N samples at timeslN , l ≥ 1. In particular, for thei-th
agent we consider the input sequence

[
ṼT

i,1 ṼT
i,2

]T
where

• Ṽi,1 collectsN−2Ni,3 input samples equal to zero. Since
vi(lN) = 0, one obtainsri(lN + N − 2Ni,3) = ri(lN)
andvi(lN + N − Ni,3) = 0.

• Ṽi,2 collectsNi,3 input samples chosen as in point (ii),
for k = lN +N −2Ni,3 and r̄i = zr

i (lN). We only need
to show that ifNi,3 is chosen as in (50), then, it fulfills
N2

i,3ui,max ≥ ‖zr
i (lN) − ri(lN)‖ as required by (49).

This easily follows from (52) and (53).

It is now possible to state the main result on consensus of
this section.Differently from Theorems 2 and 3, it is just a
sufficient condition to achieve consensus.

Theorem 4 Let F = {G(lN), l ∈ N be a collection of
directed [resp.bidirectional] graphs and assume thatN is
such that the CFTOC problem(45) with constraints(I), (II)
and (III) is feasible at all times. Then, the closed-loop multi-
agent system given by(38) and (47) asymptotically reaches
r-consensusif Assumption 2 [resp. Assumption 3] holds.

In order to give a formal proof of the Theorem, it is first
necessary to clarify the geometric properties of the optimal
control and state sequences computed at timeslN , l ∈ N. To
this purpose we define

ei(lN) =
zr

i (lN) − ri(lN)

‖zr
i (lN) − ri(lN)‖

, Ri(lN) = Span{ei(lN)}

and denote withR⊥
i (lN) the orthogonal complement of the

subspaceRi(lN).

Lemma 3 For l ≥ 1 and for all j ∈ [0, N − 1] let
xo

i (lN + j|lN) be the state produced by(38) from the initial
conditions ri(lN) = ro

i (lN |(l − 1)N) = zr
i ((l − 1)N),

vi(lN) = vo
i (lN |(l − 1)N) = 0 and the input sequence

Uo
i (lN |lN). Then

uo
i (lN + j|lN) ∈ Ri(lN) (54)

vo
i (lN + j|lN) ∈ Ri(lN) (55)

ro
i (lN + j|lN) − zr

i (lN) ∈ Ri(lN) (56)

Moreover, let

vo
i (lN + j|lN) = mo

i (lN + j|lN)ei(lN) (57)

ri(lN) − zr
i (lN) = µi(lN)ei(lN) (58)

wheremo
i (lN + j|lN) ∈ R , µi(lN) ∈ R and consider the

optimization problem

min
Mi(lN)

J̄i(ζi(lN), Mi(lN)) (59)

J̄i(µi(lN), Mi(lN)) =

αi

N∑

j=2

(

µi(lN) +

j−1
∑

k=0

mi(lN + k)

)2

+

βi

N∑

j=1

m2
i (lN + j)+

γi

N−1∑

j=0

(mi(lN + j + 1) − mi(lN + j))2

(60)

with mi(lN + j) ∈ R and subject to the constraints

|mi(lN + j + 1) − mi(lN + j)| ≤ ui,max, (61a)

j ∈ [0, N − 1]

mi(lN) = mi((l + 1)N) = 0 (61b)

µi(lN) +
N−1∑

k=0

mi(lN + k) = 0 (61c)

Then M̄i(lN) is the optimal solution to(59) if and only if
Mo

i (lN |lN) = M̄i(lN).

Proof: In order to simplify the notation, hereafter, for a
given l ∈ N, we use the shifted time axisk′ = k − lN . Using
dynamics (38) with initial conditionsvi(0) = 0, one has

vi(j) =

j−1
∑

k=0

ui(k) (62a)

ri(j) = ri(0) +

j−1
∑

k=0

vi(k) (62b)

ui(j) = vi(j + 1) − vi(j) (62c)



From (62) one has that (45) is equivalent to the following
optimization problem involving only velocity variables

min
Vi(0)

Li(Vi(0), ri(0) − zi(0)) (63)

Li(Vi(0), ri(0) − zr
i (0)) = (64)

Lr
i (Vi(0), ri(0) − zr

i (0)) + Lv
i (Vi(0)) + Lu

i (Vi(0))

Lr
i = αi

N∑

j=2

∥
∥
∥
∥
∥
ri(0) − zr

i (0) +

j−1
∑

k=0

vi(k)

∥
∥
∥
∥
∥

2

(65)

Lv
i = βi

N∑

j=1

‖vi(j)‖
2 (66)

Lu
i = γi

N−1∑

j=0

‖vi(j + 1) − vi(j)‖
2 (67)

with the constraints

‖vi(j + 1) − vi(j)‖
2 ≤ u2

i,max, j ∈ [0, N − 1] (68a)

vi(N) = 0 (68b)

ri(0) − zr
i (0) +

N−1∑

k=0

vi(k) = 0 (68c)

Using the orthogonal decompositionvi(j) = v̄i(j) + ṽi(j),
v̄i(j) ∈ Ri(0), ṽi(j) ∈ R⊥

i (0) in (63) and (68) we get the
optimization problem

min
V̄i(0), Ṽi(0)

Li(V̄i(0) + Ṽi(0), ri(0) − zr
i (0)) (69)

with the constraints

‖v̄i(j + 1) − v̄i(j) + ṽi(j + 1) − ṽi(j)‖
2 ≤ u2

i,max (70a)

v̄i(N) + ṽi(N) = 0 (70b)

ri(0) − zr
i (0) +

N−1∑

k=0

(v̄i(k) + ṽi(k)) = 0 (70c)

Note that if the pair
(

V̄i(0), Ṽi(0)
)

verifies (70), so does
(
V̄i(0), 0

)
. Indeed, using the orthogonality ofv̄ ad ṽ;

• constraints (70a) become‖v̄i(j + 1) − v̄i(j)‖
2 +

‖ṽi(j + 1) − ṽi(j)‖
2 ≤ u2

i,max and hence are fulfilled
by
(
V̄i(0), 0

)
;

• constraint (70b) implies̃vi(N) = 0, that is verified by
(
V̄i(0), 0

)

• sinceri(0)−zr
i (0) ∈ Ri(0), constraint (70c) implies that

N−1∑

k=0

ṽi(k) = 0 that is verified by
(
V̄i(0), 0

)
.

From the orthogonality of̄v ad ṽ we also have

Li(V̄i(0) + Ṽi(0), ri(0) − zr
i (0))

= Li(V̄i(0), ri(0) − zr
i (0)) + Lr

i (Ṽi(0), 0)+

Lv
i (Ṽi(0)) + Lu

i (Ṽi(0))

≥ Li(V̄i(0), ri(0) − zr
i (0))

(71)

Hence, the optimal solution
(

V̄ o
i (0), Ṽ o

i (0)
)

to (69) verifies

Ṽ o
i (0) = 0. This proves (55). From (62c) and (62b) also (54)

and (56) follow, respectively. In order to complete the proof it

is enough to realize that substitutinḡv(j) = mi(j)ei(0) and
ri(0)−zr

i (0) = µi(0)ei(0) in Li(V̄i(0), ri(0)−zr
i (0)) one gets

the costJ̄i defined in (60). Moreover, substituting the same
expressions and̃vi(j) = 0 in (70) one obtains the constraints
(61).

It is now possible to state the proof of Theorem 4. Note
that, differently from the case of single integrators, (56)does
not guarantee thatro

i (lN +j) ∈ zr
i (lN)ro

i (lN), j ∈ [0, N−1],
and therefore for proving Theorem 4 we will use an argument
that is substantially different from the one adopted in the proof
of Theorem 3.

Proof of Theorem 4:: At times lN , l ≥ 1, because of the
contractive constraints (46) we have

xi((l + 1)N) =

[
Ki(G(lN)) 0

0 0

]

xi(lN) (72)

Sincevi(lN) = 0, ∀l ≥ 1, the set of equilibria for (72) isΦ0,
defined in (39). It is easy to verify that system (72) verifies
Assumption 1. Therefore, the update map (72) is uniformly
globally attractive [resp. globally attractive] with respect to
Φo if and only if Assumption 2 [resp. Assumption 3] holds.

Global attractivity of (72) implies that for all initial con-
ditions xi(0) =

[
rT
i (0) 0T

]T
there existsφ ∈ Φ0 such

that x(lN) → φ as l → +∞. In particular, there exists
ρ ∈ R

d such thatri(lN) → ρ. From (40) and (2) one also has
zi(lN) → ρ and henceri(lN) − zr

i (lN) → 0. By using (58)
it follows that µi(lN) → 0.

In view of Lemma 3, for studying convergence of the
optimal velocities we consider the optimization problem (59).
Note that, forµi(lN) = 0, the optimal solution to (59) is
Mo

i (lN) = 0. Moreover, since the constraint (61a) can be
replaced by the linear constraintsmi(lN + j + 1)−mi(lN +
j) ≤ ui,max and−mi(lN + j + 1) + mi(lN + j) ≤ ui,max,
problem (59) is a multi-parametric quadratic program [24]
with parameterµi(lN). As shown in [24, Chapter 1.1.4], the
optimizerM0

i (lN, µi(lN)) is a continuous function ofµi(lN)
and henceµi(lN) → 0 implies thatM0

i (lN, µi(lN)) → 0
as l → +∞. From (57) and (38b) one hasuo

i (lN +
j|lN) =

(
m0

i (lN + j + 1|lN) − m0
i (lN + j|lN)

)
ei(lN),

∀j ∈ [0, N − 1] and henceUo
i (lN |lN) converges to zero.

Let xo(k) be the state given by (38) and (11). From Remark
5 we deduce thatκRH(lN +j, xo(lN +j)) → 0, ∀j ∈ [0, N−
1] and hence, recalling thatvo

i (lN) = 0, from (38b) one has
that vo

i (lN + j) → 0, ∀j ∈ [0, N − 1]. This also implies,
from the equality (38a),ro

i (lN) = zr
i ((l− 1)N) and the limit

zr
i (lN) → ρ for l → +∞, that alsoro

i (lN) → ρ as l → +∞.
This concludes the proof.

Reasoning like in Remark 4, it is easy to show that if there
exists l ∈ N such thatG(lN) is complete,r-consensus is
reached at time(l + 1)N . Furthermore, also in this case the
consensus point depends on the sequenceF of communication
graphs.

Example 5 The case we consider includes five agents moving
in the plane with the following initial conditions:r1(0) =
[−30 30]T , v1(0) = [−5 5]T , r2(0) = [−25 35]T , v2(0) =
[5 1]T , r3(0) = [65 −75]T , v3(0) = [−6 −5]T , r4(0) = [70 −
68]T , v4(0) = [−1 4]T , r5(0) = [100 − 25]T , v5(0) = [2 8]T .



The prediction horizon isN = 10. The weights in the cost
function (5) are αi = βi = γi = 1 and the input constraints
are ui,max = 200, i = 1, . . . , 5. We consider a time-invariant
collection of unweightedbidirectionalgraphsF described by
the matrix(18). The simulation results depicted in Fig. 10 and
11 confirm asymptoticr-consensus.
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Fig. 10. Example 5: Evolution of agents’ position.
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Fig. 11. Example 5: Evolution of agents’ velocity.

Remark 6 The control techniques proposed in this paper can
be blended to obtain notable group behaviors in the multi-
agent system. This can be shown by an example. Taken

agents with double-integrator dynamics, moving in a three-
dimensional space. We apply to these agents:

• the contractive single-integrator solution (Section IV)
to obtain consensus on the velocity variable in two
directions, by applying suitable accelerations;

• the contractive double-integrator solution presented in
this section to obtain consensus on the position variable
in the remaining direction.

In this way we (asymptotically) obtain a planar movement of
the agents with the alignment of their velocities along that
plane. Further combinations of the proposed solutions can be
studied, thus realizing other actions of interest.

VI. CONCLUSIONS

We have proposed MPC control schemes capable of guar-
anteeing consensus in a multi-agent system where individual
dynamics are described by a single- and double-integrator
models. The proof of consensus, which holds under suitable
assumptions on the communication network, relies on con-
vergence results of [3], applicable because of the particular
properties of optimal state trajectories. The generalization of
the proposed control techniques to groups of agents with
more complex dynamics is not straightforwardand will be
a topic of future research. Future extensions of this work will
also concern an assessment of the effect of communication
delays and/or uncertainties on the performance of the proposed
control schemes.

APPENDIX

PROPERTIES OF DISCRETE-TIME PATHS

Given the pointsP1, P2 ∈ R
d, let P1P2 be the segment

joining them and denote with|P1P2| the segment length. The
straight line passing throughP1 andP2 will be denoted with
rP1P2 . An N -path is an ordered sequence ofN points T =
{P1, P2, . . . , PN} ⊂ R

d.

Definition 5 Two N -pathsTA = {A1, . . . , AN} ⊂ R
d, TB =

{B1, . . . , BN} ∈ R
d are equivalentwith respect to a point

O ∈ R
d if |AjO| = |BjO|, j = 1, . . . , N and we write

TA
◦
∼TB.

Note that
◦
∼ is an equivalence relation.

Definition 6 An N -pathT = {A1, . . . , AN} ⊂ R
d is straight

if Aj ∈ rA1AN
, ∀j ∈ {1, . . . , N}.

Note that, given anN -path TA and O ∈ R
d, there always

exists a straightN -pathTB verifying TA
◦
∼TB. This property

is depicted in Fig. 12.
For P, Q ∈ R

d let sPQ be a the straight half-line starting from
P and passing throughQ.

Lemma 4 For a givenO ∈ R
d, let TA = {A1, . . . , AN} ⊂

R
d andTC = {C1, . . . , CN} ⊂ R

d be twoN -paths such that
TC

◦
∼TA, and Cj ∈ sOC1 , j = 1, . . . , N . Then |AjAj+1| ≥

|CjCj+1|, j = 1, . . . , (N − 1).

Proof: SinceCj ∈ sOC1 we have two possibilities, for
j = 1, . . . , (N − 1):

• if |Cj+1O| ≤ |CjO| one has

|AjO| ≤ |Aj+1O| + |AjAj+1|
|CjO| = |Cj+1O| + |CjCj+1|



Fig. 12. Two pathsTA andTB in R
2 equivalent with respect toO.

• if |Cj+1O| > |CjO| one has

|Aj+1O| ≤ |AjO| + |AjAj+1|
|Cj+1O| = |CjO| + |CjCj+1|

and the result follows immediately from the definition of
equivalent trajectories.

We highlight that under the assumptions of the previous
Lemma, one has

N−1∑

j=1

|AjAj+1|
2 ≥

N−1∑

j=1

|CjCj+1|
2 (73)

Moreover, this inequality is strict if∃j : Aj 6∈ sOA1 .

Definition 7 AnN -path isnon-increasing with respect toO ∈
R

d if |Aj+1O| ≤ |AjO|, ∀j ∈ {1, . . . , (N − 1)}.

Note that ifTA is non-increasing w.r.t.O andTB
◦
∼TA then

alsoTB enjoys the same property.

Definition 8 The N -path TA = {A1, . . . , AN} is pointing
towards O ∈ R

d if it is non-increasing w.r.t.O and Aj ∈
A1O, ∀j ∈ {1, . . . , N}.

Note that if TA points towardsO one has |A1AN | =
∑N−1

j=1 |AjAj+1|.

Theorem 5 Let TA = {A1, . . . , AN} ∈ R
d be an N -

path. GivenO ∈ R
d, there always exists anN -path TB =

{B1, . . . , BN} ∈ R
d with B1 = A1, pointing towardsO and

satisfying the following inequalities:

|BjO| ≤ |AjO|, j = 1, . . . , N (74)

|BjBj+1| ≤ |AjAj+1|, j = 1, . . . , (N − 1) (75)

Proof: From Lemma 4 there exists anN -path TC =

{C1, . . . , CN} ⊂ R
d such thatTC

◦
∼TA, C1 = A1 and

Cj ∈ sOC1 , j = 1, . . . , N . We setB1 = C1 = A1 and build
up TB in a recursive fashion.
Assume that (74) and (75) hold for allj ∈ {1, . . . , j̄}, j̄ < N .

1) If Bj̄ = Cj̄ and |Cj̄+1O| ≤ |Cj̄O| we setBj̄+1 = Cj̄+1

we have|Bj̄+1O| = |Cj̄+1O|, |Bj̄Bj̄+1| = |Cj̄Cj̄+1|.

2) If Bj̄ = Cj̄ and |Cj̄+1O| > |Cj̄O|, it results|Bj̄+1O| <

|Cj̄+1O| for any choice ofBj̄+1 such that|Bj̄Bj̄+1| ≤
|Cj̄Cj̄+1|, |Bj̄+1O| ≤ |Bj̄O| andBj̄+1 ∈ A1O.

3) If Bj̄ 6= Cj̄ and |Cj̄+1O| ≤ |Bj̄O| we set Bj̄+1 =
Cj̄+1; in this way we have|Bj̄+1O| = |Cj̄+1O| and
|Bj̄Bj̄+1| < |Cj̄Cj̄+1|. The latter inequality, in particular,
follows from the fact that, by construction, necessarily
|Cj̄O| > |Bj̄O|.

4) If Bj̄ 6= Cj̄ and |Cj̄+1O| > |Bj̄O|, one has|Bj̄+1O| <

|Cj̄+1O| for any choice ofBj̄+1 satisfying |Bj̄Bj̄+1| ≤
|Cj̄Cj̄+1|, |Bj̄+1O| ≤ |Bj̄O| andBj̄+1 ∈ A1O.

For the auxiliary trajectoryTC , recalling thatTC
◦
∼TA, one

has|CjO| = |AjO|, j = 1, ..., N . Furthermore, from Lemma
4, the inequalities|CjCj+1| ≤ |AjAj+1|, j = 1, . . . , (N − 1)
follow. Thus, in all cases it is possible to construct anN -path
TB pointing towardsO and verifying (74) and (75).

If the N -pathsTA andTB fulfill the assumptions of Theo-
rem 5, one has

N∑

j=1

|BjO|2 ≤
N∑

j=1

|AjO|2 (76)
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[2] D. Bauso, L. Giarré, and R. Pesenti, “Lazy consensus fornetworks with
unknown but bounded disturbances,” inProceedings of the46th IEEE
Conference on Decision and Control, 2007.

[3] L. Moreau, “Stability of multi-agent systems with time-dependent com-
munication links,” IEEE Trans. on Automatic Control, vol. 50, no. 2,
pp. 169–182, 2005.

[4] R. Olfati-Saber and R. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,”IEEE Trans. on
Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[5] H. Tanner, A. Jadbabaie, and G. J. Pappas, “Stable flocking of mobile
agents, part I : Fixed topology,” inProceedings of the42nd IEEE
Conference on Decision and Control, 2003, pp. 2010–2015.

[6] ——, “Stable flocking of mobile agents, part II : Dynamic topology,”
in Proceedings of the42nd IEEE Conference on Decision and Control,
2003, pp. 2016–2021.

[7] J. Cortes, S. Martinez, and F. Bullo, “Robust rendezvousfor mobile
autonomous agents via proximity graphs in arbitrary dimensions,” IEEE
Trans. on Automatic Control, vol. 51, no. 8, pp. 1289–1298, 2006.

[8] G. Ferrari-Trecate, A. Buffa, and M. Gati, “Analysis of coordination in
multi-agent systems through partial difference equations,” IEEE Trans.
on Automatic Control, vol. 51, no. 6, pp. 1058–1063, 2006.
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