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Abstract—In this paper we address the problem of driving only applies the first input of the computed control sequence
a group of agents towards a consensus point when the agentsStabilizing MPC algorithms for decentralized and disttéal
have a discrete-time single- or double-integrator dynamis and systems have been proposed in [10], [11], [12], [13], [125]]

the communication network is time-varying. We propose deae- .
tralized Model Predictive Control (MPC) schemes that take nto [16] for dynamically coupled and decoupled systems. Howeve

account constraints on the agents’ input and show that they these approaches heavily rely on the fact that all agants
guarantee consensus under mild assumptions. Since the ghdb priori know a common set point, with the notable exception

cost does not decrease monotonically, it cannot be used as af [17], where the properties of the proposed algorithm are
Lyapunov function for proving convergence to consensus. 0 gemonstrated by means of simulation experiments. On the
this reason, our proofs exploit geometric properties of theptimal t th thods d ibed in thi be f I
path followed by individual agents. contrary, the methods described in this paper can be foyma
proved to guarantee (asymptotic) consensus under control

Index Terms—Networked autonomous agents, CONSensus prob- ., nsiraints and for time-varying communication networks.

lems, Decentralized model predictive control.
Specifically, we first propose an MPC solution for consensus
I. INTRODUCTION when agents have a single-integrator dynamics with bounded

. inputs. Notably, the proof of consensus under this scheras do
T HIS paper deals with consensus problems for dynamsy rely on the standard arguments used in predictive cbntro

1 ically decoupled agents described by a discrete-timg g arantee closed-loop stability, see. [18], [19], since
s_lngle- or dquble-mtegra_tor model ar_1d tQ‘UbJ_eCt to p_oss'btlﬁe global cost to be minimized by the MPC algorithm is not
time-varying interconnections. The objective is to defiree dmonotonically decreasing and, as such, it cannot be used as
centralized control strategies guaranteeing that thestzftgll a Lyapunov function. Rather, we exploit geometric prosrti
agents converge to a common value, caberisensus point of the gptimal path followed by individual agents and rely on
which generally.sp(_aaklng depends_ on the agents’ state ap general results described in [3] for analyzing consensu
on the. communication network. Th's problem is relevant ing 4 fyrther matter, on the basis of this technique we develop
many fieldsg.g.in computer graphics, unmanned autoNOMOWgher MPC solutions for consensus. We first modify the cost
vehicles, sensor networks and, generally speaking, in §g,ion adopted in the previous scheme and add a specific
control of cooperating systems (see [1] and the references,siraint on the state of the system. This constraint iscal
Fhereln; see also [2] for a more general Qef|n|t|on of CONSeNS. . tractive” because it mimics, in a multi-agent system
in presence of unknown but bounded disturbances). domain, the state constraint proposed in [20] for the cdiofro
In recent years, many control _Iaws have been proposed iy inear systems. The main advantage of this approachts th
networks of dynamic agents with different models and cony-., pe extended to agents with double-integrator dynsmic

munication topologies, seeg.[3], [4], [5], [6], [7]. [8], [8]-  eyenthoughthe techniques used for proving consensus in this
Most of them do not exploit optimal control ideas and, with th.o e are more sophisticated.

exception of [3] and [7], do not account for input constrgjnt

which in many cases have to be included in the problemIn our schemes, because of the Receding-Horizon technique,
formulation due to actuators limitations. the value of the consensus point depends not only on thaliniti
In this paper we propose innovative solutions based on Mod®inditions of the system, but also on the sequence of agents’
Predictive Control (MPC), which is a widely used approach istates along time and on the communication network along
view of its ability to handle control and state constraifitsis time.

method can be applied in a distributed fashion to the control ) ] ] )

of a group of agents by letting each agent solve, at eachatep, The paper is organized as follows: Se(?uor) Il is devoted to
constrained finite-time optimal control problem involvitlge (1€ definition of a model for the communication network and
state of neighboring agents. Moreover, following the steda SUmmarizes some key results on convergence in multi-agent

Receding-Horizon principle, at each time step the corgroliSystems presented in [3] and used in this paper. Sectiorill d
scribes the first MPC technique we propose for consensus in a
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[I. BASIC NOTIONS AND PRELIMINARY RESULTS K(G), partitioned asK (G) = [K{(G)---KI(G)]T. Note

We consider a team of agents indexed by the elementdhat if z(k) = [ (k) - -2 (K)]T, with 2; (k) € R?, one has

of the setNz = {1,...,n}. The communication network is Ki{(G(k))z(k) € C(G(k)) =
represented by a weighted directed grapk: (Mg, £a, we), Co({as(k)} U L (k). j € Ni(G(E)}) 2)
whereéq C {(i,7) : i,j € Ng,j # i} is the set of edges and ! A !
wg @ Eq — Ry associates to each eddej) € & a whereCo(A) is the convex hull of the setl (see [21]).
strictly positive weight denoted by;;. G is bidirectional if For sake of completeness, next we summarize some results
(i,7) € €6 & (j,1) € Ec* andunweightedif, V(i,j) € £&;, provided in [3] that will enable us to prove consensus under
w;; = 1. In the latter case, the graph can be simply representbé MPC schemes we will propose in the sequel. Assume that
by the pair(Ng, £g). From now on we will generally refer to agents obey the general closed-loop dynamics
directed orbidirectionalgraphs assuming implicitly that they
can be weighted. Ifyi,j € Ng, (i,j) € &g, the graph is w(k +1) = f(k, 2(k)) ®3)
complete wherez(k) = [21(k)T -z, (k)77 and z;(k) € R, Vi €

A nodei € N is connectedo a nodej € Ng\{i} ifthere a7, The nodes of the network have reactmmsensusf and
is a path from: to j in the graph following the orientation gpy if 4, = 2;,Vi,j € Ng,i # j. The corresponding state
of the arcs. The graply is strongly connectedf, V(i,j) € value is calledconsensus pointThe consensus subspaise

Ng x Ng, i is connected tgj. A directed graph is said to P, = {x ERM™ gy — g = ... = :vn}
have aspanning treef and only if 3i € Ng such that there
is a path fromi to any other nodg < Ne. Definition 2 [3] Let & C R’ be a set of equilibria fo(3).

The creation and Ioss_ of communication Ii_nks can b&ystem(3) is globally attractive w.r.t® if for each¢; € @,
modeled by means of a time-dependent collection of grapgag1 2 > 0 andVko € N, 37 > 0 such that every solutiog
g = {G(k) = (Ng,&(k),wa(k)),k € N} where all 1, 3)has the following property:
graphsG(k) share the same set of nodék.is a collection
of bidirectional graphs if and only if,vk € N, G(k) is |[[((ko)—¢1] < c1 = T2 € @ [|((k)—d2|| < c2,VE > ko+T

bidirectional Otherwise, it is referred to as a collection of . . .
directed graphs. where||-|| denotes the Euclidean norm. The system is uniformly

In the sequel, discrete-time intervals will be denoted witﬁIObaIIy attractive yv.r_.t.tb if it is globally attractive w.rt.2
lbr, ko] = {k : k1 < k < ko) assuming implicitly that < and the constant’ is independent of.

ki < kg < 00 Note that, as described in [3], global attractivity implibsit
o _ ~all solutions to (3) converge to a point ih ask — +oc.
Definition 1 [21] A collection of graphgG(1),...,G(m)} is  However, the vice-versa isot true

jointly connectedf (N, U™, Ex(k)) is a strongly connected

graph. The agents ardinked togetheracross the interval pefinition 3 Assume that the set of equilibria associated to
[1,m] if the collection of graphgGi(k), k € [I,m]} is jointly  the multiagent systei8) is ®.. Then, consensus is asymptot-
connected. A nodgis connected to all other nodes across %cally reached if one of the following conditions holds:

tlrrgehs(e/th %JN 'fgi gz);:onnected to all other nodes in the ;"5 iq 4 collection of directed graphs an@) is uniformly
graph e, Uger cc(7)): globally attractive w.r.t.®,;

If (j,i) € & we say thatj is neighborto i and thej-th ~ 2) G is a collection of bidirectional graphs and (3) is
agent transmits instantaneously its state toittteagent. The globally attractive w.r.t.®..,
set of neighbors to the nodec N is N;(G) = {j € Ng :
(4,1) € Ec} and|N;] is the valency of the-th node.

We define thecommunication matrids (G) = [ki;]i jene
K(G) € R™*", where:

The consensus results stated in [3] hinge on the following
assumption.

Assumption 1 For every graphG (k) € G, agenti € N and

Ui e NY(G), statex € X", X C R, there is a compact seft(G(k))(x) C
. 1+Zh,eqi<c> Whi X such that:
Fij = oy i i=], 1 '
J 1+ hen; (G) Whi j_ @ 1) fi(x,k) € ei(G(k))(x),Vk € N,V € X™;
0 otherwise 2) SZ(G(]C))(I) = {Il} if T; = Ij,\V/j S M(G(k)):

K(G) is a stochastic matrix.g. it is square and nonnegative 3) whenever the states of agemand agenty € N;(G(k))

and its row sums are equal 19 see [21]), whose entr{i, j) ar.e not al equal’ei(G(@)(@ < Ri(Ci(G(k))), where
. . ' , It Ri(A) denotes the relative interior of the sdt
is non null if and only ifi = j or (j,7) € ;. We also

- - i . . n X
define K (G) = K(G) ® I; where® denotes the Kronecker 4) the set valuc)e(d. functior;(G(k))(z) : X™ — 27 is
continuous 2 is the power set o).

product and/,; is the identity matrix of ordekl. Moreover

dxd - H . . .
we denote byK;(G) € R the i-th block of the matriX  The main theorem on consensus we will use is stated next

. . _ and exploits the following assumptions.
1As remarked in [3], weightsv;; and w;; can be different. If they are

equal, one recovers the notion of undirected graphs.



Assumption 2 For the collectionG of directed graphs there Consider the following Constrained Finite-Time Optimalnco

exists a non-negative integér > 0 such that,vk, € N, there
is a node connected to all other nodes acr@ss ko + 7).

trol (CFTOC) problem for agent € Ng:

Assumption 3 For the collectionG of bidirectional graphs subject to the following constraints:

and for all ky € N, all agents are linked together across th

interval [kq, +00).

Theorem 1 [3]Let G be a collection of directed [resphidi-

rectional graphs and assume thdtin (3) verifies Assumption
1. Then, systeni3) asymptotically reaches consensus if and

only if Assumption 2 [resp. Assumption 3] holds.

mnin Ji(z(k), Ui(k)) €)
e(a) the agent dynamics (4);
(b) the input constraint
Huz(k + j)” S Ui, mazx, (10)

With ©; ez >0, j € [0, N —1].
Optimal inputs computed at timé will be denoted with
U?(k|k) and we will investigate the consensus properties

For further comments and examples clarifying the minRrovided by the receding-horizon control law

mality of the assumptions of Theorem 1 as well as the links ru

between uniform global attractiveness [resp. global etitre-
ness] and directed [respidirectiona] graphs, wedefer the
reader to [3].

IIl. MPC FOR CONSENSUS AMONG AGENTS WITH A
SINGLE-INTEGRATOR DYNAMICS

uf (k) = K (k, 25(k)), w7 (k, zi(k)) = uf(k[k) (11)

Note that ul*”(k) coincides with the first input
sample appearing in the vectorU?(klk) =
[udT (k|k), udT (k + 1|k), - ,u¢T(k+ N —1]k)]".  Note

also that the state-feedbaek*?! is time-varying when the
communication network changes over time. Problem (9) is
always feasible sinc#;(k) = 0 is a feasible input sequence.

In this section we consider a system wofagents, each \we are now in a position to state the main result of this

one described by the following discrete-time single-indgr
model

with initial condition z;(0) = z;0. The vectoru;(k) €
control input of agent at timek.

As an example, considering a group of autonomous vehicl

moving in ad-dimensional geometric space;(k) describes

of graphsg.

Given a generic vector-valued signg{-) and a positive
integer N, let us denote by the capitalized vectBi(k) =
[yT(k), - ,yT(k+ N —1)]T the values ofy(-) over the time
interval [k, k + N — 1].

Let N > 1 denote the length of the prediction horizon. We

associate to the-th agent the input sequenég (k) and the
cost

Ji(z(k), Ui (k) = Ji (x(k), Ui(k)) + Ji*(Ui(k))  (5)

N
TP (@(k), Ui(k) = i Y llwa(k +§) = z(k)I° (6

j=1

N-—1
THUsk)) = B Y ik + 5)| (7)

7=0

where

zi(k) = K (G(k)) z(k) (8)

defines thearget pointfor the i-th agent andv;, 5; > 0 are
weights. Note that from (2), one hagk) € C;(G(k)) and, in
particular,z; (k) is just the barycenter dfz; (k) } U{x;(k),j €
N;(k)} when the graph is unweighted.

Cost (5) is decentralized, because the tesiik) depends
only on the states of neighbors to th¢h agent at timek.

Section. Its proof is based on the application of Theorem
1 and the geometrical properties of discrete-time paths
introduced inthe Appendix

Theorem 2 Let G be a sequence of directed [respidirec-
tional] graphs. The closed-loop multi-agent system given by
@6 and (11) asymptotically reaches consensus if and only if

. . _Assumption 2 [resp. Assumption 3] holds.
the position of agent We will also assume that the communi- P [resp P |

cation topology is time-varying and captured by the coitact

Proof: Consider the closed-loop multi-agent system cor-
responding to equations (4) and (11), that can be reprasente

by

z(k+1) = f(z(k)), (12)
where
f1(x(k))
f(z(k)) = : , filae (k) = i(k)+r (K, 2i(k))
fn (z(k))

Apparently, from (9), (10) and (11) one ha§* (k, z;(k))
0, Vi € N if and only if z(k) € ®.. Hence,®,. collects the
consensugquilibria of (12). Next, we show that the magp
fulfills Assumption 1.

With the notations used in Assumption 1, we $ét= R?¢
ande;(G(k))(x) = {fi(x)}. Then point 1 of Assumption 1
is trivially verified. For point 2, whene;(k) = z;(k),Vj €
N;(G(k)), then z;(k) = =z;(k). From the definition of the
cost J;, it is immediate to verify that/;(«(k),0) = 0 and
hence the optimal inputS? (x(k)) are zero. This implies that
fi(xz) = z;, and point 2 is verified.

The corepart of the proof consists in verifying point 3. To this
purpose we will use the tools and the terminology for paths
described inthe Appendix

If there existsj € N;(G(k)) such thatx;(k) # z;(k) one
hasx;(k) # zi(k). Let X;(z(k),U;(k)) be the sequence of



states of the-th agent generated by the initial statgk) and implies that z;(k) € Ri(C;(G(k))). When alsox;(k) €

the input sequencé®;(k), with u;(k + j), 7 € [0,N — 1] Ri(C;(G(k))) itis trivial to conclude that the optimal trajectory
fulfilling the constraint (10). belongs taRi(C;(G(k))). Whenz; (k) belongs to the boundary
As a first step we show thatX?(z(k),U?(k)) = of C;(G(k)), by applying theline segment principl¢22] the
[T (k) ---2¢T(k + N)]T is a path pointing towards;(k). same conclusion follows because the optimal trajectory is
Note that, because of the single-integrator dynamics (#), ttotally included in the relatively open segment connecting

term J! can be rewritten as: x;(k) and z; (k).
N—1 Finally, also point 4 in Assumption 1 is verified. In fact,
Ju(k) = B Z lzi(k+ 3§ +1) — z:(k + §)|? (13) Since we have .provgd. that the optlmgl_ state trajectory
= X?(xi(k),Uf(k)) is pointing towardsz; (k), it is possible to

L . L write: x;(k +1) = x;(k) + n(k)L(k)(z:;(k) — x;(k)),Vk € N,
Assume by contradiction th&? (x(k), U?(k)) is not pointing Where0(< L()k:) <(1) (spe(ci)ficgll)y(, L((k)) _ é )o)nly when
towardsz; (k). Theorem Hsee the Appendixghows that there (k) = x?k)) and
is an N-path X; (k) = [27 (k) - -- &7 (k + N)|T with 2;(k) = ‘ _

29 (k) pointing towards; (k) and such thatyj = 0,..., (N — n(k) = {1 y if Lk) [|2i(k) = zi(K)I| < wi,maz
1), both the following inequalities hold simultaneously: R otherwise

LR Tz k)~ (R
& (k+j+1) — z(k)|| < |20k + 7+ 1) — (k)| (14) Itis then apparent that the funct_iqfa(:z:) is continuous, and
thereforee,; (G(k))(x) is also continuous.
[#:(k+37+1) = 2i(k+ )| < ll27(k+5+1) —27(k+ )| In conclusion, Assumption 1 holds and the rest of the proof
) o ) . (15) isa straightforward application of Theorem 1. [ ]

Inequality (15) implies that the input vectdr;(k), pro-
ducing X;(z(k)), fuffills the constraint (10). Moreover (14) Remark 1 By suitably choosing the weights and j; in (6)
implies that J7 (x(k), Us(k)) < J(x(k),U¢(k)) and (15) and (7), respectively, it is possible to tune the behavior of
that Ji* (Ui (k)) < Ji*(U?(k)). HenceX?(x(k), U7 (k)) is not  each agent. For instance, given an unweightediolirectional
optimal. One therefore concludes that the optimal staté pgfraph, it is possible to mimic behaviors of the agents tylpica
X?(2(k), U7 (k)) is necessarily pointing towards(k). obtained by using weighted or directed graphs. This feature

As a second step, we show thaf(k) # z(k) implies js illustrated in Example 1 where it is shown how to achieve,
that ’U,;)(k) 7& 0. This will be proved by first ShOWing, by approximate|y’ |eader-fo”owing_
contradiction, that/?(z(k)) # 0. Assume thatU?(z(k)) =
0 is the optimal input sequence. Theh(x(k),U;(k)) = Example 1 We consider a set of = 5 agents moving in a
Na ||zi(k) — z(k)||*. Consider the input sequené&(k) = two dimensional space, with initial states(0) = [—30 30]7,
[0(zi(k) — xi(k))T 0T ---0T]", 0 < & < 1, whered is  2,(0) = [-25 35]7, 23(0) = [65 —75]7, 24(0) = [70 —68]7,
such that(|§(z;(k) — zi(k))ll < imaz, and let X(k) = z5(0) = [100 — 25]T. The prediction horizon isV = 3. The
[z(k)---z(k + N)] be the corresponding state path. One hageights in the cost functio(s) are o; = 1,i = 1,...,5,

- . 2 2 61 =100, 3; = 1,9 = 2,...,5. The communication network
Jil@(k), Ui(k)) _Nal(lz O) lla(k) 2( )l (16) is described by the time-invariant unweightbitlirectional
+ B3i0° [|2i (k) — zi (k)| graph represented in Fig. 1, that corresponds to the folfai
For§ < N%iji%i one ha.SJ(ZC(k),UZ(k)) < J( (k) Uo(k)) communication matrix: ) )
Such a choice is always feasible sinfgé\’—ﬁ > 0. Therefore 7 2 (1) 0 0
U? (k) = 0 cannot be the optimal input sequence. . 3.3 03 (1) 0
Now we prove thaw?(k) # 0 by contradiction. Assume KG)=| 0 3 73 (1) (18)
that the optimal input sequence & (k) = [07 w¢T(k + 0 0 3 303
1) - w¢T(k+N—-1)]7, with u¢T (k+1) # 0. Now consider 00 0 3 3

the inputU; (k) = [uf" (k+1) --- w¢"(k+ N —1) 0"]". We  The input constraint§10) are given byu, ae = 100,i =
observe that all input samples Ui (k) verify the constraint

(10), as those of/?(k) do. Th
B - <ZZ ) St -0 et

)

2
N—-1
zi(k)+ > uf(k+7) — 2zi(k)

7=0
1,...,5. The simulation in Fig. 2 shows asymptotic con-
—ai [lai(k) — 2i(k)[|* < 0 vergence towards a consensus point. Sigge>> 3;, i =
Inequality (17) follows from the fact that some input(k + 2,3,4,5, agentl behaves approximately as a leader, hence
7),7=0,...,(N —1) is non null and every input makes themoving much less than the others from its initial po-
state follow a path that points towardg k). sition. In this case, input constraints are never active.
The property of stochasticity of the matriX(G(k)), together It is important to notice that in this example both cost
with the assumptions thaV/;(G) # 0 and z;(k) # z;(k) functions Jy(z°(k), Uy (k|k)) and Jo(z°(k),U°(k|k)) =

Fig. 1. Communication network used in Examples 1, 2 and 3

(17)

_Oél




- - -agent1l linked together across the intervgdy, +o00), Vko € N. As seen
W0R e agent 2 in Fig. 4, consensus is asymptotically achieved, in accocga
age”:i with Theorem 2, even though input constraints are active at
- - —agen ; - .
SO TR agems timesk < 10, as shown in Fig. 5 Notice that the value of
S e ey
iRe ‘ CTooToIoio - - -agent1
50 ‘ ; ; ; ; ‘ ‘ ‘ 100
0 5 10 15 tir2noe 25 30 35 40 - - —agenta

< 50 agent5

5 10 15 20 25 30 35 40
time

Fig. 2. Example 1: Evolution of agents’ state.

S0 Ji(z0(k), UP(k|k)), wherez® (k) is the state sequence time
given by(4) and (11), are not monotonically decreasing over
time (see Fig. 3). This implies that the global cost functiof
J°(z(k)) cannot be used as a Lyapunov function and classica
arguments for proving the stability of MPC algorithms (see
e.0.[18], [19]) cannot be adopted. This justifies the necessit
of an alternative technique to prove convergence, as the ¢
we propose, based on geometrical concepts and on Theol
1.

P. 4. Example 2: Evolution of agents’ state.
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=00 Fig. 5. Example 2: Control inputs of individual agents.
0 ‘ . S .
0 10 20 30 40 the asymptotic consensus point in this example differs fieam
time one in the previous one, though the initial conditions of the
) _ system are the same in both cases.
Fig. 3. Example 1: thebold line represents the global cost

JO(x°(k),U°(k|k)). The other lines represent the cost of individual agents.
IV. A CONTRACTIVE MPC SCHEME FOR AGENTS WITH
SINGLE-INTEGRATOR DYNAMICS

Example 2 We use the same setting of Example 1, but we nowThe CFTOC problem (9) does not include constraints on

chooses; = 1,i=1,...,5 and u; nq = 5. We also assume the agents’ state. We now introduce an alternative MPC law
that the communication network is time-varying and fulfNés  requiring periodic communication among agents and using

sumption 3. More in detail, we generated a random sequerggecific state constraints in order to guarantee consenhiss.

of unweightedbidirectional graphs such that all agents aresolution has the advantage that it can be easily extended to



agents with double-integrator dynamics (see Section Vg Th
control scheme is inspired by the MPC technique proposed inConstraint (24) is such that:

[20], where a “contractive” constraint is imposed on thdesta , it is defined on the multi-agent system state at the first

to guarantee stability. o . time instant after the end dP(k);
For thei-th agent, whose dynamics is described by (4), , it changes when the current tinie switches from ap-
consider the following cost interval to the next one;
Ji(zi(k), zi(p(k)N),U;(k)) = 19) o itis the same for allc € P(k); consequently, while:
J%(z5(k), % U T (U (k approaches the end ofpainterval, the difference between
¢ @s(k), 2:(p(R)N), Us(k) + Ji (Ui k) the next time at which the state is constrained @nd
where decreases.
S (wi(k), zi(p(k)N), Us(k)) = Equation (24) can be interpreted as a “contractive” coimdtra
_ ) (20) because, under suitable conditions on the communication
0 Z zi(k + ) — zi(p(k)N)|| network, it forces the shrinking of the convex hull spanngd b

the agents’ state, as it will be shown in the sequel. Note that
and J* is defined as in (7)The functionp(-) is defined as whenk = NI, (24) is also a terminal constraint. Obviously
the fact that this constraint can be fulfilled or not depenals o

p(k) = {NJ (21) the kind of application we consider.
where[¢| denotes the greatest integer lower bound ®R; Remark 2 For I € N and k € [IN +1,(l + 1)N — 1] the
a representation qf(k) is provided in Fig. 6 forV = 4. cost (19) is independent of the grapt(k) and the states
zi(k), i € N;(k). This implies that agents are required to
ol transmit their state to neighbors only at timgs, [ € N.
3 o o o Remark 3 Note that if at timesiIN, | € N the CFTOC
problem (22) is feasible, then it is feasible also at times
2 L B IN+3j, j€[l,N—1]. Indeed letX?(«(IN),U?(IN|IN)) be
the sequence of states producedahylN) and U?(IN|IN).
1 ceee UC(IN|IN) steersz;(IN) into z;(IN + N) = z;(IN) in order
to fulfill constraint (C). Hence, at time = [N+ the sequence
N 2N 3N k [ ul(IN 4 jJIN)
Fig. 6. Functionp(k) for N=4. U,(IN +j) = uf(IN + N —1|iN) (26)

0

We associate tok € N the p-interval P(k) = :
[p(E)N, (p(k) + 1)N — 1]. Note thatp(k) is constant over 0
eachp-interval. N N

Consider the following CFTOC problem for agent N: is feasible (since it steers?(IN + j) into z7((l + 1)N) =

) z;(IN)) and optimal (by Bellman’s principle, see [23]). This
ATS Ji(wi(k), zi(p(k)NV), Ui(k)) (22) means that in the nominal case, probld@®) needs to be
solved just at timedN, | € N. However, resorting to a
receding-horizon strategy allows one to apply at any time a
state-feedback control law.

subject to the following constraints:
(A) the agent dynamics (4);
(B) the input constraint
sk + )| < timas, (23) The following result shows that an appropriate choice of
T the prediction horizorV always ensures the feasibility of the

With w; maez > 0, i € Ng, j € [0, N —1]; control problem
(C) the state constraint
zi((p(k) + 1)N) = z(p(k)N). (24) Lemma 1 The CFTOC problen@2)with constraints (A), (B),

_ ) ) (C) is feasible at all times iV > max;ecn, IN; Where
where the target point; (k) has been defined in (8).

The corresponding receding-horizon control law will be de- N, = [maXJ'GNG [24(0) — 2;(0 )” (27)
noted as

uftf (k) = &7 (k, 2i(k), 2:(p(k)N)),

RH . . — ,,0 i I

rit (K, zi(k), zi(p(k)N)) = g (K[k) Proof: In view of Remark 3, we focus only on feasibility

2With a little abuse of notation we use here the same synip@lppearing at time instantd V. Because of the mtegrator dynamlcs (4)
in (5). at timek = 0 agent; can reach inv; steps all states; € R?

Ui, max

and [£] denotes the least integer upper boundste R*.

(25)



verifying || Z; — i(0)|| < Niti ma.. Therefore, constraint (C) for all I € N the optimal state pattX?(z(IN),U?(IN)) =

with & = 0 can be met if an horizoiV is chosen, where [2¢T(IN), ..., z¢T((1 + 1)N)]T points towardsz;(IN) (see
N> max N (28) Definition 8) To show this, one can use Theorem 5, where
T ieNe x¢(IN+j) = B;, Vk andT 4 is associated to a generic feasible
R 12:(0) — 2:(0)| state path. Note that, due to the contractive constraing (2w
i ’V : " : -‘ (29) hasAy = By = 0.

Part 3. We finally show that when the componentsi§i k)
Using the fact that<;(G(0))x(0) € C;(G(0)), one has fulfill (P.1) then system (4) and (11) is uniformly globally
} } } . attractive [resp. globally attractive] with respectdq if and
124(0) = 2O} < VigeNa I:(0) = 2; (Ol (30) only if (33) has the same property.
The “only if” part is obvious since:’(IN) is a subsequence

and thereforeN; > N, Vi € Ng and N > N. Hence, of z°(k). For the “if” part we are assuming that

feasibility at timek = 0 holds. Let nowl > 1. Using the same
rationale, the CFTOC problem (22) is feasible if an horizonvVg, € ®., Vé1,é >0, Vip € N,3L >0 :

N, is chosen whereV, > max;e g N,l and |2°(loN) — ¢>1H <& = 3@ € d, : |z°(IN) — ¢~>2H < &,
- [lz(N) — @ (IN)| Vi > 1o+ L.
Nl.’l B ’7 ui,maw (31) (34)

Note thatz(IN) is the state produced by the optimal inputand the goal is to show that
and thenx;(IN) = K;(G((l — 1)N))z((I — 1)N). It is
>0:
easy to prove thatyi € Ng, z;(IN) € C;(G((I — 1)N)) V(bi € ®c, Ver, 2 >0, Vho € N, 3T = 0
and proceeding backwards, one ha¢/N) € X, and then  [[#°(ko) = ¢nll <1 = Fpo € e : [[2°(F) — | < ¢,
zi(IN) € C;(G(0)). Hence, Vk > ko+T.
(35)
lz:(IN) — 2:(IN)[| < max [lz;(0) —z; O (32) , _ _ _ . _
HI€ Fix ¢1, c1, ¢co in (35). Using the triangle inequality, one obtains
and therefore one has; > N;;, Vi € Ng andN > N, Vi e o(] 7 PR 0 o o 7
il ’ N)—61 < = ||z (loN)—2° (ko ko) —
o This somrletes tha broot l2*(@oN)=dull < &1, & = l2*(loN)=a” (ko) |+ a” (ko) =
We are now in a position to state the main results of thighere we have chosdp = p(ko) and ¢, = ¢;. Setéy = £
section. Formula (34) guarantees that

Theorem 3 Let F = {G(IN),l € N} be a collection of == 0:3%2 € e |27(IN) — dof < &2,V 2 lo + L. (36)
directed [resp.bidirectional graphs and assume thaV is Note that, in property (P.1)(p(k)N) = 2°((p(k) + 1)N).
such that the CFTOC probleif22) with constraints(A), (B) Moreover (P.1) implies that

and (C) is feasible at all times. Then, the closed-loop multi- - - -
agent system given b#) and (25) asymptotically reaches 7°(F) = da|l < [|2°(p(k)N) = @2+ [|2°((p(k) + 1) N) — 62 |

consensus if and only if Assumption 2 [resp. Assumption 3] _ (37)
holds withG replaced byF. Furthermore, denoting with¢ (k) ~@nd hence, for alk such thatp(k) > lo + L (i-e. k > (lo +
the optimal states, one has that L)N), formulae (36) and (37) yielfz? (k) — ¢z < 2¢2 = ca.

Therefore, (35) holds with" = (I, + L)N — k, and¢s = ¢o.

P.122(k) € x9(p(k)N)zi(p(k)N), where AB is the line -

segment connecting points and B;
P.2 for all [ € N, d(jlIN) = ||z(IN) — 22(IN + j)|| is a

non-increasing function of € [0, N). Remark 4 If there existsk € N such thatG(p(k)N) is

complete, consensus is reached at tifpé) + 1) V. In fact,
Proof: For the sake of readability the proof is split inin this case\i,j € Ng
three parts.
Part 1. The contractive constraint (24) only depends on Ki(Gp(k)N))z(p(k)N) = K;(G(p(R)N))2(p(k)N)
K(G(-)) at timesIN VI € N. It therefore holds as it can be readily seen from the definition of the matrices
o . ° K;(G). We also highlight that the consensus point, in the case
#2((+ N = K(GIN))a*(IN) (33) of Ehe) contractive technique, does only depend on the set of
It is simple to verify that system (33) fulfills Assumptioncommunication graphg§G(p(k)), k € N} (see [21] for the
1. Therefore, Theorem 1 proves that the update map (33)c&se of unweighted graphs).
uniformly globally attractive [resp. globally attractivevith
respect tod, if and only if Assumption 2 [resp. AssumptionExample 3 We apply the contractive MPC scheme using the
3] holds. If N = 1, this completes the proof of the wholesame setting as in Example 1, with the exception that the
theorem. prediction horizon isV = 10. Simulations depicted in Figures
Part 2. When N > 1, we show properties (P.1) and (P.2)/-8 confirm the expected tendency of agents to consensus.
using the tools provided ithe Appendix First, note that, in Notice that, quite differently from Example 1, the control
view of Remark 3, (P.1) and (P.2) are equivalent to the faatt theliminates the quasi-“leader-follower” behavior. This due



to the presence of the contractive constraint, which forceghere

agents to reach states which are not dependent on the weights % % 0 0 0
«; and f3;. Nevertheless, a leader-follower behavior could be 3 3 3 (1) (1) 0
approximated, also with &idirectional graph, usingsuitably K(G) = g g 8 b 9
weighted graphs 73
9 grap oo o I I
% % 0 0 0
100”__ - = =agent1 _ 5 ? 0O 0 O
Ve T e— | agent 2 KG)=| 0 2 2 0 0
I N G S e agent 3 0 0 & 11
<~ mimimim === == T = = —agent 4 0 0 6 i1
Qp= === 2T aam =TT a t5 2 2
- gen
--- Note thatF is a collection of unweighted directed graphs
% 20 0 60 80 100 that does not fulfill the assumptions of Theorem 3. In fact,
time the communication grapld7;, which has no spanning tree
50 is active over time intervals of increasing length. Therefo
F\' B asymptotic consensus is not achieved (see Fig. 9).
0 ’-'_'-‘-'-'-‘"‘:‘:‘-‘-—_\:-=r-_.-_"'_-‘:‘=,—_ -----
= e
B S 100k - - —agent1
_ i i ; i i kT T - agent 2
100o 20 40 60 80 100 50 W agent 3
time x-r—'" = = =agent4
or agent 5
Fig. 7. Example 3: Evolution of agents’ state. 50 e s -
10 20 30 40 50
. ti
In this examplewe assumeu; ., = oo, Vi. The cost me
functions associated to each agent and the global costifumct S VO S St SR
have sudden growths at the beginning of egpdhterval, due o
to the changes i (G(p(-)N)). o w
—50;a—"ﬁ__- e e
35007 5 % 10 20 30 40 50
— time
3000 -- -J1
_____ J H . : ,
2500 2 Fig. 9. Example 4: Evolution of agents’ state.
—J,
2000 ---J,
Je V. A CONTRACTIVE MPC SCHEME FOR AGENTS WITH
1500 DOUBLE-INTEGRATOR DYNAMICS
1000 We now consider a set ofi agents with discrete-time
dynamics
500
0 20 40 60 80 100 vi(k +1) = vi(k) + ui(k) (38b)
time
where r;(k),v;(k),u;(k) € RY, z;(k) = [rF(k), vl (k)T
Fig. 8. Example 3: Optimal cost of i5ndividua| agents(x° (k), UP (k[k)) is the state of thei-th agent andz;(0) = =z, are the
and global optimal cosf?(z° (k)) = 3_;_, Ji(«(k), U7 (k|k)) (boldline). jnjtial conditions. We also define the collective vectors
r(k) = [T (), 7T, w(k) = [T (k) 0T (k)]"
andz(k) = [zT(k),--- , 2L (k)]T. The states; andv; can

Example 4 We consider the setting of Examg®e with the
differencethat herethe prediction horizon isN = 5 and
Ui maz = 20. Moreover, the collection of graph% is struc-
tured as follows:

F={G Gy G1Gy Gy G1 G1 Gy Gy -+
~~~ S~—— —

1 2 3

be used, for example, to describe position and velocity of a
point mass moving in d-dimensional space. Next, we present
an extension of the contractive technique proposed in @ecti
IV for guaranteeing consensus. For system (38) we adopt the
following definition of consensus that is mildly weaker than
Definition 3.



Definition 4 The multi-agent system (38) asymptotically
reaches-consensuf the associatedset of equilibria is given

by

O ={[r], o], vl oI (39)
TL=Tg = =Ty, U =V = = v, =0}

and for all initial conditions, the states converge to a gdm
by ask — +oo.

Correspondingly, we definel (k) as
(k) = Ki(G(k))r(k)

T
2

(40)
and introduce the following cost for agent

Ji(xi(k)a Zi (p(k)N)le(k))
Ji (ri(k), 2 (p(k)N),Ui(k)) + Ji (v(k), Us(k)) + J{*(Ui(k))

(41)
where
J7(ri(k), 22 (p(k) N Ui (k) =
N+1
w3 Itk +9) - Zewn)E @2
j=2
N
TP (w(k), U(k)) = 6; Y |lvi(k + )| (43)
j=1
N—1
k) =7 Y lluilk+ )| (44)
7=0

and «a;, 3;,v; > 0. We consider the optimization problem
associated to agent

gl(% Ji(wi(k), 2 (p(k)N), Ui(k)) (45)
subject to the following constraints:
(I) the agent dynamics (38);
(1) the input constraint|u;(k + )|l < wimazs Uimaz >
0, 5€[0,N—1];
(1 the contractive state constraints
ri((p(k) + 1)N) = z; (p(k)N) (46a)
vi((p(k) +1)N) = 0. (46b)

Remark 5 Reasoning like in Remark 3, one has that if
problem(45)is feasible at time&N, [ € N then it is feasible at
all times. Moreover, from Bellman’s optimality principlex®
has that for alll € N the optimal inputs computed by the
solving problem(45) at timesIN + j, j € [1, N — 1] are given
by (26).

Next we formulate a sufficient condition showing that by
choosingN big enough, problem (45) is feasible at all time
instants.

Lemma 2 For given initial conditionsz;, ¢ € Ng and
boundsu; .42, there exist integersdV; such that if N >
max;en, Ni, the CFTOC problen{45) with constraints (1),
(1D, (1) is feasible at all times.

Proof: We first highlight the following properties afth
agent:

0] at time k let N; be an integer verifying
Niui,ma:ﬂ > [los (k) (48)
Then, the input sequeneg(j) = ”l(’_“),] € [k, k+
N; — 1] fulfills ||u;(j)[| < timae and steers; (k) to
vi(k + N;) = 0;
(i)  attime k assume that;(k) = 0 and choose a target

stater; € R%. Let N; be an integer verifying

N?Ui,maz > HFZ - Tl(k)“ (49)

Then, the input sequenee(j), j € [k, k+2N; — 1]

given by
i —ri(k ~
ui(m):T(), €[k, k+N; — 1]
u;(m + ]\71) = —u;(m)

fulfills [lu;(j)| < imax, Steersri(k) to r;(k +
2N,;) = 7; and guarantees that(k + 2N;) =0
Next, we prove the feasibility of (45) at all times. In view
of Remark 5, without loss of generality we can focus on times

k =IN, [ € N. At time k& = 0 consider the input sequence
[V VE V5 1T where

;1 collects NV, ; input samples chosen as in point (i),

We denote the corresponding receding-horizon control law  for & = 0. In particular, one hasV; 1t;maz = [|vi(0)]|

by
uf (k) = &7 (k, zi(k), 27 (p(k)N)),

KEH (kyas(), L (p(RON) = (k) )

Due to the double-integrator dynamics of the agents, we

require thatN > 2 in order to guarantee that system (38

is reachable. The constraints (46a) and (46b) imply that eac

agent is periodically forced to arrive to the position giugn
(46a) with zero velocity. We highlight that, the possilyilibf

fulfilling the constraint (46b) depends on the nature of the

agent.

andV; ;1 steersz;(0) to z;(N;1) = [ vF(Nix) 0 ]T.
Note thatN; ; andr;(N; 1) depend only upon:;(0) and
Ui, mazx-

V; 2 collects Ni,g input samples chosen as in point
(i), for ¥ = N;; and#; = r;(0). Therefore, one
has N? oUimaz > ||7i(0) — ri(Ni1)|| and henceN; »
depends only upom;(0) andu; mq.. Moreover, it holds
vi(Ni,l + 2N12) =0.

V; s collects N; 3 input samples chosen as in point (i),
for k = N;1 4+ 2N, 2 and#; = 2[(0). In particular, we
pick N; 5 verifying

)

N? (50)

3Ui max > dmaz = 7%5}\)/2 ||’f‘1( ) - TJ(O)H



In order to show that this choice is possible, one has to(IN) = v?(IN|(I — 1)N) = 0 and the input sequence

prove that U?(IN|IN). Then
NZ-2 Ui maz > |21 (0) — 7;(0 51
2 I=(0) =m0l G w?(IN + j|IN) € R;(IN) (54)
as requwed by (49) ’Uf(lN +]|ZN) c Rl(lN) (55)

To this purpose, we highlight that for all € N and
N > 0 one hasz(IN) € Co{r;(IN)} U {r;(IN), j €
N;(G(IN))}) and then

r{(IN + jlIN) — 2] (IN) € R;(IN) (56)

T Moreover, let
|27 (IN) = r;(IN)|| < max. [ri(IN) —r; (IN)|| (52)

Moreover, for later use, we also highlight that from (46a) V7 (IN + jlIN) = m7(IN + j|IN)e;(IN) (57)
one has-;(IN) € Co({r((I—1)N)}U{r, (I—1)N), j € r(IN) — 2T (IN) = i (IN)es(IN) (58)
N (G((1 = 1)N))}), VI > 1, and hence

max [|ri(IN)—r;(IN)|| < max [[r:(0)—r;(0)] (53) wherem$(IN + jlIN) € R, u;(IN) € R and consider the

i,je€NG T i,5€NG opt|m|zat|on problem
Inequalities (50), (52) and (53) show thaf; 5 verifies
(51). From (50) it follows thatV; ; depends only upon min J;(¢G(IN), M;(IN)) (59)
Il(O) andul-_’mam. M;(IN)
Hereafter, we setN; = N;; + 2N;2 + 2N;3, N =

max;en,, NV; and show a way to build feasible input sequences -
of N samples at timesN, [ > 1. In particular, for thei-th Ji(ui(IN), M;i(IN)) =

agent we consider the input sequenc®/, V7, ]T where :

7j—1
<m IN)+ ) mi lN+k)> +

k=0

6%

'MZ

I|
S

. f)i,l collectsN —2N; 3 input samples equal to zero. Since

v;(IN) = 0, one obtaing;(IN + N — 2N, 3) = r;(IN) !

N
e Vo collectsV; 3 input samples chosen as in point (ii), —
for k =IN+ N —2N; 3 and7; = 2/ (IN). We only need ]Jv_l
to show that ifN; 5 is chosen as in (50), then, it fulfills . . . o )2
NZgtimas > |2/ (IN) — r;(IN)|| as required by (49). i = (mi(IN 7+ 1) = mi(IN + )
This easily follows from (52) and (53).
B with m;(IN + j) € R and subject to the constraints
It is now possible to state the main result on consensus of
this section.Differently from Theorems 2 and 3, it is just a
sufficient condition to achieve consensus. Imi(IN +j +1) = mi(IN + j)| < timaa (61a)
j€e0,N—1]
Theorem 4 Let ¥ = {G(IN),l € N be a collection of m;(IN) =m;((I+1)N) =0 (61Db)
directed [resp.bidirectional graphs and assume tha¥ is N—1
such that the CFTOC probler@5) with constraints(l), (II) wi(IN) + m;(IN+k)=0 (61c)
and (Ill) is feasible at all times. Then, the closed-loop multi- =0

agent system given bi88) and (47) asymptotically reaches
r-consensu#f Assumption 2 [resp. Assumption 3] holds.  Then M;(IN) is the optimal solution tq59) if and only if

In order to give a formal proof of the Theorem, it is firsth(lN”N) = Mi(IN).
necessary to clarify the geometric properties of the ogtima
control and state sequences computed at timés! € N. To Proof: In order to simplify the notation, hereafter, for a
this purpose we define given! € N, we use the shifted time axis = k —[N. Using

2(IN) = 15(IN) dynamics (38) with initial conditions;(0) = 0, one has

IN Ri(IN) = Span{e;(IN
AN = Traw —rawyp RO = Spantalin)
and denote witiR: (IN) the orthogonal complement of the v (J) = Zui(k) (62a)
subspacér;(IN).
j—1
Lemma 3 For I > 1 and for all j € [0,N — 1] let ri(j) = ri(0) + ) vk (62b)

2?(IN + j|IN) be the state produced K8) from the initial 0

k=
conditions r;(IN) = ro(IN|(I — 1)N) = zI((I — 1)N), ui(j) = vi(G +1) —vi(j) (62c)



From (62) one has that (45) is equivalent to the following enough to realize that substitutingj) = m;(j)e;(0) and

optimization problem involving only velocity variables r;(0)—27(0) = p;(0)e;(0) in L;(V;(0),7;(0)—2z7(0)) one gets
) the costJ; defined in (60). Moreover, substituting the same
Ve(0) Li(Vi(0),7:(0) = 2i(0)) (63) expressions and;(j) = 0 in (70) one obtains the constraints
Li(Vi(0),r:(0) — =4 (0)) = 64) V- . "
. . " " t is now possible to state the proof of Theorem 4. Note
Li(Vi(0),7i(0) = 2(0)) + L7 (Vi(0)) + L (Vi(0)) that, differently from the case of single integrators, (86¢s

N j=1 not guarantee that’ (IN +j) € 2 (IN)r¢(IN), j € [0, N—1],
L = o Z ri(0) — 2 (0) + > wi(k) (65) and therefore for proving Theorem 4 we will use an argument
j=2 k=0 that is substantially different from the one adopted in treop

N - of Theorem 3.
LY =B llvi()l] (66) Proof of Theorem 4: At timesIN, [ > 1, because of the
j=1 contractive constraints (46) we have

N—-1
L= Y I+ 1) - )P ©7) w(@+ 0N = | FED B an @2)
j=0
with the constraints Sincewv;(IN) = 0, VI > 1, the set of equilibria for (72) i9y,

) defined in (39). It is easy to verify that system (72) verifies
vi(j +1) = vi(D)II” < U7 ppaw» 4 €[0,N—=1]  (682) Assumption 1. Therefore, the update map (72) is uniformly

vi(N) =0 (68b) globally attractive [resp. globally attractive] with resg to
N1 d, if and only if Assumption 2 [resp. Assumption 3] holds.

r:(0) — 27(0) + vi(k) =0 (68c) Global attractivity of (72) in}plies that for all initial cen
0 ditions z;(0) = [ #F'(0) 07 |" there existsp € @, such

Using the orthogonal decompositian(j) = ©;(j) + #:(4), that xyN) — ¢ asl — oo In particular, there exists
vy I L p € R* such that;(IN) — p. From (40) and (2) one also has
7;(7) € Ri(0), v;(4) € R;(0) in (63) and (68) we get the -
P zi(IN) — p and hence;(IN) — zI'(IN) — 0. By using (58)
optimization problem . ¢
it follows that ;(IN) — 0.
~min  Li(V;(0) + Vi(0),7(0) — 27(0))  (69) In view of Lemma 3, for studying convergence of the
Vi(0), Vi(0) optimal velocities we consider the optimization problerf)(5
with the constraints Note that, foru;(IN) = 0, the optimal solution to (59) is
s S Y a2 g M7 (IN) = 0. Moreover, since the constraint (61a) can be
10:(G +1) = 0:(4) + 0:(G +1) = 0" < Ui  (708) replaced by the linear constraints; (IN + j + 1) — m;(IN +

ﬂi(N) + ﬁz(N) =0 (70b) _]) < Ui mazx and —mz(lN +7+ 1) + mz(lN + j) < Ui, maz
N-1 problem (59) is a multi-parametric quadratic program [24]

ri(0) — 27 (0) + (vi(k) +0;(k)) =0 (70c) with parametep; (IN). As shown in [24, Chapter 1.1.4], the
k=0 optimizer M?(IN, u;(IN)) is a continuous function gf; (IN)

_ e - - and henceu;(IN) — 0 implies that M?(IN, u;(IN)) — 0
Nf)te that if the paw(%(o),%(o)) verifies (70), so does 5571 —, 1o0. From (57) and (38b) one has?(IN +
(Vi(0),0). Indeed, using the orthogonality ofad v; JIN) = (m(IN +j+1]IN) = m{(IN + jlIN)) e;(IN),
. constraints (70a) becomel|s;(j + 1) — 5;(j)|* + ¥J €[0,N —1] and hencd/?(IN|IN) converges to zero.
15:(j + 1) — () < u? and hence are fulfiled Letz°(k) be the state given by (38) and (11). From Remark

i,max

by (Vi(0),0) ; 5 we deduce that® (IN +j, 2°(IN +j)) — 0, Vj € [0, N —
« constraint (70b) impliesi;(N) = 0, that is verified by 1| @nd hence, recalling thay’ (V) = 0, from (38b) one has
(Vi(0),0 that v?(IN + j) — 0, Vj € [0, N — 1]. This also implies,
« sincer;(0)— z(0) € R;(0), constraint (70c) implies that from the equality (38a)7(IV) = 27 ((l — 1)) and the limit
N-1 _ - _ zI(IN) — p for | — +o0, that alsorf(IN) — p asl — +oo.
;_30 0;(k) = 0 that is verified by(V;(0),0). This concludes the proof. [ ]

Reasoning like in Remark 4, it is easy to show that if there

From the orthogonality of ad o we also have . _ :
exists! € N such thatG(IN) is complete,r-consensus is

Li(Vi(0) + V;(0),75(0) — 27 (0)) reached at timé! + 1)N. Furthermore, also in this case the
= Li(Vi(0), 7;(0) — 27(0)) + L} (V;(0),0)+ consensus point depends on the sequénoécommunication
S A (71) graphs.
L;(Vi(0)) + L (Vi(0))
> Li(Vi(0),7(0) — 2/ (0)) Example 5 The case we consider includes five agents moving

) s - » in the plane with the following initial conditions:;(0) =
Hence, the optimal squumﬁV‘iO(O),Vio(O)) to (69) verifies [—30 30]7, v1(0) = [=5 5]7, 72(0) = [~25 35], v2(0) =

V2(0) = 0. This proves (55). From (62c) and (62b) also (54 1]7, r3(0) = [65 —75]7, v3(0) = [-6 —5]7, r4(0) = [70 —
and (56) follow, respectively. In order to complete the grivo 68]7, v4(0) = [—1 4]7, r5(0) = [100 —25]T, v5(0) = [2 8]7.



The prediction horizon iV = 10. The weights in the cost In this way we (asymptotically) obtain a planar movement of
function (5) are o; = 3; = v; = 1 and the input constraints the agents with the alignment of their velocities along that
are u; mar = 200, 7 = 1,...,5. We consider a time-invariant plane. Further combinations of the proposed solutions can b
collection of unweightethidirectional graphsF described by studied, thus realizing other actions of interest.

the matrix(18). The simulation results depicted in Fig. 10 and

11 confirm asymptotic-consensus.

2001 == =agentl

L L oEEEE==————— agent 3
hal N — - - -agent4

Of jem mimimem = FLU T DT T agent 5

10 20 30 40 50

~100 i i i i i
0

Fig. 10. Example 5: Evolution of agents’ position.

= = =agent1l

agent 3
= = =agent4

agent 5

40 50

time

Fig. 11. Example 5: Evolution of agents’ velocity.

VI. CONCLUSIONS

We have proposed MPC control schemes capable of guar-
anteeing consensus in a multi-agent system where individua
dynamics are described by a single- and double-integrator
models. The proof of consensus, which holds under suitable
assumptions on the communication network, relies on con-
vergence results of [3], applicable because of the pasicul
properties of optimal state trajectories. The generatinadf
the proposed control techniques to groups of agents with
more complex dynamics is not straightforwaadd will be
a topic of future research. Future extensions of this woik wi
also concern an assessment of the effect of communication
delays and/or uncertainties on the performance of the Eexpo
control schemes.

APPENDIX
PROPERTIES OF DISCRETETIME PATHS

Given the pointsP, P, € R?, let P, P, be the segment
joining them and denote withP; P | the segment length. The
straight line passing through; and P, will be denoted with
rp, p,- An N-path is an ordered sequence Mf pointsT' =
{Pl,PQ,...,PN} C R<.

Definition 5 Two N-pathsTy = {A4,..., Ay} C R, T =
{By,...,By} € R? are equivalentwith respect to a point
O € R*if |A;0] = |B,;O|, j = 1,...,N and we write
Ta~Tg.

Note that~ is an equivalence relation.

Definition 6 An N-pathT = {A;,..., Ay} C R? is straight
if Aj S TAlAvaj S {1,...,N}.

Note that, given anV-path 7, and O € R?, there always
exists a straightV-path Tz verifying T4 ~ Tz. This property
is depicted in Fig. 12.

For P,Q € R let sp be a the straight half-line starting from
P and passing throug®.

Remark 6 The control techniques proposed in this paper calemma 4 For a givenO € R?, let Ty = {A4,,..., Ay} C
be blended to obtain notable group behaviors in the multrd and 7. = {Cy,...,Cy} c R? be two N-paths such that

agent system. This can be shown by an example. ﬁakqﬂchA andC; € soc,, j =1,...,N. Then|A, A, ;| >
agents with double-integrator dynamics, moving in a thremi =1 N-1. s

dimensional space. We apply to these agents:

. the contractive single-integrator solution (Section 1vV)  Proof: Since C; € soc, we have two possibilities, for
to obtain consensus on the velocity variable in twé=1,...,(N —1):

directions, by applying suitable accelerations;

« the contractive double-integrator solution presented in
this section to obtain consensus on the position variable

in the remaining direction.

o if |Cj+10] < |C;0| one has

|A;0] < [Aj410] + A A 1]
|C;0] = |Cj110] +|C;Cj11]




X

Fig. 12. Two pathsl’s and Tz in R? equivalent with respect t®.

o if [C;110] > |C;0| one has

|Aj110] < [A;0] + [A; Ajiq]
|Cj+10] = |C;0] + |C;Cj11]

and the result follows immediately from the definition of

equivalent trajectories. |

2) If B; = C; and|C;,,0] > |C;0), it results| B; ;0] <
|C5.10| for any choice ofB;; such that|B;B;, | <
|C’303+1|, |B§+1O| < |BEO| andB;,, € 4,0.

3) If B; # C; and |C;+1O| < |B;O| we setB;,, =
Cj4q; in this way we havelB;.,0| = [C5,,0] and
|B;B;11| < |C5C5.44]. The latter inequality, in particular,
follows from the fact that, by construction, necessarily
|C’30| > |BEO|.

4) If B; # C; and|C5,,0| > |B;0|, one hagB;,,0| <
|C;410| for any choice ofB;,, satisfying|B;B;. | <
|C’303+1|, |B§+1O| < |BEO| and B;,, € 4,0.

For the auxiliary trajectoryl-, recalling thatT¢ ~T,, one
has|C;0| = [4,0|,j = 1,..., N. Furthermore, from Lemma
4, the inequalitie$C; Cj 1| < [A;A; 1], j=1,...,(N—1)
follow. Thus, in all cases it is possible to construct/sifpath
Tg pointing towardsO and verifying (74) and (75). [ |

If the N-pathsT4 andTs fulfill the assumptions of Theo-
rem 5, one has

N N
> [B;OP <> [4;0? (76)
j=1 j=1
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We highlight that under the assumptions of the previous

Lemma, one has

N—-1 N-—1
S AAAP =Y G ) (73)
i=1 i=1

Moreover, this inequality is strict iflj : A; & soa,.

Definition 7 An N-path isnon-increasing with respect @ €
R4 if |Aj+10| < |AJO|,V] S {1, Cee (N — 1)}

Note that if T'4 is non-increasing w.r.tO and7s gTA then
alsoTs enjoys the same property.

Definition 8 The N-path T4y = {A,...,Ax} is pointing
towardsO € R? if it is non-increasing w.rt.O and A; €
AO,Vje{l,...,N}

Note that if T4 points towardsO one has|A;Ax| =
N—-1 77—
Y= 1A Al

Theorem 5 Let T4y = {A,..., Ay} € R? be an N-
path. GivenO € R?, there always exists atv-path Tp =

{By,...,By} € R? with B, = A;, pointing towardsO and
satisfying the following inequalities:
|B;O| < [4,0], j=1,...,N (74)

Proof: From Lemma 4 there exists aN-path 7o =
{Cy,...,Cx} C RY such thatTy ~Ty, C; = A; and
C; € socy,j =1,....,N. We setB; = C; = A; and build
up Tz in a recursive fashion.

Assume that (74) and (75) hold for glle {1,...,5},5 < N.
1) If B; =Cj and|C’3+10| < |CjO| we setB;, = Cj4,
we have|B;+1O| = |C;+1O|, |B;B;+1| = |CECE+1|'
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