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Abstract 

The simulator motion cueing problem has been considered extensively in the literature; 

approaches based on linear filtering and optimal control have been presented and shown to 

perform reasonably well. More recently, Model Predictive Control (MPC) has been 

considered as a variant on the optimal control approach; MPC is perhaps an obvious 

candidate for motion cueing due to its ability to deal with constraints, in this case the 

platform workspace boundary. 

This paper presents an MPC-based cueing algorithm that, unlike other algorithms, uses the 

actuator positions and velocities as the constraints. The result is a cueing algorithm that can 

make better use of the platform workspace whilst ensuring that its bounds are never 

exceeded. The algorithm is shown to perform well against the classical cueing algorithm and 

an algorithm previously proposed by the authors in simulation and in tests with human 

drivers. 
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1 Introduction 

The inclusion of motion in driving simulators has been shown to improve the perceived 

quality of simulation [1] and to prompt people to drive the simulated vehicle in a more 

natural way [2]. The most prevalent platform architecture is the six degrees-of-freedom 

(DOF) Stewart platform, as used on the Loughborough University driving simulator.  

The actuators on the Loughborough simulator have a maximum stroke of 600mm, which 

corresponds to maximum excursion of the order ±0.5m and ±20° about the neutral position. 
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However, these values are for motion in a single axis; the geometry of the platform means 

that the workspace has the form shown in figure 1, so motion in multiple axes simultaneously 

results in reduced possible excursion in each. 

 

Figure 1 – Illustration of platform workspace envelope for motion in x,y,z directions 

The limited platform workspace necessitates a transformation from the simulated vehicle 

motion to the achievable platform motion; this transformation is known as the motion cueing 

algorithm. The cueing algorithm should reproduce as much of the important motion as 

possible whilst remaining within the platform envelope at all times. In general existing cueing 

algorithms, including most of those described in this section, treat the six DOF separately and 

so do not optimize use of the available space envelope. 

An early approach [3], now known as the classical algorithm, uses linear high-pass filters to 

remove the large-amplitude steady-state motion together with an appropriate gain, chosen to 

ensure platform limits are respected for the anticipated worst-case manoeuvre. A 

development of this algorithm [4] replaces the fixed gain with an adaptive gain, the effect of 

which is to reduce ‘false cues’, where the simulator motion is in the opposite direction to the 

vehicle motion. 

The linear optimal control-based algorithm [5] defines the motion cueing as a tracking 

problem where the perceived simulator motion should track the perceived vehicle motion. A 

linear quadratic regulator (LQR) calculates the optimal feedback gains to minimise a cost 

function that penalises perception error, platform excursion and the control input; the relative 

weighting of these terms is tuned to give the desired behaviour. 

Implementations of the cueing algorithms described above frequently include tilt 

coordination (see e.g. [3]), where roll and pitch motion are used to simulate low frequency 

lateral and longitudinal accelerations respectively, figure 2. 
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Figure 2 – Tilt coordination topology 

These existing approaches make poor use of the available workspace; firstly, they must be 

tuned such that a worst-case motion respects the platform limits, so for anything other than 

this case only a fraction of the available excursion is used. Secondly, since the six DOF are 

considered separately, the excursion limits in each DOF must be reduced to take into account 

motion in other axes. A notable exception to the latter point is the actuator state-based variant 

of the adaptive algorithm proposed by Grant and Naseri [6]; this replaces the Cartesian cost 

terms in the adaptive cost function with actuator state terms. The result is a controller that can 

better deal with motion in multiple Cartesian DOFs. 

The fact that Model Predictive Control (MPC) explicitly accounts for the controlled system’s 
constraints makes it an interesting possibility for motion cueing. So far, two publications 

have proposed MPC motion cueing algorithms. The first, by Dagdelen et al. [7], is based on a 

modified perception tracking approach; over the prediction horizon Hp, the optimal control 

sequence is chosen that minimises the motion perception error for the first two time steps and 

then for the remaining Hp-2 steps returns to centre below the human perception threshold. 

The resulting controller matches the perceived accelerations until a platform limit is 

imminent, at which point the platform returns to centre; if the sign of the vehicle acceleration 

subsequently changes, perception matching resumes. An issue with MPC is the 

computational burden of doing an optimization at each time step; Dagdelen et al. [7] reduce 

the online computation time using the invariant set method of Gutman and Cwikel [8]. Their 

initial tests indicated that the transition between full acceleration rendering and the washout 

phase was too abrupt, and an artificial smoothing of the transition was added. It is reported 

that expert drivers tested the algorithm against the classical filtering method, and that the 

MPC algorithm was preferred, though no data or analysis is presented. 

The second MPC motion cueing work is by Augusto [9]; this is a more ‘traditional’ approach 
in that the formulation is a tracking problem with cost on platform excursion and control 

input. The MPC problem is solved by calculating the associated Quadratic Programming 

(QP) problem and solving using a commercially-available solver. The controller produces 

much smoother motion commands than that proposed by Dagdelen et al. [7]. Some 

simulation results are presented that indicate that the MPC algorithm makes better use of the 

workspace than the classical algorithm. However, as yet no results with human test drivers 

appear to have been published. 

This paper describes a new MPC cueing algorithm that is designed to be simple to implement 

and tune and which can fully exploit the platform workspace. The algorithm, described in 
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section 2, uses actuator lengths and velocities as the spatial constraints instead of Cartesian 

quantities, thus permitting full use of the platform workspace even with motion in several 

axes concurrently. In order to simplify the implementation, a technique for real-time 

optimization is described that precludes the need for any pre-calculation or approximation of 

the MPC problem; the solver, also in section 2, is easily implemented using straightforward 

linear algebra. In section 3, the new algorithm is evaluated in simulation and compared with 

the classical algorithm and another algorithm previously developed by the authors. It is also 

implemented on the Loughborough simulator, and a small study with human drivers is 

presented in section 4. 

 

2 MPC algorithm derivation 

Model Predictive Control uses receding horizon control; at each time step, a control sequence 

is calculated over a control horizon Hu that minimises a cost function over the prediction 

horizon Hp (with Hu≤Hp). The first value in the control sequence is applied to the system, and 

the process is then repeated at the next time step. A linear model of the system is included to 

predict the effect of the control sequence on the system over the prediction horizon.  

Given that this algorithm uses actuator states as the constrained platform variables it would 

seem sensible to create a six input-six output controller, as motion in each DOF has an effect 

on all six actuators. However, initial investigation indicated that the computational burden 

would be too high; instead, the six DOFs are divided as per most other cueing algorithms, 

into two tilt-coordinated pairs (longitudinal/pitch and lateral/roll) and two single-DOF cases 

(vertical and yaw). Clearly this will affect constraint handling to some extent; this point is 

addressed in section 2.1. 

 

2.1 Linear system model 

This section describes the formation of the lateral/roll controller; the other controllers are 

formed in the same way, with only the vestibular model and number of DOFs differing. 

2.1.1 Vestibular dynamics 

As with most optimal control-based algorithms, the MPC motion cueing is set up as a 

tracking problem; the perceived motion in the simulator tracks the perceived motion in the 

real vehicle whilst remaining within the platform constraints. Working with perceived motion 

requires a model of the human vestibular system; this comprises the otoliths (linear 

acceleration sensors) and the semicircular canals (angular velocity sensors). Various models 

are proposed in the literature for the vestibular dynamics; the linear models used by Augusto 

[9], which are based on the work by Reid and Nahon [10], are used here. The semi-circular 

canal transfer function from head angular velocity   to perceived angular velocity  ̂ is 
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 ̂                            

(1) 

The otolith transfer function from acceleration   to perceived acceleration  ̂ is 

 
 ̂                            

(2) 

The perceived motion for the simulated vehicle is calculated externally and is the reference 

input to the controller; the perceived motion in the simulator is calculated as part of the 

controlled system’s dynamics. 

For the lateral/roll controller the perceived quantities are the roll velocity p and lateral 

acceleration ay. First, the semi-circular canal transfer function is converted to discrete state-

space form, 

 
                               ̂               

     
[  
   
                                             ]  

   
       [     ]       [   ] (3) 

The same is done for the otolith transfer function, with the addition of the contribution from 

tilt coordination: 

 
                                                          
     [  

                 ]  
       [  

                   ]  
       [  ] (4) 

Note that this requires an additional state  , the platform roll angle. Thus the complete 

vestibular model has the state vector       [           ] , and the state-space model is 

 
                                                             

(5) 

with       [    ]  and       [ ̂  ̂ ] , and state space matrices 

       [                   ]        [             ]
      [            ]  (6) 

2.1.2 Actuator states 

The quantities to be constrained are the actuator lengths and velocities; the platform 

kinematics must be modelled in order to predict the effect of the control inputs on the 



6 

 

actuators. First, note that the actuator lengths can be directly calculated from the platform 

position in Cartesian coordinates by vector arithmetic: 

 
   ‖          ‖  

(7) 

where RAB is the vector from the origin on the ground to the platform centroid, the subscript i 

indicates actuator number (i = 1,…,6), Ai and Bi are the vectors from the origin to the actuator 

lower joint and platform centroid to the actuator upper joint respectively, and L is the rotation 

matrix from the ground reference to platform reference; using a small angle approximation, 

this is 

   [                     ] (8) 

Combining equations 7 and 8, 

    ‖[         ]  [                     ] [            ]  [            ]‖  

 ‖[                                                                                           ]‖        (  ‖[      ]‖ ) 

 

(9) 

In order to predict the effect of the candidate control sequence on the actuator positions and 

velocities over the prediction horizon Hp, an expression is sought that links the actuator 

velocities to the control input, in this case [p ay]
T
. The derivative of actuator length can be 

expressed as 

            (√           )    (    (           ))   

 

(10) 

The numerator of equation (10) is found by differentiating the expressions for xi,yi,zi in 

equation (9). Noting that             for all actuators, this is 
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                                    (         )                           

                                      (         )                           

                                   (         )                                     
 

(11) 

 

Equation (10) can now be rewritten as 

 
             ̇        ̇        ̇        ̇        ̇        ̇   

 
(12) 

As kA…F are functions of the time-varying platform position, orientation and their derivatives, 

they are themselves time-varying. However, since the velocity variation with position is quite 

smooth over the relatively short time horizon, the kA…F are evaluated for the current position 

and assumed constant over the prediction horizon. This linearization means that the problem 

formulation can continue with a linear state-space model. 

One key requirement for the controller is that it must operate in real-time. The computational 

complexity grows cubically with the number of model states nx; thus the model is kept as 

small as possible. To this end, the velocities in the other 4 DOFs are assumed to be zero, such 

that 

 
             ̇        ̇   

 
(13) 

and the actuator lengths can then be modelled as 

                          (       ̇         ̇) 
(14) 

Thus only seven states must be added to the model; the six actuator lengths and  ̇ (the roll 

derivative is already available as one of the inputs to the system). Clearly this simplification 

affects the constraint handling; multiple controllers may end up applying a combined input 

that drives one of the actuators beyond its limits. However, initial tests showed that this was 

not a problem for a range of manoeuvres, with any potential conflict taken care of once the 

actuator states are updated in the controllers at the next time step. If issues were to arise then 

a reduction of the specified actuator limits of, say, 5-10% would give an extra safety margin 

and still allow good workspace usage. 
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2.1.3 Combined system model 

The complete linear system modelling the vestibular dynamics and platform kinematics is 

 
                                   [             ̇      ] 

     
[  
   
   
                                                                 ]  

   
   
 
      

[  
   
   
                                         ]  

   
   
 
 (15) 

The derivation for the longitudinal/pitch pair is the same as above; for the vertical and yaw 

DOFs, the derivation is similar, with the resulting systems given by equations (16) and (17) 

respectively 

 
                                              [      ̇      ]      

       
[  
   
                                                         ]  

           
[  
             ]  

   
 (16) 

 

 
                                              [          ]     

       [   
                             ]  

          [  
                            ]  

   (17) 

 

The authors note that a ‘complete’ system model should also include the platform dynamics; 

the input to the vestibular system is the actual motion of the platform, not the demanded 

motion. However, as noted earlier, it is desirable to keep the state dimension as small as 

possible in order to reduce the computational burden. Previous tests have shown the platform 

to have a bandwidth of around 20Hz, so in lieu of a platform dynamics model the time step 



9 

 

for the MPC solver is set to 25ms, i.e. fs = 40Hz. The resulting smooth band-limited control 

ensures that the actuator bandwidth limit is respected without adding extra complexity to the 

MPC problem. 

2.2 MPC formulation 

The cost function is formulated to apply a cost to motion perception error, platform excursion 

and control input along the prediction horizon, 

   ∑{                                                            }  
    

(18) 

where e(t)=yvest,car(t) - yvest,plat(t) is the perception error, and Qperc, Qplat and R are weighting 

matrices. Noting from equations (3), (4) and (6) that the perceived roll velocity and lateral 

acceleration are simply elements of the xmpc state vector, the cost function can be rewritten as 

   ∑‖      ‖   ‖      ‖    
    (19) 

where y(t) = xmpc(t) - xref(t), the difference between the state vector and the desired reference. 

The reference is set to         [ ̂         ̂                  ],        being the vector of 

actuator neutral lengths; the reference is assumed constant over the whole prediction horizon. 

The Q and R matrices are diagonal; to simplify the tuning process, they are written as 

 
      ([                                    ])       (      [      ]) 

(20) 

where Qplat is a vector with six equal elements (the cost weights applied to the six actuator 

terms) and all other values are scalar. Nominal values for the individual Q and R terms (listed 

in Appendix B) were chosen during initial testing, and then fixed; subsequent fine tuning is 

then done using only the scale factors Kplat and Kinput, i.e. the platform and input costs are 

tuned relative to the perception error cost. 

The MPC problem can now be stated as 

 
                     

                                                                                                                                                                                                                                  

 (21) 
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In order to solve equation (21) the MPC is reformulated as a QP problem. Following the 

method of Wang and Boyd [11], an optimization variable z is defined as 

   [                           (    )]  (22) 

The QP can then be expressed as 

                                

(23) 

 

where, noting that 1n is a column vector of ones with n elements, Imxn is an m x n identity 

matrix, and   is the Kronecker product, 

H = 

[  
   
   
                                                                                  ]  

   
   
 

  
[  
   

                        ]  
   , where 

                      {       [               ]}   [{       [    ]} ]       {       [      ]}  

  

  
[  
   
                           ]  

   , where             [           ],           , 

                 ,           ,             ̇      and            
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[  
   
                                                                                                                         ]  

   
  
 

     
[  
   
                     (      )          (      )            (      )                         ]  

   
  
 

As mentioned earlier the reference is assumed constant over the prediction horizon, so the 

expression for beq simplifies to 

 

    
[  
   
                     (      )        (      )       (      )               ]  

   
  
 (24) 

 

2.3 QP solver 

The solver chosen is a primal barrier, infeasible start Newton method as described by Boyd 

and Vandenberghe [12] and applied to MPC by Wang and Boyd [11]; the choice is based on 

the requirement for a solver that can run in real-time on the simulator hardware and be 

compatible with MATLAB Real-Time Workshop (RTW). Note however that other QP 

solvers could be used for this problem depending on the requirements of the particular 

application. 

In the primal barrier method, the inequality constraint Az ≤ b is replaced by a barrier 

function; the problem becomes 

 
                                 

 
(25) 

where κ > 0 is the barrier coefficient and Λ(z) is the logarithmic barrier function 
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      ∑              

(26) 

where the ai,bi are the rows of the A and b matrices (thus when any of the inequalities is not 

satisfied, Λ(z) = ∞). The basic primal barrier method solves equation (25) for decreasing 

values of κ until the desired accuracy is achieved (as κ→0, the solution converges to the 

optimum feasible point); Wang and Boyd [11] show that, in combination with techniques 

such as warm starting, solver speed can be increased with little loss in control quality by 

fixing the κ value. Here, in order to guarantee robustness, a compromise is used; the solver 

begins with a large κ value (κ=10
3
), then once the residual norm is less than a chosen 

threshold value, κ is reduced by a factor of 10 and the optimization continues. This process is 

repeated until an iteration limit is reached. This method is robust for large inputs, with several 

iterations at high κ values resulting in a sub-optimal but feasible solution, whereas a small 

input tends to reach smaller κ values and hence a more optimal solution. 

The equality-constrained QP of equation (25) is solved using an infeasible start Newton 

method, so-called because the starting point is chosen to satisfy the inequality constraints but 

not necessarily the equality constraints. Considering a dual variable ν for the equality 

constraint, the Lagrangian for the QP of equation (25) is 

 
                               

(27) 

For a solution z*,ν* to be optimal,            must be zero; using the notation of primal and 

dual  residuals    and   , the optimal solution is therefore found when 

 
                                        

(28) 

where A is as defined in equation (23) and di(z) = 1/(bi-aiz). An approximation to    is found 

using a fixed number of Newton’s method iterations, with κ varied as described above. The 

Newton step     [     ]  is found by setting the Taylor series approximation of the 

residual to zero, i.e.                     where        [    ] . Expanding this 

expression gives the equation to be solved at each iteration: 

 [                       ] [    ]   [    ] (29) 

The solution is found using block elimination; defining                  , the 

Schur complement              and                is formed. The Newton step 

is then found from        and              . Computationally this is reasonably 

fast, as   is block diagonal and   is block tridiagonal, hence the inverses are more easily 

found (note that the zeros in the main diagonal of the Q matrix, equation (20), must be given 

some small value, in this case 10
-9

, in order to avoid a singular   matrix). 

A line search method finds the step size s, 0 < s ≤ 1, to take in the descent direction (i.e.            ,            ); an inexact but fast method, the backtracking line 

search from Boyd and Vandenberghe [12], is used. Beginning with s = 1, the line search 

reduces the step length by the factor β until the condition 
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‖              ‖        ‖      ‖  

(30) 

is met (where 0<α<0.5 and 0<β<1). 

3 Quantitative testing 

3.1 Algorithm characterisation 

The performance of the QP solver of section 2.3 is compared with that of the MATLAB 

Optimization Toolbox QP solver ‘quadprog’. Vehicle lateral acceleration data taken from an 

earlier simulator test was used as the reference for the MPC lateral/roll controller, and control 

sequences were generated using three methods of solving the QP: the solver described above 

with a high iteration limit; the same solver with an iteration limit that was found to allow 

real-time running on the simulator; and MATLAB ‘quadprog’ running an interior point 

algorithm. Figure 3 shows the controls generated by the three different solvers. 

 

Figure 3 – Comparison of controls generated by new QP solver and MATLAB ‘quadprog’ 

With a large iteration limit, the solver implemented above gives the same solution as 

‘quadprog’ (this is to be expected as the QP is convex and thus has a unique solution). When 

the iteration limit is reduced to allow for real-time operation, the accuracy of the solution is 

only reduced by a small amount. The small degree of sub-optimality observed here is judged 

as being acceptable; Wang and Boyd (2010) note that MPC is an heuristic for finding a good 

control input, and in practice a good approximation to the solution to the QP is sufficient. 

The robustness of the MPC algorithm to large vehicle motions is tested by applying 15s 

acceleration pulses of amplitude 1m/s
2
 and 100m/s

2
; the actuator lengths for this test are 

shown in figure 4. Note that even in the latter extreme case the platform does not exceed the 

actuator length limit. 
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Figure 4 – Actuator lengths for 15s acceleration pulse, amplitude 1m/s
2
 and 100m/s

2
; 

horizontal lines indicate actuator limits 

3.2 Offline comparison with classical algorithm 

The response of the MPC algorithm is now compared with that of the classical algorithm. The 

classical algorithm was tuned for a worst-case 10m/s
2
 acceleration step; the cut-off frequency 

and damping parameters were chosen to match those of the simulator manufacturer’s 
classical-based cueing algorithm and the gain selected such that the platform position and 

velocity limits were respected for the worst case.  

First, a 1m/s
2
 15s acceleration pulse is applied to both algorithms as the lateral acceleration 

reference. Figure 5 shows the perceived motion and figure 6 the platform excursion. The 

classical algorithm is tuned to give only the high-frequency transients, as reflected in the 

perceived motion plot. The MPC algorithm on the other hand achieves a good match to the 

shape of the motion perception in the real vehicle. 
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Figure 5 – Perceived motion for 1m/s
2
 acceleration pulse 

Due to the worst-case being much higher than the actual input, the classical algorithm makes 

poor use of the platform workspace. Of course the classical algorithm could have been tuned 

for the 1m/s
2
 pulse; the point made here is that the classical algorithm must be tuned for a 

worst case, whereas the MPC algorithm requires no tuning for different driving scenarios. In 

reality the worst-case anticipated vehicle motion is often of much greater amplitude than, say, 

the RMS acceleration, and so for most simulations the classical workspace usage is poor. 

Conversely, the MPC algorithm can deal with an input acceleration of any magnitude and 

still respect the actuator limits while making better use of the workspace at lower input 

accelerations. The MPC tuning gains Kplat and Kinput are used to tune how aggressively the 

algorithm exploits the workspace (i.e. is it conservative or does it tend to use most of the 

workspace even for low accelerations); tuning these parameters is more intuitive than tuning 

the classical filter parameters, as their effect on the algorithm behaviour is more obvious. 

 

Figure 6 – Platform excursion for 1m/s
2
 acceleration pulse 

Now consider lateral acceleration data from a simulated lap around a race circuit, where the 

maximum acceleration is around 1g. Figure 7 shows the motion perception for both 

algorithms compared with that in the real vehicle. As with the pulse response above, the 

classical algorithm produces a control sequence with more high frequency content than MPC, 

but the MPC algorithm matches the perceived acceleration profile more closely than the 

classical algorithm. 
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Figure 7 – Perceived lateral acceleration for circuit data 

3.3 Comparison with body sideslip algorithm 

In section 4 we will consider qualitative performance of the MPC and classical algorithms 

compared with the body sideslip (BSS) algorithm – an algorithm developed previously by the 

authors which, unlike most motion cueing algorithms, is not based around acceleration 

tracking; instead the focus is on providing good information about the vehicle state to the 

driver. The vehicle sideslip angle is a key quantity in the evaluation of vehicle stability, and 

so this angle is used directly as the platform yaw demand – since this angle fits comfortably 

within the platform yaw limit for all but the most extreme cases, there is no need to modify or 

filter the signal. 

In order to provide the necessary position, velocity and acceleration signals, the first and 

second derivatives of sideslip angle are required. Using the small angle approximation β = 

v/u, these are 

 ̇   ̇   ̇     ̈   ̈   ̈      ̇ ̇     ̇     (31) 

At first the second derivative appears problematic as there are jerk terms  ̈ and  ̈. However, 

taking the derivative of the expression for lateral acceleration ay, it is seen that 
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          ̇             →      ̈    ̇    ̇    ̇   ̇    ̇ 

 

(32) 

All terms in this expression are available in the vehicle model, including the tyre force 

derivatives which are available due to the inclusion of tyre relaxation lag dynamics 

  ̂̇         (        ̂     ) (33) 

with the derivation for  ̈ following the same procedure with ax. 

Clearly the body sideslip yaw cue does not provide a complete 6-DOF cue; it is necessary to 

add motion in the remaining DOF by other means. The algorithm as used in these tests uses 

vehicle roll angle as the platform roll demand, again with no filtering; longitudinal, pitch and 

vertical motion is provided by the classical algorithm. 

To provide some comparison of the BSS algorithm response, the perceived yaw rate for the 

three algorithms for an ISO double lane change manoeuvre at 20 m/s is shown in figure 8. 

The vehicle parameters are for a mid-sized front wheel drive car and are based on 

manufacturer specifications and vehicle test data. 

 

Figure 8 – Double lane change perceived yaw rate 

Although the BSS algorithm appears to match perceived yaw rate reasonably well, this is not 

by design, and this plot is not intended to compare perception matching performance; the 

significant difference in the algorithm concepts means that there is no fully objective 

comparison, and this result is merely presented as an indication of how the algorithm 

responses compare. 
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4 Qualitative performance 

The MPC algorithm is now evaluated in driver-in-the-loop tests; the comparator algorithms 

are the simulator manufacturer’s implementation of the classical algorithm with adaptive 

gains, and the body sideslip algorithm introduced in section 3.3.  

4.1 Simulator details 

The Loughborough simulator is based on an electrically-driven Stewart platform; additional 

sensory feedback is provided by three computer screens, a steering wheel with torque 

feedback, and a three-speaker audio system. The simulation runs on three desktop PCs, one 

of which is the main simulation computer and also generates graphics for the centre screen, 

with the other two running as slaves to generate the graphics for the two outer screens. 

Additionally, two real-time computers control the motion platform and steering feedback 

motor. 

Motion in the six DOF are dealt with separately by the motion controller; if the manufacturer 

cueing is to be used, the vehicle acceleration in that DOF is sent to the platform controller. If 

another (user-defined) cueing algorithm is to be used, a position, velocity and acceleration 

demand for that DOF is sent to the controller instead. It is therefore possible to use a mixture 

of manufacturer and user-defined cueing across the six DOF. The vehicle dynamics and 

custom motion cueing are both defined in a Simulink model, which is compiled with Real-

Time Workshop to create a plug-in for the manufacturer-supplied simulation software. An 

additional software interface allows the operator to send signals into the Simulink model 

during runtime, which allows the choice of cueing algorithm to be changed during a 

simulation. 

The vehicle model used in the tests has a body free to move in 6 DOF; each of the four 

wheels has a spin DOF (two of which, either the front or rear pair, have the drivetrain output 

torque acting on them) and a vertical DOF. The vertical loads are calculated based on a 

simple spring-damper suspension model, the vertical load along with lateral and longitudinal 

slips being used to calculate tyre forces using a combined slip Pacejka model, full details of 

which are in [13]. Tyre parameters are estimated based on vehicle test data; a few different 

sets of vehicle parameters are used in the tests below and are noted in the appropriate section. 

4.2 Driver-in-the-loop testing 

In order to evaluate the algorithms over a range of conditions, two separate tests were 

conducted, one for driving in the linear region of vehicle behaviour and the other in the non-

linear region. The focus of the tests is on cornering motion, and as such the manufacturer 

cueing is used for longitudinal, pitch and vertical motion in all cases, with lateral, roll and 

yaw motion provided by the cueing algorithm under test. 

The tests are carried out as bidirectional pairwise comparisons; each test block consists of 

seven laps, within which each of the three possible pairings of the three algorithms is tested 

in both directions. The lap order is varied for each run to eliminate order effects. The tests are 

carried out blind, i.e. the operator is aware which algorithm is in use but the participant is not. 
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After each lap, the participants were asked to rate how realistic the simulator felt on that lap 

compared to the previous lap using a Likert scale, figure 9. 

 

Figure 9 – Likert scale for simulator experiments 

4.2.1 Linear testing 

Seven of the ten most consistent participants from a previous set of tests were selected to take 

part. The participants were asked to drive as they would on the public road; the course chosen 

is a 1.6 km section of mountain road with a series of tight corners. The vehicle parameters are 

matched approximately to a large saloon car. Each participant was given five laps with the 

classical cueing to get used to the vehicle behaviour and track layout, and then each 

completed a block of seven pairwise test laps. The ratings for each participant are normalized 

by the mean absolute value of their non-zero responses to eliminate differing interpretations 

of the Likert range. For each pair test, the winning algorithm’s total score is increased by the 
normalized score and the losing algorithm’s score decreased by the same amount. The 
resulting total scores are shown in figure 10. 

 

Figure 10 – Total scores for linear testing 

Both the MPC and BSS algorithms appear to perform well relative to the classical algorithm. 

Calculation of the Friedman statistic (a non-parametric form of analysis of variance, see e.g. 

[14]) for these results gives a p-value of 0.746. This suggests that the null hypothesis (that 

there is no difference in the algorithm rating) cannot be rejected with certainty, and the result 

is therefore treated with a degree of caution. This is in agreement with previous tests where 

the BSS algorithm is compared with several established algorithms in the linear handling 

regime [15], where no strong preference for any of the algorithms was observed for this type 

of driving. 

4.2.2 Non-linear testing 
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For the non-linear tests, a group of 14 participants was used, comprising approximately equal 

numbers of ‘normal’, ‘advanced’ and ‘expert’ drivers; respectively these are drivers with road 
driving experience only (and no/very little experience of non-linear vehicle behaviour), some 

experience of non-linear behaviour, and extensive experience of sustained driving near the 

limit of vehicle capability. Two vehicle parameter sets were selected, the front-wheel-drive 

saloon car used in section 3.3, and a rear-wheel-drive single-seat race car with a 

representative set of vehicle parameters based on data from the British Formula 3 series [16].  

A 2.1 km race circuit was chosen as the course, with the intention that this environment 

would encourage drivers to operate the vehicle in the non-linear region. 

This time, the participants drove three laps with the classical cueing to gain some experience 

of the track and car, then a block of seven pairwise testing laps to evaluate the algorithms, 

followed by three more laps with the classical cueing and a second set of seven pairwise laps. 

This procedure was repeated for both vehicles. The total normalized scores for the three 

groups of participants, separated by vehicle type, are shown in figure 11. 

 

Figure 11 – Total normalized scores separated by participant group (top: saloon car, 

bottom: race car) 
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Overall, there is an apparent preference for the feedback provided by the BSS algorithm. An 

interesting pattern is observed in the MPC results; it would appear that the more experienced 

the driver group, the higher the preference for MPC, with the expert group having similar 

positive scores for MPC and BSS and a large negative result for the classical algorithm. This 

is a promising result as the expert drivers are much better placed to rate the realism of the 

simulator for this particular test case. 

The Friedman test for these data yields a p-value of 0.0008 or 0.0014, depending on whether 

the results are ordered with each of the four runs or each of the participants treated as a 

‘block’. These are well below the suggested threshold of 0.05 (see e.g. [17]) and indicate that 

the null hypothesis can be rejected with some confidence here. 

It is worth repeating here the point made in section 3.3 that the BSS algorithm only provides 

a cue in the yaw DOF, and so although this extra yaw cue clearly has some value, this is in 

addition to the motion in the other DOF that must be provided by another algorithm. Based 

on these results, a good choice of algorithm would include the BSS algorithm in the yaw 

DOF and, in the remaining DOF, MPC would appear to be a better choice than the classical 

algorithm. Future work should aim to evaluate this possibility, as well as investigate the 

suitability of MPC in the longitudinal, pitch and vertical DOF (a comparison of full six-DOF 

MPC vs. six-DOF classical motion would be of use). 

5 Conclusions 

A motion cueing algorithm based on a Model Predictive Control formulation has been 

derived, where the motion perceived in the simulator tracks that perceived in the real vehicle 

whilst respecting the platform workspace limits; additionally, a solver for the MPC problem 

was implemented that reduces the problem to iterations of Newton’s method. Of note is the 

algorithm’s use of actuator positions and velocities, rather than Cartesian states, as 

constraints; the result is a controller that makes good use of the available workspace. The 

algorithm is also easy to tune; once the actuator limits have been set and preliminary tuning 

carried out, only two cost parameters, Kplat and Kinput, must be tuned. The effect of these 

parameters is also more obvious than, say, the filter parameters of the classical algorithm. 

The MPC algorithm is compared with the classical algorithm and the BSS algorithm 

developed previously by the authors. Simulation tests reveal that the motion perception 

tracking works well, the MPC algorithm providing a much closer match to the perceived 

vehicle motion than the classical algorithm. In driver-in-the-loop tests, the MPC algorithm is 

rated better than the classical algorithm for driving in the linear handling regime, a result also 

seen for a group of experienced drivers for tests in the non-linear handling regime. The BSS 

algorithm comes out best, but it is noted that this is a single-DOF cue that must be 

supplemented by other types of motion cueing in the remaining DOF. 

An extension of this work should extend the comparison with the classical algorithm to all six 

DOF, and investigate the suitability of a cueing algorithm based around MPC with the 

addition of the BSS yaw cue. 
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Appendix A – Nomenclature 

A,B,C,D State-space matrices 

A Vector from ground origin to actuator lower joint 

A, Aeq QP constraint matrices 

B Vector from platform centroid to actuator upper joint 

H QP matrix 

Hp, Hu Prediction horizons 

J Cost function 

K Gain 

L Rotation matrix 

Q State cost coefficient matrix 

R Input cost coefficient matrix 

RAB Vector from ground origin to platform centroid 

Ts Sample time 

a Acceleration 

b, beq QP constraint vectors 

g Acceleration due to gravity 

k Discrete time variable; Actuator velocity coefficient 

l Actuator length 

nx Number of model states 

p Roll velocity 

rp, rd QP primal & dual residuals 

s Newton step multiplier 

u Control input 

v Actuator velocity 

x State vector; Actuator displacement 

xref Reference state vector 

z QP optimization variable 

Λ Barrier function 

θ Pitch angle 

κ Barrier function coefficient 

ν QP dual variable   Vestibular model time constant 

φ Roll angle 

ψ Yaw angle 

ω Angular velocity 

car Simulated vehicle quantity 

f Terminal cost parameter 

mpc MPC linear model parameter 

oto Otolith model parameter 

plat Platform quantity 

ref Reference state 

scc Semicircular canal model parameter 

sim Simulator quantity 

vest Vestibular model parameter 

^ Perceived/estimated quantity 

  



24 

 

Appendix B – Numerical values 

Ts 0.025 s MPC controller sampling time 

Hp 5 × Ts MPC prediction horizon 

Hu 1 × Ts MPC control horizon 

τa 30 s 

Semicircular canal time constants τ1 0.1 s 

τ2 6.1 s 

Koto 0.4 

Otolith time constants 
τn 13.2 s 

τL 5.33 s 

τS 0.66 s 

Qperc,p 100 Roll perception cost 

Qperc,y 1 Lateral perception cost 

Qplat 1*16 Actuator excursion cost 

Rp 0.1 Roll input cost 

Ray 10 Lateral input cost 

Kplat 1000 Platform cost coefficient 

Kinput 10 Input cost coefficient 

α 0.1 
Backtracking line search parameters β 0.8 
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Appendix C – List of figures 

Figure 1 Illustration of platform workspace envelope for motion in x,y,z directions 

Figure 2 Tilt coordination topology 

Figure 3 Comparison of controls generated by new QP solver and MATLAB ‘quadprog’ 
Figure 4 Actuator lengths for 15s acceleration pulse, amplitude 1m/s

2
 and 100m/s

2
; 

horizontal lines indicate actuator limits 

Figure 5 Perceived motion for 1m/s
2
 acceleration pulse 

Figure 6 Platform excursion for 1m/s
2
 acceleration pulse 

Figure 7 Perceived lateral acceleration for circuit data 

Figure 8 Double lane change perceived yaw rate 

Figure 9 Likert scale for simulator experiments 

Figure 10 Total scores for linear testing 

Figure 11 Total normalized scores separated by participant group (top: saloon car, 

bottom: race car) 

 


