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A B S T R A C T

The simplest model illustrating the effect of the magnetospheric charge-current field on the

structure of a pulsar magnetic field has the region within the light-cylinder filled with the

Goldreich±Julian charge density which corotates with the neutron star, but has no electric

currents along the magnetic field lines. This model has previously been studied for the

axisymmetric case, with the rotation and magnetic dipolar axes aligned. The analogous

problem is now solved with the two axes mutually perpendicular, so that not only the

material current arising from the rotating charges but also the displacement current

contributes. Again, the constructed magnetic field B0 crosses the light-cylinder normally,

and there is no energy flux to infinity. However, in a more realistic model there is a flow of

current along B0, generating a field B1 which has a non-vanishing toroidal component at the

light-cylinder, so yielding a finite integrated Poynting flux.

Key words: magnetic fields ± stars: neutron ± pulsars: general.

1 Q UA S I - S T E A DY, N O N - A X I S Y M M E T R I C

S Y S T E M S

The simplest oblique rotator model for a pulsar ± foreshadowed

by Pacini (1967), before the actual discovery of pulsars ± has a

dominantly dipolar magnetic field, frozen into the solid crust of a

neutron star which rotates with angular velocity a, and with the

dipole axis p inclined at an angle x to the rotation axis k. In a

`quasi-steady state', the variation of any quantity viewed from the

non-rotating inertial frame is due just to the rigid rotation of the

essentially non-axisymmetric structure. This condition can be

written as the equivalence in the inertial frame of the two

operators



t
� 2a



F
; �1�

where F is the azimuthal angle defined by k, and the operations

are applied to scalars or to cylindrical or spherical polar

components. With the constraint (1), the Faraday±Neumann

equation of induction becomes

2c7 � E � 2aB=F � 7 � �a4 t � B�; �2�
where t is the unit azimuthal vector defined by k, and the last step

± most simply proved in cylindrical polar coordinates (4 , F, z)

based on k ± depends on the other homogeneous Maxwell equa-

tion 7 ´ B � 0. Equation (2) then yields the general quasi-static

relation

E � 2�a4=c�t � B 2 7c; �3�
the sum of the `corotational' and `non-corotational' electric fields.

Inside the neutron star crust, the perfect conductivity

approximation

E � 2v � B=c � 2�a4=c�t � B �4�
forces the non-corotational potential c to be a constant c s. To

determine c outside the star one needs more physical input. A

model that avoids unbalanced Maxwell stresses at the stellar

surface postulates that the simple plasma condition E ´ B � 0

holds for at least a certain distance away from the star (Goldreich

& Julian 1969, hereafter GJ; Mestel 1971; Cohen & Toton 1971).

The constant value c s is then propagated outwards along magnetic

field lines, defining a `GJ' magnetospheric domain in which E is

again given by (4), and with the associated charge density r e given

by the Poisson±Maxwell equation

re �
7´E

4p
� 2

a

2pc
k´ B 2

1

2
r � �7 � B�

� �
� 2

a

2pc
k´B 2

1

2
4 t´7 � B

� �
: �5�

The GJ assumption converts part of the magnetosphere into a

simple perfect conductor.

A realistic pulsar magnetosphere model will contain domains

with field lines closing within the light-cylinder, containing charge

that simply rotates, and domains with `open' field lines, along
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The perpendicular rotator 389

which charges can flow out to and in from the light-cylinder. Any

charge q moving in the GJ electric field (4) with the velocity

v � a4 t� kB �6�
(corotation plus motion along B) is subject to a vanishing Lorentz

force q�E� v � B=c�. In a `charge-separated' domain, with only

one sign of charge at each macroscopic point, multiplication by

the number density then yields

reE� j � B

c
� 0; �7�

where j is a pure convection current density r ev. Thus, in a

charge-separated domain, the simple plasma condition

E� v � B

c
� 0 �8�

implies the force-free condition (7). If, however, the plasma is

mixed, then, as in non-relativistic problems, the `perfect

conductivity' and `force-free' approximations are distinct: charges

may adjust themselves so as to `short out' the component of E
along B, without necessarily requiring that e.g. the inertial forces

are so small that the components normal to B of the Lorentz force

density must nearly mutually cancel. (However, experience shows

that the force-free approximation often remains good until the

particles attain very high g-values.)

In this paper we continue studying the effect of magnetospheric

currents on the external magnetic field structure. Clearly, this

cannot ultimately be separated from the formidable complete

magnetosphere problem, which must involve demarcation of

single-sign from mixed-sign domains, and domains of pure

rotation from those with outflow, and estimation of the validity

of both the simple plasma and force-free approximations. It is

nevertheless helpful to begin by constructing simple idealized

models, for both mathematical and physical reasons. Thus, in the

axisymmetric, `non-pulsar' problem, the structure out to the light-

cylinder of the force-free electromagnetic field, owing to GJ charges

which simply corotate (Michel 1973, 1991; Mestel & Wang 1979,

hereafter MW; Mestel & Pryce 1992, hereafter MP; Mestel 1999),

can be satisfactorily solved by Fourier transformation. The

techniques developed are in fact applicable to the different,

more realistic models in the literature (e.g. Beskin, Gurevich &

Istomin 1993; Mestel & Shibata 1994), which include charge flow

along `open' field lines, and allow for relativistic acceleration near

the star and consequent electron±positron pair production.

2 T H E R E L AT I V I S T I C F O R C E - F R E E

E Q UAT I O N

Equations (4) and (7) combine to yield

j 2 rea4 t � c

4p
lB; �9�

the particle current density is the sum of the current arising from

corotation of the charge density r e plus the current (c/4p)lB
along B. By charge conservation,

7 ´ j � 2
re

t
� a

re

F
�10�

in quasi-static states, and 7 ´ �rea4 t� � t ´7�rea4� � are=F;

hence the divergence of (9) yields

B ´7l � 0 �11�
on use of 7 ´ B � 0.

After substitution for r e and j from the Poisson±Maxwell and

AmpeÁre±Maxwell equations, and for E/t from (4) and (1), (9)

reduces to (Mestel 1973; Endean 1974; Mestel, Wright &

Westfold 1976)

7 � ~B � lB; �12�
where the vector BÄ is defined by

~B � �B4�1 2 x2�;BF;Bz�1 2 x2�� �13�
with x � �a4=c�, and z is similarly dimensionless. Taking the

divergence of (12) confirms the constancy of l along field lines.

The factor �1 2 x2� in (13) is due to the join effect of the

corotating GJ charge density and the displacement current

associated with the rotating, non-axisymmetric electric field (4).

Equations (12) and (13) may alternatively be derived by making

a local Lorentz transformation from the frame S with Cartesian

axes (x, y, z) parallel to the unit vectors (4Ã ,FÃ , zÃ) to the frame S 0

with axes (x 0, y 0, z 0) instantaneously coinciding with (x, y, z) but

moving with the local rotatory velocity (0,a4 , 0). In the frame S 0,
the electric field E 0 � 0, and the force-free condition reduces to

j 0 � l 0B 0. Use of the standard relations between electromagnetic

quantities in S and S 0 then yields (12), with the scalars l ,l 0

related by l � l 0�1 2 x2� (Mestel 1973). The non-relativistic

force-free equation 7 � B � lB is recovered when terms of order

(v/c)2 can be ignored.

If axisymmetry is imposed, =F � 0, and `quasi-steady'

becomes `steady'. The poloidal field Bp � �Bx;Bz� is written in

terms of the flux-function P, while currents (c/4p)lBp along Bp

generate a toroidal field component BF:

B � P

xz
;2

S�P�
x

;2
P

xx

� �
; �14�

where l � dS=dP. If l � 0 (no currents along field lines) then P

satisfies the Pryce±Michel equation

�1 2 x2�72P 2
2

x

P

x
� 0; �15�

yielding the `MMPW' field (Bp)0 of MW and MP. If the poloidal

currents are non-zero but weak, then the associated toroidal field

Bt � BFt � 2�S�P�=x�t may be constructed using the MMPW

form for P.

3 T H E P E R P E N D I C U L A R C O R OTAT I N G

M AG N E T O S P H E R E

The analogue of the MMPW problem is again given by putting

l � 0. Equation (12) then yields the non-dimensional form

�Bx�1 2 x2�;BF;Bz�1 2 x2�� � 27x: �16�
We specialize further to the perpendicular rotator (Fig. 1), with

Bx, BF symmetric and Bz antisymmetric in the rotational equator.

Near the origin, B � 27x, so x reduces to the scalar

potential generated by the stellar field. As before, the star is

approximated as a point dipole, but now aligned along the Y-

axis; the dipole moment p � �BsR
3=2�Ŷ, generating the dimen-

sional potential

x � p
4 sinF

�42 � z2�3=2
; �17�

with F � p=2; z � 0 defining the magnetic axis, and Bs the polar

field strength on the star of radius R. Normalized quantities are
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390 L. Mestel, P. Panagi and S. Shibata

defined by

�x � a4=c; �z � az=c; �x � ��c=a�2=p�x: �18�
(For convenience, the bars are immediately dropped.) The

dimensionless form of (17) is the imaginary part of

x

�x2 � z2�3=2
exp�iF�: �19�

We thus look for the function x(x, z)exp(iF), reducing to (19) near

the origin, and satisfying

x2�1 2 x2� 2x

x2
� x�1� x2� x

x
2 �1 2 x2�2x

� x2�1 2 x2� 2x

z2
� 0; �20�

derived by imposing 7 ´ B � 0.

The method of solution of (20) is closely parallel to that

used by MW and MP (see Mestel 1999). The Fourier transform

in z,

g�x; k� � 2

p

�1

0

x�x; z� cos�kz� dz; �21�

satisfies

x2�1 2 x2�g 00 � x�1� x2�g 0 2 ��1 2 x2�2 � k2x2�1 2 x2��g � 0;

�22�
where the prime signifies /x.The solution of (22) near the origin

is conveniently written

g�x� � 2

p
kK1�kx� � 2

p
f �x� �23�

where K1 is the modified Bessel function of the second kind

(Erdelyi et al. 1954). Then f (x) satisfies (22) with the zero on the

right-hand side replaced by 2kx2�2xK 01 � �1 2 x2�K1�. The first

term in (23) is the Fourier transform of (19) [without the exp(iF)

factor], so the boundary condition at the origin is satisfied if f (0) is

finite. Near enough to the origin one can use series expansions for

both K1 and f, arriving at

g � 2

p

1

x
� 1

2
�k2 � 1�x log x� O�x� �¼

� �
� 2

p
ak x� �k2 2 3� x3

8
�¼

� �
: �24�

Near x � 1, there is the solution g � 1 2 k2�1 2 x�2 �¼, which

yields Bz singular and so is dropped, and the acceptable solution

g � 2

p
bk �1 2 x�2 � 1

3
�1 2 x�3 � 1

4
1� k2

2

� �
�1 2 x�4 �¼

� �
:

�25�
Again, the numerical continuation inwards of the solution (25)

must link up smoothly with (24) or its numerical continuation, so

fixing bk and ak/bk. For moderate values of k, this procedure works

satisfactorily with the analytic form (24) adopted for the outgoing

solution. For large k the link-up point is beyond the domain of

validity of the series approximations. One then extends the

outgoing solution numerically, but using values for K1 and K 01
from the computer library. As in MP, section 2, for very large k the

JWKB method yields ak < 0; bk < �p= ���
2
p �k2 e2k. Away from the

singular points x � 0 and x � 1; g < �2k=p�1=2��1 2 x2�=x�1=2

exp�2kx�:
The whole solution may be constructed from equations (16) and

the Fourier back-transform

x �
�1

0

g�x; k� cos�kz� dk; �26�

with the field lines given by integration of the equations

�1 2 x2� dx

�x=x� sinF
� x dF

�x=x� cosF
� �1 2 x2� dz

�x=z� sinF
: �27�

Near the origin x reduces to (17) and �1 2 x2� < 1, whence

equations (27) integrate to

z2

�x2 � z2�3=2
� C; �28�

cosF � Dz1=3=�1 2 �Cz�2=3�1=2; �29�
where C and D are constants of integration. Values of C < 1

pertain to field lines that emerge from near the dipolar equator and

so remain in the near-vacuum dipole domain for the whole of their

length. Smaller values of C pertain to lines that emerge nearer to

the poles. With C and D chosen, (28) and (29) fix z and F in terms

of x a little way from the origin. Further out the field lines are

continued by integration of (27) with the computed function x
inserted:

dz

dx
� �x=z�
�x=x� �30�

and

2
d

dx
log�cosF� � �1 2 x2�

x2

x

�x=x�
� �

: �31�

In Fig. 2(a) there are shown some typical field lines lying in the

plane defined by the rotation and magnetic axes; in Fig. 2(b) are

shown field lines lying in the equatorial plane defined by the

rotation axis.

From (16) and (25), at the light-cylinder, Bx is finite, while

Bz and BF vanish like �1 2 x� and �1 2 x�2 respectively. The

q 1999 RAS, MNRAS 309, 388±394

Figure 1. The perpendicular rotator: schematic diagram.
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x-component of the Poynting vector / 2BxBF vanishes: as in the

aligned case, transport of energy and angular momentum by a

force-free field requires current flow along the field lines.

This conclusion illustrates strikingly the stringent nature of the

GJ postulate E ´ B � 0. The solution for a non-aligned dipole in

vacuo ± extended by Deutsch (1955) to the case with the dipolar

flux emanating from a perfectly conducting, rigidly rotating star of

finite radius ± does indeed have a non-vanishing Poynting

integral, but has also a component of E along B that remains

comparable to that normal to B well into the wave zone. The GJ

condition alters radically the mathematical structure of the

problem. In the vacuum case the differential equation has no

singularities at a finite distance, and the radius of the light-

cylinder is a measure of the distance at which the induction-

dominated field goes over into a radiation field. By contrast, in the

GJ force-free case, the light-cylinder is a singularity of the

differential equation to P, and as seen above, in the absence of

field-aligned currents, a non-singular solution of (12) (with zero

l ) is forced to have BF zero at the light-cylinder, yielding a

vanishing Poynting flux.

In fact, if one tries to extend to infinity the above model by

attaching a vacuum field, continuous at the light-cylinder in Bx, Ez

and EF, and going to zero at infinity, the resulting discontinuities

in BF, Bz and Ex again imply a surface charge-current distribution

with non-cancelling Maxwell stresses (cf. Mestel & Wang 1982).

There must therefore be a charge-current field beyond the light-

cylinder, and it is again instructive to make the illicit extrapolation

of the corotating solution, imposing continuity of B. Analysis

analogous to that in section 5 of Mestel & Shibata (1994) yields

gk < �2k=p�1=2��x2 2 1�=x�1=2 exp�k�x 2 2��, which in turn yields

a x that blows up beyond x � 2: again, the absence of a second

non-singular solution at the light-cylinder prevents the construc-

tion of a smoothly continuous solution extending to infinity. Thus

any realistic generalization of the present model must have

currents flowing along the field lines that cross the light-cylinder.

The ultimate complete global solution should predict both the

strength and the structure of the currents, and also the likely

departure of E from the GJ condition, both of which contribute to

the Poynting flux. In this paper, we are content to illustrate the

effect of field-aligned currents but with E ´ B � 0 retained, i.e. we

consider solutions of (12) with l ± 0.

4 T H E P E R P E N D I C U L A R R OTAT O R :

F I E L D - A L I G N E D C U R R E N T S

In the present illustrative study, the currents flowing along the

field lines are treated as prescribed input. An acceptable model

will distinguish between field lines that close within the light-

cylinder and those that extend beyond. As in the axisymmetric

problem, the closed field lines can carry the corotating GJ charges,

a pure electron cloud in domains where B ´ k . 0 and a pure ion

cloud where B ´ k , 0. Field lines emanating from the polar caps

will cross the light-cylinder, and as in the axisymmetric problem it

is along these that we expect field-aligned currents to flow,

carrying energy and angular momentum outwards. However, as

pointed out originally by Kahn (1971), and later by da Costa &

Kahn (1982), a distinction must be drawn also between field lines

that are respectively forward-pointing and backward-pointing

about the rotation axis. Outward-flowing, single-sign currents can

continue to follow backward-pointing field lines across the light-

cylinder, but will inevitably break away from forward-pointing

field lines as the light-cylinder is approached. As for the aligned

problem, quasi-magnetohydrodynamic behaviour may very well

break down for all field streamlines; the difference is that the

critical surface on which breakdown occurs coincides in part with

the light-cylinder.

It is clear that the construction of a strictly self-consistent model

even just out to the breakdown surface will require much iteration.

However, for all but the shortest period pulsars, the polar funnels

along which the currents flow occupy a small fraction of a volume

(c/a)3. Also, in this perpendicular case the GJ charge density in

the funnel is smaller than for the aligned case by a factor jk ´ Bj=B,

so that the current density owing to the convection of this density

will also be small, suggesting that the field model of the last

section remains a good zeroth-order approximation. Even so, the

computation of the dissipative flow beyond the light-cylinder of

the forward-directed currents, and the subsequent construction of

the modified field, is a formidable task.

For the moment we are content just to illustrate the effect of the

q 1999 RAS, MNRAS 309, 388±394

Figure 2. The corotating perpendicular magnetosphere. (a) Field lines in

the plane defined by the rotation and magnetic axes. (b) Field lines in the

equatorial plane defined by the rotation axis.
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field-aligned currents. From now on, the suffix 0 refers to the pure

corotation field of the last section.We indeed solve the relativistic

force-free equation (12) as a perturbation problem, with the new

currents taken to flow along B0, and generating a correcting field

B1. However, we consider the mathematically simplest example,

taking l as constant in each half-space jzj . 0:

l � 2jljsign�z�: �32�
The equatorial symmetry of the problem ensures that the total

outflow of charge is zero. From Maxwell's equations (including

the quasi-steady displacement current term), the perturbed B-field

has B4 and BF symmetric and Bz antisymmetric in z, just like B0.

Note that in the region near the north magnetic pole, and with

z . 0; re / 2B ´ k , 0, so that a GJ convection current consists

of outflowing electrons; whereas, in the corresponding region near

the south magnetic pole re . 0, so that the GJ charge density

consists of positively charged ions, and the negative inward

current 2�c=4p�jljB0 is in fact an outflow of ions. Likewise, in

the analogous regions with z , 0 the signs are reversed, with ions

flowing out near the north pole and electrons near the south.

The limitations of the problem so formulated are manifest. Near

and beyond the light-cylinder it takes no account of the distinction

between forward-pointing and backward-pointing field lines.

Within the light-cylinder it postulates current flow along all

field lines, including those (the majority) that close within the

light-cylinder; and along the funnel that crosses the light-cylinder,

the constancy of l in each hemisphere implies a discontinuous

change at the equator in the sign of the current rather than a

smooth transition through zero. The principal argument for this

preliminary study is that the resulting mathematical problem is

linear and is again easily solvable by Fourier transformation.

The discussion so far has been implicitly in terms of a

`classical' model magnetosphere, e.g. as in Mestel et al. (1985)

and Fitzpatrick & Mestel (1988a,b). It is in fact possible that, in

the negatively charged domain �B ´ k . 0�, the electrons emitted

from the polar regions will be locally accelerated to high g-values

near the star, with consequent ^e pair production near the star by

the gamma-rays emitted by the primary electrons (Sturrock 1971,

and many papers since, e.g. Ruderman & Sutherland 1975; Arons

& Scharlemann 1979; Jones 1980; Arons 1981; Daugherty &

Harding 1982; Shibata 1991; Mestel & Shibata 1994). A dense ^e

plasma will attempt to short out the accelerating Ek-field by the

usual process of charge polarization, so that, in the post-pair

production domain, the GJ condition may be re-established. The

generation of a dense ^e plasma allows a conduction current to

flow ± again nearly parallel to B ± owing to mutual motion of

oppositely signed charges, so allowing an increase in the

magnitude of the parameter jlj. However, the mathematical

technique adopted in this section assumes implicitly that the

perturbing field is small compared with the basic field B0.

Recall that the suffix 0 refers to the pure corotation field of

Section 3, and the suffix 1 to the perturbation field associated with

the field-aligned currents lB0. With l constant in each half-space,

(12) integrates to

~B1 � lA0 2 7x1; �33�
where A0 is a vector potential describing the zeroth-order field B0:

1

x
iA0z 2 x

A0F

z

� �
� 2

1

1 2 x2

x0

x
; �34�



z
�A0x�2



x
�A0z� � 2

ix0

x
; �35�

1

x



x
�xA0F�2 iA0x

� �
� 2

1

�1 2 x2�
x0

z
: �36�

It is convenient to choose the specially simple form for A0:

A0z � 0;
A0F

z
� x0=x

�1 2 x2� ;
A0x

z
� 2

ix0

x
: �37�

Equations (34) and (35) are immediately satisfied, while

substitution in (36) yields just the z-derivative of (20). With use

of (37), the condition 7 ´ B1 � 0 reduces in the northern hemi-

sphere to

x2�1 2 x2�j 001 � x�1� x2�j 01 2 �1 2 x2�2j1

� x2�1 2 x2��j1�zz � 22ijljx2x0; �38�
where

j1 ; x1=z: �39�
In the southern hemisphere, the right-hand side of (38) has a

�-sign. Recall that x0 has even parity (and so is written in Section

3 as a Fourier cosine-integral). Thus ^x0 has odd parity and so is

written as a Fourier sine-integral: in the northern hemisphere,

x0�x; z� �
�1

0

h0�x; k� sin�kz� dk; �40�

h0�x; k� � 2

p

�1

0

x0�x; z� sin�kz� dz: �41�

Since j1 is of odd parity, vanishing on the rotational equator z � 0,

it is convenient to define its Fourier sine transform

g1k �
2

p

�1

0

j1

2ijlj
� �

sin�kz� dz: �42�

The Fourier sine transform of (38) then becomes

x2�1 2 x2�g 001k � x�1� x2�g 01k 2 ��1 2 x2�2

� k2x2�1 2 x2��g1k � 2x2h0k; �43�
where use is made of (33) and (37), and of the boundary condition

on z � 0:

j1 ;
x1

z
� 2B1z � 0: �44�

In principle, solution for B1 proceeds as follows. The left-hand-

side operator in (43) is identical with that occurring in (22). Near

x � 1, the non-singular complementary function solution is

written

2

p
ck �1 2 x�2 � 1

3
�1 2 x�3 � 1

4
1� k2

2

� �
�1 2 x�4 �¼

� �
: �45�

Near x � 0, we must now select for the complementary function

just the non-singular solution (the imposed dipole already forms

part of the solution for x0):

2

p
dk x� 1

8
�k2 2 3�x3 �¼

� �
: �46�

The complete solution will include particular integrals of (43).

Near x � 1, by (25) and (26),

x0 . �2=p�
�1

0

bk cos�kz� dk

� �
�1 2 x�2; �47�

with bk known from the corotating magnetosphere solution
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The perpendicular rotator 393

already constructed; hence, from (41),

h0 � 2

p

�1

0

x0 sin�kz� dz ; Kk�1 2 x�2; �48�

where

Kk � 4

p2

�1

0

sin�kz�
�1

0

b 0k cos�k 0z� dk 0
� �

�1 2 x�2: �49�

A particular integral of (43) near x � 1 is

2
Kk

6
�1 2 x�3: �50�

Near x � 0, by (19), x0 . x=�x2 � z2�3=2, so

h0 � 2

p
x

�1

0

sin�kz�
�x2 � z2�3=2

dz � 2

p
x 2

p

2

k

x

� �
�I1�kx�2 L21�kx��;

�51�
where I1 is as usual a Bessel function of imaginary argument and

L21 is a Struve function (Gradshteyn & Ryzhik 1980, pp. 426,

961, 982). When kx is small, I1 < kx=2� O�kx�3; L21 . 2=p
� 2�kx�2=3 _p; so that

2x2h0 � 2
2k

p
x2 � k2

2
x3 � O�k2x4�: �52�

A convenient particular integral of (43) is then

2
2k

3p
x2: �53�

Thus, near x � 1, the solution is the sum of (45) and (50); near

x � 0 it is the sum of (46) and (53). Again, for each value of k, ck

and dk are to be determined by smooth link-up (continuity of each

g1k and its x-derivative) at a conveniently chosen point.

5 T H E E N E R G Y O U T F L OW

Because the problem as formulated has an equatorial discontinuity

in the field-aligned currents (shown by the change of sign in l),

the Fourier back-transform will show the `Gibbs phenomenon'

(e.g. Jeffreys & Jeffreys 1966): the inevitable cut-off in the Fourier

integral at a finite k-value will always yield a poor approximation

near z � 0. This is the price paid for the mathematical

simplification of taking l constant in each hemisphere. In a

more realistic problem, with convection currents of strength fixed

by the GJ charge density, l must be constant on each line of B0,

but will change sign smoothly, going to zero like k ´ B at the

equator, so there will be no Gibbs phenomenon. However, this will

be more than offset by the complications ensuing from the

variation of l between field lines. For example, one will no longer

be able to factor out exp(iF): a strictly dipolar field structure

imposed on the star will generate harmonics in the magnetosphere.

To complete study of our idealized, illustrative model, we note

that ± just as in the aligned case ± the current flow along the field

lines yields a non-zero B1f -component, and so a flow of energy

and angular momentum across the light-cylinder. Further, this

energy loss can be found without the tedium of constructing the

field B1. By (4) and the GJ approximation, the 4-component of

the Poynting vector �c=4p��E � B� becomes

2�c=4p��B4BF�lc; �54�
or

2�c=4p��B0xB1F�x�1 �55�

to first order in the parameter jlj. By (16), (25) and (26), the

normalized B0x is given by

B0x�1; z�
�a=c�3p

� 2
1

�1 2 x2�
x0

x

� �
x!1

sinF

� 2

p

�1

0

bk cos�kz� dk

� �
sinF � x0�x; z�

�1 2 x�2
� �

x!1

sinF;

�56�
where the imaginary part has now been taken. By (33) [exp(iF)

temporarily omitted],

B1F�1; z� � 2jljA0F 2 ix1; �57�
and so, by (37),



z
B1F � 2i

x1

z
2 jlj A0F

z
� 2jlj 1

�1 2 x2�
x0

x

� �
x!1

; �58�

since, by (45) and (50), j1�1� � �x1=z��1� � 0. Substitution

from (25) yields further



z
B1F � 2

p
jlj
�1

0

bk cos�kz� dk � jlj x0

�1 2 x�2
� �

x!1

; �59�

whence

B1F�1; z� � 2jlj sinF

�1

z

x0

�1 2 x�2
� �

x!1

dz; �60�

where the condition B! 0 as z! 1 has been used, and the

imaginary part again taken. Thus, from (56),

B1F�1; z� � 2jlj
�1

z

B0x�1; z� dz: �61�

Whereas B0F is p/2 out of phase with B0x, B1F and B0x are in

phase, yielding for the 4-component (55) of the Poynting vector

at the light-cylinder

a

c

� �6

p2 c

4p
jlj sin2 FB0x�1; z�

�1

z

B0x�1; z� dz

� �
: �62�

The Poynting integral over the light-cylinder from z � 21 to �1
and from F � 0 to 2p then becomes

a4p2

4c3
jlj

�1

0

B0x�1; �z�d�z
� �2

; �63�

where zÅ is again the normalized length defined in (18). It is seen

that, to first order in the perturbing parameter |l |, the energy and

angular momentum loss rate can be computed from knowledge of

the zeroth-order field (cf. Mestel & Selley 1970). The basic reason

is that the available voltage is fixed by the magnetic flux crossing

the light-cylinder, and the current density is given by lB. Thus, to

determine the energy flow to first order in l , one needs just the

zeroth-order field B0 in both the current and the voltage.
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