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Abstract

Based on the theory of stochastic chemical kinetics, the inherent randomness and stochas-
ticity of biochemical reaction networks can be accurately described by discrete-state
continuous-time Markov chains, where each chemical reaction corresponds to a state tran-
sition of the process. However, the analysis of such processes is computationally expensive
and sophisticated numerical methods are required. The main complication comes due to
the largeness problem of the state space, so that analysis techniques based on an explo-
ration of the state space are often not feasible and the integration of the moments of the
underlying probability distribution has become a very popular alternative.

In this thesis we propose an analysis framework in which we integrate a number of
moments of the process instead of the state probabilities. This results in a more time-
efficient simulation of the time evolution of the process. In order to regain the state
probabilities from the moment representation, we combine the moment-based simulation
(MM) with a maximum entropy approach: the maximum entropy principle is applied to
derive a distribution that fits best to a given sequence of moments.

We further extend this approach by incorporating the conditional moments (MCM) which
allows not only to reconstruct the distribution of the species present in high amount in the
system, but also to approximate the probabilities of species with low molecular counts.

For the given distribution reconstruction framework, we investigate the numerical accuracy
and stability using case studies from systems biology, compare two different moment
approximation methods (MM and MCM), examine if it can be used for the reaction rates
estimation problem and describe the possible future applications.
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Zusammenfassung

Basierend auf der Theorie der stochastischen chemischen Kinetiken knnen die inhrente
Zufälligkeit und Stochastizität von biochemischen Reaktionsnetzwerken durch diskrete
zeitkontinuierliche Markow-Ketten genau beschrieben werden, wobei jede chemische Reak-
tion einem Zustandsübergang des Prozesses entspricht.

Die Analyse solcher Prozesse ist jedoch rechenaufwendig und komplexe numerische Ver-
fahren sind erforderlich. Analysetechniken, die auf dem Abtasten des Zustandsraums
basieren, sind durch dessen Größe oft nicht anwendbar. Als populäre Alternative wird heute
häufig die Integration der Momente der zugrundeliegenden Wahrscheinlichkeitsverteilung
genutzt.

In dieser Arbeit schlagen wir einen Analyserahmen vor, in dem wir, anstatt der Zus-
tandswahrscheinlichkeiten, zugrundeliegende Momente des Prozesses integrieren. Dies
führt zu einer zeiteffizienteren Simulation der zeitlichen Entwicklung des Prozesses. Um
die Zustandswahrscheinlichkeiten aus der Momentreprsentation wiederzugewinnen, kom-
binieren wir die momentbasierte Simulation (MM) mit Entropiemaximierung: Die Maximum-
Entropie-Methode wird angewendet, um eine Verteilung abzuleiten, die am besten zu einer
bestimmten Sequenz von Momenten passt. Wir erweitern diesen Ansatz durch das Ein-
beziehen bedingter Momente (MCM), die es nicht nur erlauben, die Verteilung der in großer
Menge im System enthaltenen Spezies zu rekonstruieren, sondern es ebenso ermöglicht,
sich den Wahrscheinlichkeiten von Spezies mit niedrigen Molekulargewichten anzunähern.

Für das gegebene System zur Verteilungsrekonstruktion untersuchen wir die numerische
Genauigkeit und Stabilität anhand von Fallstudien aus der Systembiologie, vergleichen
zwei unterschiedliche Verfahren der Momentapproximation (MM und MCM), untersuchen,
ob es für das Problem der Abschätzung von Reaktionsraten verwendet werden kann und
beschreiben die mögliche zukünftige Anwendungen.
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Chapter 1

Introduction

Recently, the single-cell imaging techniques has become one of the primer focuses of the
research community in the drug development and microbiology experiments. This also
has raised interest for the influence of stochastic effects onto the living systems. These
systems are successfully modeled and analyzed using the Markov chains formalism

However, one of the main problems that hinders Markov chains from being applied to any
stochastic model is the existence of possibly unbounded number of system configurations.
It may be partially mitigated by changing the formal representation, treating chemical
species present in high amount as continuous variables and predicting their dynamics with
moment closure techniques.

The hybrid approach, where low-amount species are represented by the Markov chain
and the high-amount ones are approximated by moments reveals to be very beneficial.
However, the moment approximation can only provide the averaged statistical metrics.

Hence, the goal of this doctoral thesis is to develop the efficient methods to approximate
the underlying stochastic distribution of the Markov chain when the dynamics is described
using cumulative quantities such as moments.

This work relies on the work of Abramov [3] and Hasenauer et al. [105]. We succeeded
in joining the hybrid moment computation and maximum entropy reconstruction of the
conditional and joint distributions for several models from stochastic chemical kinetics. It
is shown that this combination of techniques provides benefits to the approximation of
such stochastic systems behavior from computational point of view, where the underlying
state space is discrete and too large to be treated by direct solution methods.

Here we solve the following problem: given the approximation of (finite amount of) mo-
ments at a certain time point, reconstruct the underlying discrete-state stochastic distri-
bution, where the moment constraints come from the standard or conditional moment
closure. This allows to obtain the state-wise description of the model at certain time in-
stant without losing much accuracy and several times faster than applying direct solution
approaches to solve the chemical master equation.
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Introduction 2

The structure of the thesis is as follows. The basic notation and theoretical background
on the stochastic chemical kinetics is provided in Chapter 2. The moment approxima-
tion methods, namely moment closure and method of conditional moments are described
in Chapter 3. The theoretical background on inverse moment problem and maximum
entropy method and its application to the synthetic examples is considered in Chapter 4.
The numerical analysis of the models from systems biology using the proposed combina-
tion of techniques is conducted in Chapter 5 together with the approach to parameter
estimation. The details of the implementation and miscellaneous background information
is given in Appendix A.

Through the thesis you find the biological models and examples defined in green and

beige boxes. Each table and figure is referenced using hyperlinks and we use the symbol
←֓ in the caption to return to the mention of table or figure in the text. For each reference
given in the bibliography, you find the list of pages (together with link to the mention in
text) where this reference is cited.



Chapter 2

Stochastic Modeling

2.1 Chemical Reaction Kinetics

The variety of mathematical models were used for a long time in science to describe the
interactions between chemical compounds. Following the progress of recent developments
in singe-cell imaging techniques, discrete stochastic models gained a lot of attention and
have become a very popular description of biochemical reactions that take place in living
organisms. We consider chemical reaction networks given as a set of NR stoichiometric
equations

Rj : ℓj,1S1 + . . .+ ℓj,NS
SNS

cj−−→ ℓ̃j,1S1 + . . .+ ℓ̃j,NS
SNS

,

where ℓj,i, ℓ̃j,i ∈ N0 are stoichiometric coefficients that refer to the number of molecules used
up and produced by the reaction Rj and S1, . . . , SNS

refer to NS distinct chemical species.
Stochastic reaction rate constant [82] cj determines the average speed of the reaction Rj

and depends on the temperature, the reaction volume and the affinity of the chemical
species. We associate a change vector vj = (vj,1, . . . , vj,NS

) ∈ Z
NS , vj,i = ℓ̃j, i− ℓj, i that

gives the population change caused by a single firing of the reaction Rj . The state x of the
system is given by the population Xi (cf. Modeling Approaches) of each chemical species
Si such that x = (X1, . . . , XNS

). Below we provide the example of the chemical reaction
system that describes the simple dimerization process:

Biological model 2.1 (Simple Dimerization). ←֓ We consider the dimerization
kinetics [238, p. 163] of a protein P in a bacterial cell. The stoichiometric equations
that correspond to forward and backward reactions are

R1 : 2P
c1−→ P2,

R2 : P2
c2−→ 2P,

where ℓ1,1 = ℓ̃2,1 = 2, ℓ2,2 = ℓ̃1,2 = 1 and ℓ1,2 = ℓ2,1 = ℓ̃1,1 = ℓ̃2,2 = 0. Note that we
omit terms which are zero.

In the sequel we also restrict to chemical reactions that are at most bimolecular, i.e.,
we assume that

∑NS

i=1 ℓj,i ∈ {0, 1, 2}, which is a reasonable assumption because reactions

3



Stochastic Modeling 4

where more than two molecules have to collide can usually be decomposed into smaller
ones where at most two molecules collide [83].

2.2 Modeling Approaches

We distinguish three approaches to model the chemical reaction systems. To put these
systems on a common framework, we emphasize that they share a population structure,
so that a system consists of NS different populations whose amounts determine the future
behavior. The state x of the system consists of quantities that are usually non-negative,
and might all be discrete, real-valued or mixed. Also they might be bounded or unbounded.
Usually the state of the system changes over time and time can be treated as discrete or
continuous1. Here we consider three modeling semantics:

• deterministic semantics
• stochastic semantics
• hybrid semantics

In the deterministic setting ~X is a function and in stochastic and hybrid settings it
corresponds to the stochastic process.

2.2.1 Deterministic Semantics

The dynamics of biochemical reactions can be modeled using the system ordinary differ-
ential equations that describe the evolution of species concentrations in time [133] (i.e.,
molecules per volume, commonly measured in mol/L). The state of the system at the
given time instant t is given by the vector of concentrations x = ([X1], . . . , [XNS

]). The

state space in that case is continuous, i.e., ~X : R → R
NS . We define the deterministic

propensity αdet
R (x) of a reaction R for state x as

αdet
R (x) = cdetR ·

NS∏

i=1

[Xi]
ℓR,i ,

where cdetR differs depending on the type of the model [239]. The exponent ℓR,i is the
number of occurences of the species in the reaction R. The definition of the rate function
is given by the law of mass action [47], which serves as the basis for such models in enzyme
kinetics as Hill and Michaelis-Menten equations [109, 185]. Given the vector of initial

concentrations ~X(0), the future behavior is determined by the system of ODEs (reaction
rate equations)

Ẋi(t) =

NR∑

j=1

vj,i · αdet
R (X(t)), (2.1)

1In this thesis we consider only continuous-time models.
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The deterministic framework does not account for possible measurement errors neither
for uncertainties in states which limits its direct application to such tasks as parame-
ter inference. Stochastic differential equations [40] framework is capable to take these
considerations into an account.

Example 2.1. ←֓ The ODE for the Simple Dimerization model as obtained from the
CRN is constructed as follows:

Ẋ(t) = [-2 1]T · αdett
1 (X(t)) + [2 -1]T · αdet

2 (X(t))

with αdet
1 (x) = cdet1 · [X1]

2, αdet
2 (x) = cdet2 · [X2].

This framework can be extended to account for the spatial information by considering the
system to be compartmental [31, 102].

2.2.2 Stochastic Semantics

Under the certain conditions the deterministic modeling formalism is not the appropriate
framework to describe the behavior up to the required accuracy level. Namely, when the
number of molecules in the cell is small the role of the stochastic noise can not be ignored.

There are two possible sources of stochasticity in modeling. The first one is so-called
extrininsic noise that is associated with the measurement error, environmental changes
or interference with other processes [17, 29, 66, 71, 85, 218, 247]. The second source of
stochasticity is the intrinsic noise that governs the stochastic evolution of the system.
One simple example is the event of collision of two molecules of a gas in a large volume.
Intrinsic noise can also be associated with the speed or the orientation of the molecules.

Example 2.2. ←֓ Consider the simple bi-molecular chemical reaction

A+B → ?

where a molecule of species A collides with a molecule of species B (the result of
this collision is currently of no interest). Two molecules are assumed to collide if
the distance is less then a reacting distance ζ. The probability of such collision in
the reaction volume Ω under the assumption that we can neglect the size of both
molecules and consider them as particles is given by

P[|(x, y, z)A − (x, y, z)B| < ζ],

where the tuple (x, y, z)A describes the coordinates of species A molecule in R
3. This

probability can be computed as the volume of the sphere of radius ζ around any of
both particles divided by Ω

P[|(x, y, z)1 − (x, y, z)2| < ζ] =
4

3
πζ3 · 1

Ω
.
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It does not depend on time for well-stirred reaction volumes. Using this observation,
one can continue with the rigorous derivation [84] of stochastic chemical kinetics
theory. Here we introduce basic notions that are needed later in the course of the
thesis.

We note that one can also follow the more detailed derivation where the radius of
both molecules is taken into account. As before, the assumption about the thermal
equilibrium (with the temperature T ) is made, therefore the velocity of a molecule is
follows the Boltzman distribution (with the Boltzmann constant kB). It is important
that the collision between the molecules does not always lead to the reaction, thus the
corresponding probability can be computed. In this setting, the probability for the
reaction between two molecules to happen in the infinitesimal time period [t, t+ dt]
to happen is given by

P[reaction] = P[collision] ·P[reaction|collision] = 1

Ω
(r1 + r2)

2

√
8kBT

πm
· e

−ǫ
kBT = p∗.

Here, r1 and r2 correspond to the radii of the molecules, the average mass of molecules
is denoted by m = 1

2
(m1 +m2) and the constant ǫ is the critical energy to run

the reaction when molecules collide. It gives rise to the rigorous definition of the
propensity function. For example, the propensity function of the bi-molecular reaction
S1 + S2 → . . . is given by xixjp

∗, where xixj corresponds to the number of possible
distinct pairs of S1 and S2 molecules.

Other sources of the intrinsic noise are the lack of the total predictability and quantum
indeterminacy [88]. For low species levels, these stochastic fluctuations play the important
role and seriously affect the behavior of the system [206]. Because of these stochastic
effects, the granularity of the modeling is at the molecule level and the state of the system
is given by the vector x = (x1, . . . , xNS

), x ∈ N
NS

0 where xi corresponds to the number of
molecules of species Si.

The stochastic semantics of a chemical reaction network is given by a (homogeneous)
continuous-time Markov chain (CTMC) [83, 84]. Therefore, we construct a Markov process

{ ~X(t), t≥0} which is a family of random variables indexed by time. It satisfies the Markov
property, i.e., the possible future behavior only depends on the current state

P[ ~X(tn) = xn | ~X(tn−1) = xn−1, . . . , ~X(t0) = x0]

= P[ ~X(tn) = xn | ~X(tn−1) = xn−1] = P[ ~X(tn − tn−1) = xn | ~X(0) = xn−1],

where the last equation shows the property of homogeneity such that the next state does
not depend on the absolute value of time but only on the difference tn − tn−1.

Transitions of the Markov chain ~X correspond to chemical reactions and the transition
rate of reaction Rj is given by

lim
δ→0

1

δ
P[ ~X(t+ δ) = x+ vj | ~X(t) = x] = cj

NS∏

i=1

(
xi

ℓj,i

)
,
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where the binomial coefficients describe the number of possible combinations of reactant
molecules. The reaction rate constant cj encodes the physical properties of reaction Rj

and it is assumed to be constant in time (which corresponds to the homogeneity of the
Markov chain). The units of cj depend on the type of reaction. The actual value can be
computed using the rate constant cdetj used in the deterministic semantics [143].

In contrast to the deterministic setting, the system is in a state x ∈ N
NS

0 with a cer-
tain probability πx(t). Distribution π(t) is called the transient probability distribution at

time t and is defined as a row vector π(t) such that πx(t) = P[ ~X(t) = x] ∈ [0, 1] and∑
x∈NNS πx(t) = 1.

The behavior of the CTMC is fully described by an initial distribution π(0) and an
infinitesimal generator matrix Q = [qx,y] where all elements qx 6=y ∈ R≥0 and the diagonal
entries qx,x = −∑y 6=x qx,y for all states x, y ∈ N

NS

0 . The transient distribution satisfies the
forward Kolmogorov differential equation [134]

d

dt
π(t) = π(t) ·Q. (2.2)

This is also called the chemical master equation (CME) [84] in natural sciences. The
stochastic propensity αst

R(x) of the reaction Rj for a state x is defined as

αst
j (x) =

{
cstj ·

∏NS

i=1

(
xi

ℓj,i

)
, if xi ≥ ℓj,i,

0, otherwise,

and the elements of the generator matrix Q are given by

qx,y =

{∑
{j | x+vj=y} α

st
j (x), x 6= y,

−∑z 6=x qx,z, x = y.

We assume that the chemical master equation (2.2) has a unique solution at time t given
the initial condition π(0)

π(t) = eQt.

To solve the CME (2.2) in practice, one may use the specially designed methods such
as simulation [40, 83, 86] and uniformization [59, 96] as well as generally applicable
analytical and numerical methods for solving ODE systems. The example of the simple
CME construction is given in Example 2.3:

Example 2.3. ←֓ Under the assumption that the number of protein molecules P
is small inside in a cell, the dynamics of the Simple Dimerization model is well
described by the Markov process ~X(t) = (XP (t), XP2(t)), t≥0. Here, XP (t) (XP2(t))
corresponds to the number of P (P2) molecules at time t. The state space S ⊂ N

NS

0

and it is bounded from above, i.e., there is a finite number of possible configurations
depending on the initial condition ~X(0). The dynamics of ~X(t) is governed by the
infinitesimal generator matrix Q with elements
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qx,y =





c1 · 12xP (xP − 1) if xP > 1, yP = xP − 2, yP2 = xP2 + 1,

c2 · xP2 if xP2 > 0, yP = xP + 2, yP2 = xP2 − 1,

−∑z 6=x qx,z if x = y, and

0 otherwise.

Assume that the initial conditions are given by ~X(0) = (6, 0). Then the state space
is defined as S = {x1, x2, x3, x4} = {(6, 0), (4, 1), (2, 2), (0, 3)}. We can construct the
chemical master equation for a state x3 = (2, 2) as follows

d
dt
π(x3) = π(x2) · qx2,x3 + π(x4) · qx4,x3 − π(x3) · (qx3,x2 + qx3,x4)

= π(x2) · 6c1 + π(x4) · 3c2 − π(x3) · (2c2 + c1) ,

where the first two terms correspond to the inflow of probability mass from states x2

and x4 and the third term is the outflow from state x3 (cf. Figure 2.1). To simplify
the notation, we omit the dependency of the distribution on time t. We can set up
equations for all states x ∈ S in a similar fashion. Given the initial condition ~X(0)
we can solve CME using the technique of choice (cf. Section 2.3.2).

x2

x4

x3 x4

6c1

3c2

2c2 + c1

Figure 2.1: ←֓ Visualization of the chemical master equation for the state x. Green
states provide the inflow of the probability mass and the outflow from state x goes
to red states.

If there is no prior knowledge about the bounds on molecular counts, the state space of
the Markov chain is countably infinite. A tool specifically tailored to analyze such systems
numerically is SHAVE [146]. It implements the sophisticated techniques such as dynamic
state space truncation, error tolerance control and automated hybridization of populations.
This helps to cope with very large or even infinite state spaces.

Example 2.4 (Relationship of Stochastic and Deterministic Descriptions). ←֓ The
solution of the CME can be approximated using the deterministic approach in the limit
of the number of molecules per volume. This allows to use only the mean population
numbers by considering the mean-field limit of the system. Assume that Φ is the
solution of Eq. (2.1) with the initial condition Φ0.

Let ~XΩ = ~X/Ω be the stochastic representation of the same chemical system with
~XΩ(0) = Φ0. For every time t≥0 it holds almost surely that

lim
Ω→∞

sup
s≤t
| ~XΩ(s)− Φ(s)| = 0.
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This result holds only under certain conditions [24, 98]. The authors of [90, 143]
conducted the numerical investigation of the relation between two formalisms in the
simulation setting.

2.2.3 Hybrid Semantics

It is often the case for real-life biological studies that some species posses low molecular
counts and others are present in high amounts. Usage of stochastic semantics in this case
may result in an extremely large (or even infinite) state space which renders the solution
of the corresponding CME (2.2) to be very demanding. We can treat the dynamics of
the whole system deterministically which allows for faster computation but omits the
stochastic effects. So-called hybrid approach is used to get the best from both determin-
istic and stochastic semantics by being able to combine the computational speed and
accurately describe parts of the system highly influenced by noise. Therefore, we represent
the original process X(t) as a tuple X(t) = (Xs(t), Xd(t)), where the discrete stochas-
tic component Xs(t) describes the dynamics of small populations and the deterministic
continuous component Xd(t) describes large populations. We assume that the dimension
of Xs(t) is n̂ and the dimension of Xd(t) is ñ such that NS = n̂ + ñ. The dynamics of
the stochastic component Xs(t) ∈ N

n̂ is described by a CTMC where the rates not only
depend on the current state s but also on the state y of the deterministic counterpart
Xd(t) ∈ R

ñ. The entries of the time-dependent generator matrix Q(t) are given by

qs,s′(t) =

{∑
{j | s+vj=s′} α

hyb
j (s, y(t)), if s 6= s′

−∑s′′ 6=s qss′′(t), if s = s′
(2.3)

with propensity functions αhyb
j (s, y(t)) defined as

αhyb
j (s, y(t)) =

{
cstj ·

∏n̂
i=1

(
si
ℓj,i

)
·∏ñ

j=1 y
ℓr,j
j (t), if si ≥ ℓr,i

0, otherwise

The transient probability distribution for Xs(t) follows the time-dependent Kolmogorov
equation π̇(t) = π(t) ·Q(t). We assume that this system of equations has a unique solution
under the given initial condition π(0). To solve this equation system the methods described
in Section 2.3 can be applied as well as methods designed to analyze time-dependent
continuous-time Markov chains [12, 18, 173, 227] and hybrid systems [6, 54, 163, 191].
The behavior of the continuous process Xd(t) is defined by the system of ODE similar to
Equation (2.1)

Ẋd(t) =
R̃∑

j=1

vj,i · αdet
j ( ~X(t)), (2.4)

where R̃ is the number of reactions, where only species whose concentration is treated as
a continuous quantity, take part.

Such a representation is especially useful if the Markov chain Xs(t) only encodes the
states (on/off) of a set of genes that control the production of proteins. Then each state
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variable s1, s2, . . . , sn̂ can take values 1 or 0 and the concentration of the corresponding
proteins is controlled by the deterministic process Xd(t). We can refer to states of Xs(t)
as to modes [199] of the hybrid system. In each mode, the components of Xd(t) follow
the system of ODE as in Equation (2.4). For a rigorous derivation of the corresponding
theory, we refer to [114].

Consider the following biological model:

Biological model 2.2 (Predator-Prey). ←֓ This reaction network is often used
to characterize the population dynamics of animals. The predator-prey model was
proposed independently by Lotka and Volterra [154, 229]. The chemical reaction
network is described by

S1
c1−−→ 2 · S1

S1 + S2
c2−−→ 2 · S2

S2
c3−−→ ∅

where the first reaction describes reproduction of a prey species S1, the second reaction
encodes the reproduction of predators S2 consuming prey (food) and the last reaction
relates to the natural death of the predator species.

We show how the hybrid semantics is applied in the next example:

Example 2.5 (Predator-Prey Hybrid). ←֓ The predator-prey model is often used to
test the applicability of hybrid solution techniques since under certain parameter values
it possesses high stiffness. In this example we assume that the reaction rate constants
are such that species S2 (predator) has low molecular counts and species S1 (prey) is

present in high counts. A hybrid approach leads to a definition of the process as ~X(t) =
(S1(t), S2(t)), where S2 is treated stochastically and its behavior is determined by the
time-dependent generator matrixQ(t) with entries qs1,s′1(t) according to Equation (2.3),

where αhyb
2 (s1(t), s2) = cst2 · s1(t) · s2, αhyb

3 (s1(t), s2) = cst3 · s2. The evolution of species
S1 is deterministic and follows the ODE Ṡ1(t) = cdet1 s1(t)− cdet2 s1(t)s2.

The presented fixed decomposition of the state space vector onto two parts is based
on dividing species into low and high abundance groups [129, 182]. There exist other
approaches to divide the system into subsystems. They allow for dynamical repartitioning
by exploiting the model structure. For details, we refer to [24, 40, 54, 93, 111, 231]. We
emphasize the application of the linear noise approximation, which separately treats the
noise term and the deterministic drift and provides a quasi-second order approximation
of the dynamics [135, 233, 234].
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2.3 Continuous-time Markov Chain Probability Dis-

tribution Computation Techniques

In the previous section we describe the three widely used semantics that allow us to
select the best suited description for the given biological model. Now let us consider
the stochastic semantics in more details. The main purpose when using the stochastic
description is to analyze the distribution π of the CTMC ~X. In order to analyze the
system in equilibrium the time is set to t→∞. The corresponding distribution π(∞) is

called equilibrium distribution of the Markov chain ~X. Numerical approximation of the
equilibrium distribution requires specially designed techniques [56, 100] and we do not
consider this problem here. Instead, we concentrate on the approximation of transient
distribution π at a certain time instant T .

2.3.1 Monte-Carlo Simulation

One of the first methods to approximate the transient distribution π(T ) is based on the
Gillespie theory of chemical kinetics (therefore the name “Gillespie algorithm” occurs

in the literature more often). Since for the stochastic process ~X(t) the Markov property
holds, one can determine the time until next reaction firing. Assume that the system is
in state x at time t. The time t′ until the firing of any possible reaction is distributed
exponentially with the rate −α0(x) = −

∑NR

j=1 αj(x), which is called the exit rate of the
state x. We need to calculate the two following quantities:

• Time t′ until the change of the state. We generate the exponentially distributed
random number t′ ∼ Exp(-α0(x)) for that.

• Index j of the next reaction. The probability to fire the reaction Rj is distributed
according to the discrete distribution α1(x)/α0(x), . . . , αÑR

(x)/α0(x).

(ÑR ≤ NR since not all reactions may be possible in state x).

Thus, starting from a state x at time t one needs to generate the two random variables
for t′ and j. The state at time t+ t′ is then given by x′ = x+ vj. Repeating these steps,
one generates a single simulation trajectory until the time horizon of interest T is reached.
The example is shown in Figure 2.2 for simple protein production model.

The approximation p of the transient distribution π is then obtained by repeating Nsr simu-

lation runs. Transient probability of the state x is then given by px(T ) = 1/Ns

∑Nsr

j=1 ✶x

(
~Xj(T )

)
,

where ~Xj is the simulation run that ends up in the state x at time T . The mean and the
variance of the stochastic process are then approximated using the formulas for sample
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Figure 2.2: ←֓ Three realizations of Monte-Carlo simulation for the simple protein pro-
duction model shown as blue, red and orange lines. The time horizon of interest is 800.
The example of the transient probability distribution approximation is shown as in-figure,
where each simulation realization falls at the certain bin of the histogram (gray boxes)
that approximates the probability distribution of interest.

mean and variance

E
(
~X(T )

)
=

1

Nsr

Nsr∑

j=1

xj(T ),

Σ(T ) =
1

Nsr − 1

Nsr∑

j=1

(
xj − E

[
~X(T )

])(
xj − E

[
~X(T )

])T
,

where xj(T ) is a state of the Markov chain on j-th sample path at time T . These estimators
for the moments and the probability distribution are unbiased and converge. The central
limit theorem can be used to obtain the confidence interval for the individual probabilities.
It also holds that in order to halve the length of this confidence interval one needs 4
times more simulation runs. This shows the main computational restriction of simulation-
based approaches: they need a lot of runs to provide the reasonable approximations and
low-variance estimates for systems with many reacting species.

There exist many approaches to mitigate the computational time issues that are based on
the approximation of the exact simulations using the reduction approaches [26, 148, 202,
232] and the separation of time scales [43, 87, 111, 191].
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2.3.2 Direct Solution Approaches

The main alternative to the simulation and continuous approximation methods is to
cope with the CME directly. The analytical solution can be obtained only in the limited
number of cases [180], for example, for systems with only zero and first order reactions
[118] (however, reactions of the type S1 → S1 + S2 are not covered).

For most systems it is impossible to get the analytical solution of the CME. Therefore, the
numerical solution methods are used such as already mentioned uniformization [59, 96,
158]. Another group of methods focuses on the direct solution of differential equations, such
as Proper Generalized Decomposition (PGD) [10, 45], conversion into integro-differential
equations [178], Finite State Projection (FSP) and its extensions [41, 44, 61, 71, 175, 176],
tensor-based approaches [58, 62, 228] and the Sliding Window [110]. The extended version
of the latter approach is implemented in the tool SHAVE [146].

Let us write the CME (2.2) in the following form

∂π(x, t)

∂t
=

NR∑

j=1

[αj(x− vj)π(x− vj, t)− αj(x)π(x, t)] . (2.5)

It is important to note that often the number of states with π(x, t) > 0 is infinite since
bounds on the population sizes are not known a priori. Thus, although in reality the
molecule numbers are always finite, theoretically an infinite number of states can have
positive probability. This leads to two complications compared to finite-state models. First,
the limiting distribution of the Markov chain may not exist and additional conditions are
necessary to ensure its existence [56]. Second, the truncation techniques are necessary
to numerically simulate (2.5) since only a tractable number of states can be considered
in each integration step. The direct numerical simulation performs well as long as the
average population sizes remain small and the approximation error can be controlled by
a threshold criterion.

2.3.3 Sliding Window Approach

The direct numerical simulation is based on the dynamic state space truncation devel-
oped for uniformization methods [158] and for integration schemes such as Runge-Kutta
methods [13, 164]. We use the inflow-outflow form of (2.5) for the construction of the
dynamic state space. The terms αj(x− vj)π(x− vj, t) can be seen as the inflow to state
x for reaction Rj while αj(x, t)π(x, t) is the corresponding outflow. Let p(x, t) be the
approximation of π(x, t) during the numerical integration for all x and all t ≥ 0. Initially
we set p(x, 0) = π(x, 0) and during an integration step for the interval [t, t+ h) we start
with a subset S(t) of states that have significant probability at time t, i.e.,

S(t) := {x | p(x, t) > δ1}

where δ1 > 0 is a small threshold. For all states not in S(t) we let p(x, t) = 0. During
the numerical integration we add new states to S(t) whenever they receive a significant
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Figure 2.3: ←֓ Illustration of the truncation technique. Left: the state space at time t,
S(t). Center: all the possible states with non-zero inflow. Green states b and c obtain the
inflow larger then the threshold δ, states a and d do not. Right: the state space S(t+h)

after the truncation. Less intensive color of the state x shows that it has an outflow to
the states b and c.

amount of inflow, i.e., if we use the explicit Euler method, the new state probability at
time t+ h is calculated as

p(x, t+ h) = p(x, t) + h ·
NR∑

j=1

(αj(x− vj)p(x− vj, t)− αj(x)p(x, t)) .

For a state x 6∈ S(t) this reduces to

p(x, t+ h) = h ·
m∑

j=1

αj(x− vj)p(x− vj, t),

so only the inflow counts. One can iterate over all states in S(t) and, before integrating
their probability, check whether their successors receive significant inflow. More precisely,
we simply add state x to the set S(t) if h · αj(x− vj)p(x− vj, t) > δ2 for some j. Here, δ2
is again a small threshold. We then also compute p(x, t+ h) for this new state.

It turns out that for most example networks an accurate approximation is obtained if we
work with a single threshold δ1 = δ2 =: δ and choose δ ∈ {10−10, 10−9 . . . , 10−5}. Note
that the new set S(t+h) will then contain all states x ∈ S(t) whose probability at time
t + h is at least δ as well as all successors x + vj 6∈ S(t) where x ∈ S(t) and there exists
the reaction with index j such that h ·αj(x− vj)p(x− vj, t) > δ (which implies that their
probability at time t+ h is at least δ). This process is illustrated in Figure 2.3.

Different truncation strategies are possible (e.g. choose δ2 smaller than δ1). However, simply
adding all successors (δ2 = 0) is not efficient since often we have reversible reactions, i.e.,
vj = −vk for some j 6= k where one direction is much more likely then the other, say Rj.
In such a case the main part of the probability mass moves in the direction of vj and the
accuracy gain in adding a successor w.r.t. vk is not worth the effort since during the next
construction of S(t) these successors are anyway removed from S(t).
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This method makes the most sense to be used with the systems that possess the unbounded
(or bounded, but reasonably large) state space. Consider the following biological model 2.3
of exclusive switch:

Biological model 2.3 (Exclusive Switch). ←֓ We consider a gene regulatory net-
work called exclusive switch [153]. It describes the dynamics of two genes with an
overlapping promoter region, and their products P1 and P2. Molecules of both species
P1 and P2 are produced if no transcription factor is bound to the promotor region
(region is free). However if a molecule of type P1 (P2) is bound to the promotor then
it inhibits the expression of the other product, i.e., only molecules of P2 (P1) can be
produced. Only one molecule can be bound to the promotor region at a time which
implies that the promoter region has only three different states (free, P1 or P2 bound).
The model has an infinite state space and the stoichiometric equations are

DNA
c1−→ DNA+ P1

DNA
c2−→ DNA+ P2

P1
c3−→ ∅

P2
c4−→ ∅

DNA+ P1
c5−→ DNA.P1

DNA+ P2
c6−→ DNA.P2

DNA.P1
c7−→ DNA+ P1

DNA.P2
c8−→ DNA+ P2

DNA.P1
c9−→ DNA.P1 + P1

DNA.P2
c10−→ DNA.P2 + P2

The reaction rate constants c1, . . . , c10 are given by the entries of the vector c =
(2.0, 5.0, 0.005, 0.005, 0.005, 0.002, 0.02, 0.02, 2.0, 5.0) and the initial conditions are such
that only one DNA molecule is present in the system while the molecular counts for
the rest of species are zero.

In order to illustrate the method performance, we list the size of the truncated state space
together with the total loss of probability mass and show the solution for the Exclusive
Switch model (cf. Example 2.6):

Example 2.6. ←֓ In Figure 2.4 we plot the results of a direct numerical simulation
until t = 100 using a dynamical state space as explained above.

The different subfigures show the marginal distributions of protein counts P1 and P2

when we condition on the three different states of the promotor region.

To investigate the accuracy of the obtained results we refer to the Table 2.1, where
we list the amount ǫ of probability mass lost during the computation and the average
size |S| of the number of significant states for different thresholds δ.

Note that the probability of all states not in S(t) is approximated as zero. Thus, the
probability loss ǫ is equal to the total approximation error (sum of all state-wise
errors). If π(x, t) is the true state probability and p(x, t) is the approximated state
probability then ∣∣∣∣∣

∑

x

π(x, t)−
∑

x

p(x, t)

∣∣∣∣∣ ≤ ǫ, (2.6)

where we have equality at the final time instant of the computation. We find that, for
instance, if we choose δ = 10−15 the total approximation error ǫ remains below 10−10.
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Recently, the authors of [136] deeply investigated the approximation error of different
numerical approaches to solve the CME.

δ |S| ǫ time (sec)

10−10 183210 3 · 10−6 154
10−12 203948 2 · 10−8 174
10−15 265497 9 · 10−11 239
10−20 381374 1 · 10−13 1027

Table 2.1: ←֓ Dynamical state space truncation results for the exclusive switch.
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Figure 2.4: ←֓ Probability (y-axis) distribution of the protein counts P1 and P2

(x-axis) conditioned on the events that the promotor region is free (left) bound to
P1 (center) and bound to P2 (right) computed at time instant t = 100 for exclusive
switch system.

Consider the following biological model of gene expression:

Biological model 2.4 (Gene Expression). ←֓ We consider a simple gene expression
model that describes the formation of mRNA (R) and protein (P ) molecules [105].
The production of R is controlled by the state of the DNA which can be either active
(Don) or inactive (Doff). We assume a single copy of the corresponding gene, i.e., it
always holds that Don +Doff = 1. If Don = 1 then mRNA molecules are synthesized
and can be further translated into proteins. The proteins induce the activation of the
DNA, forming a positive feedback mechanism. Moreover, mRNA and proteins can
degrade. The chemical reactions are as follows

Doff

τon−−⇀↽−−
τoff

Don

Don
kr−→ Don +R

R
kp−→ R + P

R
γr−→ ∅

P
γp−→ ∅

P +Doff
τpon−→ P +Don
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Figure 2.5: ←֓ Gene expression example: two-dimensional marginal distribution of mRNA
and proteins (a), conditional distributions of proteins (b) and mRNA (c) computed by
directly solving the CME. Density of gray color corresponds to probability mass for (a)
and for (b) and (c) y-axis corresponds to probability values.

The accuracy of the direct solution of the corresponding CME is investigated in Exam-
ple 2.7.

Example 2.7. ←֓ A state of the CTMC that corresponds to the gene expression model
is a vector x = (xDoff

, xDon , xR, xP ), where xDoff
, xDon ∈ {0, 1} are the populations of

Doff and Don and xR, xP ∈ N is the number of mRNA and protein molecules, respec-
tively. We plot the two-dimensional marginal distributions of mRNA and proteins
at time t = 10 in Figure 2.5 (darker points correspond to larger probability values),
where we chose rate constants (τon, τoff, kr, kp, γr, γp, τ

p
on
) = (1, 1, 10, 1, 4, 1, 0.015) as

in [105]. For the initial state we chose x0 = (1, 0, 0, 0). The other two plots in Fig-
ure 2.5 show the distributions of mRNA and proteins after conditioning on the two
states of the DNA. The distributions were computed by integrating the CME based
on a fourth-fifth order Runge-Kutta method with the adaptive step size. We chose
δ = 10−15 as truncation threshold, yielding a total error of ǫ = 3 ·10−10 at time instant
t = 10.
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2.3.4 Moment-based Reconstruction Techniques

Assume that is is possible to obtain the values of moments µ0, . . . , µM of the distribution
π(T ) without solving the CME directly (for example, using the moment closure meth-
ods). These moments already give us a certain information about the average values of
species (via expectation) and their range (via covariances). In addition to that, we can
try to solve the following problem: given the values of moments µ0, . . . , µM , approximate
the corresponding distribution p(T ). This problem is usually called the inverse moment
problem. For example, we can uniquely reconstruct the normal distribution N (µ, σ) given
its mean µ and variance σ in the continuous state space setting. The Poisson distribution
is uniquely defined by its mean λ in the discrete state setting.

When CME for the given chemical reaction network is to be solved, there is no evidence
of whether there is an analytical model that describes the transient solution properly.
Therefore, the flexible models such as generalized exponential family (cf. Appendix A.5.7)
can be used in order to incorporate many different behaviors such as non-symmetry
and multimodality. In this thesis, we use the maximum entropy principle and the corre-
sponding family of distributions to cope with this problem. The details on the moment
approximation and the distribution reconstruction methods are given in Chapter 3.



Chapter 3

Moment Approximation Methods

The main difficulty arising in the numerical solution of the CME is the curse of dimension-
ality : each chemical species that is involved in a reaction adds one dimension to the state
space of the Markov chain. Tight bounds for molecular counts are usually not known a pri-
ori and thus the size of the state space that has to be considered is extremely large or even
infinite rendering a direct numerical integration of the CME (2.5) infeasible. The main
idea is to concentrate on those population vectors containing a significant amount of prob-
ability mass. If in a reaction network some chemical species are highly abundant then the
support of the underlying probability distribution of the process becomes very large even
when insignificant parts are truncated (e.g. if we consider the sets {x | p(x) > δ} for some
small δ). In such a case it is advantageous to change the representation of the distribution.
The idea of methods of moments or moment closure methods is to replace the distribution
of the Markov chain by its moments up to a certain finite order [5, 67, 161, 236]. It is pos-
sible to derive differential equations that can be used to approximate the time evolution of
moments. For instance, if the distribution of the chain is similar to a multivariate normal
distribution, one can obtain a very accurate approximation of the distribution by tracking
the average molecule counts and their variances and covariances over time. For systems
exhibiting more complex behavior such as oscillations or multimodality, moments of higher
order are necessary for an accurate description [5]. It is, for instance, straightforward to

derive a differential equation for the time evolution of the first-order moments E[ ~X(t)].
For this we derive a system of differential equations for the moments along the lines of
Ale et al. [5]. For simplicity, here we restrict ourselves to the first two moments.

19
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3.1 Moment Approximation

3.1.1 Evolution of the Mean

Consider the expectation E
(
~X
)
of the random vector ~X(t), where i-th entry denotes the

expected number of molecules of type Si at time t. The expectation is given by

E
(
~X
)
=
∑

x∈ZN
S

x ·P[ ~X(t) = x]

Let apply the test function f : ZN
S → R

N
S that is independent of t to the both sides

E
(
f( ~X)

)
=
∑

x∈ZN
S

f(x) ·P[ ~X(t) = x]

By taking the derivatives w.r.t. time on both sides we obtain

d
dt
E
(
f( ~X)

)
=

∑
x∈ZN

S

f(x) · d
dt
P[ ~X(t) = x]

=
NR∑
j=1

E
(
αj( ~X) · (f( ~X + vj)− f( ~X))

)
.

(3.1)

For f(x) = x this yields a system of equations for the population means

d
dt
E
(
~X
)

=
NR∑
j=1

vj · E
(
αj( ~X)

)
. (3.2)

The expected propensity of reaction Rj is given by

E
(
αj( ~X)

)
=





cj if αj(x) = cj,

cj · E
(
~Xi(t)

)
if αj(x) = cj · xi,

cj · E
(
~Xi(t) · ~Xk(t)

)
if αj(x) = cj · xi · xk,

1
2
cj ·
(
E
(
~X2
i (t)

)
− E

(
~Xi(t)

))
if αj(x) =

1
2
cj · (x2

i − xi).

In the third and fourth case we get a new equation for all expectations involving the
product of two random variables since αj is not linear in the elements of x. They again
involve the expectations for which we get new equations, which leads to an infinite series
of differential equations. However, if all propensity functions αj are linear (first and second
case), the equation (3.2) can be simplified to

d

dt
E
(
~X
)
=

M∑

j=1

~vj · αj

(
E
(
~X
))

,

This gives a system of differential equations, which is identical to the reaction rate equations
except that we consider populations instead of concentrations. In general, the solution
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of the reaction rate equations is different from the average populations of the Markov
chain because of the non-linearity of propensity functions. To illustrate the method, we
introduce the simple protein production model:

Biological model 3.1 (Simple Protein Production). ←֓ Consider the following chem-
ical reaction network

∅ c1−→ mRNA

mRNA
c2−→ mRNA+ protein

mRNA
c3−→ ∅

protein
c4−→ ∅

It involves two chemical species which are represented by mRNA and protein and
describes the over-simplified process of the protein production. More formally, we
write the chemical reaction network as

∅ c1−→ R

R
c2−→ R + P

R
c3−→ ∅

P
c4−→ ∅

Now we describe the evolution of the means for this model:

Example 3.1. ←֓ Assume that the initial distribution of the CTMC ~X(t) that
corresponds to the simple protein production is given by π(0) = [1, 0, . . .], where the
first element of the vector is πs0(0) = 1 and the initial state s0 = (0, 0). The state

space of ~X(t) is unbounded and given by Z
2. According to the initial distribution of

the CTMC, we initialize the expected populations as E
(
~X(0)

)
= (0, 0). We compute

E
(
~X
)
by solving

d
dt
E
(
~X
)

=
NR∑
j=1

~vj · E
(
αj( ~X)

)
=

4∑
j=1

~vj · αj

(
E
(
~X
))

= (1, 0) · c1 + (0, 1) · c2 · E
(
~X1(t)

)

+(−1, 0) · c3 · E
(
~X1(t)

)
+ (0,−1) · c4 · E

(
~X2(t)

)
,

where X1 corresponds to mRNA species and X2 corresponds to proteins. This ODE
system can be simplified to

d
dt
E
(
~X1(t)

)
= c1 − c3 · E

(
~X1(t)

)

d
dt
E
(
~X2(t)

)
= c2 · E

(
~X1(t)

)
− c4 · E

(
~X2(t)

)
.
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3.1.2 Evolution of the Covariance and Higher Order Moments

For most networks the system of ODEs to approximate moments is not finite but we can
consider the closure of the system which is based on the Taylor expansion of the function

αj

(
~X(t)

)
about the mean E

(
~X(t)

)
. Let us write µi(t) for E

(
~Xi(t)

)
and µ(t) for the

vector with entries µi(t), 1 ≤ i ≤ NS. Then

E
(
αj( ~X)

)
= αj(µ) +

1
1!

∑n
i=1 E

(
~Xi − µi

)
∂
∂xi

αj(µ)

+ 1
2!

∑n
i=1

∑n
k=1 E

(
( ~Xi − µi)( ~Xk − µk)

)
∂2

∂xi∂xk
αj(µ) + . . .

where we omitted t in the equation to improve the readability. Note that E
(
~Xi(t)− µi

)
=

0 and since we restrict to reactions that are at most bimolecular, all terms of order three
and more disappear. By letting Cik be the covariance E((Xi(t)− µi)(Xk(t)− µk)) we get

E
(
αj( ~X)

)
= αj(µ) +

1
2

∑NS

i=1

∑NS

k=1 Cik
∂2

∂xi∂xk
αj(µ) (3.3)

Next, we derive an equation for the covariances by first exploiting the relationship

d

dt
Cik =

d

dt
E
(
~Xi

~Xk

)
− d

dt
(µiµk) =

d

dt
E
(
~Xi

~Xk

)
−
(

d

dt
µi

)
µk − µi

(
d

dt
µk

)
(3.4)

and if we couple this equation with equations for the means, the only unknown term

that remains is the derivative d
dt
E
(
~Xi

~Xk

)
of the second moment. We can apply the same

strategy as before by using Eq. (3.1) and doing the Taylor expansion about the mean for
the test function fj(x) := αj(x)xi for the corresponding terms

d
dt
E
(
~Xi

~Xk

)
=

NR∑
j=1

(
vj,ivj,kE

(
αj( ~X)

)
+ vj,kE

(
αj( ~X) ~Xi

)
+ vj,iE

(
αj( ~X) ~Xk

))
, (3.5)

where vj,i and vj,k are the corresponding entries of the vector vj . We can use Eq. (3.3) for

the term E
(
αj( ~X)

)
, while the terms E

(
αj( ~X) ~Xi

)
and E

(
αj( ~X) ~Xk

)
have to be replaced

by the corresponding Taylor series about the mean. Let fj(x) := αj(x)xi. Similar to

Eq. (3.3), we get that E
(
αj( ~X) ~Xi

)
equals

E
(
αj( ~X) ~Xi

)
= αj(~µ)µi +

1
1!

NS∑
i=1

E
(
~Xi − µi

)
∂
∂xi

fj(~µ)

+ 1
2!

NS∑
i=1

NS∑
k=1

E
(
( ~Xi − µi)( ~Xk − µk)

)
∂2

∂xi∂xk
fj(~µ) + . . .

(3.6)

Here, it is important to note that moments of order three come into play, since derivatives
of order three of fj(x) = αj(x)xi may be nonzero. It is possible to take these terms into
account by deriving additional equations for moments of order three and higher. Obviously,
these equations will then include moments of even higher order such that theoretically we
end up with an infinite system of equations. However, a popular strategy is to close the
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equations by assuming that all moments of order > M that are centered around the mean
are equal to zero. E.g. if we choose M = 2, then we can simply use the approximation

E
(
αj( ~X)Xi

)
≈ αj(~µ)µi +

1

2!

NS∑

i=1

NS∑

k=1

E
(
( ~Xi − µi)( ~Xk − µk)

) ∂2

∂xi∂xk

fj(~µ).

This approximation is then inserted into Eq. (3.5) and the result is used to replace the

term d
dt
E
(
~Xi

~Xk

)
in Eq. (3.4). Finally, we can integrate the time evolution of the means

and that of the covariances and variances.

The moments of higher order can be approximated using this approach by choosing the
appropriate test function f(x). To truncate possibly infinite system of ODEs we apply
low dispersion closure (cf. Section 3.1.3).

To illustrate the method, we consider the following examples for the simple dimerization
(cf. Example 3.2), gene expression (cf. Example 3.3) and bursty protein production (cf.
Example 3.4) reaction systems.

Example 3.2 (Moment Closure for Simple Dimerization Model). ←֓ Assuming that
all central moments of order three and higher are equal to zero, we get the following
equations for the means, variances and the covariance of the species

d
dt
µ1 = −c1µ1 (µ1 − 1)− c1C1,2 + 2c2µ2

d
dt
µ2 = 1

2
c1µ1 (µ1 − 1) + 1

2
c1C1,2 − c2µ2

d
dt
C1,1 = −2c1µ3

1 + 4c1µ
2
1 − 2c1µ1 + 4c2µ2 + 4c2µ1µ2

d
dt
C1,2 = −3

2
c1C1,1 + µ1

(
−c1(µ1 − 1)− 1

2
c1µ1C1,1 + c2µ

2
1

)

+µ2 (−2c2 − c2µ1 + c1C1,1)

d
dt
C2,2 = 3

2
c1C1,1 +

1
2
c1µ1(µ1 − 1) + µ2(c2 − c1C1,1)

.

Here we denote the expectations of species P (P2) by µ1 (µ2), variances are given by
C1,1, C2,2 and the covariance between P and P2 is C1,2. In the equations we omit t to
improve readability.
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Example 3.3 (Moment Closure for Gene Expression Model). ←֓ We apply the mo-
ment closure technique described above to the gene expression system. When we
consider only the moments up to second order, the corresponding equations for the
average number of molecules are given by

d

dt
µDoff

= τoffµDon − E
(
τ ponXDoff

XP

)

d

dt
µDon = τonµDoff

+ E
(
τ ponXDoff

XP

)

d

dt
µR = krµDon − γrµR

d

dt
µP = kpµR − γpµP ,

where µDoff
, µDon are the expected numbers of Doff and Don respectively, and µR, µP

are the expected numbers of mRNA and proteins.

Biological model 3.2 (Bursty Protein Production). ←֓ Consider a simple model of
gene expression with enzymatic degradation [219]

∅
k0−→M

k1−→ ∅

M
k2−→M + P

P + E
k3−⇀↽−
k4

C
k5−→ E.

The detailed description of the corresponding biological functions can be found in
[77, 195], where it is noted that the active protein degradation influences the protein
distribution such that they are skewed towards high molecule numbers. Assuming
binding and unbinding of P and E are fast compared to protein degradation, the
authors of [77, 222] simplify this chemical reaction network in the following way

P
f(xP )−−−→ ∅,

with f(xP ) =
Ω vMxP

ΩKM+xP
, where xP is the number of proteins and KM = k4+k5

k3
is the

Michaelis-Menten constant. Here rates are set to k0 = 8, k1 = 10, k2 = 100, vM = 100,
KM = 20 and the volume of the system is set to Ω = 1. The reaction rates are chosen
such that the proteins are produced in bursts of size b = k2/k1. The complete chemical
reaction network with the Michaelis-Menten type kinetics for P , f(xP ) =

vMxP

KM+xP
is

given by

∅
k0−→M

k1−→ ∅

M
k2−→M + P

P
f(xP )−−−→ ∅.
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Example 3.4 (Moment Closure for Bursty Protein Production). ←֓ Assuming that
all central moments of order three and higher are equal to zero, we get the following
equations for the means and covariances of the species

d
dt
µM = Ωk0 − k1µM

d
dt
µP = k1µM − f(µP )− 1

2
∂2f(µP )
∂µP

2 CP,P
d
dt
CM,M = k0 + k1µM − 2k1CM,M

d
dt
CM,P = −k1CM,P + k2CM,M −

(
∂f(µP )
∂µP

)
CM,P

d
dt
CP,P = 2k2CM,P + f(µP ) +

(
1
2

∂2f(µP )
∂µP

2 − 2 ∂f(µP )
∂µP

)
CP,P ,

(3.7)

where the expectations of the species are given by µM and µP , variances are given
by CM,M and CP,P and the covariance between M and P is denoted by CM,P . The

derivatives of the rate function f(xP ) are given by ∂f(µP )
∂µP

= vMKM

(KM+xP )2
and ∂2f(µP )

∂µP
2 =

−2 vMKM

(KM+xP )3
.

3.1.3 Other Closure Techniques

Possibly infinite system of differential equations obtained using moment closure approach
needs to be truncated. In the course of this thesis we rely on the closure method where we
assume that all central moments of the order > M are zero. It is referred in the literature
as to low dispersion closure.

Here, we provide the general idea of the moment closure and short description of some of
the existing techniques. Given the order vector of non-negative integers I = (I1, . . . , INS

),

the uncentered moment of ~X is given by µ(I) = E
(
~X(I1) ~X(I2) · · · ~X(INS

)
)
. The order of

this moment is |I| =
NS∑
j=1

Ij. The evolution of the vector µ of moments of order ≤ k is

governed by the exact k-th order dynamics [200]

d

dt
µ = Aµ+Bµ̄, (3.8)

where µ ∈ R
K and K ≤ k since there are many moments of the same order. The vector

µ̄ ∈ R
K̄ contains moments of order > k (k is called the order of truncation). The term

Bµ̄ appears to be non-zero when there are bi-molecular reactions in chemical reaction
network so that the system of ODEs is open since it depends on µ̄. Using the moment
closure procedure, we can approximate the dynamics of µ by the one of ν:

d

dt
ν = Aν +Bφ(ν), (3.9)

where ν ∈ R
K and φ(ν) is the finite approximation of µ̄. The idea of the moment closure

techniques is to find such closure function φ(ν) that the solution ν in (3.8) is nicely
approximates to the solution µ in (3.9).
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Various methods can be used to close the system of equations, such as derivative matching
and zero cumulants closures [112, 167, 200, 236] as well as beta-binomial [139, 140] (that
addresses the problem of highly skewed population distributions), maximum entropy [203]
and Dirac [108] distribution assumptions.

Mean-Field. The evolution of the mean of populations is analyzed using mean-field ap-

proach. The higher-order moments E
(
~Xi

~Xj · · · ~Xk

)
are approximated using the in-

dependence assumption, i.e., E
(
~Xi

~Xj · · · ~Xk

)
= E

(
~Xi

)
E
(
~Xj

)
· · ·E

(
~Xk

)
, so that

the covariances are ignored. When the amount of molecules is high, this introduces
the accurate approximation for the expected populations. However, for some models
(such as circadian clock) it does not perform well.

Zero Cumulants. It is assumed that the populations are distributed according to the
multivariate normal, so that all the moments of order > 2 can be expressed in terms
of means and covariances according to Isserlis theorem [117].

Derivative Matching. The assumption is made that the populations are distributed accord-
ing to the log-normal distribution [200]. It provides the straightforward multiplicative
way of closing higher-order moments.

Methods based on the mass fluctuation analysis are considered in [22, 89]. Recently,
Lakatos et al. presented the method [145] to conduct the closure using multidimensional
normal, log-normal and gamma distributions. Other group of methods are based on the
system size expansion [94, 194, 221] (that takes its roots in Van Kampen’s work [126]). The
comparison of the mean-field, normal closure, min-normal and log-normal closures for the
performance models is provided in [97]. The dynamic switching between different closure
methods (namely, derivative matching, zero cumulants, zero variance and low dispersion)
for the parameter identification task is considered in [35]. It can also happen that the
system of ODEs is stiff and it requires the specialized solvers to be applied. The authors
of [249] propose to use so-called convergent moment to mitigate the stiffness problem.

Most of the above mentioned closures were recently implemented in the tool CERENA [128].
The (non-complete) list of the available software to conduct the moment closure analysis
is given in Appendix A.4.

3.1.4 Accuracy of Moment Closure Approximation

For non-complicated systems such as the simple dimerization we find that the approxima-
tion provided by the moment closure method is very accurate even if only 2 moments are
considered. In general, however, numerical results show that the approximation tends to
become worse if systems exhibit complex behavior such as multi-stability or oscillations.
Increasing the number of moments typically improves the accuracy [5] but it may happen
that the resulting equations become very stiff [67].

Grima has investigated the accuracy of the approximation for |I| = 2 and |I| = 3 by a
comparison with the system size expansion of the master equation [94]. He found that
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for monostable systems with large volumes, the approximation of the means E[ ~X(t)]
has a relative error that scales as Ω−|I|, while the relative errors of the variances and
covariances scale as Ω−(|I|−1), |I| ∈ {2, 3}. Detailed comparison of existing methods was
recently presented by Schnoerr et al. [194]. The authors of [147] provide the theoretical and
numerical results about the errors that come from the truncation of moment ODE system
when standard moment closure approach is applied. For small volumes or systems with
multiple modes, however, only numerical evaluations of the accuracy are available [5, 67],
where the approximated moments are compared to statistical estimates based on Monte
Carlo simulations of the process. Recently, it was shown that it is possible to derive the
exact lower and upper bounds on the moments in equilibrium state [76].

Here we investigate the accuracy of the low dispersion closure using several biological
models. In Example 3.5 we consider the simple dimerization:

Example 3.5 (Accuracy of Moment Closure for Simple Dimerization). ←֓ The com-
parison between the moments computed using direct CME integration and obtained
using moment closure technique for the simple dimerization model is provided in
Table 3.1, where Neq denotes the number of equations in the ODE system. The in-
tegration of the moment equations takes less than one second for this example. The
initial protein numbers are chosen as P = 301 and P2 = 0 and we consider the system
at time t = 20 [5]. We find that the moment closure approximation provides very
accurate results.

|I| Neq ǫ|I|=1 ǫ|I|=2 ǫ|I|=3 ǫ|I|=4 ǫ|I|=5

2 5 0.001754 0.003495 - - -
3 9 0.001752 0.003492 0.005215 - -
4 14 0.001743 0.003465 0.005211 0.006907 -
5 20 0.001721 0.003418 0.005183 0.006901 0.008555

Table 3.1: ←֓ Errors of the moment closure approximation for the dimerization
chemical reaction network.

The first column in Table 3.1 refers to the highest order |I| of the moments that were con-
sidered during the computation, i.e., all central moments of higher order are approximated
with zero. In addition we list the relative errors of the means (ǫ|I|=1) and the moments of
the higher order k (ǫ|I|=k) using the error norm

ǫ|I|=k = max
i∈{1,...,NS}

|m̂(k)
i −m

(k)
i |

m
(k)
i

. (3.10)

Here, m̂
(k)
i and m

(k)
i are the values of moments E(Xk

i ) computed using the moment closure
method and obtained via direct numerical simulation and the maximum is taken over the
chemical species. The order vector is I = (0, . . . , 0, k, 0, . . . , 0) both for m̂

(k)
i and m

(k)
i . The

second column in tables refers to the number of equations Neq that were integrated for
the moment closure method.
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Let us introduce another model of multi-attractor for which we obtain the larger equation
system that governs the dynamics of moments:

Biological model 3.3 (Multi-attractor Model). ←֓ The multi-attractor model [251]
consists of 23 chemical reactions (listed in Appendix A.7) and describes the dynamics
of three genes and the corresponding proteins. The proteins PaxProt , MAFAProt
and DeltaProt are able to bind to the promotor regions of the DNA and activate or
suppress the production of other proteins. The model is infinite in three dimensions.

Example 3.6. ←֓ We consider the accuracy of the moment closure approximation
(cf. Table 3.2) in the same way as for the previous example but list the running time
in addition (third column). The values of stochastic reaction constants are chosen as
cp = 5, cd = 0.1, cb = 1.0, cu = 1.0 and we consider the system at time t = 10. As
initial conditions we assumed one molecule for all DNA-like species (PaxDna = 1,
MAFADna = 1, DeltaDna = 1) and the molecular counts for the remaining species
are 0.

We find that the moments obtained via the moment closure approximation are accu-
rately approximated. For instance, the average number of MAFADna is approximated
as 19.719 while the result of the direct numerical simulation gives 19.544. Note that
it takes 20634 seconds to finish the numerical simulation (the size of the truncated
state space |S| = 7736339) whereas the moment closure approximation takes only
3649 seconds.

|I| Neq time (sec) ǫ|I|=1 ǫ|I|=2 ǫ|I|=3 ǫ|I|=4 ǫ|I|=5

2 104 2 0.043987 0.077507 - - -
3 559 40 0.043987 0.067790 0.104288 - -
4 2379 443 0.043987 0.058938 0.082293 0.096345 -
5 8567 3649 0.043987 0.037542 0.066227 0.056258 0.110358

Table 3.2: ←֓ Moment closure approximation results for the multi-attractor network.

Yet another model to be considered is the exclusive switch that exhibits bimodal behavior
for certain parameter regions:

Example 3.7. ←֓ The reaction rate constants and initial conditions are chosen as
in the description of the system. Again, we first consider the accuracy of the moment
closure approximation (cf. Table 3.3) at time t = 100 in the same way as for the
previous examples. As also noted by Grima, the error of the moments that have the
highest order which have been considered during the computation, is rather high [94].
Thus, in the moment closure approximation we have to consider at least all moment
up to order five to accurately estimate the moments up to order four.
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|I| Neq time (sec) ǫ|I|=1 ǫ|I|=2 ǫ|I|=3 ǫ|I|=4 ǫ|I|=5

2 20 < 1 0.004555 0.194240 - - -
3 55 < 1 0.004555 0.026281 0.060490 - -
4 125 2 0.004555 0.020493 0.028242 0.136965 -
5 251 6 0.004555 0.017774 0.027933 0.026724 0.015461

Table 3.3: ←֓ Moment closure approximation results for the exclusive switch.

Let us also investigate the accuracy of the moment closure approximation for gene expres-
sion system:

Example 3.8. ←֓ We compare the approximated moments with those computed via
a direct numerical integration of the CME (Table 3.4). We consider the following three
cases. The moment closure approximation is carried out using all moments up to order
4, 6, and 8. For each case we list the number of moment equations, the running time,
and the relative errors in the first four moments (columns 4-7).

|I| Neq time (sec) ǫ|I|=1 ǫ|I|=2 ǫ|I|=3 ǫ|I|=4 ǫ|I|=5

4 70 1 8 · 10−6 8.3 · 10−5 9.6 · 10−5 8.24 · 10−4 -
6 209 25 2 · 10−6 2 · 10−6 1 · 10−5 3.6 · 10−5 8.5 · 10−6

8 494 3726 1 · 10−6 2 · 10−6 2 · 10−6 4 · 10−6 1.3 · 10−6

Table 3.4: ←֓ Moment closure approximation results for the gene expression system.

3.2 Method of Conditional Moments

In many chemical reaction networks we find a joint distribution for which a representation
in terms of the moments is not ideal. For instance, many networks describing gene regula-
tory processes contain binding events where the number of binding sites is very low (often
there is just a single binding site). Then the size of the populations of the corresponding
chemical species is bounded by the number of binding sites. For instance, in case of the
gene expression model we only have two possibilities: the DNA is either in the on or in
the off state. Then the marginal probability distribution consists of a small number of
discrete probabilities and the joint distribution is typically divided into several modes
that correspond to the different binding states. In such cases it is obvious that for the
small populations a moment representation is not adequate compared to considering the
discrete mode probabilities. This, however, implies that one has to consider conditional
moments (conditioned on the mode) for the remaining (large) populations. Here the focus
is on a comparison of the underlying probability distributions that are reconstructed from
the moments. In the work of Hasenauer et al. [105] equations have been derived for the
integration of the mode probabilities over time (where the mode corresponds to the state
of the small populations, e.g. state of binding sites, etc.) and equations to integrate the
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moments of the large populations, conditioned on the mode. We refer to this as the MCM
approach and in the numerical results presented in the following, we reconstruct the joint
distribution based on both the MM approach and the MCM approach to see whether the
reconstructed joint distributions are more accurate if conditional moments are used.

We first decompose the chemical populations described by ~X(t) into small and large
populations. Here we assume that this decomposition is static. However, it is obvious that
during the integration over time, we can (after reconstructing the joint distribution) choose
a different decomposition for the remaining time. From what size on a population should be
considered as small typically depends on the amount of the main memory that is available
and on the maximum order of the moments that we consider for the large populations.
Note that considering conditional moments yields a smaller number of equations if the
order of the considered moments is high. The reason is that the number of equations
for representing the dynamics of the small populations does not increase as the order of
considered conditional moments increases. Also, for many systems the decomposition is
obvious, as the small populations are exactly those that have a maximum size of, say, less
than 10 (because they represent binding sites) and the large populations count protein
numbers which may become rather high. Recently, it was shown by Ruess [187] that the size
of the ODE system can be reduced even further by considering only those configurations
of the system that are realistic (reachable).

Formally, we write the random vector ~X(t) at time t as ~X(t) =
(
~Y (t), ~Z(t)

)
, where ~Y (t)

corresponds to the small, and ~Z(t) to the large populations. Similarly, we write x = (~y, ~z)
for the states of the process and vj = (v̂j, ṽj) for the change vectors, j ∈ {1, . . . , NR}.
Again, the first component refers to the small and the second component to the large
populations. The CME 2.5 becomes

∂π(~y,~z)
∂t

=
NR∑
j=1

(αj(~y−v̂j, ~z−ṽj)π(~y−v̂j, ~z−ṽj)− αj(~y, ~z)π(~y, ~z)) (3.11)

where we omitted the time parameter t to improve readability. Next, we sum over all
possible ~z to get the time evolution of the marginal distribution π̂(~y) =

∑
~z π(~y, ~z) of the

small populations:

∂
∂t
π̂(~y) =

∑
~z

NR∑
j=1

αj(~y − v̂j, ~z − ṽj)π(~y − v̂j, ~z − ṽj)−
∑
~z

m∑
j=1

αj(~y, ~z)π(~y, ~z) =

NR∑
j=1

π̂(~y − v̂j)E
[
αj(~y − v̂j, ~Z) | Y = ~y − v̂j

]
−

NR∑
j=1

π̂(~y)E
[
αj(~y, ~Z) | ~Y = ~y

] (3.12)

Note that in this small master equation that describes the change of the mode probabilities
over time, the sum runs only over those reactions that modify ~y, since for all other reactions
the terms cancel out. Moreover, on the right side we have only mode probabilities of
neighboring modes and conditional expectations of the continuous part of the reaction
rate. For the latter, we can use a Taylor expansion about the conditional population
means. Similar to Eq. (3.6), this yields an equation that involves the conditional means
and centered conditional moments of second order (variances and covariances). Thus, in
order to close the system of equations, we need to derive equations for the time evolution
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of the conditional means and centered conditional moments of higher order. Since the
mode probability π(~y) may become zero, we first derive an equation for the evolution of
the partial means (conditional means multiplied by the probability of the condition)

∂
∂t

(
E[~Z | ~y] π(~y)

)
=
∑
~z

~z ∂
∂t
π(~y, ~z) =

NR∑
j=1

E[(~Z + ṽj)αj(~y − v̂j, ~Z) | ~y − v̂j] π(~y − ṽj)

−
NR∑
j=1

E[~Zαj(~y, ~Z) | ~y] π(~y),

where in the second line we applied Eq. (3.11) and simplified the result. The conditional

expectations E[(~Z + ṽj)αj(~y − v̂j, ~Z) | ~y − v̂j] and E[~Zαj(~y, ~Z) | ~y] are then replaced by
their Taylor expansion about the conditional means such that the equation involves only
conditional means and higher centered conditional moments [105]. For higher centered
conditional moments, similar equations can be derived.

If all centered conditional moments of order higher than k are assumed to be zero, the result
is a closed system of differential algebraic equations (algebraic equations are obtained
whenever a mode probability π(~y) is equal to zero). However, it is possible to transform the
system of differential algebraic equations into a system of (ordinary) differential equations
after truncating modes with insignificant probabilities. Then we can get an accurate
approximation of the solution after applying standard numerical integration methods. We
construct the ODE system using the tool SHAVE which implements the truncation based
approach and solves it using MATLAB’s ode23 solver with the default error tolerance
settings. Therefore, the overall moments are computed as follows

E
[
~Yi

]
=
∑

~y

~yiπ(~y)

E
[
~Zi

]
=
∑

~y

E
[
~Zi|~y

]
π(~y)

We consider the application of method of conditional moments to the gene expression
model in the next example:

Example 3.9 (MCM applied to Gene Expression model). ←֓ We apply the method
of conditional moments to the gene expression system. The modes of the system are
then given by the state of the DNA. The equations for the mode probabilities (poff,
pon) and the expected number of mRNA (µR,off, µR,on) and proteins (µP,off, µP,on) are
as follows:

d

dt
poff = τon pon − (τoff + τ pon µP,off)poff

d

dt
(µR,off poff) = −γrµR,off poff

d

dt
(µP,off poff) = (kpµR,off − γpµP,off)poff

d

dt
pon = (τoff + τ ponµP,off)poff − τon pon

d

dt
(µR,on pon) = (kr − γrµR,on)pon

d

dt
(µP,on pon) = (kpµR,on − γpµP,on)pon
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We computed the conditional moments and conditional probabilities over time by
considering moments up to the order of 4, 6, and 8. For these three cases the number
of equations, when compared to the method of moments (MM), are as follows (however,
can be further decreased [187]):

moment order M 4 6 8
Neq, MM 69 209 494
Neq, MCM 30 56 90

The relative errors ǫ|I|=k (3.10) of the results of the method of conditional moments
(MCM) are given in Table 3.5, where we again compared to the results obtained via
a direct numerical solution.

Our experiments show that the MCM performs much faster (due to the smaller
number of equations) and still yields accurate approximation of the moments. For
the chosen set of parameters the MCM tends to provide a better approximation for
higher moments, whereas the MM approach is more accurate for lower moments when
the same number of moments is considered. For example, in the case of 6 moments
the maximum relative error for the first moments computed by the MM approach is
2 ·10−6, compared to 3.2 ·10−5 when computed using the MCM. At the same time, the
maximum relative errors of the sixth moments are 6.5 · 10−4 and 2 · 10−4 for the MM
and the MCM respectively. Note that the (unconditional) moments for the MCM are
computed via multiplication of the conditional moments with the mode probabilities
and sum over all possible conditions.

We also consider another set of parameters for the gene expression kinetics. The
rate constants are chosen (τon, τoff, kr, kp, γr, γp, τ

p
on
) = (0.05, 0.05, 10, 1, 4, 1, 0.015) as

in [105]. For the initial states we simply use x0,1 = (1, 0, 4, 10) and x0,2 = (1, 0, 4, 10)
with probabilities P (x0,1) = 0.7 and P (x0,1) = 0.3. The comparison of the moment
values at time instant t = 10 reveals that the MCM provides a much better approxi-
mation both for high and low order moments as opposed to the first parameter set. For
instance, in the case of 6 moments the maximum relative error for the first moments
computed by the MM approach is 0.14 whereas in the MCM approach the error is
7.5 · 10−5. The maximum relative error of the sixth moments for the MM approach is
0.28 compared to 0.02 using the MCM.

|I| Neq time (sec) ǫmode ǫ|I|=1 ǫ|I|=2 ǫ|I|=3 ǫ|I|=4

4 30 1 7 · 10−6 1 · 10−5 2.86 · 10−4 1.12 · 10−3 6.98 · 10−3

6 56 2 6 · 10−6 3.2 · 10−5 5.9 · 10−5 6.8 · 10−5 2.18 · 10−4

8 90 9 2 · 10−6 4.2 · 10−5 6.2 · 10−5 7.7 · 10−5 9.1 · 10−5

Table 3.5: ←֓ Conditional moment closure approximation results for the gene expres-
sion system.
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The application of MCM to the exclusive switch model is considered in the following
example:

Example 3.10 (MCM applied to Exclusive Switch model). ←֓ We apply the method
of conditional moments to the exclusive switch system. This system possesses three
modes that correspond to three possible states of the promoter, i.e., p1 = P (DNA = 1),
p2 = P (DNA.P1 = 1) and p3 = P (DNA.P2 = 1). We first calculate the number of
equations to be solved when the standard moment closure is applied and compare
that to the size of ODE system solved when MCM is used in the table below.

moment order M 4 6 8
Neq, MM 125 461 1286
Neq, MCM 45 84 135

As expected, for the system with more species, the benefit of applying the MCM is
more obvious. We also list the relative error ǫ|I|=k (3.10) of the results of MCM applied
to the exclusive switch system in Table 3.6, where we again compared to the results
obtained via a direct numerical solution. The relative error of the approximation
gradually decreases as more moments are taken into the consideration. We emphasize
that the computation time for the case of 8 moments is 83 seconds whereas the
application of MM is almost infeasible (the corresponding computation takes around
60 hours).

|I| Neq time (sec) ǫ|I|=1 ǫ|I|=2 ǫ|I|=3 ǫ|I|=4

4 45 5 1.0 · 10−5 3.7 · 10−5 4.9 · 10−5 1.5 · 10−4

6 84 20 2.4 · 10−6 3.9 · 10−6 5.1 · 10−6 6.4 · 10−6

8 135 83 7.8 · 10−7 1.4 · 10−6 2.0 · 10−6 1.9 · 10−6

Table 3.6: ←֓ Conditional moment closure approximation results for the exclusive
switch system.



Chapter 4

Inverse Moment Problem

Moment closure methods can be used to approximate the moments of a stochastic dy-
namical system over time. The numerical integration of the corresponding ODE system
is usually faster than a direct integration of the transient probability distribution or an
estimation of the moments based on Monte-Carlo simulations of the system. However, if
one is interested in certain events and only the moments of the distribution are known,
the corresponding probabilities are not directly accessible and have to be reconstructed
based on the moments. Here, we shortly review standard approaches to reconstruct one-
dimensional marginal probability distributions πi(xi, t) = P[Xi(t) = xi] of a Markov chain
~X that describes the dynamics of a chemical reaction network. Assume that a finite
number of moments of the i-th molecular population at a fixed time t is given. Then the
corresponding probability distribution is in general not uniquely determined since there
can be several distributions that fulfill the moment constraints. For instance, the expo-
nential distribution maximizes the entropy among all continuous distributions on [0,∞)
with the same mean. Similarly, the normal distribution is chosen among all continuous
distributions if mean and variance are known. In order to choose one distribution from
this set, we apply the maximum entropy principle. In this way we minimize the amount
of prior information and avoid any other latent assumption about the distribution.

Here, we use the moments up to order M to obtain the one- and two-dimensional marginal
probability distributions of a reaction network. The reconstruction of the distributions of
higher dimension is more involved and hence the advanced numerical techniques must be
applied [3].

Having its roots in statistical mechanics and thermodynamics [119], the maximum en-
tropy approach was successfully applied to solve moment problems in the field of climate
prediction [2, 131, 186], nonlinear chaotic systems [207], econometrics [27, 130, 224, 240],
speech processing [123], image processing [69, 70, 113, 230], finance [39, 210], performance
analysis [99, 214] and many others [32, 64, 193].

34
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4.1 Classical Moment Problem

In many problems in physics and finance it is easier to obtain the statistical data (in
terms of moments) of the underlying probability distribution than the distribution itself.
Therefore, it is the important task to understand how to reconstruct the unknown proba-
bility measure from the partial information contained in the finite number of moments.
This problem was formulated by Stieltjes:

Given the moments µk =
∫ b

a
xkg(x) dx, k = 0, 1, . . . ,M , recover the function g(x).

In the univariate case, the moment problem is subdivided into the following subproblems
according to the values of a and b:

• a = 0, b <∞ (usually, b = 1): Hausdorff moment problem [138] ([107])

• a = 0, b =∞: Stieltjes moment problem [208]

• a = −∞, b =∞: Hamburger moment problem [103]

These are difficult inverse problems that usually lead to the (numerical) solution of ill-posed
systems of equations [19]. In the setting of the stochastic chemical kinetics, we restrict
ourselves to the Stieltjes or Hausdorff moment problems. More precisely, we consider the
truncated versions of those since moment closure methods are capable to provide accurate
approximations only to the first M + 1 moments of the distribution, µ = (µ0, . . . , µM)
(within the reasonable computational time).

Here, we present the summary of the solution existence results for the truncated Stieltjes
problem as given in [75]. The moment spaceM(M+1) consists of all vectors µ ∈ R

(M+1)
≥0

such that there exists at least one probability distribution function g(x) with moments µ.
The moment spaceM(M+1) is a convex subset (not necessarily closed or bounded [49]).
The following cases are distinguished:

• the point µ ∈M(M+1) \ ∂M(M+1) belongs to the interior of the moment space. The
corresponding problem possesses infinitely many solutions and it is called indeter-
minate,

• the point µ ∈ ∂M(M+1) belongs to the boundary of the moment space. The corre-
sponding problem possesses a unique solution and it is called determinate.

The Hankel determinants |H(0)
2k | and |H

(1)
2k+1| are given by

|H(0)
2k | =

∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µk
...

...
µk−1 µk · · · µ2k−1

µk µk+1 · · · µ2k

∣∣∣∣∣∣∣∣∣

, |H(1)
2k+1| =

∣∣∣∣∣∣∣∣∣

µ1 µ2 · · · µk+1
...

...
µk µk+1 · · · µ2k

µk+1 µk+2 · · · µ2k+1

∣∣∣∣∣∣∣∣∣

. (4.1)
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The necessary and sufficient conditions for solution existence (given that moment vector

µ ∈ R
(M+1)
≥0 belongs to the Stieltjes moment space, µ ∈ M(M+1) ∪ ∂M(M+1)) to the

Stieltjes moment problem are provided by the following inequalities [212]

|H(0)
s | > 0, 2 ≤ 2s < M + 1

|H(1)
s | > 0, 3 ≤ 2s+ 1 < M + 1.

These conditions are often formulated in terms of monotonically increasing sequences [48,
137, 209, 237].

The conditions for solution existence in case of Hausdorff are studied in details in the PhD
thesis of Tari [214]. Here we provide only the theorem [107] for the Hausdorff moment
problem: a necessary and sufficient condition that µ = (µ0, . . . , µM) are moments of a
distribution supported over the interval [0, 1] is that all the differences δk defined as

δkµl = µl −
(
k

1

)
µl+1 +

(
k

2

)
µl+2 + · · ·+ (−1)kµl+k

are non-negative, i.e., δkµl ≥ 0, k, l = 0, . . . ,M .

Results on convergence properties of the constructed solution (using not only the maximum
entropy approach) can be found in [27, 46, 165, 169, 171, 172, 213]. Here we use the results
given in [162], where the authors consider the sequence of functions gN(x) that converge
to g(x) as N goes to infinity, i.e., lim

N→∞
gN(x) = g(x). The point-wise convergence is

very strong assumption, so the authors stick to the weaker convergence in averages, i.e.,
lim

N→∞

∫ b

a
fk(x)gN(x) dx =

∫ b

a
fk(x)g(x) dx = µk, where fk(x) is a basis function to generate

moments, for example fk(x) = xk. If one applies the maximum entropy principle, the
sequence of approximations gN(x) is the least biased one. It is important to note that
most results are derived under the assumption that the number of moment constraints
tends to infinity, M →∞. Here we always consider the finite number of moments since we
propose the numerical procedure that can be applied on the real data, therefore only the
limited amount of statistical information is available (the problem of selecting the certain
finite subset of moments from the infinite sequence is solved for the case of fractional
moments in [179]).

The extensions to multiple dimensions are non-trivial and still are not elaborated to the
same level as for univariate case [124, 132, 170, 183].
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4.2 Maximum Entropy Reconstruction

4.2.1 Maximum Entropy Principle

The principle of maximum entropy provides a solution to the classical moment problem
of probability distribution reconstruction that satisfies the given moment constraints.

The principle can be stated as follows [119, 120]: consider the discrete random variable X
that has a finite (or countable infinite) set of possible states S = {s0, s1, . . . , sn, . . .} with
probabilities p(x) = P[X = x], x ∈ S. The only assumptions given are M + 1 constraints

∑

x∈S
p(x) = 1, pi ≥ 0,

∑

x∈S
fk(S)p(x) = µk, 1 ≤ k ≤M <∞,

(4.2)

where µk are the moments defined for a set of suitable functions fk(S) that represent the
known information (generally, they may depend not only on the current state x but also
on the other states, therefore it is given as fk(S), not fk(x)). The number of constraints
is usually less than the number of possible states, therefore there are an infinite number
of distributions G that satisfy these constraints. The maximum entropy principle states
that the minimally prejudiced distribution is the one that maximizes the entropy

H(p) = −
∑

x∈S
p(x) · ln [p(x)] (4.3)

while satisfying the provided constraints. That is, the distribution of choice is

q = argmax
p∈G

H(p), (4.4)

where G denotes the family of all possible distributions.

As originally stated by Jaynes [119], the maximum entropy distribution is “uniquely deter-
mined as the one which is maximally noncommittal with regards to missing information,
and that it agrees with what is known, but expresses maximum uncertainty with respect
to all other matters.” He analyzed the distribution of gas molecules and showed that the
maximization of the statistical mechanic entropy is equal to maximization of Shannon’s
information entropy.

Example 4.1 (MaxEnt Exponential Distribution). ←֓ Consider one-dimensional
discrete distribution p over the set of states S = {0, 1, . . . , n}. Assume that the only
given constraint is the expectation µ1. The constraints are then given by:

n∑

i=0

pi = µ0 = 1,
n∑

i=0

i · pi = µ1, pi ≥ 0.

The maximum entropy distribution is then given by (4.6) as pi = exp (−λ0 − λ1i) =
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αβi, α = exp(−λ0), β = exp(−λ1). In this notation, the constraints can be expressed
as:

n∑

i=0

αβi = µ0 = 1,
n∑

i=0

iαβi = µ1, pi ≥ 0.

We can see that µ1 = µ1 ·µ0, therefore
n∑

i=0

iαβi = µ1

n∑
i=0

αβi and
n∑

i=0

(i−µ1)β
i = 0. The

coefficients βi are positive, (0− µ1) < 0 and there exist such k that (k − µ1) > 0, so
there is only one change in sign. Therefore, there exist a unique real root to this set of
equations according to Descartes’ rule of signs, which corresponds to the exponential
distribution.

In the rare case when the number of provided constraints is equal to the number of states
|S|, the probability distribution function can be uniquely determined as shown in Example
4.2.

Example 4.2 (Moment Generating Function). ←֓ Consider one-dimensional discrete
distribution p over the finite set of states S = {s0, s1, . . . , sn} and the moment gener-
ating function g. Then the function g is uniquely determined by p and vice versa [95,
Theorem 10.2].

In case of continuous random variables, the maximum entropy distribution maximizes the
Shannon’s entropy (4.3) which is defined relative to the uniform measure

H(p) = −
∫

p(x) · ln [p(x)] dx,

and the constraints are given as

∫
p(x) dx = 1,

∫
fk(x)p(x) dx = µk, 1 ≤ k ≤M <∞, (4.5)

where fk(x) are the basis functions and the constraints are E[fk(X)] = µk. For both
the discrete and continuous random variables, the general form of solution is given by
(Appendix A.5.1)

p(x) = exp

(
−

M∑

k=0

λkfk(x)

)
, (4.6)

where λk is the Lagrangian multiplier for the k-th moment constraint. Here we use the

monomial basis functions fk(x) = xk, so that the solution (4.6) is p(x) = exp

(
−

M∑
k=0

λkx
k

)
,

whereas extensions to other basis functions are possible. Theorem 11.1.1 in [53, p. 267]
states that the density p(x) is a unique maximizer of the entropy H(p).

Generally, there is no analytical solution given by (4.6) for M > 2, therefore we use
numerical approaches to solve the nonlinear constrained optimization problem (4.4).
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The existence conditions for various modifications of the maximum entropy problem are
given in [124]. The extension to the case of inequality constraints is given in [181]. The
multidimensional maximum entropy theory is addressed in [9, 65, 242]. We also note that
the entropy value H(p) can be estimated indirectly without reconstructing the underlying
distribution p ([101] and references therein).

There is a possibility to choose the entropy functional which is different from Boltzmann-
Shannon entropy H(p) considered here (for example, Burg entropy). The generalized
results on the existence of solution and comparison of the numerical results can be found
in [37].

4.2.2 Dual Approach in Maximum Entropy Problem

The objective function (4.3) is strictly concave with the constraints (4.5) therefore we
can transform the constrained primal optimization problem into an unconstrained one
using the dual approach. The authors of [4] were the first to apply the duality approach
to entropy maximization. Generally, one uses Kuhn-Tucker theorem [142] to prove the
duality relation. For each constraint (given by µk) we introduce the Lagrange multiplier
λk and the Lagrangian functional is defined as follows

L(p, λ) = H(p)−
M∑
k=0

λk

(∑
x x

kp(x)− µk

)
.

It is possible to show (cf. Appendix A.5.1) that maximizing the Lagrangian L gives a
solution to the constrained maximum entropy problem. The variation of the functional L
according to the unknown distribution q(x) provides the general form of q(x)

∂L
∂q(x)

= 0 =⇒ q(x) = exp

(
−1−

M∑

k=0

λkx
k

)
=

1

Z
exp

(
−

M∑

k=1

λkx
k

)
,

where

Z = e1+λ0 =
∑

x

exp

(
−

M∑

k=1

λkx
k

)
(4.7)

is a normalization constant. The dual function is defined as Ψ(λ) = L(q, λ) and

Ψ(λ) = lnZ +
M∑
k=1

λkµk. (4.8)

Therefore, the unconstrained optimization problem that has to be solved is stated as
follows (cf. Appendix A.5.2)

λ∗ = arg min
λ∈RM

Ψ(λ). (4.9)

The corresponding maximum entropy distribution is given by q(x, λ∗) = exp
(
−

M∑
k=0

λ∗
kfk(x)

)
.
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The dimensionality of the primal problem (4.4) is |S| (whenever there is a finite number of
states) and the dimensionality of the dual problem is M . The authors of [217] were the first
to formally prove that the dual function Ψ(λ) (before, it was usually addressed as potential
function [4]) is the formal convex dual of the problem (4.9) using both the arguments
of Lagrange saddle-point conditions and geometric programming. They also raise the
discussion about the nature of the dual function: because of the different dimensionality,
the values of the dual function do not describe the entropy but measure the bias (prejudice)
contained in the information. Theoretical results on the duality relationship in maximum
entropy problems can be found in [20, 36, 57, 106].

If the solution λ∗ if found using the first M as constraints, the moments of the order
l > M can be found as functions of first M moments and elements of λ∗ [190, 250]

(l + 1)µl − 1 +
M∑

k=1

kλk (µk − µk+l) = 0,

so that the maximum entropy can be used as a moment closure technique. This is used
in [203] where the values of the higher order moments are approximated via the summation
over the state space using the maximum entropy probability mass function, i.e., µl =∑
x

xlq(x), l > M .

4.3 Numerical Approach to solve Maximum Entropy

Problem

Normally, for the number of constraints M ≥ 3 it is impossible to analytically find the
maximum entropy distribution. Therefore, most of the literature on the application of
maximum entropy formalism considers the numerical approximation methods. Among
the most known are work of Agmon et al. [4], Bandyopadhyay [25], Mead et al. [162],
Ormoneit et al. [177], Wu et al. [240, 241]. For our implementation we adopt the approach
of Abramov [1–3] which combines several techniques to overcome the numerical instability
of the dual minimization problem. This approach is the most up-to-date technique that
is adopted for various applications [8, 92, 116, 213].

4.3.1 Minimization of the Dual Function

We consider the minimization of the dual function Ψ(λ) (4.8). Assume that no change
of basis is performed and the given data are algebraic moment constraints µk computed
with respect to monomials fk(x) = xk. Given an approximation λ(ℓ) = (λ

(ℓ)
1 , . . . , λ

(ℓ)
M )

of the vector λ = (λ1, . . . , λM) in the ℓ-th iteration (we omit λ0 according to Eq. (4.8),
where it is a part of the normalization constant Z), the elements of the gradient vector
are computed as ∂Ψ/∂λi ≈ µi − 1

Z
µ̃i (cf. Appendix A.5.2). The entries of the Hessian

matrix H are approximated by Hij ≈ 1/Z2 (µ̃i+jZ − µ̃iµ̃j). Note that the normalization
constant Z and the approximated moments µ̃i are updated in each step of the iteration,
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i.e., they depend on ℓ but we omit the superscript ℓ here. We use the minFunc method
from the numerical minimization package minFunc2012 [192] with the default settings
where we chose λ(0) = (0, . . . , 0) as an initial starting point (other initialization strategies
are considered in Appendix A.5.5). In case of standard Newton algorithm, the iterations
are as follows

λ(ℓ+1) = λ(ℓ) − ζ(ℓ) ·
(
H−1 ∂Ψ/∂λ

)
|λ=λ(ℓ) ,

where ζ(ℓ) is a stepping distance parameter. Since for the systems that we consider, the
dual function is convex, there exists a unique minimum λ∗ = (λ∗

1, . . . , λ
∗
M) where all first

derivatives are zero and where the Hessian is positive definite.

The dimensionality of the optimization problem is M due to the fact that λ∗
0 can be

calculated as λ∗
0 = ln[Z]−1. To find the minimum of the dual function, we use the Newton-

based methods which might fail due to an ill-conditioned Hessian matrix [4, 8]. To speed
up the convergence, Abramov [2] uses the Sherman-Morrison formula [196] to obtain the
inverse of pseudo-Hessian. The authors of [243] use the fast Fourier transform (FFT) to
evaluate the Sherman-Morrison formula so that the computational cost of one iteration is
reduced fromO(n3) (in traditional Newton method) toO(n log n) floating point operations.
The authors of [8] apply two different stopping criterion for the Newton iteration to
better render the nature of the underlying problem. To achieve better numerical stability,
other functions fk of random variables need to be considered (other than monomials
fk(x) = xk that generate algebraic moments) such as Chebyshev polynomials [25], Fup
basis functions [91], monomials of non-integer powers [101], or Lagrange interpolation
polynomials [226]. The transformation from algebraic moments to Chebyshev moments
is given in [60] where shifted Chebyshev polynomials of the first kind are used as basis
functions. The authors of [34] use up to 100 moments in their case studies (for example,
for a uniform distribution p6(x)). The magnitude order difference between µ0 and µ100 in
this case is only 104, much smaller than in case of standard monomial basis functions.

Note that the above approach provides a reasonable approximation of the individual
probabilities only in the region where the main part of the probability mass is located. In
order to accurately approximate the tails of the distribution, special methods have been
developed [75, 152].

4.3.2 Preconditioning and Minimization of Dual Function

We demonstrate the main steps of the Abramov’s algorithm by considering one-dimensional
maximum entropy reconstruction problem for continuous distributions. The adopted
outline of the algorithm [3] is given below, where we assume that original constraints (4.2)
are such that fk(x) = xk since we consider the monomial basis functions in the course of
this thesis.

1. Approximate the support of the probability distribution D = supp(p) such that
|D| <∞;

2. Convert input constraints µk into µ̃k such that µ̃1 = 0, µ̃2 = 1 (zero mean and unity
variance). Transform the support D of the distribution correspondingly;
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3. Choose the new basis using the set of orthogonal independent polynomials Jk(x) of
order M ;

4. Initialize the Lagrange multipliers γk in the new basis vk(x);

5. Reorthogonalize the monomial basis with respect to new basis vk(x);

6. Perform the numerical minimization γ∗ = argminΨv(γ) of the dual function;

7. Convert the solution γ∗ to λ∗ in the original basis.

The details for the preconditioning step 2 are given in Appendix A.5.3 (p. 101) and for
the basis orthogonalization - in Appendix A.5.3 (p. 102).

In comparison to the original algorithm [3], we do not proceed with re-orthogonalization
on each iteration of the optimization procedure. The approach of Alldredge et al. [8] is
more advanced since re-orthogonalization is done as soon as the condition number of the
Hessian becomes high, i.e., when the problem becomes ill-conditioned (the theoretical
results on the condition number of the Hessian matrix can be found in [165]) which
provides the better convergence properties. Here, we perform the orthogonalization only
once in the beginning, since the further re-orthogonalizations does not give the better
accuracy nor the smaller running time.

The first attempts to implement the preconditioning for the maximum entropy problem
with 4 parameters were done in [28] where special attention is devoted to the problem of
equivalent moment transformations. It is pointed out that the strictest possible interpreta-
tion of the maximum entropy formalism does not permit for any moment transformations.
However, since such transformations introduce negligible errors, one may use them in
implementation purposes. We are using approximations of the moments in the first place,
so the errors introduced by the preconditioning are negligible in comparison to errors from
moment closure techniques.

For the sake of computational speed we can stick to the algorithm that does not involve any
preconditioning, but still able to provide the reasonable approximations. The comparison
of approximation accuracy is given in Section 4.3.5.

The stochastic process ~X(t) has discrete state space, therefore we modify the above-stated
algorithm such that it can be applied to the moments obtained with standard moment
closure technique or method of conditional moments and allows us to reconstruct the
underlying discrete distribution.

The core of the algorithm is minimization of the dual function (4.8). The expressions
for gradient vector and Hessian matrix of the dual function can be obtained analytically
(cf. Appendix A.5.2), therefore we can use any Newton-based approach that makes use
of the first and second derivatives of the goal function such as the standard Newton
method [4], Broyden-Fletcher-Goldfarb-Shanno (BFGS) procedure [3, 42] and damped
Newton method [8]. In our implementation in MATLAB [160] we use the numerical opti-
mization package minFunc [192] that chooses between several techniques depending on
the properties of the provided Hessian matrix.
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4.3.3 Distribution Support Approximation

In order to approximate the moments in (4.5), we need to sum (integrate) over all possible
states in the state space S which might be infinite. Instead, during the iterative procedure,
we consider a subset D = {xL, . . . , xR} ⊂ N0 (D = (xL, xR) ⊂ N0) that contains the main
part of the probability mass [215] (here we consider only one-dimensional state spaces S).
We have to find the appropriate values for xL and xR, since the iteration of type (4.3.1)
might fail to converge if the chosen value of xR is very large (and if xL = 0) as the
conditional number of the Hessian (or modified Hessian) matrix is very large in this case.
One of the simple ways to regularize the Hessian matrix is to use Levenberg-Marquardt
formula [149, 156, 184], where the modified Hessian Ĥ is given by Ĥ = (H + γ · diag(H))
and γ is the damping parameter that has to be properly chosen [225], however more
advanced methods are implemented in minFunc2012 [192] package. Thus, we make use of
the results in [215] to find a region of the state space that contains the main part of the
probability mass. We consider the roots of the function

∆0(w) =

∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µk
...

...
µk−1 µk · · · µ2k−1

1 w · · · wk

∣∣∣∣∣∣∣∣∣

, (4.10)

where k = ⌊M
2
⌋ andM is even. LetW = {w1, . . . , wk} be the set of solutions for ∆0(w) = 0,

where w1 < . . . < wk are real and simple roots [74] The set D(0) = {x(0)
L , . . . , x

(0)
R } with

x
(0)
L = ⌊w1⌋ and x

(0)
R = ⌈wk⌉ is used as an initial guess for the approximated support when

we start the optimization procedure.

We can also account for the case of an odd number of moment constrains. In addition to
the function ∆0(w) defined in Eq. (4.10), we also consider the function ∆1(η)

∆1(η) =

∣∣∣∣∣∣∣∣∣

µ1 − w1µ0 µ2 − w1µ1 · · · µz − w1µz−1
...

...
...

...
µz−1 − w1µz−2 µz − w1µz−1 · · · µ2z−2−w1µ2z−3

1 η · · · ηz−1

∣∣∣∣∣∣∣∣∣

,

where z = ⌊M
2
⌋ + 1 and w1 is the smallest root of the equation ∆0(w) = 0. Again, let

W = {w1, . . . , wk} be the set of the solutions of ∆0(w) = 0 and H = {η1, . . . , ηz} be the
set of solutions of ∆1(η) = 0, where all the elements of W and H are real and simple. The
first approximation for the truncated support of the distribution is then given by the set

D(0)
(
x
(0)
L , x

(0)
R

)
= {x(0)

L , . . . , x
(0)
R } with x

(0)
L = ⌊min(w1, η1)⌋ and x

(0)
R = ⌈max(wk, ηz)⌉.

We extend the support until the relative change of the dual function becomes smaller than
the threshold δΨ ∣∣∣∣

Ψ(λ(ℓ−1))−Ψ(λ(ℓ))

Ψ(λ(ℓ))

∣∣∣∣ < δΨ. (4.11)
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D(ℓ) D(ℓ+1)

Figure 4.1: ←֓ Extension of one-dimensional support approximation done by adding two
states (green) on the left and on the right.

If the inequality is not satisfied, we extend the support by adding new states in each
iteration

D(ℓ+1)
(
x
(ℓ+1)
L , x

(ℓ+1)
R

)
={max(0, x

(ℓ)
L − 1), . . . , x

(ℓ)
R + 1}. (4.12)

Various strategies of support extension can be applied: more states can be added to the
set D(ℓ+1) on each step and asymmetric treatment of xL and xR is possible. This is shown
in Figure 4.1, where the support D(ℓ) is shown with blue circles and the new states are
shown by green circles.

The current approach addresses the solution of the two paired problems, namely the choice
of the finite approximation D for the possibly infinite support supp(p) of the underlying
distribution and the numerical minimization of the dual function Ψ given D

λ∗ = arg min
λ∈RM

x∈D∗

Ψ(λ,D∗) = arg min
λ∈RM

(
ln

[
∑

x∈D∗

exp

(
−

M∑

k=1

λkx
k

)]
+

M∑
k=1

λkµk

)
,

where D∗ is an approximation of the support supp(q(x, λ∗)) such that (4.11) holds,

D∗ = min
ℓ
{D(ℓ)

∣∣
∣∣∣Ψ(λ(ℓ−1), D(ℓ−1))−Ψ(λ(ℓ), D(ℓ))/Ψ(λ(ℓ), D(ℓ))

∣∣∣ < δΨ}.

The final results λ∗ and D∗ of the iteration yields the distribution q̃(x) that approximates
the marginal distribution of interest

q̃(x) =




exp(−1−

M∑
k=0

λ∗
kx

k), x ∈ D∗

0, x /∈ D∗

We consider the result of the application of the algorithm to the mixture of two normal
distributions p8(x) in the Example 4.3.

Example 4.3. ←֓ We consider the approximation of the support using the iterative
procedure for mixture of two normal distributions p8 (cf. Section 4.3.5)

p8(x) = w1 · fN (s1,σ1)(x) + w2 · fN (s2,σ2)(x),

where s1 = -3, s2 = 10, σ1 = 1, σ2 = 2,w1 = 0.3,w2 = 0.7 and x ∈ R. This is the exam-
ple of numerical solution to the Hamburger moment problem. Assume that the highest
order of moment constraints is M = 4, i.e., the constraints for the maximum entropy
problem are given by the vector µ = (µ0, . . . , µ4). The approximation of the support is
based on both ∆0(w) and ∆1(η). We show the obtained reconstructions for the initial
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approximation of support (D(0) = [−5.9, 10.9]) the reconstruction after two iterations
(D(2) = [−6.7, 11.8]) and the final reconstruction (D∗ = D(7) = [−11.6, 16.7]) obtained
with the convergence threshold for the dual function δΨ = 10−4 in Figure 4.2.
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q
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q
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Figure 4.2: ←֓ Reconstruction of distribution p8 with different support approxima-
tions. Black curve corresponds to distribution p8 and yellow curves correspond to
reconstructions.

4.3.4 Numerical Approach for the Two-dimensional Maximum

Entropy Problem

In the previous sections we only addressed the one-dimensional maximum entropy prob-
lem. Here we consider the modification of the maximum entropy problem in case of
two-dimensional distributions. The constraints are given by the sequence of non-central
moments E

(
Xr

xX
l
y

)
= µr,l, 0 ≤ r + l ≤M , and the set G2 of all two-dimensional discrete

distributions that satisfy the following constraints

∑

x,y∈S
xrylg(x, y) = µr,l, 0 ≤ r + l ≤M.

Here X� and X◦ correspond to the populations of two different species, i.e., to the two
distinct elements of the random vector ~X(t) = (X1(t), . . . , Xn(t)) at some fixed time
instant t. The optimization problem (4.4) is formulated as

q = argmax
p∈G2

H(p) = argmax
p∈G2

(
−∑

x,y

p(x, y) ln p(x, y)

)
,

where we seek the distribution p ∈ G2 that maximizes the entropy H(p). The general form
of the solution for the maximum entropy problem is given by

q(x, y) = exp(−1−
∑

0≤r+l≤M

λr,lx
ryl) =

1

Z
exp(−

∑

1≤r+l≤M

λr,lx
ryl), (4.13)

where the normalization constant Z is calculated as

Z = e1+λ0,0 =
∑

x,y exp(−
∑

1≤r+l≤M

λr,lx
ryl). (4.14)
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We solve the optimization problem numerically, similar to the one-dimensional case. The
vector λ(ℓ) = (λ0,1, λ1,0, . . . , λ0,M , λM,0) is an approximation of the vector λ in Eq. (4.13).
The elements of the gradient vector are computed as

∂Ψ

∂λr,l

≈ µr,l −
µ̃r,l

Z
,

where µ̃r,l is approximated by

µ̃r,l =
∑

x,y x
ryl exp(− ∑

1≤r+l≤M

λr,lx
ryl). (4.15)

Here r, l ∈ {0, . . . , 2M} and the sum is taken over all (x, y) ∈ N
2
0. Finally, the elements of

the Hessian matrix are computed as

Hr+u,l+v =
∂2Ψ

∂λr,l∂λu,v

≈ Z · µ̃r+u,l+v − µ̃r,lµ̃u,v

Z2
,

where 0 ≤ r + l ≤ M, 0 ≤ u+ v ≤ M . Using the numerical minimization procedure, the
vector λ∗ =

(
λ∗
0,1, λ

∗
1,0, . . . , λ

∗
0,M , λ∗

M,0

)
is found. The dimensionality of the optimization

problem is 0.5 (M2 + 3M), and λ∗
0,0 can be calculated from (4.14) as λ∗

0,0 = lnZ − 1. In
comparison to the one-dimensional case, the range of the values of µ̃r,l becomes wider due
to the larger dimensionality, so that the conditional number of the Hessian matrix is even
higher and the iteration might fail.

To approximate the moment values in (4.15) we truncate the infinite support similarly
to the one-dimensional case. As an initial approximation for the support Dxy we use
the results of the corresponding approximations D∗

x,α and D∗
y,α obtained for marginal

one-dimensional distributions, D
(0)
xy = D∗

x,α × D∗
y,α. Here α corresponds to the amount

of probability mass which is set to 0.95 for all considered case studies. The region that
contains at least α of probability mass is computed using Algorithm 7. The condition (4.11)
is checked and if not satisfied, the support is extended according to the selected strategy.
The trivial strategy is to add two discrete states in each dimension at the iteration ℓ+ 1
as follows

D(ℓ+1)
xy

(
x
(ℓ+1)
L , x

(ℓ+1)
R ; y

(ℓ+1)
L , y

(ℓ+1)
R

)

= {max(0, x
(ℓ)
L -1), . . . , x

(ℓ)
R +1} × {max(0, y

(ℓ)
L -1), . . . , y

(ℓ)
R +1}

The example of such extension is shown in Figure 4.3 where green circles correspond to
the newly added states.

As before, we seek for the solution of the two paired problems: the approximation of the
support and the dual function minimization. The final results λ∗ and D∗

xy of the iteration
yields the distribution q̃(x, y) that approximates two-dimensional distribution of interest

q̃(x, y) =




exp(−1− ∑

0≤r+l≤M

λ∗
r,lx

ryl), (x, y) ∈ D∗
xy

0, (x, y) /∈ D∗
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D(ℓ) D(ℓ+1)

Figure 4.3: ←֓ Extension of two-dimensional support approximation, where newly added
states are shown with green circles.

The algorithm of the iteration procedure is given in Algorithm 2 (Algorithm 3 in case
of two-dimensional distribution), where the subset of moments used for the reconstruc-
tion is truncated in case if the current trial was not successful (because the numerical
minimization fails or no distribution is found that suffice the validity criteria according
to Appendix A.5.3). The adaptive support optimization procedure is given in Algorithm 4,
where it is assumed that the preconditioning is applied. If it does not, the corresponding
step is omitted. The influence of the basis orthogonalization is visible only when we de-
fine the goal function to be minimized: if orthogonalization is applied, the corresponding
dual function is given by (A.8). Therefore, it is possible define the dual function to be
minimized in several ways:

• without any precomputation or preconditioning

• with precomputation (according to Appendix A.5.3)

• with preconditioning (centralization, scaling and rotation) and partial precomputa-
tion

• with preconditioning (centralization, scaling and rotation, basis orthogonalization)
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4.3.5 Maximum Entropy for Continuous Distributions, Numer-

ical Results

Here, we analyze the numerical properties of maximum entropy procedure in case of one-
dimensional continuous distributions. Consider the numerical minimization of the dual
function Ψ(λ) that corresponds to the primal problem (4.4) and constraints (4.5). The
initial approximation for the parameter vector λ is chosen as λ = (λ1, . . . , λM) = (0, . . . , 0)
and λ0 is calculated after the dual function is minimized. Similar to the discrete case
in (4.7), we obtain

λ0 = lnZ − 1, Z =

∫

x∈D∗

exp

(
−

M∑

k=1

λkx
k

)
dx.

We consider the following case studies, where the first three distributions are representa-
tives of the generalized exponential family:

1. Exponential distribution p1(x) = 5 exp(−5x) = exp (−(− ln 5 + 5x)), x ∈ R≥0

2. Normal distribution p2(x) = fN (−1,
√
2)(x) = 1/

√
2π exp(−1/2(x+1)2) = exp(ln 1/

√
2π−

1/2− x− 1/2x2), x ∈ R

3. Quartic exponential distribution p3(x) = exp(−2.82 + 1.5x+ 1.5x2 − 0.1x3 − 0.5x4),
x ∈ R

4. Triangular distribution p4(x) = 1− |x|, |x| < 1

5. Shifted symmetric exponential type distribution p5(x) = β/2Γ(1/β) exp(−|x − s|β),
β = 1.3, s = 7, x ∈ R

6. Uniform distribution p6(x) = 1/b−a, b = 30, a = 0, x ∈ [a, b]

7. Generalized Pareto distribution, heavy tailed p7(x) = 1/σ (1 + kx/σ)−1−1/k, σ = 20,
k = 0.1, x ∈ R≥0

8. Mixture of two normal distributions
p8(x) = w1 · fN (s1,σ1)(x) + w2 · fN (s2,σ2)(x) = w1 · 1/√2πσ1 exp(−1/2σ2

1(x− s1)
2) + w2 ·

1/
√
2πσ2 exp(−1/2σ2

2(x − s2)
2), s1 = -3, s2 = 10, σ1 = 1, σ2 = 2, w1 = 0.3, w2 = 0.7,

x ∈ R

9. Mixture of three normal distributions
p9(x) = w1fN (s1,σ1)(x) + w2fN (s2,σ2)(x) + w3fN (s3,σ3)(x), s1 = −3, s2 = 10, s3 = 20,
σ1 = 1, σ2 = 2,σ3 = 3, w1 = 0.3, w2 = 0.4, w3 = 0.3 x ∈ R

Reconstruction of p1. To obtain the reconstruction of p1, the first 2 moments are used,
namely µ0 = 1 and µ1 = 0.2. The dual function that is minimized is given by

Ψ(λ) = lnZ + λ1µ1 = ln(e1+λ0) + λ1µ1 = ln

( ∑
x∈D∗

exp(−λ1x)

)
+ λ1µ1.
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λ0 λ1 λ0 λ1

δΨ 10−4 10−6

p1 -1.609438 5.0 -1.609438 5.0
q̃1 -1.608986 4.997488 -1.609434 4.999981
ǫrelλ 2.8 · 10−4 5.0 · 10−4 2.2 · 10−6 3.8 · 10−6

x∗
R 1.98 3.07
ℓ∗ 48 57
ǫrelµ1

6.0 · 10−6 5.4 · 10−7

Table 4.1: ←֓ Reconstruction of the exponential distribution p1 with δΨ = 10−4 and
δΨ = 10−6.

The results are given in Table 4.1, where ǫrelλi
= |λ∗

i−λi/λi| is the relative error of i-th
element of the coefficients vector, ǫrelµk

= |µ∗
k
−µk/µk| is the relative error of k-th element of

the moments vector and ℓ∗ is the number of iterations for the support search procedure. The
moments µ∗ are computed as µ∗

k =
∫
x∈D∗ x

kq̃(x, λ∗) dx. The preconditioning techniques
are not used in these experiments. For the support extension the following strategy is
used: at each iteration we extend the length of the support by 5% but not more than by
1.0

D(ℓ+1) =
(
x
(ℓ)
L − δ, x

(ℓ)
R + δ

)
, δ = min(0.05 · |D(ℓ)|, 1).

The initial approximation of the support is computed using only ∆0(w)

∆0(w) =

∣∣∣∣
1 0.2
1 w

∣∣∣∣ = w − 0.2,

and W = {0.2}, x ∈ R≥0, thus we initialize the support search with D(0) = [0, 0.2].

We observe that decreasing the threshold δΨ results in the significant accuracy gain in
determining λ (from the order of 10−4 to 10−6) but requires a bit more support extension
iterations. The approximation of the expectation µ1 also becomes more accurate.

Reconstruction of p2. Results for the normal distribution p2 are given in Table 4.2,
where we used first 3 moments for the reconstruction, namely µ = (1,−1, 2). In the table,
D∗ denotes the final approximation of the support supp(p2) and max

i∈{0,1,2}
ǫrelµi

denotes the

maximum relative distance between moment values. The initial approximation of the
support is given by

∆0(w) =

∣∣∣∣
1 −1
1 w

∣∣∣∣ = w + 1, ∆1(η) =

∣∣∣∣
0 1
1 η

∣∣∣∣ = −1,

therefore we modify ∆1(η) assuming that w1 = 0

∆1(η) =

∣∣∣∣
−1 2
1 η

∣∣∣∣ = −η − 2,
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to obtain at least some reasonable approximation of the support. Thus, we have D(0) =
[−2,−1]. In both cases it would be more preferable to use other support approxima-
tion methods. In this case, the standard heuristics [µ1 − 3

√
µ2, µ1 + 3

√
µ2] gives bet-

ter results. For the normal distribution p2 only 2 iterations are needed if the interval
D(0) = [x

(0)
L , x

(0)
R ] ≈ [−5.24, 3.24] is used as an initial approximation for supp(p2) with

δΨ = 10−4 (4 iterations with δΨ = 10−6).

The measure of the overall agreement between the reference normal distribution p2 and
the reconstruction is also listed in Table 4.2 and is denoted by ||ǫ||V . This is total varia-
tion distance [150] (adopted by Philipp Thomas in [16, Section 5.3]). Here we use it for
continuous distributions as

||ǫ||V =
100%

2

xR∫

xL

|p(x)− q(x)| dx. (4.16)

It can be interpreted as “the maximum percentage difference between the probabilities of
all possible events assigned by the two distributions which achieves its maximum (100%
error) when the distributions do not overlap”. We consider it as a percentage representation
of the standard L1 distance between any two distributions [53, p. 369, (11.132)]

We observe that the distance ||ǫ||V decreases by two orders of magnitude when δΨ is
decreased, however such result is obtainable only in very limited number of cases, such
as this well-behaving synthetic case study. Both distributions p1 and p2 together with
reconstructions q̃1, q̃2 are shown in Figure 4.4 (4.4a, 4.4b), however the curves are visually
indistinguishable from each other since the approximation of λ vector is accurate in both
cases. In all figures in this section the ground truth distribution is shown by yellow solid
curve and the reconstructions are given by black and blue dashed lines.

Reconstruction of p3. In case of quartic exponential distribution we investigate how
number of moment constraints influences the accuracy of the reconstruction (results are
given in Table 4.3). When only first 4 moments are provided, i.e., only the moments

λ0 λ1 λ2 λ0 λ1 λ2

δΨ 10−4 10−6

p2 1.418939 1.0 0.5 1.418939 1.0 0.5
q̃2 1.418913 0.999866 0.499943 1.418913 0.999866 0.499943
ǫrelλ 1.8 · 10−5 1.3 · 10−4 1.1 · 10−4 9.6 · 10−8 1.1 · 10−6 9.9 · 10−7

D∗ [-6.42, 3.42] [-7.46, 4.46]
ℓ∗ 25 27

maxi ǫ
rel
µi

9.0 · 10−6 1.5 · 10−7

||ǫ||V ,% 2.8 · 10−3 2.4 · 10−5

Table 4.2: ←֓ Reconstruction of normal distribution with δΨ = 10−4 and δΨ = 10−6.
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Figure 4.4: ←֓ Reconstruction of exponential p1 (a), normal p2 (b) and quartic exponential
p3 (c) distributions.

µ0, µ1, µ2, µ3, the reconstruction with the threshold δΨ = 10−4 is not even possible. The
process converges if the threshold is set up to δΨ = 10−3 but the corresponding distance
from the true distribution is ||ǫ||V = 24%.

The best reconstruction (with respect to ||ǫ||V ) is obtained when M = 5 is used and it
becomes worse if we add more constraints (the constraints were generated using simple
integration, µk =

∫∞
−∞ xk p3(x) dx). It shows that the dimensionality of the optimization

problem have the strong influence on the accuracy of the reconstruction.

The difficulty of the numerical optimization is often associated with the condition number
of the Hessian matrix [81] of the second derivatives (A.7). The condition number

κ(H) = |λmax(H)|/|λmin(H)|,

i.e., the ratio of maximal and minimal eigenvalues of the Hessian matrix H(ℓ∗) on the last
iteration ℓ∗ is also shown in Table 4.3. It gradually increases when additional constraints
are added. We plot the distribution p3 together with the reconstruction q̃3 obtained with
M = 4 in Figure 4.4c.

We note that the authors of [248] provide a proof of the unique solution existence for
the case of quartic exponential distribution and the special numerical treatment of the
maximum entropy optimization problem is given in [177], where the exponential function
computation is optimized in order to avoid large numerical precision errors.

Reconstruction of p4. The triangular distribution p4 cannot be represented well using
the general density shape (4.6). We list the distance ||ǫ||V between the reconstructed and

M 3 4 5 6 8 10 14

||ǫ||V ,% - 6.6 · 10−5 5.6 · 10−5 3.7 · 10−3 2.4 · 10−3 1.7 · 10−3 3.1 · 10−3

κ(H) - 5.4 · 102 4.1 · 103 3.3 · 104 1.5 · 106 1.4 · 108 7.8 · 1011

Table 4.3: ←֓ Reconstruction of quartic exponential distribution p3.
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M 4 6 8 10 14

||ǫ||V ,% 4.2 1.3 1.4 6.6 · 10−1 4.1 · 10−1

κ(H) 7.4 · 101 2.8 · 103 7.9 · 104 2.8 · 106 2.9 · 109
κ(H⊥) 2.4 · 103 1.3 · 104 2.5 · 105 7.5 · 105 1.8 · 105

Table 4.4: ←֓ Reconstruction of triangular distribution p4.

original distribution and the conditional number κ(H) of the Hessian matrixH in Table 4.4.
From here on we use the convergence threshold for dual function δΨ = 10−4, otherwise
we indicate it explicitly. The approximation of the support with 5 moment constraints
(M = 4) uses both

∆0(w) =

∣∣∣∣∣∣

1 0 1/6
0 1/6 0
1 w w2

∣∣∣∣∣∣
, ∆1(η) =

∣∣∣∣∣∣

−w1
1/6− w1 −w1

1/6 0 1/15
1 η η2

∣∣∣∣∣∣
,

thus, the initial approximation of the support is given byD(0) = [x
(0)
L , x

(0)
R ] ≈ [−0.454, 0.880].

We also apply the preconditioning technique [3] and list the conditional number κ(H⊥) of
the modified Hessian matrix H⊥ calculated at the last iteration of the process. Please note
that the preconditioning procedure runs in the beginning of each dual function minimiza-
tion (with the given approximation of the support). It does not give any improvements
in terms of distribution distance ||ǫ||V , however it may mitigate problems associated with
high condition number. We observe that it does not make sense to apply these procedures
when condition number κ(H) is smaller than 106. We show the distribution p4 together

with reconstructions obtained with M = 4, q̃
(4)
4 and M = 14, q̃

(14)
4 in Figure 4.5a where it

can be seen that the plot of q̃
(14)
4 is much closer to the original distribution.

Reconstruction of p5. The reconstruction of the shifted exponential type distribution
reveals to be a complicated numerical task. The results of the reconstruction are provided
in Table 4.5. The preconditioning technique is applied only partially in this case: only
centralization, rotation and scaling steps are performed. If orthogonalization is also applied,
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Figure 4.5: Reconstruction of triangle p4 (a) ←֓ , symmetric exponential type p5 (b) ←֓
and uniform p6 (c) ←֓ distributions.
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M 4 6 8 10 14

||ǫ||V ,% 8.1 4.1 4.0 2.9 7.1
κ(H) 4.4 · 108 4.0 · 1016 3.1 · 1019 8.4 · 1022 7.0 · 1037
κ(H◦) 6.0 · 105 4.9 · 105 1.7 · 1011 3.9 · 1012 1.9 · 1026

Table 4.5: ←֓ Reconstruction of shifted exponential type distribution p5.

either we obtain the worse results (which require longer computational time) or numerical
minimization procedure does not converge.

In Table 4.5 we list the results obtained both without and with the preconditioning (the
latter corresponds to the Hessian matrix H◦). We observe that the preconditioning gives
the significant decrease (up to 10 orders of magnitude) in condition number of the Hessian
matrix. Interestingly, the condition number κ(H◦) decreases when we use M = 6 in
comparison to the case M = 4. The reason is the higher number of approximation support
iterations with M = 4, namely ℓ∗ = 77, D∗ = [−18.30, 32.53] and the dual function
converges slow in λ in this case. On the other hand, with M = 6 the convergence is faster,
ℓ∗ = 18, D∗ = [2.09, 12.22].

The reconstructions with M = 4, q̃
(4)
5 (maximal ||ǫ||V ) and M = 10, q̃

(10)
5 (minimal ||ǫ||V )

are shown in Figure 4.5b, where one can observe, that even the best possible reconstruction
is not representing the peak value of the true distribution accurately. Both reconstructions
of p4 and p5 are worse in terms of the distribution distance ||ǫ||V in comparison to previous
case studies.

Reconstruction of p6. The reconstruction of the uniform distribution p6 on [0, 30]
is also a complicated numerical problem because of the discontinuities present in the
distribution density. The results are listed in Table 4.6, where we do not show those
obtained with the number of constraints more than 10, M > 10 since the numerical
optimization does not converge. We plot the two reconstructions (with M = 4 and
M = 10) in Figure 4.5c. All obtained reconstructions demonstrate the oscillatory pattern.

Reconstruction of p7. The reconstruction of the generalized Pareto distribution p7
takes many iterations for the support approximation. Another problem is the accuracy
of moment approximations, for which the standard integral function of MATLAB is used.

M 4 6 8 10

||ǫ||V ,% 10 6.6 4.8 3.6
κ(H) 1.2 · 1011 6.4 · 1017 1.3 · 1023 1.7 · 1028

Table 4.6: ←֓ Reconstruction of uniform distribution p6.
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To compute the moments of the theoretical distribution we apply this function over the
support supp(p7), supp(p7) = R≥0 in this case

The problem of the moment value approximation and properties of Gauss quadrature and
its modifications are well studied [8, 151, 166, 235]. Recently, the problem of approximation
the continuous distribution by discrete ones was considered in [213], where the error
bounds are provided together with the convergence analysis. Special approach to the
numerical approximation of the exponential function computation for the case of quartic
exponential reconstruction is given in [177], where it is decomposed into the product of
several exponentials with exponents of the lower magnitude order.

In Table 4.7 we list the obtained results where each reconstruction takes a high number of
iterations to converge in support. When we use more than M > 8 moments, the process
does not converge even when preconditioning is applied. However, the obtained recon-
structions reveal to be accurate for such heavy-tailed distribution. Only the distribution
distance ||ǫ||V is provided since other metrics are not informative in this case. We plot

the best obtained reconstruction q̃
(8)
7 together with the ground truth distribution in p7

Figure 4.6a.

Reconstruction of p8. The reconstruction of the mixture of two Gaussian distributions
shows the capability of the maximum entropy family to reproduce bimodal distributions.
Though the results (listed in Table 4.7) indicate the lower accuracy than in the previously
considered case studies, such reconstruction still can be used to get the insight to the
underlying stochastic process. The case of 4 moment constraints (M = 3) does not
provide the reasonable reconstruction: the corresponding maximum entropy distribution
is q(x) = exp(−λ0−λ1x−λ2x

2−λ3x
3) which can not create bimodal densities (another term

λ4x
4 must present in order to allow for bimodality [51]). We plot the mixture distribution

p8 together with reconstructions obtained with M = 4 and M = 10 in Figure 4.6b.

Reconstruction of p9. Here we show the reconstruction of trimodal density given by
the mixture of three normal distributions. The task of reconstructing such distributions
given the limited amount of information is a difficult numerical problem. Therefore, the
distance ||ǫ||V is larger than in the previous case studies. It was possible to obtain the
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Figure 4.6: Reconstruction of generalized Pareto distribution p7 (a) ←֓ , mixture of two
Gaussians p8 (b) ←֓ and mixture of three Gaussians p9 (c). ←֓
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M 3 4 6 8 10

||ǫ||V ,%
p7 2.2 · 10−1 3.2 · 10−1 3.3 · 10−1 1.1 · 10−2 -
p8 48 19 9.2 4.2 3.6
p9 40 36 21 12 6.2

Table 4.7: Reconstruction of generalized Pareto distribution p7 ←֓ and mixture of two p8
←֓ and three p9 ←֓ normal distributions.

convergence only with increased threshold δΨ = 5·10−4 andM is even number (orM = 3).
According to [51], the finite moments of the corresponding densities exist only when M
is even and λM < 0. In case of M = 7 the numerical optimization procedure was unable
to find such a combination of support and parameter vector that satisfies the conditions
of distribution validity that we imply (cf. Appendix A.5.3). It is possible to properly
reconstruct the three-modal distributions with the maximum entropy distributions of at
least 6th order, i.e., at least 7 moment constraints have to be provided (M = 6). Please
note that if 13 moment constraints (M = 12) are used, the corresponding distance further
decreases to 3.7%. The results are provided in Table 4.7. We plot the ground truth
distribution p9 together with reconstructions for cases M = 8 and M = 12 in Figure 4.6c.

Convergence and error control. All the considered case studies show that the re-
constructions obtained with the help of maximum entropy principle are able to describe
distributions of many shapes using only the limited amount of available data. Generally,
the more degrees of freedom are used (larger value of M), the better the reconstruction is.
We also observe that the exponential functions with polynomials of even degrees are more
easy to fit to the moment constraints; odd order polynomials may give the unbounded rise
of the approximated moments, therefore the problem of proper support approximation
becomes more difficult.

However, there is no guarantee that the numerical procedure converges for the given
moment constraints and no a priori evidence that the reconstruction is accurate enough
(generally there is no ground truth solution to compare against). One possible way to par-
tially cope with this problem is to repeat the process varying M and check for similarities
in results (both in terms of support approximation D∗ and solution vector λ∗).

We also consider the possibility to track the behavior of the dual function. We list the
minimal obtained values of the dual function Ψ(λ∗, D∗) for the reconstruction of distribu-
tions p6, p8 and p9 in Table 4.8. We observe that the smaller value of the dual function
corresponds to the smaller value of the distance ||ǫ||V for all 3 distributions. In the same
time, if we consider the exponential type distribution p5, the value of ||ǫ||V increases from
2.9% (M = 10) to 7.1% (M = 14). It corresponds to the increase of the dual function
value from 1.3944 to 1.3965. For this simple case studies we can use the number of moment
constraints M + 1 that corresponds to the reconstruction with the minimum reachable
value of Ψ. Unfortunately, this rule of thumb does not hold in general and can not be
applied to all problems where the ground truth distribution is unknown and a certain
evidence of the approximation accuracy is required.
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M 4 6 8 10

Ψ(λ∗, D∗)
p6 3.4653 3.4345 3.4217 3.4210
p8 2.6620 2.5359 2.5260 2.5175
p9 3.5259 3.2391 3.1286 3.0918

Table 4.8: ←֓ The value of dual function Ψ(λ∗, D∗) for the reconstruction distributions
p6, p8 and p9.

The authors of [34] show that the root mean square (RMS) deviation ∆2 can be used
to measure the quality of the approximation when analytical solution is unknown. It is
defined as

∆2(M) =

[
1

ng

ng∑

i=1

(q̃M+∆M(xi)− q̃M(xi))
2

]1/2

,

where ng is the number of points used in quadrature approximation of integrals and
∆M is the It is shown that the deviation ∆2 decreases in the number of moments M
almost exponentially. We can consider the generalization ∆2,c where we do not take the
quadrature size into the account as follows

∆2,c(M) =



∫

x∈D∗

(q̃M+∆M(x)− q̃M(x) dx)2




1/2

.

However, the instability of the numerical procedure does not allow us to use high number
of moments and we can not conduct the proper investigation ∆2,c applicability. And
more than that, the moment closure procedure that is used to approximate moments
of the Markov chain becomes stiff as the number of moments is higher than 8 for most
systems (cf. Section 3.1.4). Therefore, the only possible way to verify the quality of the
reconstruction “on-the-fly” is to reconstruct the distribution with increasing number of
moments until the optimization procedure is stable and check for the similarity of the
obtained distributions (for instance, using the distance defined by (4.16)).
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4.3.6 Maximum Entropy for Discrete Distributions, Numerical

Results

Here, we analyze the numerical properties of maximum entropy reconstruction procedure
in case of one-dimensional discrete distributions. The set of constraints for the the primal
problem (4.4) is given by (4.2). The initial approximation for the parameter vector λ
is chosen as λ = (λ1, . . . , λM) = (0, . . . , 0), λ0 is calculated after the dual function is
minimized. Using (4.7), we obtain

λ0 = lnZ − 1, Z =
∑

x∈D∗

exp

(
−

M∑

k=1

λkx
k

)
.

We consider the following case studies:

1. Poisson distribution, p1(x) = ak/k! exp(−ax), a = 5, x ∈ N

2. Hypergeometric distribution, p2(x) =
(Kx)(

L−K
n−x )

(Ln)
, L = 400, K = 100, N = 20,

x ∈ {max(0, n+K −N), . . . ,min(n,K)}

3. Discrete uniform distribution, p3(x) = 1/N✶(1,...,N), N = 10, x ∈ {1, . . . , N}

4. Mixture of Poisson and binomial distribution with high probability mass at 0, p4(x) =
w1

ak/k! exp(−ax) + w2

(
N
x

)
px(1− p)N−x, w1 = 0.3, w2 = 0.7, a = 1, N = 20, p = 0.5,

x ∈ N

5. Mixture of two binomial distributions, p5(x) = w1

(
N
x

)
px1(1− p1)

N−x + w2

(
N
x

)
px2(1−

p2)
N−x, w1 = 0.4, w2 = 0.6, N = 50, p1 = 0.1, p2 = 0.5, x ∈ {0, . . . , N}

6. Mixture of three binomial distributions, p6(x) =
3∑

i=1

wi

(
N
x

)
pxi (1 − pi)

N−x, w =

(0.3, 0.4, 0.3), N = 50, p = (0.1, 0.5, 0.7), x ∈ {0, . . . , N}

The problem of discrete distribution reconstruction is similar to the reconstruction of
continuous distribution. The approximation of the support is done in a similar fashion
(iterative extension), however in the discrete setting the minimal possible increment cor-
responds to exactly one state:

x
(ℓ+1)
L = max(0, x

(ℓ)
L − 1) or x

(ℓ+1)
R = x

(ℓ)
R + 1.

Due to this discrete nature of support, there is no need to approximate the value of the
integrals (4.5) using quadrature formulas that may include many points of discretization.
Instead, we can directly apply the explicit summation over the approximated support D(ℓ)

that does not include any additional discretization step (A.5)

µ̃i =
∑

x∈D(ℓ)

xi exp

(
−

M∑
k=1

λ
(ℓ)
k xk

)
, i = 1, . . . , 2M.
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M 4 6 8 10

κ(H) 1.2 · 1012 7.6 · 1019 8.5 · 1024 2.6 · 1030
κ(H◦) 1.8 · 102 9.6 · 103 5.1 · 106 2.1 · 107
κ(H⊥) 5.9 · 101 1.1 · 102 2.6 · 106 1.2 · 103

Table 4.9: ←֓ Comparison of condition number of Hessian matrix after application of
preconditioning for p6.

Also, the computational time of the reconstruction can be significantly improved by
precomputing the values of the exponential function for a certain subset of states S̃ ∈
N. The normalization constant Z (4.7) can be computed using the tables of values for
x2, . . . , xM and at least (M − 2) · |S̃| exponentiation operations can be avoided during
each computation of the dual function. The computational time can be similarly saved
when moments µ̃ are approximated, thus another (M − 1) · |S̃| exponentiation operations
of type xk can be avoided during the computation of the gradient and the Hessian of the
dual function. We select the subset of N to be S̃ = {0, . . . , 500} or S̃ = {0, . . . , 1000} but
this is not a restriction: as soon as support approximation goes over S̃, the values of x
powers can be computed by usual exponentiation.

The preconditioning techniques can be applied to decrease the condition number of the
Hessian matrix κ(H). In this case, however, there is no possibility to precompute the
values of polynomial functions since it is exactly the setting of the continuous maximum
entropy problem. One possible way to combine the benefits of both approaches is to
first try the reconstruction based completely on discrete support approximation and apply
centralization and orthogonalization approaches only if it fails to converge. We compare the
condition number of the Hessian matrix for the case of three binomial distributions mixture
p6 and report results in Table 4.9, where it can be seen that the effect of preconditioning
is drastic: applying centralization and rotation (which is normalization of the variance to
1 in one-dimensional case) leads to the decrease of condition number κ(H◦) for at least 10
orders of magnitude. Interestingly, the orthogonalization does not significantly improves
the condition number κ(H⊥) further. Please note that the comparison of the Hessian
matrices H, H◦ and H⊥ is done using the same approximation of support D∗ for the fixed
order of the problem M (including more states in the set D∗ usually further increases the
condition number). The similar comparison in case of Chebyshev and Legendre moments
application is given in [60].

The results of the reconstruction for discrete distributions are given in Table 4.10, where we
use the convergence threshold for dual function δΨ = 10−4. We observe that it is generally
beneficial to include more constraints and calculate the maximum entropy distribution
with more degrees of freedom to obtain the smaller values of the total variation distance
||ǫ||V defined (for finite or countable set [150]) as L1 norm

||ǫ||V =
100%

2

∑

x∈S
|p(x)− q(x)|. (4.17)
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M 2 4 6 8 10

||ǫ||V ,%

p1 4.9 7.6 · 10−1 2.1 · 10−1 8.7 · 10−2 6.8 · 10−2

p2 2.9 4.1 · 10−1 1.1 · 10−1 2.6 · 10−2 6.6 · 10−3

p3 18 10 5.7 1.2 3.7 · 10−5

p4 34 12 3.4 2.6 9.1 · 10−1

p5 44 16 6.1 3.4 1.9
p6 36 24 8.6 6.9 2.1

Table 4.10: ←֓ Distance ||ǫ||V between the theoretical distribution and corresponding
reconstruction depending on the order M of the highest moment constraint.

We plot the best obtained reconstructions of p2, p3, p3 in Figure 4.7 and of p4, p5, p6 in
Figure 4.8, where the ground truth distributions are represented using yellow bars and
reconstructions are shown as black crosses. We observe that for all considered case studies,
the shape of the theoretical distribution is well captured and the distance ||ǫ||V decreases
in most cases when more moment constraints are considered.
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Figure 4.7: ←֓ Reconstruction of Poisson p1 (a), hypergeometric p2 (b) and uniform p3
(c) distributions.
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Figure 4.8: ←֓ Reconstruction of discrete distribution mixtures: Poisson and binomial p4
(a), two binomial p5 (b) and three binomial p6 (c) distributions.



Chapter 5

Model Reconstruction with

Maximum Entropy Approach

In this chapter we demonstrate the numerical results of the maximum entropy approach
when it is applied to the moments of species population counts for a given chemical reac-
tion network. To determine the quality of the probability distribution reconstruction we
compare maximum entropy distributions to those obtained via a direct numerical simula-
tion. Thus, we consider only systems of such sizes where a direct numerical simulation is
possible (cf. Table 2.1). Clearly, for systems with large population sizes a direct numerical
simulation is not feasible while the running time of the moment closure approximation is
independent of the population sizes.

In order to distinguish errors that are introduced by the moment closure approximation
from errors introduced by the reconstruction, we also compare the obtained moments with
those computed based on the distributions obtained via direct numerical simulation. More-
over, we also apply the maximum entropy approach to the more accurate approximation
of the moments obtained via direct numerical simulation.

5.1 Maximum Entropy and Method of Moments

We consider the problem of model reconstruction for the given chemical reaction network.
We assume that the dynamics of this reaction network is governed by the continuous-
time Markov chain { ~X(t), t≥ 0} and the corresponding chemical master equation (2.5).
The sliding window method can be applied to obtain the approximation of the transient
distribution π at the time horizon of interest T . However, this is often a computationally
difficult task (if feasible at all), thus we may want to use the moment approximation
methods to describe the dynamics in terms of moments of the corresponding distribution.
The ODE system for moments is usually much smaller than the one of CME, and easier
to solve.

If there is a need to reconstruct the underlying distribution from moments to get more
insights in the stochastic process, one may try to solve the classical moment problem.

60
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CTMC X

moment approximation
distribution

reconstruction

direct numerical
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Figure 5.1: ←֓ Techniques to approximate the transient distribution.

Here, we use the maximum entropy approach to reconstruct the marginal distributions
πi(xi, T ) = P[Xi(T ) = xi] of a Markov chain ~X at time T . The workflow that we follow
in shown by solid line in Figure 5.1.

The values of moments µ0, . . . , µM are approximated by the moment closure method. We
use the tool SHAVE to export moment closure ODE system as a MATLAB file. The ODE
system is then solved using ode45 method with default precision settings (AbsTol =
10−6, RelTol = 10−3; if other precision settings or another solver are used, it is noted
additionally). For each experiment we use the moments of the highest order M , however
moment closure technique computes all the moments up to order M + 1. That is, all the
moments µ0, . . . , µM+1 are approximated and the moment of the highest order is ignored in
the maximum entropy reconstruction, i.e., reconstruction procedure uses only µ0, . . . , µM .
We ignore the moment µM+1 due to the high sensitivity of the reconstruction procedure
even to the small relative error in the approximation of constraints.

Simple Dimerization model. We reconstruct the marginal distributions of the species
P and P2 and compare with those obtained using the direct numerical simulation (where
we chose δ = 10−15 yielding a total approximation error of ǫ = 5 ·10−15, see also (2.6)). For
instance, to reconstruct the distribution of P we used the sequence of moments µ0, . . . , µM ,
where µk = E(Xk

1 (t)) and X1(t) represents the number of molecules of type P at time t.

In Table 5.1 we show how accurate is the approximation q(x) of individual probabilities
π�(x) by calculating the distance (4.17)

||ǫ||V =
100%

2

∑

x∈D∗

|π�(x)− q(x)|,

where π�(x) is the “true” probability of having x molecules of type i at time T (obtained
via the direct numerical simulation of the CME) and q(x) is the value obtained from
the combination of moment closure approximation and maximum entropy reconstruction.
The distance is calculated for all states in the support approximation D∗ obtained with
δΨ = 10−4.

Please note that the support of distribution for protein P contains either only even or
odd non-negative integers (depending on the initial condition). Here we use the initial
condition P = 301, P2 = 0, therefore non-zero probability mass of marginal distribution
for P is possible only for odd non-negative integers. It requires the corresponding change
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M 2 4 6 8

||ǫ||V ,%
P 1.8 6.0 6.0 6.1
P st 1.8 6.0 2.0 2.8
P2 0.4 3.9 · 10−2 4.5 · 10−2 7.5 · 10−2

P st
2 0.4 8.3 · 10−2 9.4 · 10−2 1.9

Table 5.1: ←֓ Maximum entropy reconstruction results for the dimerization network.

in the support search procedure since this information can not be derived directly from
the moments. To proceed with this derivation automatically, the symbolic approaches
of state space construction [58, 144] or the graph reconstruction [211] methods can be
applied. In Figure 5.2 we plot the distributions of P and P2 where we use yellow bars
for the distribution obtained via direct numerical simulation and black crosses for the
reconstructed distribution. For the order of the moments that were considered, we used
for both species the order with which the best approximation was obtained (M = 2, q̃

(2)
P

for P and M = 4, q̃
(4)
P2

for P2).

In addition, we list the approximation error for the case where the maximum entropy
reconstruction is applied to the moments calculated from the results of the direct numerical
simulation, µk =

∑
x∈S

xkπ�(x). The corresponding rows in the table are denoted by P st and

P st
2 . Surprisingly, the reconstruction based on those is worse for the distribution of P2

and M = 4, M = 6 which shows that the reconstruction error comes mainly from the
numerical procedure of maximum entropy, not from the moment closure approximation in
this case. We observe that the maximum entropy method provides the least error if three
moment constrains (M = 2) are used to reconstruct the marginal distribution for protein
P and five moment constraints (M = 4) for protein P2. However, the reconstruction
is very accurate in all cases and we suppose that the reason why the distance measure
does not decrease when more moments are considered is that the shape of the maximum
entropy distribution is already nicely described using the lower-order maximum entropy
distribution. Increasing the order further forces the numerical optimization to make the
coefficients that correspond to the high order monomials very small (instead of setting
them to zero) therefore introducing additional approximation error.

Multi-attractor model. We consider the reconstruction of the marginal distribution
of PaxProt , MAFAProt and DeltaProt in the multi-attractor model. The results are given
in Table 5.2 for all three proteins. We compare the results with the solution of the direct
numerical simulation (where we chose δ = 10−15 yielding a total approximation error of
ǫ = 6 · 10−10). We see that the error is minimal when we consider M = 3 (4 moment
constraints) if moments are obtained using the moment closure approximation. The use
of more moments does not increase the accuracy further. We assume that this artifacts
arise due to the rapid change of the distribution behavior in the region {0, . . . , 5}.

For this case study we used the moment closure with moments up to the order 6. Unfortu-
nately, it was impossible to apply the low dispersion closure of the higher order due to the
large size of ODE system. The reconstruction based on the moments calculated from the



Model Reconstruction with Maximum Entropy Approach 63

P
P

P
P

P
P

P
P
P

species
M

2 3 4 5

||ǫ||V ,%

MAFAProt 11 2.9 7.8 8.2
MAFAProtst 11 1.7 1.4 1.1
DeltaProt 4.36 4.41 5.9 5.9
DeltaProtst 7.0 3.7 2.0 1.5
PaxProt 13.0 9.4 16 16
PaxProtst 9.9 9.4 16 18

Table 5.2: ←֓ Maximum entropy reconstruction results for the multi-attractor model.

direct numerical solution gives better results in case of MAFAProt and provides slightly
different reconstruction for the other two proteins.

The best obtained reconstructions (withM = 3, q̃
(3)
MAFAProt

forMAFAProt ,M = 3, q̃
(3)
DeltaProt

for DeltaProt and M = 3, q̃
(3)
PaxProt

for PaxProt) are plotted in Figure 5.3, where we use
δΨ = 10−5.

Bursty protein production model. We compute an approximation of the moments
of species M and P up to order 6 using the moment closure equations given in Example 3.4.
The moments of P are then used to reconstruct the marginal probability distribution of
P . The statistical distance ||ǫ||V is listed in Table 5.4 for different values of moment
constraints M . We observe that using more moment constraints makes the reconstruction
more accurate. The reconstructions obtained with M = 3, q̃

(3)
P and M = 5, q̃

(5)
P are shown

in Figure 5.4a using solid lines together with the plot of the absolute error ǫ (Figure 5.4b)
and the result of direct numerical simulation of the CME is shown using yellow bars.
While for most parts of the support the distribution is accurately reconstructed even
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Figure 5.2: ←֓ Maximum entropy reconstruction of marginal probability distributions
of the protein counts P (a), and P2 (b) at time instant t = 20 for simple dimerization
system.
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M metric δΨ = 10−2 δΨ = 5 · 10−3 δΨ = 10−3 δΨ = 10−4

4

x∗
R 612 674 861 1141

||ǫ||V 19.1 19.3 19.5 19.5
tnc (sec) 4.4 5.0 6.3 8.9
twc (sec) 4.6 5.2 6.6 9.1

6

x∗
R 579 651 1532 4586

||ǫ||V 5.3 5.7 7.5 8.4
tnc (sec) 3.8 4.6 18.2 178.1
twc (sec) 3.5 4.1 14.3 69.7

Table 5.3: ←֓ The influence of δΨ on the support approximation, accuracy and running
time in case of bursty protein production model. The row tnc/twc correspond to the
running time when the precomputation of exponential function is not used/used.

with M = 3, the method is less precise when considering the probability of small copy
numbers of P . Taking more moment constraints into an account increases the accuracy, in
particular in the region with more than 100 protein molecules. We may use more moments
to improve the reconstruction, for instance, up to the order 7. However, in this case the
moment equations become stiff and the numerical integration fails. This happens due to
the combination of highly nonlinear derivatives of the rate function f(xP ) =

Ω vMxP

ΩKM+xP
with

large values of the higher order moments.

To obtain these results, we used the thresholds δΨ = 10−5 and δD = 10−5 (as defined
in Appendix A.5.3). In Table Table 5.3 we investigate the influence of δΨ on the running
time, support approximation and accuracy. It can be observed that decreasing the δΨ
leads to the larger support (larger values of xR) and, therefore, the larger running time.
The running time for this case study is much larger than for the rest of models and the
positive effect of exponential function precomputation (Appendix A.5.3) becomes visible
for M > 3 and large support.

Please note that we approximated the moments at the quasi-steady state of the system,
therefore we track the convergence of the moment values (or, equally, check whether
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Figure 5.3: ←֓ Maximum entropy reconstruction of marginal probability distributions
of the protein counts MAFAProt (a), DeltaProt (b) and PaxProt (c) at time instant
t = 10 for multi-attractor model.
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M 2 3 4 5

||ǫ||V ,% 8.9 5.8 4.7 2.1

Table 5.4: ←֓ Maximum entropy reconstruction results for the bursty protein production
network.

the magnitude of each moment derivative is close enough to zero) while integrating the
moment closure ODE system.

The numerical results for the considered case studies show that the proposed combination
of methods has many advantages. It is a fast and surprisingly accurate way of obtaining
the distribution of the system at specific points in time and therefore well suited for
computationally expensive tasks such as the approximation of event probabilities.

We compare the reconstruction based on the moments approximated using standard
moment closure (MM) and computed using the method of conditional moments (MCM)
in Section 5.2.

5.2 Maximum Entropy and Method of Conditional

Moments

In this section we present numerical results of the maximum entropy reconstruction when
it is applied to the moments of a reaction network approximated using both method
of moments (MM) and method of conditional moments (MCM). The MCM method
allows one to keep the original probability-based representation for some of the chemical
populations. This makes sense for those populations that are very small. For instance,
a population may represent the binding of a transcription factor to a promoter region
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Figure 5.4: ←֓ Maximum entropy reconstructions of marginal probability distributions
of the protein P (a) and the absolute error (b).
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where only the values 0 (promoter free) and 1 (transcription factor bound to promoter)
are possible. Similarly, in many systems one has to deal at the same time with very large
and very small populations (small populations may refer to species with approximately
ten molecules at most) with significant probability.

Clearly, for such cases a pure moment-based description is not appropriate and it is usually
better to integrate over time the probabilities of having 0, 1, . . . , 10 molecules. In Hasenauer
et al. [105] a hybrid integration scheme for the moments of large populations conditioned
on the actual molecule numbers of small populations is derived from the CME. In [223]
the authors approximate the distribution of gene expression products conditioned on the
state of the promoter using a linear noise approximation, where they make a quasi-steady
state assumption for the reactions involving highly abundant species and the result is
given as a closed form expression. In [16] the authors apply system size expansion of
higher order to derive the analytic expression that describes the underlying distribution.
In [105] the MM and MCM are compared in terms of accuracy, but the comparison is
limited to the moment values.

Our main focus is on investigating whether the MCM approach is more suitable for
the reconstruction than the MM approach. We reconstruct one- and two-dimensional
marginal distributions in three different ways, in the following referred to as weighted sum
MCM , joint MCM andMM . The last case refers to a reconstruction based on the moments
obtained from the MM approach. Two former approaches refer to the reconstructions based
on the MCM approach where weighted sum means that we first reconstruct conditional
distributions and derive the full marginal by multiplying with the probability of the
corresponding condition (e.g. gene is active or not) and summing up. In contrast, joint
MCM means that we use the unconditional moments (approximated by the product
of conditional moments and the probability of the condition) for the reconstruction. In
addition, we reconstruct the conditional distributions from the conditional moments and
compare them to the conditional distributions obtained via a direct numerical integration
of the CME.

We illustrate the weighted sum MCM method for one-dimensional discrete distributions
through the following example:

Example 5.1. ←֓ We consider the gene expression model where we reconstruct the
marginal distribution of protein molecules P[ ~XP (t) = x] = π ~XP

(x, t). The moments

µk = E
(
~Xk
P

)
and the corresponding conditional moments are obtained using the

MCM and MM equations, for k = 0, . . . ,M + 1. In the case of joint MCM and MM
we use the first M moments’ values as constraints in (4.2) and solve the maximum
entropy optimization problem (4.4). In both cases, the solution is given by a pair
(λ∗, D∗) of the parameter vector λ∗ and the truncated support D∗. The corresponding
reconstructed distribution is defined as

q̃(x) =




exp(−1−

M∑
k=0

λ∗
kx

k), x ∈ D∗

0, x /∈ D∗.
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In order to apply the weighted sum MCM , we reconstruct the conditional distribution
from the sequences µPoff,k

and µPon,k that approximate the conditional moments

E
(
Xk

P |Doff = 1
)
and E

(
Xk

P |Don = 1
)
. Here,XP corresponds to the number of proteins

and the condition Doff = 1 (Don = 1) refers to the state of the gene. These sequences
of moments are obtained using the MCM approach together with the approximation of
the mode probabilities poff and pon (cf. Example 3.9). We solve the maximum entropy
problem for each moment sequence and the reconstruction of marginal unconditional
distribution is given by

q̃wsMCM(x) =





poff q̃off(x), x ∈ D∗
Poff
\D∗

Pon

pon q̃on(x), x ∈ D∗
Pon
\D∗

Poff

poff q̃off(x)

+pon q̃on(x)
, x ∈ D∗

Poff
∩D∗

Pon
,

where q̃off(x) and q̃on(x) are the reconstructions of the conditional distributions.

Gene expression model. For the gene expression reaction network the moment-based
analysis using MM and the MCM approach is very accurate, but the MCM approach has
lower relative errors for high moments (see [105]).

We first consider the one-dimensional marginal distributions of R and P . We then compare
the approximation errors of all three reconstruction methods at time t = 10 and provide
the results in Table 5.5. There, the first two columns refer to the approximation error of
the conditional distributions for protein (mRNA) denoted by P |Doff (R|Doff) and P |Don

(R|Don). The last three columns refer to the reconstructions of the marginal distribution
obtained using weighted sum MCM , joint MCM and MM , respectively.

We find that the reconstruction is accurate for all M > 2 and the best result for the dis-
tribution of mRNA (R) is obtained when the joint MCM method is applied with M = 7
yielding a statistical percentage error of 0.003%. Thus, for this distribution an accurate
approximation of the unconditional moments yields the best reconstruction since here
the conditional distributions are slightly harder to reconstruct than the (unconditional)
marginal distributions (approximation error of weighted sum MCM is 0.03%). The distribu-
tion of protein molecules P is reconstructed most accurately when the joint MCM or MM
is applied with M = 3 while reconstructions using the moments obtained with MCM are
slightly worse. When we use moments of orderM > 3 for reconstruction,MM usually gives
worse results than joint MCM . The approximation error of the distribution reconstructed
using weighted sum MCM is of the same order as of the conditional distributions and it
does not significantly increase. It shows that rather high under- and overapproximations
of conditional distributions can still provide an accurate approximation of the marginal
distribution after summation and weighting. We note that the probabilities poff and pon
of modes Doff and Don are (approximately) 0.44 and 0.56 (cf. Example 3.9), therefore the
conditional distributions bring equally important contribution to the final result of the
reconstruction. The relative approximation error for mode probabilities computed with
MCM is of order 10−5.
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We note that the reconstruction results are generally quite similar for the approaches that
are based on an approximation of the conditional and unconditional moments. However,
the MCM approach has the advantage that the distribution of species such as DNA is
very accurate, since it is directly available and is not reconstructed from the moments. A
moment-based approach such as MM would need large number of moments for an accurate
reconstruction [25] of such distributions with very small support.

The sensitivity of the optimization procedure can also influence the final result. The
reconstruction that uses the fewer degrees of freedom can provide an accurate solution
since the distribution of the simple shape is able to explain the main behavior. At the same
time, adding more moments into the consideration allows one to capture more details, but
it may change the reconstruction drastically due to the sensitivity, and the corresponding
approximation error can become larger.

To the best of our knowledge, there exist no criteria that provide the number of moments
that have to be considered such that adding more information does not significantly
change the maximum entropy reconstruction. We show that in Figure 5.5, where we plot
the reconstructions of the conditional distribution P |Doff and use M ∈ {2, 4, 7}. The
reconstruction using M = 7 moments has the largest approximation error, but it is able
to capture the complex nature of the distribution by treating the point P = 0 differently
(however, this results in the effect similar to overfitting, cf. Figure 5.5c).

Reconstruction using moments of the order higher than M > 7 is not reasonable: the
approximation error of both MM and MCM becomes high and the results are less accurate.
In order to solve the moment closure system for the case M = 7 (where we truncate at the
order 8, i.e., all the central moments of order ≤ 9 are set to 0), we use the solver ode23s
in order to partially remedy the stiffness of the ODE system. The moment approximation
with MCM method remains fast enough with M = 7 to provide the computational time
gain in comparison to the direct simulation of the CME, while MM becomes very slow
(running time is 6 minutes) and the difference in reconstruction results in not large.

In Figure 5.6 we plot the best reconstructions (shown as crosses) of the marginal distri-
bution of protein and mRNA molecules obtained with joint MCM , M = 3 and M = 7
respectively.
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Figure 5.5: ←֓ Approximation of the conditional distribution of protein P |Doff. The
number of moments used for reconstruction is M = 2 (a), M = 4 (b) and M = 7 (c).
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M P |Doff P |Don PwsMCM PjMCM PMM

||ǫ||V

2 5.5 · 10−1 1.9 1.1 7.2 · 10−1 7.1 · 10−1

3 8.7 · 10−1 9.3 · 10−1 5.2 · 10−1 2.6 · 10−1 2.6 · 10−1

4 7.1 · 10−1 7.1 · 10−1 3.4 · 10−1 2.7 · 10−1 4.1 · 10−1

5 1.4 6.2 · 10−1 7.6 · 10−1 2.8 · 10−1 4.5 · 10−1

6 1.8 6.6 · 10−1 6.0 · 10−1 3.1 · 10−1 6.3 · 10−1

7 4.1 6.9 · 10−1 1.9 3.5 · 10−1 8.7 · 10−1

R|Doff R|Don RwsMCM RjMCM RMM

||ǫ||V

2 1.1 1.8 7.3 · 10−1 2.3 2.4
3 3.8 · 10−1 8.8 · 10−1 3.6 · 10−1 9.6 · 10−1 9.6 · 10−1

4 1.8 · 10−1 7.3 · 10−1 3.4 · 10−1 1.6 · 10−1 3.5 · 10−1

5 1.7 · 10−1 5.9 · 10−1 3.8 · 10−1 6.0 · 10−2 1.0 · 10−1

6 2.7 · 10−1 3.9 · 10−1 1.0 · 10−1 6.4 · 10−2 2.9 · 10−1

7 4.3 · 10−1 2.5 · 10−1 3.1 · 10−1 3.0 · 10−2 2.6 · 10−1

Table 5.5: ←֓ Maximum entropy reconstruction results for the gene expression network.
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Figure 5.6: ←֓ Gene expression: reconstruction (crosses) of the marginal distribution of
proteins (a) and mRNA (b) compared to the CME solution (bars).
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The reconstruction of the two-dimensional marginal distributions also requires solving the
maximum entropy problem but with larger dimensionality. However, we solve the same
moment closure system, so the additional complexity comes only from the reconstruction
process itself. We demonstrate the differences that arise in the two-dimensional case with
the Example 5.2:

Example 5.2. ←֓ We again consider the gene expression model where we recon-
struct the two-dimensional marginal distribution of mRNA and protein molecules
P[ ~XR,P (t) = (x, y)] = π ~XR,P

(x, y, t). We first approximate the probabilities of modes

poff = P[XDoff
= 1] and pon = P[XDon = 1] (cf. Eq. 3.12). In addition, the conditional

moments
µoff;r,l = E

(
Xr

RX
l
P |XDoff

= 1
)

µon;r,l = E
(
Xr

RX
l
P |XDon = 1

)

are approximated for 0 ≤ r + l ≤ M + 1. The constraints (4.3.4) for the maximum
entropy problem are given by the elements of these moment sequences for 0 ≤ r+l ≤M
and the corresponding solutions of the optimization problem are given by the two
pairs (λ∗

off, D
∗
off) and (λ∗

on, D
∗
on). The reconstructed distribution is given by

q̃wsMCM(x, y) =




poff q̃off(x, y), (x, y) ∈ D∗
off \D∗

on

pon q̃on(x, y), (x, y) ∈ D∗
on \D∗

off

poff q̃off(x, y) + pon q̃on(x, y), (x, y) ∈ D∗
off ∩D∗

on,

where q̃off(x, y) = exp(−1− ∑
1≤r+l≤M

λ∗
off,r,lx

ryl) and

q̃on(x, y) = exp(−1− ∑
1≤r+l≤M

λ∗
on,r,lx

ryl).

To approximate the moment values in the two-dimensional case (4.15), we truncate the
infinite support and consider the subset D∗

xy = D∗
x × D∗

y, where D∗
x and D∗

y are the
approximations of the support of the corresponding one-dimensional marginal distributions
P[X�(t) = x] and P[X◦(t) = y]. Again, we choose D∗

xy such that the relative change of the
dual function (4.11) becomes smaller than the threshold δΨ. The approximation q̃(x, y)
of the marginal distribution p�,◦(x, y, t) = P[X�(t) = x,X◦(t) = y] is then defined by the
result λ∗ of the iteration procedure such that p�,◦(x, y, t) ≈ q̃(x, y) if (x, y) ∈ D∗

xy and
p�,◦(x, y, t) ≈ 0 if (x, y) /∈ D∗

xy.

We list the approximation error for the two-dimensional marginal distributions of R and P
of the gene expression network (both conditional and unconditional) in Table 5.6. For the
sake of readability we denote the reconstructed distribution by q̃ in the following tables.
For instance, the approximation of the joint marginal distribution of R and P under the
condition Doff = 1 is denoted by q̃Doff

.

We observe that the relative error of the reconstruction decreases when higher-order mo-
ments are used. The minimum value of error ||ǫ||V = 2.1% for the marginal reconstruction
is obtained using M = 6 in weighted sum MCM . While all three methods have similar
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M q̃Doff
q̃Don q̃wsMCM q̃jMCM q̃MM

||ǫ||V

2 12 5.1 6.9 8.3 8.2
3 9.1 2.5 4.9 6.3 6.3
4 6.0 1.8 3.4 4.8 4.7
5 5.3 1.5 2.8 4.0 4.1
6 3.9 1.2 2.1 3.0 2.8
7 5.8 1.1 2.7 3.0 -

Table 5.6: ←֓ Maximum entropy reconstruction of two-dimensional marginal distribution
of mRNA and protein for the gene expression network.

errors, the MCM approach uses fewer moment equations. The best reconstruction of the
conditional distribution with Don = 1 is shown in Figure 5.7, together with the correspond-
ing solution of the CME and the approximation error ǫ4(x, y) = |q̃Don(x, y)− pDon(x, y)|

1
4 .

We take the power 1/4 of the norm in L1 in order to better distinguish very small numbers;
for instance, the contour value 0.05 refers to the L1 distance 6.25 · 10−6. Please note that
the dual function convergence threshold is chosen as δΨ = 10−2.

We also consider another set of parameters for the gene expression kinetics (cf. Exam-
ple 3.9). Because of the complex shape of conditional distributions (more than a half of
total probability mass corresponds to state 0) the reconstruction is less accurate than in
the previous case. It was not possible to reconstruct the distribution RDoff

forM = {5, 6, 7}
(with the value of threshold δD = 10−3, as defined in (A.9)) and we use moments up to
M = 3 for the approximation. However, it was still possible to reconstruct both marginal
distributions and the best result is obtained using weighted sum MCM . We plot the con-
ditional PDoff

, RDoff
(in Figure 5.8) and marginal distributions of P and R (in Figure 5.9)

together with the reconstructions (for conditional distributions we show the reconstruc-
tions obtained withM = 4 andM = 7, and for marginal distributions we plot the weighted
sum MCM approximations calculated with M = 7 for P and with M = 3 for R). We
observe that such distributions with a lot of probability mass at 0 are more difficult to
reconstruct. It is possible to address this feature using maximum entropy reconstruction
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Figure 5.7: ←֓ Two-dimensional conditional distribution of the proteins and mRNA (gene
expression), where Don = 1. We plot the reconstructed distribution (a), the solution of
the CME (b) and the approximation error ǫ4 (c).
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M P |Doff P |Don PwsMCM PjMCM PMM

||ǫ||V

2 66 6.9 28 47 34
3 62 5.0 26 34 32
4 36 6.0 16 31 32
5 32 3.8 13 16 25
6 33 5.6 16 14 46
7 9.3 12 9.7 10 26

R|Doff R|Don RwsMCM RjMCM RMM

||ǫ||V

2 28 2.6 13 40 33
3 4.6 1.2 1.4 21 27
4 7.6 1.5 5.0 20 24
5 7.2 9.1 · 10−1 5.0 7.4 17
6 7.2 6.8 · 10−1 5.2 5.8 23
7 7.2 7.3 · 10−1 5.2 4.2 13

Table 5.7: ←֓ Maximum entropy reconstruction for gene expression network (second
parameter set).

only using the approximation of moments computed using MCM. The corresponding
numerical results are listed in Table 5.7.

Exclusive switch model. Next, we address the accuracy of the reconstruction of
conditional and marginal distributions of the exclusive switch model. In Table 5.8 the
approximation error ||ǫ||V is listed for the conditional distributions for both proteins where
we condition on the three possible states of the promoter, i.e., DNA = 1, DNA.P1 = 1 or
DNA.P2 = 1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

4 10 20 30 40 50 60 70

q̃
(7)
P |Doff

P |Doff

q̃
(4)
P |Doff

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

4 6 8 10 12 14 16 18

q̃
(7)
R|Doff

R|Doff

q̃
(4)
R|Doff

(b)

Figure 5.8: ←֓ Reconstruction of conditional distributions PDoff
(a) and RDoff

(b) for gene
expression model.
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We observe that the approximation error is minimal for both proteins P1 and P2 when the
weighted sum MCM approach is applied. Here we do not useM = 2 since the corresponding
reconstructions are very inaccurate, as well as with M = 3 (the results are provided for
the clarity of comparison). Thus, for the exclusive switch system it is advantageous to
approximate the marginal distributions by first reconstructing the conditional distributions
and computing the weighted sum. In most cases the error decreases when more information
about the moments is used. Because of the complex bi-modal shape of the distributions
it is beneficial to include higher order moments as constraints.

In Figure 5.10 we show the reconstructions of both conditional (a, b) and marginal (c)
distributions of P1. Here, the weighted sum MCM was used with M = 7 to reconstruct the
marginal distribution. We also plot the absolute approximation error ǫP1 in Figure 5.11
for the two conditional distributions (DNA.P1 = 1 and DNA.P2 = 1) and the marginal
distribution, where we observe the oscillatory pattern. For example, the absolute error ǫP1

for the marginal distribution of P1 is calculated as ǫP1(x) = |qP1(x)− πP1(x)|.
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Figure 5.9: ←֓ Reconstruction of marginal distributions of proteins P (a) and mRNA R
(b) for gene expression model.
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M P1|DNA P1|DNA.P1 P1|DNA.P2 P1,wsMCM P1,jMCM P1,MM

||ǫ||V

3 32 13 21 15 30 29
4 5.1 6.5 4.4 4.6 5.3 29
5 3.6 4.0 3.1 3.3 4.0 6.2
6 4.6 4.9 4.8 3.8 4.0 4.1
7 3.6 3.0 1.5 2.1 3.8 15

P2|DNA P2|DNA.P1 P2|DNA.P2 P2,wsMCM P2,jMCM P2,MM

||ǫ||V

3 40 22 26 21 37 37
4 8.7 4.4 8.8 6.6 9.1 36
5 7.7 4.5 6.8 5.4 8.4 8.3
6 5.7 3.4 6.3 4.6 4.9 6.2
7 5.3 2.3 6.3 4.3 5.1 6.2

Table 5.8: ←֓ Approximation errors for the distribution of proteins P1 and P2 in exclusive
switch model.

We also consider the conditional and marginal two-dimensional distributions of proteins
P1 and P2 in the following example:

Example 5.3. ←֓ We consider the reconstruction of two-dimensional marginal distri-
bution P (XP1 = x,XP2(t) = y) of proteins P1 and P2. We first approximate the mode
probabilities p1 = P (DNA = 1), p2 = P (DNA.P1 = 1) and p3 = P (DNA.P2 = 1)
(cf. Eq. 3.12). In addition, the conditional moments

µ1;r,l = E
(
Xr

P1
X l

P2
|DNA = 1

)

µ2;r,l = E
(
Xr

P1
X l

P2
|DNA.P1 = 1

)

µ3;r,l = E
(
Xr

P1
X l

P2
|DNA.P2 = 1

)
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Figure 5.10: ←֓ Exclusive switch: approximations of the conditional distributions of
protein P1 where DNA = 1 (a), DNA.P1 = 1, DNA.P2 = 1 (b) and the reconstruction
of the marginal distribution (c). The solution of the CME is plotted with yellow bars and
the reconstructions are plotted with black crosses (green bars and blue stars are used for
the conditional distribution (b) where DNA.P2 = 1). The reconstruction of the marginal
distribution (c) is obtained using weighted sum MCM with M = 7.
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are approximated for 0 ≤ r + l ≤ M + 1, where DNA = 1 refers to the case where
promoter is free and DNA.P1 = 1 (DNA.P2 = 1) corresponds to the case where a
molecule of type P1 (type P2) is bound to the promoter. The constraints (4.3.4) for
the maximum entropy problem are given by the elements of these three sequences for
0 ≤ r+ l ≤M and the corresponding solutions of the optimization problem are given
by the pairs (λ∗

i , D
∗
i ), i = {1, 2, 3}. Then the joint reconstructed distribution is given

by
q̃wsMCM(x, y) =



p1 q̃1(x, y), (x, y) ∈ D∗
1 \ (D∗

2 ∪D∗
3)

p2 q̃2(x, y), (x, y) ∈ D∗
2 \ (D∗

1 ∪D∗
2)

p3 q̃3(x, y), (x, y) ∈ D∗
3 \ (D∗

1 ∪D∗
2)∑2

i=1 pi q̃i(x, y), (x, y) ∈ (D∗
1 ∩D∗

2) \D∗
3,∑

i={1,3} pi q̃i(x, y), (x, y) ∈ (D∗
1 ∩D∗

3) \D∗
2,∑3

i=2 pi q̃i(x, y), (x, y) ∈ (D∗
2 ∩D∗

3) \D∗
1,∑3

i=1 pi q̃i(x, y), (x, y) ∈ D∗
1 ∩D∗

2 ∩D∗
3,

where q̃i(x, y) = exp(−1−∑1≤r+l≤M λ∗
r,lx

ryl).

Numerical results are given in Table 5.10. Again, we condition on the state of the
promoter region, e.g. q̃DNA.P1 corresponds to the joint distribution of proteins P1 and P2

when DNA.P1 = 1. It can be seen that the most accurate reconstructions are obtained with
M = 7 when weighted sum MCM is applied. The MM method does not provide the same
level of accuracy nor is compatible with respect to the running time: the solution of ODE
system for moment approximation is much slower in comparison to MCM. As for the gene
expression system, the convergence threshold for the support approximation procedure
is chosen δΨ = 10−2. We show the reconstructions of three conditional distributions
in Figure 5.12 where the plots refer to the conditions (from left to right) DNA = 1,
DNA.P1 = 1 and DNA.P2 = 1.

The reconstruction of the marginal distribution obtained using weighted sum MCM (joint
MCM ) is shown together with the approximation error in Figure 5.13 (Figure 5.14) . In
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Figure 5.11: ←֓ The absolute approximation error of the conditional distributions of
protein P1 where DNA.P1 = 1 (a), DNA.P2 = 1 (b) and the approximation error of the
marginal distribution reconstruction (c) for the exclusive switch model.
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model precomputation 4 5 6 7 8

gene expression
tnc 3.1 4.7 7.2 11.4 36
twc 2.5 2.6 2.6 2.6 2.6

exclusive switch
tnc 6.5 12.8 28.0 44.8 > 300
twc 2.4 5.4 9.9 11.8 29.5

Table 5.9: ←֓ The running time of the reconstruction in two-dimensional case for gene
expression and exclusive switch case.

Figure 5.15 we also plot the marginal distributions of P1 and P2 calculated via marginal-
ization of the two-dimensional reconstruction. For example, the distribution q̃P1,jMCM(x)
is calculated as q̃P1,jMCM(x) =

∑
y∈D∗

P2

q̃jMCM(x, y) for all x ∈ D∗
P1
.

The reconstruction process for the exclusive switch model usually takes more time than
for gene expression model because of a much larger support.

The running time for all one-dimensional experiments (except for bursty protein produc-
tion) do not exceed 2 second; it only gets to 4 seconds if the procedure has to restart
because it can not converge for the given set of moment constraints. We list the running
time for the two-dimensional reconstructions both for gene expression (fast kinetics) and
exclusive switch system in Table 5.9, where we assume compare the case when the values
of the exponential function are already precomputed (twc) or not (tnc) according to A.5.3.
We can observe that the running time depends on overall support approximation and
precomputation is a very effective way to shorten the running time.

M q̃DNA q̃DNA.P1 q̃DNA.P2 q̃wsMCM q̃jMCM q̃MM

||ǫ||V

3 37 19 25 31 34 36
4 11 7.3 11 22 12 13
5 10 5.7 8.3 21 11 12
6 6.6 3.9 6.2 5.8 5.6 7.4
7 6.5 2.8 4.8 3.4 5.0 18

Table 5.10: ←֓ The approximation error for the reconstruction of two-dimensional distri-
butions of proteins P1 and P2 in exclusive switch model.
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Cooperative self-activation of the gene expression. We consider another biological
model describing the dynamics of a single gene inducing its own expression.

Biological model 5.1 (Cooperative self-activation of gene expression). We consider
the biological system where protein P can bind to the two independent promotor
sites therefore inducing the activation the gene G (reactions I). As a result, there are
the three gene states G, G∗ and G∗∗, corresponding to zero, one or two activators
bound. Result of the translation is denoted by M and can occur via one of the three
reactions II. The translation process resulting in protein formation is described by
the last three reactions III.

G+ P
k1−−⇀↽−−
k−1

G∗, G∗ + P
k2−−⇀↽−−
k−2

G∗∗, (I)

G
kG−→ G+M, G∗ kG∗−−→ G∗ +M, G∗∗ kG∗∗−−−→ G∗∗ +M, (II)

M
k3−→M + P, M

k4−→ ∅, P
k5−→ ∅, (III)

We consider two sets of parameters leading to moderate (kA) and low (kB) pro-
tein population counts such that ki = (k1, k−1, k2, k−2, kG, kG∗ , kG∗∗ , k3, k4, k5) for
i ∈ {A,B}. Parameter sets are given by kA = (5 · 10−4, 3 · 10−3, 5 · 10−4, 2.5 ·
10−2, 4, 12, 24, 1200, 300, 1) and kB = (5·10−4, 2·10−4, 5·10−4, 2·10−3, 4, 60, 160, 30, 300, 1).

As before, the values of the conditional moments E
(
Xk

P |G = 1
)
, E
(
Xk

P |G∗ = 1
)
and

E
(
Xk

P |G∗∗ = 1
)
of P are approximated using MCM and used as constraints in the maxi-

mum entropy reconstruction. The marginal distribution of P is reconstructed by applying
the law of total probability q̃(x) =

∑
i={1,2,3}

pi · q̃i(x), where p1 = P[G = 1], p2 = P[G∗ = 1]

and p3 = P[G∗∗ = 1] and q̃i(x) are the corresponding conditional distributions.

The results of the reconstruction are listed in Table 5.11 where P kA (P kB) denotes the
distribution of proteins when the set of parameters kA (kB) is used. For the case of
moderate protein populations (parameter set kA) it is more reasonable to apply weighted
sum MCM : the reconstruction even with M = 2 is more accurate that when joint MCM

4.0e-04
3.0e-04
2.0e-04
1.0e-04

0 20 40 60 80 100 120

P1

0

50

100

150

200

250

300
P2

(a)

6.0e-04
5.0e-04
4.0e-04
3.0e-04
2.0e-04
1.0e-04

0 20 40 60 80 100 120

P1

0

50

100

150

200

250

300
P2

(b)

8.0e-04
6.0e-04
4.0e-04
2.0e-04

0 20 40 60 80 100 120

P1

0

50

100

150

200

250

300
P2

(c)

Figure 5.12: ←֓ Exclusive switch: the approximations of the conditional distributions of
proteins P1 and P2 where DNA = 1 (a), DNA.P1 = 1 (b) and DNA.P2 = 1 (c) . The
reconstructions are obtained using M = 7.
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is applied with M = 7. In the case of low protein populations (parameter set kB) it is
also obvious that application of weighted sum MCM provides much better results. Please
note that in this case we do not apply MM method to approximate the moments since
the corresponding ODE system is very stiff and takes extremely long time to converge to
a steady state. To solve the system of conditional moments, we use ode15s solver from
MATLAB with the default accuracy settings. We consider the system at quasi-steady state,
therefore we integrate the ODE system until the moment values converge and do not
change much.

We plot the reconstructions for both P kA (P kB) in Figure 5.16 where we use M = 3 and
M = 7. As we can see, the multimodality of the distribution is well captured and the
approximation is accurate when M = 7.

Bursty protein production model. The proposed method can be also applied to
bursty protein production model, however this computation has not been implemented.
The model possesses the countably infinite number of modes (where each mode corre-
sponds to the number of species M molecules), whereas for systems considered before
the number of modes is finite. This can be mitigated if we select only those M counts
that provide the mode probability larger than a certain threshold, i.e., set of modes
M̃ = {M |pM > ǫmode}, where pM =

∑
xP∈[0,∞]

P[(XM , XP ) = (xM , xP )] and 0 < ǫmode ≪ 1.

Then the distribution of the protein P can be approximated using weighted sum MCM
as q̃P (xP ) =

∑
xM∈M̃

pxM
q̃(xM , xP ).

For all considered experiments we apply the maximum entropy principle using the moments
approximated using both MM and MCM and found that the integration of the moment
equations and the reconstruction of the distributions is several orders of magnitude faster
than a direct numerical integration of the CME. By increasing the population sizes,

4.0e-04
3.0e-04
2.0e-04
1.0e-04

0 20 40 60 80 100 120

P1

0

50

100

150

200

250

300
P2

(a)

3.5e-05
3.0e-05
2.5e-05
2.0e-05
1.5e-05
1.0e-05
5.0e-06

0 20 40 60 80 100 120

P1

0

50

100

150

200

250

300
P2

(b)

Figure 5.13: ←֓ Exclusive switch: the reconstruction of the marginal distribution of
proteins P1 and P2 obtained using weighted sum MCM with M = 7 moments (a) and the
corresponding approximation error (b).
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the speed-up can be made arbitrarily large. However, the accuracy of the reconstructed
distributions is not always satisfying and simply increasing the order of the considered
moments, from a certain order on, does not improve the results. This is due to the
fact that the optimization procedure becomes numerically unstable. In particular, if the
distributions have a complex shape (such as multimodal distributions or distributions
with high probability mass concentrated in states with small population counts) the
reconstruction may become inaccurate.

We propose to reconstruct the conditional probability distributions that result from the
MCM approach and multiply with the probability of the condition (i.e., marginal distri-
butions of small populations) to obtain the full distribution. This has several advantages
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Figure 5.14: ←֓ Exclusive switch: the reconstruction of the marginal distribution of pro-
teins P1 and P2 obtained using joint MCM withM = 7 moments (a) and the corresponding
approximation error (b).
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Figure 5.15: ←֓ Exclusive switch: marginal distributions of proteins P1 (a) and P2 (b)
calculated via marginalization of the joint MCM reconstruction of two-dimensional dis-
tribution with M = 7.
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M P kA
wsMCM P kA

jMCM P kB
wsMCM P kB

jMCM

||ǫ||V

2 4.7 7.4 27 25
3 6.9 7.7 2.7 23
4 1.2 5.7 1.4 10
5 8.7 · 10−1 5.5 4.2 · 10−1 8.9
6 4.9 · 10−1 5.1 2.6 · 10−1 8.6
7 3.2 · 10−1 5.0 1.4 · 10−1 8.0

Table 5.11: ←֓ Self-activating gene model: reconstruction of the marginal distribution of
proteins P using weighted sum MCM and joint MCM .

compared to the MM reconstruction. First, in the MM approach the reconstruction of the
probability distributions of small populations is usually very imprecise, while in the MCM
approach these distributions are directly available. Second, the conditional distributions
in the MCM are often less complex (e.g. unimodal instead of bimodal) and thus easier to
reconstruct. Finally, as the maximal order M of considered moments increases, the MCM
requires fewer variables (conditional moments and conditional probabilities) than in the
MM approach. This is because the number of conditional probabilities is fixed while the
number of considered (conditional) moments grows exponentially in M (recently, Ruess
showed [187] that the number of equations in the moment closure system can be further
reduced).

From a computational point of view, moment closure based reconstruction is limited by
the order of moments that can be numerically integrated due to the stiffness of the ODE
system. Such difficulties are encountered when the moments of order M = 9 are to be
approximated.

Nevertheless, we find that the information provided by this smaller set of variables is as
good or even better for reconstructing the original distributions. Thus, we argue that the
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Figure 5.16: ←֓ Self-activating gene model: reconstruction of the marginal distribution
of proteins P kA and P kB obtained using weighted sum MCM with M = 3 and M = 7.
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MCM approach should be preferred when deriving the probability of certain events from
the moment values.

5.3 Maximum Entropy and Parameter Estimation

5.3.1 Maximum Likelihood Based Approach

The experimental imaging techniques (such as fluorescent microscopy) are able to count
the molecular populations in a living cell. If small populations are present, stochastic
models can be used to describe the dynamics of the biological system using continuous-
time Markov chain. However, this is possible only if the reaction rate constants cj are
known. Often it is not the case and cj must be estimated based on time-series data of the
molecular populations. This procedure is computationally intensive and require to solve
the CME for each set of the parameter estimates. The corresponding maximum likelihood
based method that allows to estimate rate constants, initial populations and parameters
from the noisy population measurements is described in [13].

The method given in [13] is however limited to systems with relatively small state space
and may suffer from the state space explosion. In order to mitigate this, we can apply
the moment approximation methods such as MM or MCM and use the moment data to
obtain the reaction rate constant estimates for systems with even high population counts.
Here, we adopt the maximum likelihood method such that the moment approximation
is used as an initial data for the maximum entropy reconstruction. The reconstructed
distribution is then used to compute the likelihood of the given data.

Assume that O = {O1, . . . , OK} is a sequence of observations taken at a certain time point
T . Each observation Oi = (Oi,1, . . . , Oi,NS

) is a vector of population counts for species
where some species may not be observed. We also assume that the chemical reaction
network is known and we need to estimate rate constants c = (c1, . . . , cNR

). In order
to proceed with estimation of the vector c, the maximum likelihood estimation (MLE)
approach can be used where we maximize the likelihood of the given data O:

(c1, . . . , cNR
) = arg max

c1,...,cNR

L(O),

where we omit the dependency of the likelihood function L on the reaction rate constants
for clarity. We can use the values of moments in two ways to estimate the rate constants:

1. Use approximated moments and the moments computed from data and minimize the
distance. The most recent application of this principle was proposed in [155] where
the generalized method of moments (GMM) is used to approximate the moments
of the biological model with complex dynamics.

2. Reconstruct the distribution from the moments and maximize the likelihood com-
puted with respect to this reconstruction.



Model Reconstruction with Maximum Entropy Approach 82

Here we apply the second approach where we use the maximum entropy method to
reconstruction the unknown distribution. The first approach has been successfully applied
before: the authors of [168] approximate the likelihood by a normal distribution for the
cases where dynamics can be described well using first and second moments (i.e. using the
expectations and the covariance matrix). However, in the presence of multimodality [246]
such approximations become inaccurate. Several moment closure schemes are applied
in [35] where Monte-Carlo simulations are combined with moment approximations and
the likelihood is approximated by a normal distribution using the first four moments.
Similar approach was applied before to solve the problem of the optimal experiment
design in [189]. The maximization of likelihood (minimization of negative likelihood) can
be done much more efficiently if the derivatives of the likelihood function w.r.t. reaction
rate constants ∂L/∂ci are known [141]. Recently, Fröhlich et al. presented the method based
on system size expansion [72]. The overview of the moment-based parameter inference
techniques for biological systems can be found in [141, 188].

We assume that the likelihood function can be approximated using the maximum entropy
principle. Therefore, the likelihood of data O (without noise) is given by

L(O) =
∏

Ok∈O
P[ ~X(t) = Ok] ≈

∏

Ok∈O
q̃(Ok, λ

∗,k),

where q̃ is the maximum entropy reconstruction. To simplify the numerical maximization
procedure, we apply the logarithm to obtain the log-likelihood of the data

lnL(O) =
∑

Ok∈O
lnP[ ~X(t) = Ok] ≈

∑

Ok∈O
ln q̃(Ok, λ

∗,k).

This function is however nonlinear and may possess several local optima, therefore the
global optimization algorithm shall be applied. If available, the gradient vector (and the
Hessian matrix) may be provided to the local gradient-based minimizer in order speed up
the numerical optimization procedure [13]

∂ lnL
∂ci

(O) =
∑

Ok∈O

∂

∂ci
lnP[ ~X(t) = Ok] =

∑

Ok∈O

∂
∂ci

P[ ~X(t) = Ok]

P[ ~X(t) = Ok]
,

∂

∂ci
P[ ~X(t) = Ok] ≈

∂

∂ci
q̃(Ok, λ

∗,k) =
∂

∂ci
exp

(
−

M∑

l=0

λ∗,k
l Ol

k

)
,

∂

∂ci
exp

(
−

M∑

l=0

λ∗,k
l Ol

k

)
= exp

(
−

M∑

l=0

λ∗,k
l Ol

k

)
·
(
−

M∑

l=0

[
∂λ∗,k

l

∂ci

]
Ol

k

)
,

where in the second equation we do not put restrictions on the dimensionality of the

observation Ok, i.e., the sum

(
−

M∑
l=0

λ∗,k
l Ol

k

)
can be considered as in (4.7) or in (4.13) and

can be generalized to any number of species NS. Here, we assume that the observation is
one-dimensional (NS = 1) for the sake of readability.

Please note that it is impossible to obtain the derivatives
∂λ∗

l

∂ci
in a closed form since

the coefficients λ are the result of the optimization procedure which is not described in
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terms of functional dependency between the set of approximated moments µl and λl (the
corresponding derivation can be, however, conducted for the case of generalized exponential
distributions, cf. Appendix A.5.7). Alternatively, we can again apply the principle of

maximum entropy and try to reconstruct the function ∂/∂ciP[ ~X(t) = Ok] (which is not a
distribution, so it does not possess the corresponding properties). Therefore, we need to
approximate the derivatives of the moments with respect to reaction rate constants ∂µl/∂ci
and consider the following moment problem

∂

∂ci

∑

x∈S
xlp(x) =

∂µl

∂ci
,

∑

x∈S
xlr(x) = νl,i, (5.1)

where we denote ∂p(x)
∂ci

= ri(x) and
∂µl

∂ci
= νl,i. The resulting maximum entropy is then

∑

x∈S
xlri(x) = νl,i 1 ≤ l ≤M <∞, 1 ≤ i ≤ NR.

In order to obtain the values νl,i, the moment closure system has to be extended to include
the derivatives of moments w.r.t. rate constants as well. Instead of considering only the
dynamics of moments

d

dt
µ(Il) = F(µ(I1), µ(I2), . . . ; t), (5.2)

the dynamics of the derivatives shall also be included into the ODE system

d

dt

(
∂

∂ci
µ(Il)

)
= G

(
µ(I1), µ(I2), . . . ,

∂µ(I1)

∂ci
,
∂µ(I2)

∂ci
, . . . ; t

)
(5.3)

for all order vectors I and rate constants ci. Obviously, both ODE systems F and G can
be considered as functions of reaction rate constants ci. Consider the following example
where we extend the moment closure system for simple dimerization model:

Example 5.4 (Extended Moment Closure for Simple Dimerization Model). ←֓ We
consider the dynamics of the derivative of covariance C2,2 in Equation 3.2 w.r.t. to
rate constants. Recall that the time of derivative C2,2 is given by (where we assume
the low dispersion closure of the order 2)

d

dt
C2,2 =

3

2
c1C1,1 +

1

2
c1µ1(µ1 − 1) + µ2(c2 − c1C1,1)

Now we extend it by

d
dt

(
∂C2,2

∂c1

)
= 3

2

(
C1,1 + C

(c1)
1,1

)
+ 1

2

(
µ2
1 + 2C1µ1µ

(c1)
1 − µ1 − c1µ

(c1)
1

)
+ µ2C1,1

−c1
(
µ2C

(c1)
1,1 + µ

(c1)
2 C1,1

)

d
dt

(
∂C2,2

∂c2

)
= µ2 + c2µ

(c2)
2 ,
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where we denote the derivatives of moments w.r.t. to ci by µ(ci) and C(ci).

Both ODE systems F and G are coupled and need to be solved simultaneously w.r.t. time
t.

However, the moment problem (5.1) does not allow for a direct solution. The classical
moment problem is formulated as

µl =

∞∫

−∞

xl dρ(x),

where ρ(x) is a measure on R. It is impossible to formulate the problem (5.1) in the same
way since there is no reason for the derivative function ∂/∂cip(x) = ri(x) to be non-negative
and satisfy the properties of the measure. Here, we use the numerical approximation of
the derivatives instead and ∂/∂ciL is calculated using the finite differences

∇L ≈
[
L(c1 + δc1)− L(c1 − δc1)

2δc1
, . . . ,

L(cNR
+ δcNR

)− L(cNR
− δcNR

)

2δcNR

]
.

The absence of the closed-form solution for the gradient and the Hessian of the likelihood
function limits the ability to estimate the quality of the obtained estimates, i.e., there is
no direct way to get the estimate of the variance of the inferred rate constant. Again, here
we use the numerical approximation of the Hessian matrix Ĥ and the covariance matrix
is given by Σ̂ = Ĥ−1 [63]. The standard deviation of ith parameter estimation can be

computed as σ̂i =
√
Σ̂i,i =

√
Ĥ−1

i,i .

Example 5.5 (Parameter Estimation for Exclusive Switch). ←֓ We consider the
problem of reaction rate constants estimation for the exclusive switch system given
several sample data sets O, each consisting of 10000 samples. The aim is to estimate
the reaction rate constants c1 and c2 whereas the rest are fixed. We assume that only
protein counts P1 and P2 are observable. The log-likelihood of the data O is given by

lnL(O) =
∑

Ok∈O
lnP[ ~X(t) = Ok] ≈

∑

Ok∈O
ln q̃(Ok, λ

∗),

where q̃(Ok, λ
∗) corresponds to the maximum entropy reconstruction of the marginal

distribution of P1 and P2. The initial parameter guess can be obtained using one of
the moment-matching parameter inference methods [35, 168, 189]. Here we use the
result of GMM-based parameter estimation [155] to bound the search space of the
parameters as c̄i ± zασ̂ci , where c̄i is the expectation of the estimator for ci, σ̂ci is the
standard deviation and zα is the z-value corresponding to the fixed level of confidence
α. Unfortunately, the results of the numerical experiments reveal that the parameter
estimates does not become closer to its true values, therefore it is better to stick to the
original estimates from GMM. One may try to get the better estimates by running
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the parameter inference procedure described in [13] if the size of the state space is
manageable.

Another way to address the problem of the derivative approximation is to apply the
moment recursive relations of the generalized exponential family. For instance, the vector
of parameters β of the density fG(β) of type G with the support [0,∞] can be obtained by
simply solving a linear system of equations β = M−1α, where both vector α and matrix
M are the functions of non-central moments µl (cf. Equation A.13). The parameter
vector β is then a function of moments µl, i.e., β = M−1α, therefore we can compute
derivatives ∂/∂ciβ = ∂/∂ci (M−1α) for all i ∈ 1, . . . , NR. The derivatives ∂/∂ciP[ ~X(t) = Ok]
can be approximated by ∂/∂cifG(Ok, β

∗). Both the vector of parameters β∗ is computed via
β∗ = M̃−1α̃, where both the matrix M̃ and the vector α̃ are computed using the moments
obtained with MM or MCM method extended with ODE system G (5.3) that tracks the
dynamics of moment derivatives.

For the distribution f(x, β) of the generalized exponential family the derivatives ∂/∂cif(Ok, β
∗)

can be computed as

∂

∂ci
f(Ok, β

∗) =
∂

∂β
f(Ok, β

∗) · ∂

∂ci
β(~µ) =

∂

∂β
f(Ok, β

∗) · ∂

∂ci

(
M−1(~µ) α(~µ)

)

∂

∂ci

(
M−1(~µ) α(~µ)

)
=

∂

∂ci
~µ(c) ·

(
α(~µ)

∂

∂~µ
M−1(~µ) +M−1(~µ)

∂

∂~µ
α(~µ)

)
,

where ∂
∂ci

~µ(c) = G(ci)
(
µ(I1), µ(I2), . . . , ∂

∂ci
µ(I1), ∂/∂ciµ(I2), . . .

)
is the solution of the extended

moment closure system (5.3).

Similarly, we can further extend this approach to obtain the Hessian matrix of the likelihood
function as a closed form expression. In order to do so, we need the approximation of the
second derivatives of the moments. The moment closure system (F,G) (5.2)-(5.3) can be
extended with the equation system H defined as

d

dt

(
∂2

∂ci∂cj
µ(Il)

)
= H

(
µ(I1), µ(I2), . . . ,

∂µ(I1)

∂ci
,
∂µ(I2)

∂ci
, . . .

∂2µ(I1)

∂ci∂cj
,
∂2µ(I2)

∂ci∂cj
, . . . ; t

)
(5.4)

and the second derivatives of the distribution reconstruction can be computed as

∂2

∂ci∂cj
f(Ok, β

∗) =
∂2

∂β2
f(Ok, β

∗) · ∂

∂ci
β(~µ) · ∂

∂cj
β(~µ) +

∂

∂β
f(Ok, β

∗) · ∂2

∂ci∂cj
β(~µ),

where the elements of the Hessian matrix come into the second derivative of the function
β(~µ) = M−1(~µ)α(~µ). The second derivative of the likelihood function is given by

∂2 lnL(O)

∂ci∂cj
=
∑

Ok∈O

∂2

∂ci∂cj
pkpk − ∂

∂ci
pk

∂
∂cj

pk

p2k
, (5.5)

where we denote P[ ~X(t) = Ok] by pk.
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The given method can be generalized to noisy observations as well [13]. For that we assume
that each observation Ok ∈ O can be represented as Ok = Xk + ǫk, where the error terms
ǫk are independent and identically normally distributed with zero mean and standard
deviation σ. In this case, the log-likelihood of the data is given by

lnL(O) =
∑

Ok∈O
ln L̄ (Ok) ,

L̄ (Ok) =
∑

x∈D
fǫ

(
Ok| ~X = x

)
P[ ~X = x]

L̄ (Ok) ≈
∑

x∈D∗

fǫ

(
Ok| ~X = x

)
f(x, β∗)

fǫ

(
Ok| ~X = xk

)
= φσ (Ok − xk) = φσ (∆k) ,

where φσ(x) denotes the probability density function of the normal distribution with
standard deviation σ. We can derive the first and second derivative in a similar fashion
as before

∂ lnL
∂ci

=
∑

Ok∈O

∂

∂ci
ln L̄(Ok) =

∑

Ok∈O

∂
∂ci
L̄(Ok)

L̄(Ok)
,

∂

∂ci
L̄(Ok) ≈

∑

x∈D∗

φσ (∆k)
∂

∂ci
f(x, β∗),

∂2 lnL
∂ci∂cj

=
∑

Ok∈O

∂2

∂ci∂cj
L̄(Ok)L̄(Ok)− ∂

∂ci
L̄(Ok)

∂
∂cj
L̄(Ok)

L̄2(Ok)
,

∂2

∂ci∂cj
L̄(Ok) ≈

∑

x∈D∗

φσ (∆k)
∂2

∂ci∂cj
f(x, β∗),

where we need to solve the system (F,G,H) defined by (5.2),(5.3),(5.4). The weighting
with the normal distribution over the approximated state space D∗ does not have to be
complete: it might well be the case that values of the normal distribution φσ(∆k) become
negligible providing additional truncation bound and therefore shortening the number of
terms in sum.

The proposed algorithm is given in Algorithm 1, where we assume that all reaction rate
constants are to be estimated (we denote the coupled system ODE system for moment
closure by (F,G,H)). The function ReconstructDistribution may refer to any kind
of distribution reconstruction technique such as maximum entropy or generalized expo-
nential family based. The function UpdateParameters denotes any kind of gradient-
based search method such as Newton [196], Levenberg-Marquardt [174] or limited memory
BFGS [42]. Some of those methods can also make use of the Hessian matrix of second
derivatives to speed up the convergence to the optimum. If closed form expressions are
not available (as in case of maximum entropy reconstruction), the corresponding finite
difference approximations may be used.
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The third derivatives of the likelihood function can be also analytically derived. However,
the corresponding optimization methods [11, 33, 52, 125] are not widely applied. In case
of maximum entropy reconstruction, the application of third derivatives tensor to the
minimization of dual function (implemented in [192]) does not give any gain in terms of
convergence speed.

5.3.2 Maximum Relative Entropy

The alternative approach to the parameter estimation procedure is based on the usage of
the maximum relative entropy (MrE) method designed in order to incorporate two types
of constraints: the moment constraints of type (4.2) and data constraints. The method is
explained in details in [78–80] and often applied in physics and economics [21, 240].

The authors emphasize that the MrE procedure is fully compatible with Bayesian inference
method and one exactly follows the Bayesian inference in the absence of moment constrains.
Special attention is made on how and in which order to apply the data constraints
(observation data) and moment constraints. In the scope of chemical reaction network
analysis this method can be helpful to estimate the parameters in situation when the
excessive simulation is not possible but moments of the species quantities may be obtained
reasonably fast.



Chapter 6

Conclusion

The realistic biological systems that are subject to the stochastic effects may reach over
the bounds of the discrete state space that can be handled reasonably well by current
implementations of chemical master equation solvers. The state space explosion currently is
(and will) remain one of the main obstacles to cope with such systems in purely stochastic
and most accurate way. This motivates the need to use moment-based approaches that
are capable of describing the same behaviour in more condensed form.

This doctoral thesis is focused on how to recover the discrete-state representation of the
system given the moment description. This is the well known inverse moment problem
for which the mathematical foundations are rigorously investigated. However, this is one
of the first approaches to apply these methods to the systems with (possibly unbounded)
discrete state space and distributions of molecule numbers with relatively complicated
shape (successfully decomposed onto simpler ones using the conditional representation).

Moment-based representation of the behaviour allows for the fast computation of main
cumulative measures but it may suffer from the stiffness problems, that is, the asymmetry
in the system evolution caused by large difference in the number of molecules of different
species. Recently introduced method of conditional moments allows to mitigate this prob-
lem by decomposing the system onto several interconnected subsystems with respect to the
number of modes. Each mode corresponds to the configuration of slowly-changing species
in the system. In such way, the hybrid description is introduced, where fast-changing parts
are described by moments and slow-changing parts are treated in the stochastic fashion,
by a chemical master equation.

We applied the maximum entropy method to solve the inverse moment problem when
both moment-based approaches are used: the pure moment closure and the method of
conditional moments. The comparison reveals that it is beneficial to use the conditional
moments in terms of accuracy and computation time. This maximum entropy based
reconstruction technique may also be applied to estimate the unknown parameters of the
systems. However, due to the instability of the optimization procedure and high sensitivity
to the noise, estimation of the reaction rate constants from the experimental data reveals
to be not realistic.
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Future Work. The two major problems of the presented technique are the sensitivity
of the optimization procedure to the noise and dimensionality limit (we applied it to one-
and two-dimensional distribution). To mitigate the first problem, other preconditioning
techniques may applied, mainly working with transformation of the moment space. Being
able to compensate for the instability, the second problem is technically solvable (as shown
by Abramov [3] and recently by Hao [104]). Solving both problems would allow for the
fast change of the state space representation: while the population number of the certain
species stays low, its dynamics is controlled by the chemical master equation. As soon as it
grows over a certain threshold, its representation can be changed to the moment-based one
and the other way around if significantly decreases. It would also mitigate the problems
arising while applying the maximum entropy reconstruction to the parameter estimation
task.



Chapter 7

Algorithms

Here, we list all algorithms introduced in the course of this thesis.

Algorithm 1: ←֓Parameter estimation using distribution reconstruction

Input: O: observation samples, R1, . . . , RNR
: chemical reaction network,

(c
(0)
1 , . . . , c

(0)
NR

): initial approximation for the search procedure, C: the search
space for parameters, C ⊂ R

NR , F: moment closure system for the moment
approximation, G: moment closure system for the moment derivatives
approximation, ~µt=0: initial values of moments at time t = 0, M : truncation
order for the moment closure, T : time instant at which samples O are obtained

Output: ĉ = (ĉ1, . . . , ĉNR
): estimation of reaction rate constants

ι := 0;
do

Solve moment closure ODE system:

[~µ,∇~µ,H~µ] :=
T∫
0

(F,G,H) (c
(ι)
1 , . . . , c

(ι)
NR

; ~µt=0; t) dt ;

Reconstruct the distribution: f(x, β) := ReconstructDistribution(~µ) ;

Compute first derivatives of the reconstruction: f ′
ci
(x, β) = ∂

∂ci
f(x, β) ;

Compute second derivatives of the reconstruction: f ′′
ci,cj

(x, β) = ∂2

∂ci∂cj
f(x, β) ;

Compute the log-likelihood: l(ι) :=
∑

Ok∈O
ln f(Ok, β) ;

Compute first derivatives of the log-likelihood:
∂
∂ci

l(ι) =
∑

Ok∈O

f ′
ci
(Ok,β)

f(Ok,β)
, ∇l(ι) =

(
∂
∂c1

l(ι), . . . , ∂
∂cNR

l(ι)
)
;

Compute second derivatives of the log-likelihood:

∂2

∂ci∂cj
l(ι) =

∑
Ok∈O

f ′′
ci,cj

(Ok,β)f(Ok,β)−f ′
ci
(Ok,β)f

′
cj
(Ok,β)

f(Ok,β)
, (Hl(i))i,j =

∂2

∂ci∂cj
l(ι) ;

ι := ι+ 1 ;
Get the new estimate of parameters:

(c
(ι)
1 , . . . , c

(ι)
NR

) := UpdateParameters (l(i),∇l(i) ,Hl(i)) ;

while maximum likelihood is not found ;
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Algorithm 2: ←֓ Main algorithm of distribution reconstruction (one-dimensional case),
ExternalMaxent1D
Input: ~µ: set of moment constraints, M : number of moment constraints,

℧1D: optimization parameters
Output: (λ∗, D∗): solution vector of parameters and the corresponding support
Choose number of moments currently used for the reconstruction

Ṁ = M
do

Choose set of moments currently used for the reconstruction
~µ· = {µ0, µ1, . . . , µṀ}

Get the initial approximation of the support (Section 4.3.3)
{xL, . . . , xR} = ComputeSupportApproximation (~µ·)

Run the adaptive support minimization of the dual function
(λ∗, D∗, ♭) = AdaptiveSupportOptimization (~µ·, {xL, . . . , xR},℧1D)

if ♭ 6= true then

Ṁ = Ṁ − 1
℧1D.δd = 2 · ℧1D.δd

else
break

end

while Ṁ > 1;

Algorithm 3: ←֓ Main algorithm of distribution reconstruction (two-dimensional case)

Input: ~µ: set of moment constraints, M : the highest order of available moment
constraints, ℧1D: optimization parameters for one-dimensional reconstructions,
℧2D: optimization parameters for two-dimensional reconstruction,

Output: (λ∗, D∗
xy): solution vector of parameters and the corresponding support

Choose the highest order of moments currently used for the reconstruction

Ṁ = M
Reconstruct the distribution for both species

(λ∗
x, D

∗
x) = ExternalMaxent1D (~µx,℧1D)

(λ∗
y, D

∗
y) = ExternalMaxent1D (~µy,℧1D)

Get the initial approximation for the two-dimensional support
D̄x = ComputeMainProbMassRegion (D∗

x,℧1D.δF )
D̄y = ComputeMainProbMassRegion (D∗

y,℧1D.δF )

D̄xy = D̄x × D̄y

do

Choose set of moments currently used for the reconstruction

~µ· = {µ0,0, . . . , µi,j}, i+ j ≤ Ṁ
Run the adaptive support minimization of the dual function(

λ∗, D∗
xy, ♭

)
= AdaptiveSupportOptimization (~µ·, D̄xy,℧2D)

if ♭ 6= true then

Ṁ = Ṁ − 1
else

break

end

while Ṁ > 1;
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Algorithm 4: ←֓ Dual function minimization with adaptive support approximation,
AdaptiveSupportOptimization

Input: ~µ: set of moment constraints, D: distribution approximation, ℧: optimization
parameters

Output: (λ∗, D∗): solution vector of parameters and the corresponding support, ♭: flag
that shows whether the optimization procedure finished successfully

Initialize the number of support search iterations (ℓ)
ℓ = 0

Initialize the number of iterations where minimization is unsuccessful (ℓ▽)
ℓ▽ = 0

do

(Ψ‡, λ‡, ♮) = Preconditioning and dual function minimization (~µ,D)
if ♮ = true then

♭ = CheckSolutionV alidity(Ψ, q̃(λ‡, D), D,℧.δs̄,℧.δD,℧.δF ,℧.N̄peaks)
if ♭ = true then

if (4.11) is satisfied with ℧.δΨ then

return (λ‡, D, true)
else

♭ = false

end

end

else

ℓ▽ = ℓ▽ + 1
if ℓ▽ ≥ ℧.ℓ▽ then

return (∅, ∅, false)
end

end

if ℓ < ℧.ℓ then
ℓ = ℓ+ 1

else

return (λ‡, D, true)
end

while ♭ = false ;
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Algorithm 5: ←֓ Orthogonalization of basis in one-dimensional case

Input: D: approximation of the support on the current iteration, {µ0, . . . , µM}: set of
moment constraints

Output: ~γ(0),⊥: initial approximation of the solution in orthogonalized basis, P⊥: matrix
with coefficients of orthogonalized basis, Ψ(~x,~γ): dual function in
orthogonalized basis

Initial solution approximation

~γ(0) = (10−10, 0, . . . , 0)
T
;

Basis orthogonalization
P = I ;

P⊥ = ModifiedGramSchmidtWithReorthogonalization(D,P,~γ(0), P ) ;

~γ(0) = (P⊥)−1 · P · ~γ(0);
Dual function in the new basis

Ψ(~x,~γ) = ln
∑

x

exp

(
K∑

k=1

γkvk(~x)

)
+

K∑

k=1

γkvk(~µ);

with derivatives defined by (∇Ψ)k = Q~γ(vk)− vk(~µ), Hkl = Q~γ(vkvl)

Algorithm 6: ←֓ Definition of distribution reconstruction validity

Input: Ψ: dual function on the current iteration, q: distribution reconstruction on the
current iteration, D: approximation of the support on the current iteration,
δs̄: threshold for s̄q criterion, δD: dual function maximum to tail value threshold,
δF : threshold for the cumulative probability mass, N̄peaks: maximum allowed
number of peaks in the support region with main part of probability mass

Output: true for “valid” reconstruction, false for “invalid” reconstruction
Verify that the values of dual function are finite

if ∃x ∈ D : Ψ(x) =∞∨ ∂Ψ(x)
∂x

=∞∨ ∂2Ψ(x)
∂x2 =∞ then

return false

end

Verify that the values of distribution reconstruction are finite and (A.9) holds

if ∃x ∈ D : q(x) =∞∨ max
x∈D(ℓ) Ψ(λ(ℓ))(x)/Ψ(λ(ℓ))(xℓ

R) > δD, then
return false

end

D̄ = ComputeMainProbMassRegion (D, δF )
Compute s̄q for D̄ = [xL, xR]
Npeaks = ComputeNumberOfPeaks (D̄, q)
if s̄q > δs̄ ∨Npeaks > N̄peaks then

return false

end

return true
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Algorithm 7: ←֓ ComputeMainProbMassRegion, computes the region where given
amount of probability mass is located using the initial approximation of support

Input: q: distribution reconstruction on the current iteration, D: approximation of the
support on the current iteration, δF : threshold for the cumulative probability
mass,

Output: D̄, the region of support where δF of probability mass is located
(xL, xR) = D
x∗
L = xL

x∗
R = max{x|∑x∗

R
xL

q(x) ≤ δF}
D̄ = (x∗

L, x
∗
R)

return D̄

Algorithm 8: ←֓ ComputeNumberOfPeaks, computes number of peaks in the provided
region of support

Input: q: distribution reconstruction on the current iteration, D̄: approximation of the
support on the current iteration

Output: Npeaks, number of peaks in D̄

Compute ∂q(t)
∂t
|t=x for all x ∈ D̄

Define the specific discrete sign function sgn(x) =

{
0, ∂q(t)

∂t
|t=x < 0

1, ∂q(t)
∂t
|t=x > 0

with the discrete

derivative sgn′
+(x) = sgn(x+ 1)− sgn(x)

Npeaks =
∑
x∈D̄
|sgn′

+(x)|
return Npeaks

Algorithm 9: ←֓ Preconditioning procedure

Input: {µ0, . . . , µM}: set of moment constraints, D: approximation of the support
Output: {µ0,c,r, . . . , µM,c,r}: transformed moments, Dc,r: transformed support,

A: transformation matrix
Centralization
{µ0,c, . . . , µM,c} = ConvertRawToCentralMoments ({µ0, . . . , µM}) ;
Dc = CentralizeSupport (D,µ1) ;

Rotation and scaling
({µ0,c,r, . . . , µM,c,r}, A) = RescaleCentralMoments ({µ0,c, . . . , µM,c}) ;
Dc,r = RescaleCentralizedSupport (Dc, A) ;
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Algorithm 10: ←֓ Revert the preconditioning procedure

Input:
(
λ∗
0,c,r, . . . , λ

∗
M,c,r

)
: solution obtained using the preconditioning, A: rotation

matrix, µ1: expectation(s) in the original coordinates
Output: (λ∗

0, . . . , λ
∗
M) : solution in the original basis

Revert rotation and scaling(
λ∗
0,c, . . . , λ

∗
M,c

)
= ConvertTransformedSolutionToCentral

((
λ∗
0,c,r, . . . , λ

∗
M,c,r

)
, A
)
;

Revert centralization

(λ∗
0, . . . , λ

∗
M) = ConvertCentralizedSolutionToOriginalBasis

((
λ∗
0,c,r, . . . , λ

∗
M,c,r

)
, µ1

)
;

Algorithm 11: ←֓ Preconditioning and dual function minimization

Input: {µ0, . . . , µM}: set of moment constraints, D: approximation of the support
Output: (λ∗

0, . . . , λ
∗
M): solution in the original basis, ♮: flag that shows whether the

minimization procedure convergences
({µ0,c,r, . . . , µM,c,r}, Dc,r, A) = Preconditioning procedure ({µ0, . . . , µM}, D) ;(
(λ∗

0,c,r, . . . , λ
∗
M,c,r), ♮

)
= MinimizeDualFunction ({µ0,c,r, . . . , µM,c,r}, Dc,r) ;

(λ∗
0, . . . , λ

∗
M) = Revert the preconditioning procedure

((
λ∗
0,c,r, . . . , λ

∗
M,c,r

)
, A, µ1

)
;
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Supplementary Information

A.1 Derivation of the Chemical Master Equation

The chemical master equation (CME) (2.2) describes the change of probability mass

P[ ~X(t) = x] for each discrete state x in the state space (in this section we denote
~X(t) = ~Xt). Let us determine the state probabilities for ~X at time t

P[ ~X(t) = x] =
∑

~y∈ZN
S

P[ ~X(t) = x | ~X0 = ~y] ·P[ ~X0 = ~y],

where the initial distribution P[ ~X0 = ~y], ~y ∈ Z
N
S is given and propensity functions

α1, . . . , αM are known. For an infinitesimal time step of length ∆, we have

P[ ~Xt+∆ = x] = P[ ~Xt+∆ = x | ~Xt = x] ·P[ ~Xt = x]

+
NR∑
j=1

x−vj≥0

P[ ~Xt+∆ = x | ~Xt = x− vj] ·P[ ~Xt = x− vj],

where the first term relates to the probability of staying in the state x (no reaction occurs)
and the second one relates to the probability of changing the state from x − ~vj to x
(reaction Rj occurred). Using the notation of propensity functions we obtain the following

P[ ~Xt+∆ = x] =
(
1−∑NR

1 αj(x) ·∆
)
·P[ ~Xt = x]

+
NR∑
j=1,

x−~y≥0

αj(x− vj) ·∆ ·P[ ~Xt = x− vj]
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We can divide both parts on the ∆ which is infinitesimal and thus obtain the derivative
of the state probability

d

dt
P[ ~Xt = x] = lim

∆→0

P[ ~Xt+∆ = x]−P[ ~Xt = x]

∆
=

= −
NR∑

j=1

αj(x) ·P[ ~Xt = x] +

NR∑

j=1,
x−vj≥0

αj(x− vj) ·P[ ~Xt = x− vj].

This differential equation describes the system of the coupled ODEs for the probability for
every state x and probabilities for states ~y = x− vj are needed to compute the right-hand
side. Given an initial probability distribution, the solution of the CME are the probabilities
P[ ~Xt = x] for all states x. The intuitive meaning of the CME is that the derivative of the
probability of state x is the difference between the probability inflow and outflow. The
states are seen as nodes in a flow network and their probability is the amount of fluid,
which moves through the network according to the propensities. The example of CME
construction is given in Example 2.3.

A.2 Software to solve the CME numerically

Tool name Language Reference

SHAVE C++, Lua [146]
cmepy Python [61]
FSP Matlab [175]

Implicit Euler Matlab [121]
ExpoKit Python [198]

TT-Toolbox adaptation Python [127]

A.3 Transformation between central and non-central

moments

Let us denote the |I|-th central moment by µ̄(|I|), where I is the order vector such that
I = (I1, . . . , NS). The central moment is given by [23, 122]

µ̄(|I|) = E

[
NS∏

i=1

(
~Xi − E

(
~Xi

))Ii
]

It can be expressed in terms of non-central moments µ using the binomial expansions as
follows

µ̄(|I|) =
I1∑

i1=0

· · ·
INS∑

iNS
=0

(−1)|I|
(
I1
i1

)
· · ·
(
INS

iNS

)
· E
(
~X1

)i1
· · ·E

(
~XNS

)iNS · µ(I−i), (A.1)

https://mosi.uni-saarland.de/shave/
https://github.com/hegland/cmepy
http://cnls.lanl.gov/~munsky/Software.html
http://cis.jhu.edu/~goutsias/CSS lab/software.html
http://www.maths.uq.edu.au/expokit/
https://github.com/oseledets/TT-Toolbox
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where i = (i1, i2, . . . , iNS
). Non-central moments can also be expressed in terms of central

moments as follows

µ(|I|) = E

[
NS∏

i=1

(
~Xi

)Ii
]
= E

[
NS∏

i=1

{(
~Xi − E

[
~Xi

])
+ E

[
~Xi

]}Ii

]

=

I1∑

i1=0

· · ·
INS∑

iNS
=0

(
I1
i1

)
· · ·
(
INS

iNS

)
· E
(
~X1

)i1
· · ·E

(
~XNS

)iNS · µ̄(I−i).

(A.2)

A.4 Moment Closure Software

Tool name Language Reference

Moment Closure Mathematica [159]
StochDynTools Maple [112]

SHAVE C++, Lua [146]
MOCA Mathematica [194]
MEANS Python [68]

MomentClosure Python [167]
MultiKin Matlab [201, 205]
CERENA Matlab [128]

We note that the authors of CERENA [128, p. 3] also provide the detailed comparison to
other software packages.

A.5 Maximum Entropy Formalism

A.5.1 General Solution to the Maximum Entropy Functional

We consider the optimization problem (4.4)

q = argmax
p∈G

H(p),

given the constraints (4.2)

∑

x∈S
p(x) = 1, pi ≥ 0

∑

x∈S
fk(S)p(x) = µk, 1 ≤ k ≤M <∞,

and entropy defined according to (4.3)

H(p) = −
∑

x∈S
p(x) · ln (p(x)) .

http://www.mathematica-journal.com/data/uploads/2010/10/MomentClosure.m
http://www.ece.ucsb.edu/~hespanha/software/stochdyntool.html
https://mosi.uni-saarland.de/shave/
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-143-013542
https://github.com/theosysbio/means
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/pysbml/MomentClosure-0.2.1.tar.gz
https://sourceforge.net/projects/multikin/
http://cerenadevelopers.github.io/CERENA/
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Here we assume that the functions fk depend only on the current state x and f0(x) = 1,
so the constraints are given by

∑

x∈S
fk(x)p(x) = µk, 0 ≤ k ≤M <∞.

In order to minimize the entropy functional, we consider the following Lagrangian where
we do not specify the functions fk(x)

L(p, λ) = H(p)−
M∑
k=0

λk

(∑
x∈S

fk(x)p(x)− µk

)
.

Derivation with respect to the function p(x) leads to

∂L
∂p

= −
(
∑

x∈S
ln[p(x)] + 1

)
−

M∑

k=0

λk

∑

x∈S
fk(x).

Setting this derivative to zero results in

∂L
∂p

= 0 ⇐⇒ −
(
∑

x∈S
ln[p(x)] + 1

)
=

M∑

k=0

λk

∑

x∈S
fk(x).

This relation holds for every state x ∈ S, and if the sum
∑
x∈S

fk(x) converges,

ln[p(x)] = −
M∑

k=0

λkfk(x)− 1.

This gives the general form of solution

q(x) = exp

(
−1−

M∑

k=0

λkfk(x)

)
, (A.3)

where we can also define the normalization constant Z(x) such that

q(x) =
1

Z(x)
exp

(
−

M∑

k=1

λkfk(x)

)
, Z = e1+λ0 =

∑

x∈S
exp

(
−

M∑

k=1

λkfk(x)

)
.

The solution q obviously depends both on the state x and the parameter vector λ, so we
can also write q(x, λ) for clarity. It was shown in [4] that the solution to the optimization
problem (4.4) can be found via minimization of the dual function Ψ(λ). It is defined as
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primal dual

problem argmax
p∈G

H(p) arg min
λ∈RM

Ψ(λ)

description maximum entropy maximum likelihood
type of optimization constrained unconstrained

solution and search domain p ∈ G λ ∈ R
M

Table A.1: ←֓ The duality of maximum entropy and relation to the maximum likelihood.

Ψ(λ) = L(q, λ) and

Ψ(λ) = lnZ +
1

Z

M∑

k=1

λk

∑

x∈S
fk(x) e

−
M
∑

k=1
λkfk(x) −

M∑

k=0

λk

(
∑

x∈S

fk(x)

Z
e
−

M
∑

k=1
λkfk(x) − µk

)

= lnZ +
M∑

k=1

λkµk.

Therefore, the unconstrained optimization problem that has to be solved is stated as
follows

λ∗ = arg min
λ∈RM

Ψ(λ), (A.4)

and the corresponding maximum entropy distribution is

q(x, λ∗) = exp

(
−1−

M∑

k=0

λ∗
kfk(x)

)
.

In this thesis we mostly use the expression q(x, λ∗) = exp

(
−

M∑
k=0

λ∗
kfk(x)

)
, where we

assume the proper transformation of λ0 [91].

The authors of [30] establish the connection between the maximum entropy and the
maximum likelihood framework (for the domain of the natural language processing). Here
we present slightly modified table of correspondences [30, Table 1]. In [30], the authors
address the dual problem as maximum likelihood, however this is due to definition of dual
function, which is the same as (−Ψ(λ)) in our case. The extended results on the duality
of entropy optimization problems in case of inequality constraints are given in [181].

A.5.2 Minimization of the Dual Function

The convexity property of the dual function Ψ(λ) allows us to postulate that there exists
a unique solution to the optimization problem (A.4). We first compute the gradient ∂Ψ/∂λ
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of the dual function. The i-th element of the gradient vector is given by

∂Ψ

∂λi

= µi −
−fi(x)

Z
e
−

M
∑

k=1
λkfk(x)

︸ ︷︷ ︸
=µ̃i

= µi −
1

Z
µ̃i, i = 1, . . . ,M,

where µ̃i is the approximation of i-th moment given the vector of parameters λ,

µ̃i =
∑
x∈S

xi exp

(
−

M∑
k=1

λkx
k

)
, i = 1, . . . , 2M. (A.5)

In case of continuous random variables the moments are approximated as

µ̃i =
∫
S

xi exp

(
−

M∑
k=1

λkx
k

)
dx, i = 1, . . . , 2M. (A.6)

The elements of the Hessian matrix H are given by

Hij =
∂2Ψ

∂λi∂λj

=
∂
(
µi − 1

Z
µ̃i

)

∂λj

=
1

Z2
(µ̃i+jZ − µ̃iµ̃j) , i, j = 1, . . . ,M (A.7)

It can be proven [243, Proposition 2.3] [162, Lemma 1] [7, Section 3] that the Hessian
matrix H is positive definite. Therefore, if there exists the stationary point λ̄ where the

gradient is zero ∂Ψ
∂λ
|λ=λ̄ = 0, it must be a unique absolute minimum. However, there is no

guarantee that the feasible solution to the problem (4.9) exists, since the convexity of Ψ is
established without considering the properties of the constraint set µk. The generalization
of this result to Burg entropy is given in [38].

A.5.3 Remarks about Numerical Optimization Procedure

Here we want to address several issues of the numerical minimization of the dual function
that may play an important role when it comes to computationally intensive tasks such
as parameter estimation (cf. Section 5.3).

Preconditioning: centralization and rotation. As mentioned in Section 4.3.2, we
apply the preconditioning procedure similar to the one in [3]. The centralization and
rotation of the support corresponds to the step 2 of the procedure. Centralization step
corresponds to converting the raw moments into central moments such that µ1,c = 1 for
all species (as defined in Section A.3) and to the scaling of the support D = {xL, . . . , xR}
as Dc = {xL − µ1, . . . , xR − µ1}. In the two-dimensional case, this reads as Dxy,c =
{xL − µx,1, . . . , xR − µx,1} × {yL − µy,1, . . . , yR − µy,1}.

The rotation and scaling step is defined such that the variance µ2,r = 1 or the matrix of
second moments is an identity matrix I. The corresponding transformations are defined
for an arbitrary dimensionality in [3]. In Algorithm 9 we show these preconditioning that
are performed before the optimization.
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It should be noted that this procedure also require to transform the solution vector λ
correspondingly to a new basis and back, after the optimization has been performed.
Therefore, to verify that the support approximation procedure is always performed in
the original basis, the transformations are reverted with inverse transformations as given
in Algorithm 10. This process is illustrated in Figure A.1, where states are shown by
blue circles. The solution scheme that makes use of the preconditioning is shown in
Algorithm 11. We consider this step in the following example:

Example A.1. ←֓ We consider the reconstruction of two-dimensional protein distri-
bution in exclusive switch model at the time t = 60 using joint MCM method. We ap-
proximate the initial support for DP1,P2 as in Section 4.3.4 by DP1,P2 = {0, . . . , 117}×
{0, . . . , 280}. The condition number of the Hessian matrix is κ

(
HDP1,P2

)
= 4.3 · 1023.

The first moments of the proteins are given by µ1,P1 = 60.19 and µ1,P2 = 152.29. The
support after applying the centralization is given by DP1,P2,c = {−60.19, . . . , 56.81}×
{−152.29, . . . , 127.70}. The matrix M2 of second moments reads as

M2 =

(
1718.12 −4063.01
−4063.01 10502.28

)
.

The transformation matrix A is defined as A =
(
V D1/2

)−1
, where D is a diagonal

matrix with eigenvalues of M2 and the matrix V contains the corresponding right
eigenvectors (such that AV = V D). In this case, the transformation matrix reads as

A =

(
−0.0826 −0.0324
−0.0033 0.0085

)
.

We apply the transformation to each point (xc, yc) of the centralized supportDP1,P2,c as

(xc,r, yc,r) = A(̇xc, yc) which results in the transformed support DP1,P2,c,r. For example,
the point (−60.19,−152.29) is mapped to (9.90,−1.09) and point (56.81, 127.70) is
mapped to (−8.83, 0.90). The condition number of the Hessian is κ

(
HDP1,P2,c,r

)
=

6.6 · 1010.

Please note that all three support approximations DP1,P2 , DP1,P2,c and DP1,P2,c,r are
treated as discrete sets (not as continuous subsets of R2) and the number of elements
stays the same. So, in this case the maximum entropy distribution is approximated
in 33158 points. The set DP1,P2,c,r contains the same amount of elements but the
coordinates of each point are usually real numbers.

Preconditioning: basis orthogonalization. We consider the orthogonalization of the
problem basis. The original basis is given by the set of monomials with the corresponding
Lagrange multipliers {~x~i, λ~i}, ~i ∈ Z

NS , 0 ≤ |~i| ≤M . The orthogonalized basis is given by
the set polynomials of order M and the corresponding Lagrange multipliers {vk(~x), γk},
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Figure A.1: ←֓ Centralization, rotation and scaling of two-dimensional support.

1 ≤ k ≤ K, where K = M + 1 in one-dimensional case and K = (M+2)(M+1)/2 in two-
dimensional case. The dual function Equation 4.8 in the new basis is given by

Ψ(~x,~γ) = ln
∑

x

exp

(
K∑

k=1

γkvk(~x)

)
+

K∑

k=1

γkvk(~µ). (A.8)

The solution of the dual problem is then given by

q̃p(~x,~γ) = exp

(
K∑

k=1

γkvk(~x)

)

and the corresponding support approximation D. There exist many well-established sys-
tems of orthogonal basis functions, among which shifted Chebyshev [25] and Lagrange
interpolation polynomials (with suitably spaced roots) [226] have been previously applied
for the solution of inverse moment problem. Here, we construct the system of K general
orthogonal polynomial functions.

The potential benefit of using the orthogonal basis comes from the basic formulation of
Newton optimization

~γ(ℓ+1) = ~γ(ℓ) − ξℓ
(
H−1 · ∇Ψ

)
|~γ(ℓ)

(∇Ψ)k =
∂Ψ

∂γk
= Q~γ(vk)− vk(~µ)

Hkl =
∂2Ψ

∂γk∂γl
= Q~γ(vkvl),

where the functional Q is defined on all real-valued polynomial functions v ∈ PNS ,K ,
v : RNS 7→ R such that Q : RK × PNS ,K 7→ R and

Q~γ(v) =
∑

x∈D
v(~x) · q̃(~x,~γ) d~x.
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For the orthogonal system of functionsQ~γ(vkvl) =
∑
x∈D

vk(~x)vl(~x)·q̃(~x,~γ) d~x = δkl, therefore

Hkl = δkl = H−1
kl and H = I. The Newton iteration becomes

~γ(ℓ+1) = ~γ(ℓ) − ξℓ (∇Ψ) |~γ(ℓ) .

Note that the optimization problem remains convex under such transformation

~wTH ~w = ~wT ~w ≥ 0.

Here we consider the orthogonalization of basis only for the one-dimensional maximum
entropy problem. The initial basis {1, x, x2, . . . , xM} corresponds to the identity matrix I,
where the coefficients of the function k correspond to kth column. To obtain the orthogonal
system P⊥, we apply the modified Gram-Schmidt with re-orthogonalization [55]. In order
to apply it properly, we need to define the initial approximation of the solution vector
~γ(0) = ~λ(0) on each iteration of the support extension, ~γ(0) = (10−10, 0, . . . , 0). It is required
by the definition of functional Q, where q̃ shall not be degenerate.

The solution vector ~γ must be re-computed with respect to the new basis P⊥ such that
the functional Q does not change

exp

(
K∑

k=1

γ
(0),⊥
k P⊥

k

)
= exp

(
K∑

k=1

γ
(0)
k Pk

)

K∑

k=1

γ
(0),⊥
k P⊥

k =
K∑

k=1

γ
(0)
k Pk

where P⊥
k and Pk denote the kth column of the orthogonalized and initial basis, i.e., the

vector corresponding to kth basis function vk(x). In the matrix-vector form, it is given by

γ
(0),⊥
1




p⊥11
...

p⊥1M


+ γ

(0),⊥
2




p⊥21
...

p⊥2M


+ . . .+ γ

(0),⊥
K




p⊥K1
...

p⊥KM


 =

γ
(0)
1




p11
...

p1M


+ γ

(0)
2




p21
...

p2M


+ . . .+ γ

(0)
K




pK1
...

pKM


 ,




γ
(0),⊥
1 p⊥11 + γ

(0),⊥
2 p⊥21 + . . .+ γ

(0),⊥
K p⊥K1

γ
(0),⊥
1 p⊥12 + γ

(0),⊥
2 p⊥22 + . . .+ γ

(0),⊥
K p⊥K2

. . .

γ
(0),⊥
1 p⊥1M + γ

(0),⊥
2 p⊥2M + . . .+ γ

(0),⊥
K p⊥KM


 =




γ
(0)
1 p11 + γ

(0)
2 p21 + . . .+ γ

(0)
K pK1

γ
(0)
1 p12 + γ

(0)
2 p22 + . . .+ γ

(0)
K pK2

. . .

γ
(0)
1 p1M + γ

(0)
2 p2M + . . .+ γ

(0)
K pKM


 .
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The right part equals P · ~γ(0). If we define it by b(0) = P · ~γ(0), the equation reads as




p⊥11 p⊥21 . . . p⊥K1

p⊥12 p⊥22 . . . p⊥K2

. . . . . . . . . . . .
p⊥1M p⊥2M . . . p⊥KM







γ
(0),⊥
1

γ
(0),⊥
2
...

γ
(0),⊥
K


 =




b
(0)
1

b
(0)
2
...

b
(0)
K


 ,

and the representation of solution coefficients ~γ in the basis is defined by ~γ(0),⊥ = (P⊥)−1 ·
b(0) = (P⊥)−1 · P · ~γ(0).

After defining the orthogonalized basis, the dual function minimization is performed.
Though theoretically H = I, in our case studies this equality holds only approximately.
Therefore, we can not directly apply the simplified form of the Newton method and still
need to compute the inversion of the Hessian matrix H−1 (for the considered number
of moment constraints M , this operation remains computationally cheap). In contrast
to the approach of Alldredge [8], we do not perform the re-orthogonalization on each
iteration of the Newton procedure. Instead, we follow the original approach of Abramov
and the Hessian matrix loses its property H = I while iterating. Still, it allows for drastic
reduction of the condition number of the Hessian (cf. Table 4.9).

After the minimum ~γ∗,⊥ of the dual function Ψ(~x,~γ) is found for the current support
approximation, the solution vector ~γ∗ needs to be represented in the original monomial
basis via

γ∗,⊥
1




p⊥11
p⊥12
...

p⊥1M


+ . . .+ γ∗,⊥

K




p⊥K1

p⊥K2
...

p⊥KM


 = λ∗

1




1
0
...
0


+ . . .+ λ∗

K




0
0
...
1


 ,

therefore P⊥ · ~γ∗,⊥ = I · ~λ∗ and ~λ∗ = (−1)P⊥ · ~γ∗ (up to a sign). Orthogonalization
preconditioning procedure is shown in Algorithm 5. Note that in case of continuous
distribution reconstruction, the additional correction of λ0 is also needed, i.e.,

λ∗
0 =

(
(−1)P⊥ · ~γ∗)

0
− ln

√
1

µ2

,

where
√

1
µ2

plays a role of transformation matrix in one-dimensional case.

If the basis is orthogonalized, the values of the exponential function can not be easily
precomputed once for all the iterations (as it is shown in Appendix A.5.3). Moreover, these
computations become the bottleneck of the whole iteration procedure together with the
inner product functional Q (and the corresponding running time is up to 6 larger than the
one of the version without preconditioning but with exponential values precomputation).
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Example A.2. ←֓ We consider the reconstruction of one-dimensional protein dis-
tribution in exclusive switch model at the time t = 60 given M = 6. The original
monomial support 1, x, . . . , xM is characterized by the matrix P = I. For the approxi-
mate of support given by D = {15, . . . , 110}, the orthogonalized support (obtained by
applying the modified Gram-Schmidt with re-orthogonalization [55]) is characterized
by the matrix P⊥:

P⊥ =




0.1021 −0.2302 0.4664 −0.9637 2.0227 −4.2813
0 0.0037 −0.01858 0.06315 −0.1845 0.4992
0 0 0.0001 −0.0011 0.0054 −0.0206
0 0 0 6.108 9 · 10−6 −6.318 9 · 10−5 0.0004
0 0 0 0 2.527 6 · 10−7 −3.279 1 · 10−6

0 0 0 0 0 1.049 3 · 10−8



.

As an example, the third column corresponds to the basis function v3(x) = 0.4664−
0.01858x+ 0.0001x2.

Further preconditioning of moment constraints Abramov [2] introduces one more
step of moment preconditioning performed using additional scalar re-scaling:

µ̃I = α−|I|µI ,

for 0 ≤ |I| ≤ M such that the set of moments µ̃ is the same as of the standard normal
distribution. To obtain such a transformation, the rescaling parameter α must be α =
[(2M − 1)!!]

1/2M . However, this transformation does not give noticeable benefit for our
case studies. This approach shall provide more visible difference in results for multiple
dimensions (more than 2).

Precomputation of exponential function. The proposed method to solve the mo-
ment problem using the entropy maximization extensively uses the values of the function
fexp,1D(x) = exp(−∑M

k=1 λkx
k) (one-dimensional case) or fexp,2D(x, y) =

exp(−∑1≤r+l≤M λr,lx
ryl) (two-dimensional case). Analyzing the performance of the im-

plementation, we realized that most of the time is actually spent to compute these values.
In order to optimize the program execution, we precompute the values of these functions
once and later we just re-use them. For all the case studies, the main part of probabil-
ity mass is located in a finite part of the support. Therefore, we precompute the values
as shown in Table A.2. In one-dimensional case it results in the table of values similar
to Table A.3. The construction is similar to Vandermonde matrix. The positive effect
is more obvious during the parameter estimation procedure since reconstruction is then
conducted many times.

Please note, that is preconditioning techniques (Section 4.3.2) are used, the given precom-
putation approach can not be used since the transformed support may not be a subset of
Z. In order to partially address this problem, we may apply the precomputation (similar
to the one provided above) on each iteration of the support transformation. However, for
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function support D M running time (s)

fexp,1D(x) [0, 1000] 20 0.02
fexp,2D(x, y) [0, 1000]× [0, 1000] 20 115

Table A.2: ←֓ Parameters of the exponential function precomputation.

the considered case studies this approach does not provide any benefit in terms of running
time.

Right tail behavior. For most case studies we can over-approximate the support by
considering R (for continuous distributions) or N (for discrete distributions), which we
can directly use to approximate the values of moments µ̃k (A.5), (A.6). However, it is only
possible if the underlying distribution vanishes in the infinity, i.e., the limit lim

x→±∞
q(x) = 0.

It does not have to hold for each iteration i that lim
x→0

qi(x) = 0 in case when the state space

is N or R≥0. Therefore, we seek for the best approximation of the support. We take the
safe strategy and use the “average-sized” initial approximation of the support [215] to rely
on the convergence criteria in dual function minimization (4.11). However, it may happen
that the convergence does not hold and the approximation of the distribution becomes
large so that the approximated moments grow too fast and the whole procedure fails. To
prevent this, the additional external loop with the increasing convergence tolerance δΨ
may be added, where we increase it by a certain factor each time the procedure does not
converge (cf. Algorithm 2).

Since we require lim
x→+∞

q(x) = 0, we do not consider case studies similar to the examples

studied in [34] such as p(x) = 3/2
√
x, x ∈ [0, 1]. This would require to soften the stopping

criteria which results in the slower convergence (or even the total absence of the conver-
gence). Here we aim at the reconstruction of distributions taking roots in systems biology,
where such polynomial functions are almost never observed.

Given odd M value, it is not obvious how to properly define the right boundary of the
approximated support D∗ as described in Section 4.3.3 using the iteration (4.11). It may
happen that the values of dual function start to grow near the right boundary and do not

P
P
P
P
P
P
P

P
P

power
x

0 1 2 3 . . .

0 1 1 1 1 . . .
1 0 1 2 3 . . .
2 0 1 4 9 . . .
3 0 1 8 27 . . .
. . . . . . . . . . . . . . . . . .

Table A.3: ←֓ Precomputed values in one-dimensional case.
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diminish (with respect to the theoretical requirement lim
x→+∞

q(x) = 0). This is due to the

shape of the polynomial function r(x) = −∑M
k=1 λkx

k for odd M .

As an example, we consider the cooperative self-activation of gene expression model with
the parameter set kA, namely the conditional distribution P |G = 1 as shown in Figure A.2a

(line is shown for better visibility). Here, the reconstruction q̃
(5)
P |G,ℓ and the corresponding

polynomial function rℓ(x) = −
∑M

k=1 λ
(ℓ)
k xk, corresponds to the ℓth iteration. It can be seen

that the polynomials function start to grow in the region where the tail of the distribution
is located. In order to compensate for such behavior one may apply the same truncation
strategy as for the N -type generalized exponential family (cf. Example A.3) to restrict
the support only to positive values. However, here we implement the strategy that does
not change the λ vector directly. Instead, we compare the maximum reachable value of
the dual function maxx∈D(ℓ) Ψ(λ(ℓ)) on the current iteration ℓ to the value at the right
tail Ψ(λ(ℓ))(xℓ

R). The iteration continues till the corresponding ratio is smaller than a
threshold δD

maxx∈D(ℓ) Ψ(λ(ℓ))(x)

Ψ(λ(ℓ))(xℓ
R)

< δD, (A.9)

where δD = 10−4 for most considered case studies. In Figure A.2c the corresponding points
are highlighted for both the final reconstruction q̃

(5)
P |G and the reconstruction obtained on

10th iteration q̃
(5)
P |G,10.

Additionally, we add the heuristic rule that controls the smoothness of the obtained
reconstruction in the support region D̄ ⊂ D where most of the probability mass is located.
For most case studies this threshold for cumulative probability mass δF is set as δF = 0.95.
The maximum squared second derivative of the distribution is computed, where it is
considered in a time-series data fashion

s̄q = max
x∈D̄

(
d2q(x)

dx2

)2
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Figure A.2: ←֓ The reconstruction of P |G = 1 distribution, where green (blue) dots
(curves are added for clarity) correspond to the 3rd (10th) iteration of the iteration
procedure (a) and the corresponding polynomial functions r(x) (b). The reconstruction
obtained on 10th iteration (blue) together with the final reconstruction (brown), where
the maximum reachable value and the value of the dual function at xℓ

R are highlighted
using red circles.
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The distribution is considered to be “smooth enough” if the value of s̄ is smaller than a
certain threshold δs̄ (for most of experiments it is defined as δs̄ = 10−2) or the number of
peaks is smaller than Npeaks (defined as N̄peaks = 3). The resulting procedure of ensuring
the reconstruction “validity” is given in Algorithm 6.

To compute the region where certain amount δF of probability mass is located, the Algo-
rithm 7 (ComputeMainProbMassRegion) is applied, where probability mass is accumulated
starting from the left boundary of the given approximation of the support. The examples
of “invalid” distributions recognized by the provided algorithm are given in Figure A.3.
The first two distributions violate the condition (A.9), whenever the third additionally
violates the second derivative (having 3 peaks). The procedure to control the number of
peaks is given in the Algorithm 8.

Another possible way to cope with such “incorrect” distributions where tail seem to grow
unlimitedly is to truncate it and rescale the solution vector to compensate for the truncated
probability mass (similar to Equation A.3).

A.5.4 On Error Measurement.

In order to compare the reconstructed distribution against the solution obtained using
direct numerical simulation, we apply the distance defined by (4.16) and (4.17). The
following distance functions can also be applied:

1. Chebyshev distance: ||ǫ||∞ = max
x∈D
|π(x)− q(x)|,

2. Chebyshev relative distance: ||ǫ||%∞ = max
x∈D∗

∣∣∣ q(x)−π(x)
π(x)

∣∣∣

3. L1 norm: ||ǫ||1 =
∑
x∈D
|π(x)− q(x)|,

4. χ2 distance: χ2(π, q) =
∑

x
(π(x)−q(x))2

q(x)
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Figure A.3: ←֓ The reconstruction of P |G = 1 (in cooperative self-activation of gene
expression model, set of parameters kA) (a), P1|DNA (in exclusive switch model) (b), and
R|Doff (in simple gene expression model, fast kinetics) (c) distribution. These distributions
are recognized by Algorithm 6 to be “invalid”. The line is shown for better clarity.
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However, they do not provide the result which is general enough to directly verify that a
certain distribution is more preferable than the other [14, 15] (in those papers, we used
the first three given distance functions). If no ground-truth information is available, we
can stick to the techniques described in Section 4.3.5. To this end, we cite the paragraph
from P. Biswas and A. K. Bhattacharya [34, p.3] on the approach to error analysis:

”One needs to supply additional information to choose a suitable solu-
tion from an ensemble of solutions that satisfy the given moment constraints.
The maximum entropy (ME) ansatz constructs the least biased solution that
maximizes the entropy associated with the density and is consistent with the
given moments. The accuracy of the reconstructed solution can be measured
by varying the number of moments. A comparison with the exact solution (if
available) would reveal to what extent the ME solution matches with the exact
solution. For an unknown function with a finite set of moments, the quality of
the ME solution may be judged by the proximity of the input (exact) moments
to the output (approximated) moments resulting from the reconstructed distri-
bution. By increasing the number of moments one can systematically improve
the quality of the solution. It should, however, be noted, that for a function
with a complicated structure, the convergence of the first few moments does
not guarantee its accurate reproduction. The ME solution in this case may
not represent the exact solution, but is still correct as far as the maximum
entropy principle is concerned.”

A.5.5 Initialization of Numerical Optimization Procedure for

Dual Function

In order to proceed with any numerical optimization algorithm, the initial approximation
of the solution λ needs to be defined. Along with uniform zero initialization, we may use
several strategies.

A.5.5.1 One-Dimensional Reconstruction

Normal distribution. We can assume that the initial approximation q̃(0)(x) is given
by the normal distribution:

q̃(0)(x) =
1

σ
√
2π

exp

{
−(x− µ1)

2

2σ2

}
.

The corresponding initialization is λ̃(0) =
(
λ
(0)
1 , λ

(0)
2

)
, where λ

(0)
1 = µ1

µ2
and λ

(0)
2 = −1

2µ2
.

However, this initial approximation results in a very slow convergence, therefore zero
initial approximation is more effective.

Authors of [197] also investigated the investigated the convergence of the algorithm varying
the initial condition. Theoretically, the maximum entropy problem shall be solvable from
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any starting values but for them the convergence was sensitive to the choice of initial
point (fast or slow convergence, or no convergence at all). They propose to use the normal
distribution initialization and for their case studies it provided better convergence speed.

Generalized Maximum Entropy, Nk family distribution. The generalized maxi-
mum entropy reconstruction can be used to provide the initial approximation to the inverse
moment problem. This is given by the type N approximation λ1 = β0, λ2 =

1
2
β1, . . . , λM =

1
M
βM−1, where β is the solution of the linear system (A.12) defined using the moment

constraints as described in Section A.5.7. Such an initialization does not, however, provide
any benefit in convergence speed. Instead, it usually breaks the optimization procedure
such that it is not able to converge at all.

A.5.5.2 Two-Dimensional Reconstruction

Normal distribution. We can assume that the initial approximation q̃(0)(x, y) is given
by two-dimensional normal distribution:

q̃(0)(x, y) =
1

2πσxσy

√
1− ρ2

exp

{
− 1

2(1− ρ2)

[(
x− µx

σx

)2

− 2ρ

(
x− µx

σx

)(
y − µy

σy

)
+

(
y − µy

σy

)2
]}

,

where ρ = ¯µ1,1

σxσy
is the correlation between the species. The corresponding initial approx-

imation is given by λ̃(0) = − 1
2(1−ρ2)

(
λ
(0)
1,0, λ

(0)
0,1, λ

(0)
2,0, λ

(0)
0,2, λ

(0)
1,1

)
, λ

(0)
1,0 = −2

(
mux

σ2
x

+ ρµy

σxσy

)
,

λ
(0)
2,0 = 1

σ2
x
, λ

(0)
1,1 = 2ρ

σxσy
, λ

(0)
0,1 = −2

(
muy

σ2
y

+ ρµx

σxσy

)
, λ

(0)
0,2 = 1

σ2
y
(the rest of terms goes into

the normalization constant). This initialization gives the result which is worse than the
standard zero initialization.

Separability assumption. We can assume that the initial approximation q̃(0)(x, y) is
separable, i.e., all covariances are ignored:

q̃(0)(x, y) = exp

[
λ0,0 +λ1,0x+ λ2,0x

2 + . . .+ λM,0x
M

+λ1,1xy + λ2,1x
2y + (mixed terms) + . . .

+λ0,1y + λ0,2y
2 + . . .+ λ0,MyM

]

≈ exp

[
λ0,0 +λ1,0x+ λ2,0x

2 + . . .+ λM,0x
M

+λ0,1y + λ0,2y
2 + . . .+ λ0,MyM

]

= q̃x(x) · q̃y(y),
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where coefficients of q̃x(x) and q̃y(y) are obtained from one-dimensional reconstructions
and λ0,0 is re-scaled accordingly (the multiplier (−1) is omitted for the sake of readability).
Not surprisingly this approach does not give any reasonable speed-up. Moreover, it usually
initializes the optimization procedure wrongly such that it takes extremely long time to
converge to the solution.

A.5.6 General Moment Functions for Maximum Entropy

In the course of this thesis we work only with monomial basis functions to obtain mo-
ments of the random variable, i.e., the set of constraints is generated using fk(X) = Xk.
Therefore, the corresponding moments are computed as E

[
Xk
]
=
∑
x∈S

xkp(x) or E
[
Xk
]
=

∫
x∈S

xkp(x) dx depending on the type of the random variable. Below we provide the table of

some continuous maximum entropy distributions [204, Table 1] obtained for a specific type
of the moment-generating function fk(X), where the standard normalization condition∫
x∈S

p(x) = 1 is not included for the sake of readability:

{x|f(x) > 0} fk(X) MaxEnt distribution

(a, b) − uniform
(0, 1) lnX, ln(1−X) beta
(0,∞) X exponential
(0,∞) Xβ(β 6= 1), lnX Weibull

(a,∞), a > 0 lnX Pareto
(−∞,∞) |X| Laplace
(−∞,∞) X2 normal (mean = 0)
(−∞,∞) X, X2 normal
(−∞,∞) ln(1 +X2) generalized Cauchy
(−∞,∞) X, ln

(
1 + e−λX

)
generalized logistic

(−∞,∞) X, e−λX generalized extreme value

A.5.7 Maximum Entropy and Generalized Exponential Family

Consider the following non-linear diffusion

dxt = µ(xt) dt+ σ(xt) dwt, (A.10)

where wt is a standardWiener process. The following notation is used: 2µ(x) = g(x)−v′(x),
σ2(x) = v(x). Cobb, Koppstein and Chen consider in [50, 51] the general family of
non-mixture multimodal densities that are stationary density functions of (A.10). These
densities are applied in catastrophe theory where multiple modes can correspond to
multiple stable states in dynamical systems. This family of densities is given by

fk(x, β) = ξ(β) · exp
(
−
∫

[gk(x)/v(x)] dx

)
, (A.11)
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where ξ(β) is the normalization constant, gk(x) = β0 + β1x + . . . + βkx
k, k > 0 and the

vector of parameters β = (β0, β1, . . . , βk). The domain of fk(x) is the open interval for
which v(x) is positive. The distribution (4.6) is a special case of fk(x).

The authors of [51] consider the four classes of densities:

Type of density v(x) Support

N 1 −∞ < x <∞
G x 0 < x <∞
I x2 0 < x <∞
B x(1− x) 0 < x < 1

We can show that the maximum entropy distribution (4.6) can be represented as N -type
density

p(x) = exp

(
−

M∑
k=0

λkx
k

)
= exp (−λ0) · exp

(
(−1)(λ1x+ . . .+ λMxM)

)

and the density NM(x) = ξ(β) · exp
(
−
∫
gk(x) dx

)
, where gM+1(x) is defined as

∫
g(x) dx = λ1x+ . . .+ λMxM ⇒ g(x) = λ1 + 2λ2x+ . . .+MλMxM−1.

Therefore, the coefficients β are defined as β0 = λ1, β1 = 2λ2, . . . , βM−1 = MλM and the
normalization constant ξ(β) = exp (−λ0). Therefore, the maximum entropy density can
be considered as a stationary density of a non-linear diffusion process. The densities of
types G, I and B can also be obtained by applying the maximum entropy principle under
certain types of constraints [248, Table 5].

The exponential family of distributions allows to determine the parameters β0, . . . , βk by
simply solving a linear system of equations

β = M−1α, (A.12)

where both matrix M and vector α are linear functions of the non-central moments µk.
The exact form of these functions depends on the function v(x) which constitutes the
principal form of the distribution. Usually, for models in systems biology we consider only
non-negative populations. Therefore we are interested in the first three principal forms
(we apply truncation and rescaling to the density of type N in order to obtain the support
supp(fk) = [0,∞]).

The truncation of the support is conducted as follows. Assume that the initial approx-
imation of the support is D(0) = supp(fk) = [−∞,∞]. We simply ignore the part of
the reconstruction defined on the negative part of support [−∞, 0) and compute the

normalization constant ξ(β) as ξ(β) = 1/exp
(

−
∞
∫

0

gk(x) dx

)

. We illustrate the application of

the truncation procedure to the normal distribution in the following example:
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Example A.3. ←֓ Consider the normal distribution f1 which can be described as
a generalized exponential distribution of N type. It is shown in Figure A.4 (left),

where Z1,− =
∫ 0

−∞ f1(x) dx and Z1,+ =
∫∞
0

f1(x) dx are the cumulative probability
mass on the negative and on the positive parts of the domain correspondingly. The
maximum reachable value of the probability density is denoted by f̂1 = max f1. The
same distribution with the truncated part defined on the negative domain is shown
in Figure A.4 (center). However, the cumulative probability mass in this case is
Z1,+ < 1. Therefore, the re-scaling is needed to construct the proper distribution
f2. The corresponding normalization constant ξ for the distribution f2 is defined
by ξ = 1/Z1,+. The resulting truncated distribution is shown in Figure A.4 (right),
where f̂2 = max f2 > f̂1 and Z2,+ =

∫∞
0

f2(x) dx = 1. The truncation procedure does
not influence other parameters of the distribution, it only changes the normalization
constant.

0

f̂1

Z1,− Z1,+

x
0

f̂1

Z1,+

x
0

f̂1

f̂2

Z2,+

x

Figure A.4: The truncation of the negative part of the support. The original distribu-
tion is shown on the left, the truncated distribution before re-scaling is shown in the
center and the resulting distribution is shown on the right. On all three subfigures
the values on y-axis correspond to the value of probability distribution function. ←֓

For example, for the form G we consider the following linear system (for M = 2)




µ0 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4






β0

β1

β2


 =




µ0

2µ1

3µ2


 (A.13)

Solving the above stated linear system with respect to β, we obtain the parameters
describing the distribution given a number of its non-central moments µk. Therefore, it
can be considered as a fast alternative to maximum entropy reconstruction technique that
does not require to solve the optimization problem. For instance, the authors of [250] use
the similar approach to approximate the equilibrium distribution of the stochastic hybrid
system. The convergence results for N type of distributions can be found in [165].
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Transformation from continuous to discrete distribution. The given approach
assumes that the state space of the reconstructed distributions is continuous. However,
for the case studies considered in Section 4.3.6, the state space is usually given as a
subset of Z

NS . Therefore, there is a need to transform the continuous reconstructed
distribution (for instance, given by the generalized exponential Equation A.11). This
family of transformations (w.r.t. parameter 0 < δ < 1) is defined as follows:

q̃(x) =

{
1
δ

∫ δ

0
fk(x, β) dx if x = 0∫ x+δ

x−δ
fk(x, β) dx if x > 0

, x ∈ Z+. (A.14)

It is illustrated in Figure A.5 (right plot), where the value of the discretized distribution q̃
at point x corresponds to the highlighted area under the curve. The generalized exponential
functions of both N and G types are smooth (in case if the reconstruction was successful),
therefore the choice of δ mainly influences the accuracy of the approximation in the region
where number of molecules is small (less than 10). However, to the best of our knowledge,
there is no systematic way to choose δ for a given model. This choice does not influence
the result drastically, so we can stick to “common-sense” guess δ = 0.5. The provided
discretization method is heuristic but it serves well for the given purpose of numerical
approximation. We refer to the detailed rigorous derivation of the connection between
discrete and continuous probability distributions provided in the PhD thesis of P. Thomas,
[220], page. 54, Result 4.5.

Example A.4. ←֓ We consider the reconstruction of the condition protein distri-
bution P |Doff in the gene expression model and the conditional protein distribution
P2|DNA in the exclusive switch model using generalized exponential function of type
N for the case of M = 7 moments. The results are provided in Table A.4, where it
can be seen that the choice of δ influences both the approximation error for P = 0,
|p(0)− ˜q(0)|/p(0) and the overall error ||ǫ||V .

We plot the best reconstructions (with respect to the distance ||ǫ||V ) in Figure A.5,
where for the distribution of P2|DNA (center) the bi-modality property is reflected
in the reconstruction, however the accuracy is still low. The distribution of P |Doff

is reconstructed accurately in for most of the support but the approximation of the
probability for P = 0 is not as accurate. This is the common problem of the considered
(N and G types) generalized exponential based reconstruction approaches.

δ error at P = 0 ||ǫ||V error at P2 = 0 ||ǫ||V
0.2 3.64 · 10−1 7.14 2.20 39.08
0.4 3.74 · 10−1 7.03 2.24 39.10
0.5 3.80 · 10−1 7.00 2.27 39.11
0.6 3.85 · 10−1 6.98 2.29 39.12
0.8 3.96 · 10−1 6.96 2.34 39.13

Table A.4: Comparison of the approximation results under the different choice of δ
parameter value. ←֓
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Figure A.5: ←֓ The reconstruction of the protein distribution: P in gene expression
model (left) and P2 in exclusive switch model (center) in case of M = 7. Right plot
demonstrates the integration of the continuous distribution with respect to Equa-
tion A.14. The reconstruction is shown with black crosses, whereas the result of direct
solution is shown with yellow bars.

Parameter inference procedure. Consider again the parameter estimation problem
formulated in Section 5.3. Let us explicitly state the difference between applying the
maximum entropy and the generalized exponential approach to that problem.

The main difference is that the explicit computation of derivatives ∂λl

∂ci
is not possible in

case of maximum entropy approach, where λl is one of the coefficients of the reconstructed
distribution and ci is one of the parameters to be estimated. In contrast, when applying
the generalized exponential based approach, these derivatives can be symbolically com-
puted. Therefore, the functional dependency between the input parameters c and the
coefficients λ can be established. In case of maximum entropy, the procedure is based
on numerical optimization which is a kind of “black box” where there exist no (known)
functional dependency between c and λ, and only numerical approximations can be used
to approximate the derivatives ∂λl

∂ci
and the derivatives of the likelihood function.

A.6 Orthogonal Polynomials with Respect to a Mo-

ment Functional

Define the complex-valued functional L 8on the linear space of all algebraic polynomials
P . The system of monomials is defined as U = 1, x, x2, . . . and the functional L takes the
values on U that are moments, i.e., L(xk) = µk. A sequence of polynomials {Pn(x)}∞n=0 is
a formal orthogonal polynomial sequence with respect to a moment functional L, if for
all i, j ∈ N0

1. Pi(x) is a polynomial of degree i

2. L [Pi(x)Pj(x)] = 0 for all i 6= j

3. L [Pi(x)Pi(x)] 6= 0.
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If the third condition does not hold, the functional L is called quasi-definite, otherwise it
is called positive definite [157]. The sequence of orthogonal polynomials with respect to
the functional L exists iff. the Hankel determinants

∆n =

∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn−1

µ1 µ2 · · · µn
...

...
...

µn−1 µn · · · µ2n−2

∣∣∣∣∣∣∣∣∣

6= 0

for all n ∈ N.

These systems are widely mostly in image processing. They include Legendre [73, 179],
Zernike [216], Gaussian-Hermite [245], Bessel-Fourier [244], Gegenbauer [115] and other
(cf. [113] and references therein) systems of orthogonal polynomials.
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A.7 Reactions of the multi-attractor model

The multi-attractor model involves the three species MAFAProt , DeltaProt , and PaxProt
that represent the proteins of the three genes and it involves ten species that represent the
state of the genes: PaxDna,MAFADna,DeltaDna,PaxDnaDeltaProt ,MAFADnaPaxProt ,
MAFADnaMAFAProt ,MAFADnaDeltaProt ,DeltaDnaPaxProt ,DeltaDnaMAFAProt ,DeltaDnaDeltaProt
The chemical reactions are as follows:

PaxDna
cp−→ PaxDna + PaxProt

PaxProt
cd−→ ∅

PaxDna + DeltaProt
cb−→ PaxDnaDeltaProt

PaxDnaDeltaProt
cu−→ PaxDna + DeltaProt

MAFADna
cp−→ MAFADna +MAFAProt

MAFAProt
cd−→ ∅

MAFADna + PaxProt
cb−→ MAFADnaPaxProt

MAFADnaPaxProt
cu−→ MAFADna + PaxProt

MAFADnaPaxProt
cp−→ MAFADnaPaxProt +MAFAProt

MAFADna +MAFAProt
cb−→ MAFADnaMAFAProt

MAFADnaMAFAProt
cu−→ MAFADna +MAFAProt

MAFADnaMAFAProt
cp−→ MAFADnaMAFAProt +MAFAProt

MAFADna + DeltaProt
cb−→ MAFADnaDeltaProt

MAFADnaDeltaProt
cu−→ MAFADna + DeltaProt

DeltaDna
cp−→ DeltaDna + DeltaProt

DeltaProt
cd−→ ∅

DeltaDna + PaxProt
cb−→ DeltaDnaPaxProt

DeltaDnaPaxProt
cu−→ DeltaDna + PaxProt

DeltaDnaPaxProt
cp−→ DeltaDnaPaxProt + DeltaProt

DeltaDna +MAFAProt
cb−→ DeltaDnaMAFAProt

DeltaDnaMAFAProt
cu−→ DeltaDna +MAFAProt

DeltaDna + DeltaProt
cb−→ DeltaDnaDeltaProt

DeltaDnaDeltaProt
cu−→ DeltaDna + DeltaProt

DeltaDnaDeltaProt
cp−→ DeltaDnaDeltaProt + DeltaProt

(A.15)



Abbreviations

CDF Cumulative Distribution Function

CME Chemical Master Equation

CRN Chemical Reaction Network

CTMC Continuous Time Markov Chain

ODE Ordinary Differential Equation

PDF Probability Density Function

SSA Stochastic Simulation Algorithm

MC Moment Closure

ME Maximum Entropy

MM Method (of) Moments

MCM Method (of) Conditional Moments

wMCM Weighted sum MCM-based reconstruction
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[89] C. A. Gómez-Uribe and G. C. Verghese. Mass fluctuation kinetics: Captur-
ing stochastic effects in systems of chemical reactions through coupled mean-
variance computations. The Journal of Chemical Physics, 126(2):024109, 2007. doi:
10.1063/1.2408422. 26

[90] D. Gonze, J. Halloy, and A. Goldbeter. Deterministic versus stochastic models
for circadian rhythms. Journal of biological physics, 28(4):637–653, 2002. doi:
10.1023/A:1021286607354. 9

[91] H. Gotovac and B. Gotovac. Maximum entropy algorithm with inexact upper
entropy bound based on Fup basis functions with compact support. Journal of
Computational Physics, 228(24):9079–9091, 2009. doi: doi:10.1016/j.jcp.2009.09.011.
41, 100

[92] J. Goutsias and G. Jenkinson. Markovian dynamics on complex reaction networks.
Physics Reports, 529(2):199–264, 2013. doi: 10.1016/j.physrep.2013.03.004. 40

[93] M. Griffith, T. Courtney, J. Peccoud, and W. H. Sanders. Dynamic partitioning for
hybrid simulation of the bistable HIV-1 transactivation network. Bioinformatics,
22(22):2782–2789, 2006. doi: 10.1093/bioinformatics/btl465. 10

[94] R. Grima. A study of the accuracy of moment-closure approximations for stochastic
chemical kinetics. The Journal of Chemical Physics, 136(15):154105, 2012. doi:
10.1063/1.3702848. 26, 28

[95] C. M. Grinstead and J. L. Snell. Introduction to probability. American Mathemati-
cal Society, 2 revised edition, 1997. 38

[96] D. Gross and D. R. Miller. The randomization technique as a modeling tool and
solution procedure for transient Markov processes. Operations Research, 32(2):
343–361, 1984. doi: 10.1287/opre.32.2.343. 7, 13

[97] M. C. Guenther, A. Stefanek, and J. T. Bradley. Moment Closures for Performance
Models with Highly Non-linear Rates, pages 32–47. Springer Berlin Heidelberg, 2013.
doi: 10.1007/978-3-642-36781-6 3. 26

[98] M. L. Guerriero and J. K. Heath. Computational modeling of biological pathways by
executable biology. Methods in enzymology, 487:217–251, 2011. doi: 10.1016/B978-
0-12-381270-4.00008-1. 9

http://dx.doi.org/10.1016/0378-4371(92)90283-V
http://dx.doi.org/10.1016/0378-4371(92)90283-V
http://dx.doi.org/10.1063/1.481811
http://dx.doi.org/10.1063/1.1378322
http://dx.doi.org/10.1063/1.1378322
http://dx.doi.org/10.1063/1.1613254
http://dx.doi.org/10.7551/mitpress/9780262195485.003.0016
http://dx.doi.org/10.7551/mitpress/9780262195485.003.0016
http://dx.doi.org/10.1063/1.2408422
http://dx.doi.org/10.1063/1.2408422
http://dx.doi.org/10.1023/A:1021286607354
http://dx.doi.org/10.1023/A:1021286607354
http://dx.doi.org/doi:10.1016/j.jcp.2009.09.011
http://dx.doi.org/10.1016/j.physrep.2013.03.004
http://dx.doi.org/10.1093/bioinformatics/btl465
http://dx.doi.org/10.1063/1.3702848
http://dx.doi.org/10.1063/1.3702848
http://dx.doi.org/10.1287/opre.32.2.343
http://dx.doi.org/10.1007/978-3-642-36781-6_3
http://dx.doi.org/10.1016/B978-0-12-381270-4.00008-1
http://dx.doi.org/10.1016/B978-0-12-381270-4.00008-1


Bibliography 128

[99] S. Guiasu. Maximum entropy condition in queueing theory. The Journal of the
Operational Research Society, 37(3):293–301, 1986. doi: 10.2307/2582209. 34

[100] A. Gupta, C. Briat, and M. Khammash. A scalable computational framework for es-
tablishing long-term behavior of stochastic reaction networks. PLOS Computational
Biology, 10(6):e1003669, 2014. doi: 10.1371/journal.pcbi.1003669. 11

[101] H. Gzyl, P. N. Inverardi, and A. Tagliani. Entropy and density approximation from
Laplace transforms. Applied Mathematics and Computation, 265:225–236, 2015. doi:
10.1016/j.amc.2015.05.020. 39, 41

[102] W. M. Haddad, V. Chellaboina, and Q. Hui. Nonnegative and compartmental
dynamical systems. Princeton University Press, 2010. 5
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