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ABSTRACT

In a complex system, the interactions between individual agents often lead to emergent collective behavior such as spontaneous synchronization,
swarming, and pattern formation. Beyond the intrinsic properties of the agents, the topology of the network of interactions can have a dramatic
influence over the dynamics. In many studies, researchers start with a specific model for both the intrinsic dynamics of each agent and the
interaction network and attempt to learn about the dynamics of the model. Here, we consider the inverse problem: given data from a system,
can one learn about the model and the underlying network? We investigate arbitrary networks of coupled phase oscillators that can exhibit
both synchronous and asynchronous dynamics. We demonstrate that, given sufficient observational data on the transient evolution of each
oscillator, machine learning can reconstruct the interaction network and identify the intrinsic dynamics.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5120784

Many complex systems in nature, science, and society can bemod-
eled as a network of coupled oscillators. The interactions between
neurons in the brain, generators in a power grid, and individuals
within a crowd or social network can cause unexpected behav-
iors to emerge. Often, it is possible to observe the behavior of
individual oscillators, but not to directly determine their intrin-
sic properties or the structural connections between them. In
this paper, we consider the problem of reconstructing the struc-
tural interaction network, the functional form of the coupling,
and the oscillator dynamics from time series data. We propose
a method for computing the optimal reconstruction using tech-
niques commonly used for training artificial neural networks.
For systems that synchronize, we explore various minimally inva-
sive types of perturbations that can be used to temporarily dis-
rupt the synchronization, generating additional useful transient
data for reconstruction. Our method can accurately reconstruct
the model for systems of phase oscillators over a wide range of

parameters and dynamic regimes using less data than alternative
methods.

I. INTRODUCTION

Nature and society brim with systems of coupled oscillators,
including pacemaker cells in the heart, insulin-secreting cells in the
pancreas, networks of neurons in the brain, cardiorespiratory syn-
chronization, fireflies that synchronize their flashing, chemical reac-
tions, Josephson junctions, power grids, metronomes, and applause
in human crowds, to name merely a few.1–10 The dynamics of cou-
pled oscillators in complex networks have been studied extensively.
In particular, networks of interacting oscillators governed by the
seminal Kuramoto model11–13 or its variants are known to exhibit
a rich variety of behaviors including spontaneous synchronization,
phase transitions, and pattern formation.14,15 The connections in the
network can play a pivotal role in determining these dynamics.
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When the governing equations and network topology for a sys-
tem of coupled oscillators are known, it is fairly straightforward to
explore the dynamics of the system using numerical methods and,
in special cases, analytical methods. Unfortunately, in many systems,
the topology of the interaction network and the intrinsic oscillator
properties can be difficult or impossible to observe directly. Imagine,
for example, experimental results that track neuronal cell network
activity or gene regulatory network activity for a large number of
oscillators, giving rise to time series data. One might like to infer
models and connectivity information from these time series.

It is crucial to distinguish between functional network connec-
tions and structural network connections. Functional connectivity
refers to the temporal correlation of the oscillators and is often
directly observable. For instance, neurons that fire synchronously
are functionally connected. In contrast, structural connectivity, also
called network topology, refers to the underlying connections present
in the network. For instance, neurons that interact via synapses or
neurotransmitters are structurally connected. Unfortunately, these
structural connections may not be observable without deconstruct-
ing the network.

Network reconstruction is an active area of research, both in
theoretical work focused on observations from complex physical
systems16–30 and in applied fields where simultaneously-recorded
physiological signals are used to reconstruct physiological networks
of interaction.31–33 Our primary contribution is a new algorithm
for solving this inverse problem. We use observed time series data
consisting of the phases from a network of coupled oscillators to
reconstruct both the network topology, i.e., the structural network
connections and the intrinsic oscillator dynamics. For the remain-
der of this paper, when we refer to inferring or reconstructing the
model, we mean both of the aforementioned components: network
connections and intrinsic oscillator properties.

In Sec. II B, we review the literature most closely related to our
proposed model reconstruction technique. This technique addresses
certain challenges of existing methods. One such challenge is that
existing methods set up the inverse problem as a linear system that
involves many unknown parameters. Consequently, a large amount
of time series data is necessary. In contrast, our algorithm results in
a system of equations that is smaller and is nonlinear. We solve these
using optimization tools designed for training artificial neural net-
works. As a result, we are able to infer the model with a much smaller
amount of data. A second challenge, as mentioned in Refs. 18, 22, 28,
and 29, is that it is difficult to infer the model for networks that are
synchronized. For such networks, we explore which perturbations of
the synchronized state are needed to enable accurate inference of the
model.

The mathematical setting of our study is oscillator networks
composed of limit-cycle oscillators. These are also known as phase
oscillators, meaning they are characterized by a single phase variable
defined on the circle. We explore four different choices of oscillator
models, all of which fall into the general framework for uniformly
coupled phase oscillators developed in Ref. 34: the classic Kuramoto
model,11 a Kuramoto-like model with square-wave coupling func-
tion, the Kuramoto-Sakaguchi model,35 and a phase-field reduction
of weakly-coupled Hodgkin-Huxley oscillators36 (see Appendix A).
We take all networks to be Erdös-Rényi random graphs.37We attempt
to infer the network topology, the intrinsic frequency of each model

oscillator, and the so-called coupling function that specifies the influ-
ence of one oscillator on others.

To carry out the model reconstruction, we begin with simulated
time series for the oscillator phases and estimated phase velocities.
We set up an optimization problem involving themean squared error
for the predicted phase velocities generated by a system of nonlinear
differential equations, which can be represented as a convolutional
neural network. We then use numerical minimization methods to
estimate the optimal parameters, thereby inferring the adjacency
matrix for network connectivity, the oscillator coupling strength, the
oscillator frequencies, and the Fourier coefficients of the coupling
function. This approach is effective for a variety of different networks
and model parameters. More specifically, we find the following:

• Accurate inference of the coupling network, frequencies, and cou-
pling functions is possible independent of the model when the
system does not synchronize or when sufficient perturbations
from synchronization are permitted.

• For small data sets, model reconstructionwith ourmethod ismore
accurate than with alternative methods based on solving linear
systems of equations.

• Computational methods designed for training artificial neural
networks, such as mini-batch gradient descent implemented in
TensorFlow,38 can be used to solve the optimization problem asso-
ciated with model reconstruction.

• Synchronizing networks can be reconstructed using randomphase
resets or sufficiently large phase perturbations to a small, randomly
chosen set of oscillators.

• Synchronizing networks can also be reconstructed using pertur-
bations to a sufficiently large fixed subset of oscillators.

The rest of this paper is organized as follows. In Sec. II, we introduce
the Kuramoto model (a standard model for the dynamics of cou-
pled oscillators), set up the inverse problem for reconstruction, and
discuss approaches for solving this inverse problem. In Sec. III, we
describe a series of experiments used to test the effectiveness of these
reconstruction techniques over a wide range of model parameters.
In Sec. IV, we present the results of the aforementioned experiments
and discuss perturbation strategies for improving the reconstruction
when the system synchronizes. Finally, in Sec. V, we summarize our
primary findings and discuss extensions to our methodology.

II. MODELS AND METHODS

The Kuramoto model is a standard model for the dynamics
of coupled oscillators. We consider N oscillators with phases θk ∈
[0, 2π) for k = 1, 2, . . . ,N, eachwith an intrinsic frequencyωk. These
oscillators are coupled through an interaction network with adja-
cency matrix A, with the entry Akj ∈ {0, 1} determining whether
oscillators k and j are coupled. The dynamics of θk are governed by
the equation

θ̇k = ωk +

N
∑

j=1

σkjAkjŴ(θj − θk). (1)

Here, σkj represents the strength of the coupling between oscillators
j and k, and Ŵ(θ) represents the coupling function. If the coupling
function Ŵ(θ) is continuous and 2π-periodic, and Ŵ′(θ) is piecewise
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TABLE I. Summary of network model parameters, with the default values and value ranges considered in the parameter sweep experiments of Sec. III.

Parameter Description Value Sweep values

N Number of oscillators 10 {5, 10, 20, 40}
µ Average intrinsic frequency 1.0 N/A
σ Standard deviation of intrinsic frequencies 0.5 {0.01, 0.1, 1.0}
p Network connection probability 0.5 {0.1, 0.2, . . . , 0.9}
Ŵ(θ) Coupling function sin (θ) See Appendix A
dyn_noise Noise in system dynamics 0 {0, 10−5, 10−4, . . . , 100}

continuous, then it can be represented using a uniformly convergent
Fourier series

Ŵ(θ) = a0 +

∞
∑

n=1

an cos(nθ) + bn sin(nθ), (2)

where the coefficients satisfy an, bn ≤ M/n2 for some M. Therefore,
these coefficients decay to 0 for large n, and this function can be
approximated to arbitrary accuracy using a truncated Fourier series

Ŵ(θ) = a0 +

m
∑

n=1

[an cos(nθ) + bn sin(nθ)] (3)

with sufficiently large m. Note that within the model, one can set
a0 = 0 without loss of generality, using the change of variables ωk +
∑N

j=1 σkjAkja0 → ωk.

In Kuramoto’s original formulation,11 the oscillators were glob-
ally coupled (Akj = 1) with coupling strengths σkj = K/N, where K
scales the global coupling strength. He used the coupling function
Ŵ(θ) = sin(θ) and showed that, for K > KC where KC is a critical
value related to the width of the distribution of intrinsic frequen-
cies, the oscillators begin to synchronize, achieving identical phase
velocities with phases distributed around the populationmean. Anal-
ogous results were obtained later for systems with periodic coupling
functions possessing only odd harmonics12,34 and arbitrary complex
networks.39

A. Simulated data generation

We investigate a method for inferring the parameters of the
Kuramoto model for phase oscillators on random graphs with uni-
form coupling strengths σkj = K/N. In our experiments, we focus
on undirected Erdös-Rényi graphs, where each possible edge in the
network is present with a probability of p. It is straightforward to
extend our approach to arbitrary networks with nonuniform cou-
pling strengths, though this would likely require a larger amount

of time series data. The details of our method appear in Secs. II B
and II C.

In order to test our method, we generate data according to the
following procedure:

1. Generate an Erdös-Rényi network for a fixed connection prob-
ability p, where the nodes represent individual oscillators with
natural frequencies sampled from a normal distribution with
mean µ and standard deviation σ .

2. Use numerical integration to generate a time series for the evo-
lution of this system for t ∈ [0, tmax], starting from initial phases
drawn from a uniform distribution on [0, 2π]. For numerical
integration, we use an explicit Runge-Kuttamethod of order 5(4)
(Ref. 40) or a stochastic Runge-Kuttamethod of order 2 (Ref. 41).

3. Compute the phases θk(tn) at times tn = n1t with time step 1t
and for n = 0, 1, . . . ,T + 1, where T = tmax/1t − 1, to obtain
observations that are evenly spaced in time.

4. Estimate the phase velocities vk(tn) = θ̇k(tn) for n = 1, 2, . . . ,T,
using central differencing in time with Savitsky-Golay filtering.42

We use a window length of 5 with first degree polynomials.
5. Repeat steps (2–4) Nres times with different uniform random

initial conditions to obtain sufficient data during the transient
evolution of the system.

SeeTables I and II for the network parameters andnumerical solution
parameters used in this procedure. For these default values, one typ-
ically finds that some of the oscillators synchronize with a collective
rhythm, while others drift relative to this collective rhythm.

The aforementioned process is intended to produce simulated
data mimicking that which experimentalists might collect when
observing real world networks. Of course, it may not be possible
to control the initial phases in an experiment. We, therefore, eval-
uate the reconstruction methods for varying Nres, as well as for cases
in which small perturbations are used instead of different initial
conditions (see Sec. IV A).

TABLE II. Summary of algorithm parameters, with the default values and value ranges considered in the parameter sweep experiments of Sec. III.

Parameter Description Value Sweep values

tmax Duration of each transient 20 {2, 5, 10, 20, 50}
1t Sampling time step 0.1 N/A
Noise Observation noise 0 {0, 10−5, 10−4, . . . , 100}
Nres Number of transients observed 10 {1, 2, 5, 10, 20, 40}
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B. Inverse problem formulation

We now formulate a set of equations whose least squares solu-
tion can be used to estimate the natural frequencies ωk of each
oscillator, the adjacency matrix Akj of the coupling network, the cou-
pling strength K, and the coupling function Ŵ(θ), from observed
phases θk(tn) and phase velocities vk(tn) generated using the method
outlined above. This work builds on prior work by Shandilya and
Timme,18 where the adjacency matrix for a network of oscillators is
estimated from a time series. We summarize their approach below.

Define vectors θ j = [θ1(tj), θ2(tj), . . . , θN(tj)]
T and vj

=
[

θ̇1(tj), θ̇2(tj), . . . , θ̇N(tj)
]T

consisting of the oscillator phases and
phase velocities. Note that here T corresponds to the matrix trans-
pose. When the coupling strength K and coupling function Ŵ are
known, the phase velocity for oscillator k,

(

vj

)

k
= ωk +

K

N

N
∑

j=1

AkjŴ(θj − θk), (4)

is linear in the unknown parameters ωk and Akj. Therefore, one can
infer both the natural frequencies and adjacency matrix by solving a
linear system ofN · T equations, whereT is the number of time steps,
and each time step j provides N equations of the form

L(θ j)x = vj. (5)

Here, L(θ j) is anN × (N + N2)matrix where each row is determined
from Eq. (4) for a particular oscillator, and x is an (N + N2) × 1 vec-
tor with the unknown natural frequencies ω and the entries in the
adjacency matrix A. The number of unknowns in A can be reduced
to N + N(N − 1)/2 if one assumes Ajj = 0 and Akj = Ajk.

Since the number of equations in the linear system is deter-
mined by the number of observed time steps T and the number of
oscillators N, one can ensure that the system is overdetermined by
collecting enough observations so that T > 1 + N. One can then
estimate the parameters by minimizing a loss function such as the
mean squared error,

E(ω,A) =
1

NT

T
∑

j=1

‖vj − v̂j(ω,A)‖22,

where vj denotes the observed value and v̂j denotes the predicted
value of the velocity.

As long as the system remains far from synchronization, increas-
ing the number of observations T will provide additional linearly
independent equations to aid with reconstruction. However, as
networks synchronize, i.e., (vj)k = θ̇k → θ̇ , additional observations
become (nearly) linearly dependent. This causes the system of equa-
tions to become highly ill-conditioned and makes numerical solu-
tions sensitive to noise and rounding errors. As a result, it is often
necessary to perturb the system away from equilibrium to ensure
that a sufficient number of linearly independent observations can be
collected.

Although the approach of Ref. 18 outlined above is effective, it
is limited by the requirement that the coupling function be known a
priori. This limitation was addressed in the context of pulse-coupled
oscillators in Ref. 28 and phase-coupled oscillators in Ref. 29 by rep-
resenting the unknown functions as a Fourier series so that it can

also be estimated by solving an optimization problem. Unfortunately,
one challenge remains. If one represents the coupling function as in
Eq. (3), then the system of equations is no longer linear as terms of
the formAkjan andAkjbn appear. Pikovsky29 circumvents this issue by
defining distinct coupling functions

Ŵkj(θ) =

m
∑

n=1

akjn cos(nθ) + bkjn sin(nθ)

for each pair of oscillators and by setting Akj = 1. In this formula-
tion, if oscillators k and j are uncoupled, then akjn = bkjn = 0 for all n.
This modification preserves the linearity of the system of equations
and allows for the description of a more general class of networks
with distinct coupling functions for each pair of oscillators. How-
ever, it comes at a cost: the number of unknown parameters increases
dramatically from N + N2 to N + 2mN2. Therefore, even longer
observation times are required. Additionally, as with the method of
Ref. 18, if the system synchronizes, there may be numerical diffi-
culties when inferring parameters. Finally, the large number of free
parameters makes this model particularly prone to overfitting. As
before, one could assume that connections in the network are sym-
metric, i.e., that Ŵkj(θ) = Ŵjk(θ) and that self edges are not included
Ŵjj(θ) = 0, allowing for a reduction in the number of parameters to
N + mN(N − 1).

We propose an alternative approach. We use a single coupling
function represented by a Fourier series as described in Eq. (3) for
all coupling terms and attempt to infer the 2m Fourier coefficients
a = [a1, a2, . . . , am]

T and b = [b1, b2, . . . , bm]
T alongwith the intrin-

sic frequencies ω, adjacency matrix A, and global coupling strength
K. This leads to a total 2m + N + N2 + 1 inferred parameters or
2m + N + N(N − 1)/2 + 1 with symmetry constraints and no self-
connections. This is, therefore, a modest increase of 2m + 1 param-
eters over the case considered by Shandilya and Timme18 without
requiring prior knowledge of the coupling function.

As mentioned previously, this leads to a set of nonlinear equa-
tions due to the appearance of terms of the formKAkjan andKAkjbn in
Eq. (4). SinceK always appears in products involving an and bn, these
parameters are not structurally identifiable. One could set K = 1
without loss of generality. Instead, we includeK as an inferred param-
eter and introduce penalty terms to the objective function we seek to
minimize,

E(ω,A, a, b) =
1

NT

T
∑

j=1

‖vj − v̂j(ω,A, a, b,K)‖22

+ λŴ

∞
∑

n=1

(

|an|
2 + |bn|

2
)

+ λA

N
∑

j=1

N
∑

k=1

(

|Akj|
2 + |1 − Akj|

2
)

+ λbd

N
∑

j=1

N
∑

k=1

(

min
{

Akj, 0
}

+ min
{

1 − Akj, 0
})

.

(6)
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TABLE III. Default values and summary of method parameters for results in Sec. IV.

Parameter Description Value

n_epochs Iterations through the training data 300
Batch size Time steps of data per gradient descent batch 100
m Number of inferred Fourier coefficients 5
λŴ Weight of penalty on nonsparse coupling 0.0001
λA Weight of penalty on network connectivity 10−6

λbd Weight of penalty on Akj 6∈ [0, 1] 105

The inclusion of a penalty function ensures the existence of a
nondegenerate local minimum. In this objective function, the first
term represents the mean squared error. The remaining terms are
penalty terms with weights λŴ = 0.0001, λA = 10−6, and λbd = 105.
These hyperparameter values were tuned initially to provide satis-
factory reconstruction performance and then kept constant in all
subsequent experiments (see also Table III). Additional tuning of
these parameters for specific networks could further improve the
accuracy of the model reconstruction. The term with λŴ introduces
L2 regularization, which favors smaller estimates of the parameter
values an and bn. This is useful for combating overfitting and pro-
moting sparse representations and is analogous to using a Bayesian
prior centered at 0 for the Fourier coefficients.43 The term with λA

penalizes values in the adjacency matrix that are not close to 0 or 1.
The last term with λbd penalizes adjacency values that are negative
or greater than 1 to ensure that the estimates fall within the desired
range of [0, 1]. We do not penalize K and instead allow it to be as
large as necessary to counteract the parameter shrinkage caused by
the penalty terms.

C. Inverse problem solution

Minimizing Eq. (6) poses a number of challenges. First of all,
due to the nonlinearity of Eq. (4), this function may not be con-
vex, and there are no guarantees that local optimization methods
will converge to a global minimum. Secondly, when the number of
observations T is large, this function may be costly to compute, and
minimizing the number of function evaluations is paramount.

Fortunately, the theoretical challenge of nonconvexity does
not prevent our method from obtaining consistently reliable model
reconstruction, as we show in Sec. IV. The computational difficul-
ties can be addressed by using tools designed for artificial neural
networks and implemented in TensorFlow to efficiently compute
gradients and perform minimization with a variant of mini-batch
gradient descent.44

To elucidate the connection with artificial neural networks, we
comment that Eq. (3) can be viewed as a two-dimensional convo-
lutional neural network with a convolution of size 1 × 1 and stride
one applied to a tensor of phase differences 1θi,j,k = θk(ti) − θj(ti)
with i = 1, 2, . . .T and k, j = 1, 2, . . .N. This network consists of an
input layerwith dimensionsT × N × N (the dimensions of the phase
difference tensor), a hidden layer with dimensions T × N × N × 2m
corresponding to each of the 2m harmonics of the form cos n1θi,j,k
and sin n1θi,j,k, followed by a T × N × N output layer representing

Ŵ(1θi,j,k) =
∑m

n=1

[

an cos n(1θi,j,k) + bn sin n(1θi,j,k)
]

. A traditional

FIG. 1. Coupling function as a convolutional neural network. This schematic illus-
trates how the coupling function Ŵ [Eq. (3)] is evaluated at each phase difference
θk − θj via a convolutional neural network with size 1 × 1 and stride one. The
hidden layer consists of 2m units with activation functions cos(nθ) and sin(nθ),
n = 1, 2, . . .m, with fixed inputs of weight one. The output layer uses variable
weights representing the Fourier coefficients an and bn. No biases are included.

fully connected neural network includes connections between all
nodes in consecutive layers, each with a distinct weight. In contrast,
a convolutional network uses sparse connections and shared weights
that allow it to represent transformations that are equivalent to the
mathematical operation known as a convolution. In our network, we
only include connections between nodes that correspond to the same
phase difference 1θi,j,k and use weights that are independent of the
indices i, j, and k. Theweights in the first hidden layer are fixed at one,
and the biases are fixed at zero. In the output layer, each harmonic is
assigned a fixed bias of zero and a variable weight an or bn corre-
sponding to the Fourier coefficients. Figure 1 provides a schematic
of this transformation as a neural network. Once the coupling terms
have been computed, the rest of Eq. (4) and the resulting loss function
[Eq. (6)] are straightforward to compute using vectorized operations.

We initialize the inferred parameters as follows: the adjacency
matrixA has initial entries drawn fromN (0.5, 1/N), the frequencies
ωk are initialized fromN (0, 1/N), the coupling strength K is drawn
from N (1, 1/N), and the Fourier coefficients a, b of the coupling
function are initialized at 0.

TensorFlow maintains a computational graph for these oper-
ations, which allows one to automatically compute gradients. One
can, therefore, use gradient descent methods to compute the optimal

estimates (ân,b̂n,ω̂k,Âkj,K̂) for the parameters. We used a mini-batch
gradient descent method with a batch size of 100; i.e., we randomly
assign the data to batches of 100 time steps. For each batch, we cal-
culate the gradient of the loss function and update the estimated
parameters by taking a small step in a direction determined from the
gradient. Once this has been repeated for all batches (one epoch), we
pass through the data again for a total of 200 or more epochs. We
determine the number of epochs experimentally by iterating until
the mean squared error no longer decreases. Typically, 300 epochs
are sufficient. However, for certain sweeps examining the role of tmax,
Nres, and σ , the number of epochs required for convergence is as high
as 10 000.

By using small randombatches of time steps, the gradient can be
estimated quickly. This has the added benefit of introducing stochas-
ticity into gradients, which makes the algorithm less susceptible to
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getting caught in local minima. We use AdamOptimizer, which is a
gradient descent method with momentum and an adaptive learning
rate,45 with default parameter values for optimization in TensorFlow.

There is minor variability in the success of the algorithm due
to the random initialization of the inferred parameters and to the
batching of the observed data. In order to ensure an accurate network
reconstruction, we can retrain the model with new initial values sev-
eral times and choose the result that has the smallest mean squared
error for the velocity predictions on the validation set, which was
not considered during the training process. For any individual model
network, this validation error is correlated with the accuracy of the
inferred parameters. In all examples below, we attempt to reconstruct
each network five times before choosing the best reconstruction.

D. Postprocessing

The method described in Sec. II C produces continuous esti-

mates for the parameters (ân, b̂n, ω̂k, Âkj, K̂), which could be used
to predict the dynamics of the system under a variety of initial
conditions. However, we are interested in evaluating whether these
parameter estimates are an accurate reconstruction of the original
model. Before these values can be compared to themodel parameters
used to generate the data, additional postprocessing is needed. We,
therefore, redefine our parameter estimates via the transformations

(in order) K̂Âkj → Âkj, c0 + c1Ŵ̂ → Ŵ̂, where c0 and c1 are selected

to minimize

∫ 2π

0

|Ŵ(θ) − Ŵ̂(θ)|dθ , and ω̂k − c0
c1N

∑N
j=1 Âkj → ω̂k.

These transformations are necessary to address the aforementioned
identifiability issues with K and to allow Ŵ to have a nonzero mean.

In the original model, the adjacency matrix entries are either
zero or one. However, we treat the entries as continuous variables
during optimization and then choose a threshold ǫ so that Akj < ǫ

is chosen to be 0 and Akj ≥ ǫ is chosen to be 1. In practice, one
could fix ǫ or select ǫ so that the reconstructed model minimizes the
mean squared error for the data set. However, we explore a range
of threshold values using receiver operating characteristic (ROC)
curves, which measure the quality of a classifier independent of any
particular threshold (seeAppendix B).We also report the reconstruc-
tion error rates using the value of ǫ that yields the largest F1 score for
the adjacency matrix reconstruction. The F1 score is the harmonic
mean of precision and recall and has a maximum value of 1, which
corresponds to perfect reconstruction (see Appendix B). These opti-
mal values are robust, and good performance is typically obtained
over a wide range of thresholds (see Sec. IV for details).

III. EXPERIMENTAL DESIGN

In order to validate the robustness of our approach, we test the
reconstruction method on data simulated with a variety of networks
and parameter values. We explore this high-dimensional parame-
ter space by fixing all of the model parameters except for one and
then sweeping the remaining parameter over a wide range of values.
See Tables I and II for a list of default values as well as the ranges
considered. For each set of parameter values, we compute 30 net-
works with random initial phases and intrinsic frequencies. We then
attempt to reconstruct the underlying model for each network and
calculate various performance metrics for each reconstruction.

A. Coupling function

We evaluate the inferred coupling function Ŵ̂(θ) by comparing
it to the true coupling function Ŵ(θ) via the “normalized difference
in area” defined as follows:

Normalized difference in area =

∫ 2π

0

|Ŵ(θ) − Ŵ̂(θ)|dθ

∫ 2π

0

|Ŵ(θ)|dθ

. (7)

This represents the area between the true and estimated coupling
function curves, weighted by the area under the curve of the true
function. This quantity serves as a measure of the error in the recon-
struction. A perfect reconstruction would have a normalized differ-

ence in area of zero. The initial estimate Ŵ̂(θ) = 0 corresponds to
a value of 1. Therefore, values significantly lower than 1 indicate
progress toward a correct reconstruction.

B. Intrinsic frequencies

We compare the inferred intrinsic frequencies ω̂k to the true
intrinsic frequencies ωk using the “mean absolute deviation” defined
as follows:

Mean absolute deviation =
1

N

N
∑

k=1

|ωk − ω̂k|. (8)

Values near zero indicate accurate reconstructions. We considered
alternative metrics such as relative deviations and the correlation
between true and inferred frequencies, but these were less informa-
tive because they tend to amplify errors when the intrinsic frequen-
cies are close to zero.

C. Adjacency matrix

We investigate several methods for evaluating the success of
adjacency matrix reconstruction. The accuracy can be inspected
visually by plotting the true and reconstructed matrices along with
the absolute differences in a grid where values range from 0 (black)
to 1 (white); see Figs. 2(a)–2(c). Since we are primarily interested in
discrete adjacency values, we interpret reconstruction as a classifi-
cation problem and compute three standard evaluation metrics: the
F1 score, the classification “error rate” for the connections, and the
“area under the ROC curve.” See Appendix B for precise definitions
of these metrics.

IV. RESULTS

Our method can successfully reconstruct models with a vari-
ety of coupling functions. Figure 3(a) and Table V show the results
for four different coupling functions (see Appendix A for details),
three of which come from popular coupled oscillator models: the
Kuramoto model, the Kuramoto-Sakaguchi model, and a phase
reduction of theHodgkin-Huxleymodel, and a fourth, a squarewave,
which represents a generic discontinuous function with high fre-
quency Fourier harmonics. For the square-wave coupling function,
the accuracy of the reconstruction suffers since the reconstruction
includes only five Fourier harmonics, and the true coupling func-
tion contains an infinite number of harmonics with amplitudes
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FIG. 2. Predicted adjacency matrix, coupling function, and frequencies. (a) True adjacency matrix, (b) predicted adjacency matrix, (c) absolute difference between true and
predicted adjacency matrices, (d) coupling functions, true (blue, solid) and predicted (black, dashed), (e) coupling function difference, and (f) predicted vs true frequencies
(black, dots) and y = x (blue, solid). For this example, we obtain an adjacency matrix classification error rate of 0 for thresholds between 0.1 and 0.9, a normalized difference
in area of 0.032 for the coupling function, and a mean absolute deviation of 0.008 for the estimated natural frequencies.

that decay slowly due to the discontinuities. Despite these limita-
tions, the adjacency matrix was still estimated with a high degree of
accuracy.

Counterintuitively, as the number of oscillators increases
[Fig. 3(b) and Table VI], we find that reconstruction accuracy of the
coupling function improves initially (from N = 5 to N = 20). The
negative slope in the normalized difference in error is statistically sig-
nificant with a p-value of 0.0001. This can be explained by the obser-
vation that although increasing the number of oscillators increases

the number of unknown parameters, it also provides a greater num-
ber of pairwise phase differences, which can aid in reconstruction of
the coupling function.

In Fig. 4 and Table VII, we consider simulations where the
standard deviation σ of the oscillator frequencies ranges from 0.01
to 1. The normalized difference in area of the coupling function and
the mean absolute deviation of the inferred frequencies both con-
firm that we can infer the network successfully for σ ≤ 1. For larger
standard deviations, the quality of the reconstruction suffers slightly,

FIG. 3. Performance of coupling function reconstruction for different coupling functions and varying numbers of oscillators. (a) Normalized difference in area for different cou-
pling functions. For the Hodgkin-Huxley, Kuramoto, and Kuramoto-Sakaguchi coupling functions, the normalized difference in area has the order O(10−2). For a square-wave
coupling function, the normalized difference in area is larger but still reasonably small [O(10−1)]. Whiskers are 1.5 times the interquartile range (IQR). (b) Normalized differ-
ence in area [Eq. (7)] for different number of oscillators N. As the number of oscillator increases, the normalized difference in area remains small. The result is shown for the
Kuramoto model.
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FIG. 4. Performance metrics of the coupling function and the intrinsic frequencies for various frequency standard deviations. (a) Normalized difference in area. As the
frequency standard deviation changes from 0.01 to 1, the normalized difference in area remains small. (b) Mean absolute deviation of the frequencies [Eq. (8)]. A small
nonzero deviation in the intrinsic frequencies tends to reduce the mean absolute deviation. Here, the result is shown for the Kuramoto model.

since the large frequencies dominate the coupling terms within the
phase velocity relationship.

We also explore the impact of noise on themodel reconstruction
since both observation noise and dynamic noise would be present
in experiments. As in Ref. 18, we introduce dynamic noise using
stochastic differential equations with Gaussian noise. We also add
Gaussian noise to the observed phases after integrating the govern-
ing differential equations. In Tables VIII and IX, we demonstrate that
our model reconstruction method is robust to moderate amounts of
both types of noise. For both types of noise, we use mean 0 and stan-
dard deviations between 0 and 1. Figure 5 shows that dynamic noise
with a standard deviation less than 10−3 helpswith the reconstruction
of both coupling function and frequencies. This can be explained by
the fact that a small amount of noise keeps the system from reaching
equilibrium, effectively increasing the duration of the transients that
provide useful information about the structure of the network.

We carry out additional parameter sweepswith varying network
connectivity p (Table X), maximum simulation time tmax (Table XI),
and the number of simulation restarts (Table XII) with all other
parameters set using the default values given in Tables I–III. In each

case, we are consistently able to reconstruct the coupling function, the
underlying network, and the intrinsic frequencies over a wide range
of model parameters. Tables V–XVII in Appendix C illustrate aver-
aged numerical results for 30 trials of each of these parameter sweeps
in terms of evaluation metrics such as normalized difference in area,
mean absolute deviation, error rate, area under the ROC curve, and a
range of thresholds that yield F1 scores above 90% of the largest value.

A. Results for perturbations of synchronous dynamics

As Refs. 18 and 29 point out, when a network remains syn-
chronized, i.e., when θ̇1 = θ̇2 = · · · = θ̇N , one cannot infer themodel
parameters due to the fact that the observed phases no longer pro-
vide linearly independent equations. Furthermore, even with precise
knowledge of the adjacency matrix, one could not hope to recon-
struct the coupling function Ŵ(θk − θj) without data over a wide
range of phase differences θk − θj.

We investigate a method for using small perturbations to intro-
duce brief transients into the dynamics to allow for successful model
reconstruction. To test this, we use nearly identical oscillators with

FIG. 5. Response of reconstruction to dynamic noise with various standard deviations. (a) Normalized difference in area of the coupling function. When the dynamic noise
standard deviation is less than 10−3, the normalized difference in area is smaller than for a model without noise. As the dynamic noise standard deviation increases to 10−1,
the normalized difference in area increases. A significant increase is observed as the noise standard deviation increases to 1. (b) Mean absolute deviation of the frequencies.
The mean absolute deviation remains small as the dynamic noise standard deviation increases to 10−1. Here, the result is shown for the Kuramoto model.
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FIG. 6. Reconstruction of a model with synchronous dynamics using random perturbation or phase resetting. Left: the normalized difference in area for the coupling function.
Middle: the error rate for the adjacency matrix. Right: the mean absolute deviation for the intrinsic frequencies. (a)–(c) Only one oscillator is perturbed repeatedly using
random normally distributed phase perturbations ηpert ∼ N (0, σ 2

pert) with σpert = 0.01. (d)–(f) A fixed subset of three oscillators are perturbed repeatedly with a larger

perturbation σpert = 10. (g)–(i) A single oscillator is selected randomly for each perturbation (with σpert = 10). (j)–(l) We reset a subset of three oscillators selected randomly
with each perturbation. Here, the oscillators are nearly identical: σ = 0.0001 and with initial condition θk = 0 for all k. We simulate the dynamics for tmax = 200 units of time
and introduce perturbations at times t = ktmax/Npert for k = 1, 2, . . . ,Npert . The result is shown for the Kuramoto model.

frequency standard deviation σ = 0.0001, which causes the sys-
tem to quickly converge to a synchronized state for almost all
initial conditions. We then initialize θ(0) = 0 so that the system
begins from perfect synchrony. Then, at times ktmax/Npert for k =
1, 2, . . .Npert , we add a phase perturbation to a subset of the oscil-
lators. Each perturbation causes some of the oscillators to briefly
become desynchronized. In this way, the total number of observed
phases remains constant, but the fraction of those observations that
occur during transient dynamics is proportional to the number of

perturbations, Npert . The observed phases during these transients
provide meaningful data about the structure of the network. Figure
6 demonstrates that, as expected, with too few or too small perturba-
tions, model reconstruction is unsuccessful. However, as the num-
ber of perturbations Npert increases, the accuracy of the estimated
coupling function, adjacency matrix, and the oscillator frequencies
improves.

We explore two methods for selecting which oscillators to per-
turb: fixed subsets, in which the subset of perturbed oscillators is
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FIG. 7. Comparison of our method (left column) with the method described in Ref. 29 (right column) for different numbers of restarts. Panels (a) and (b) display the normalized
difference in area of the coupling function. For the coupling function reconstruction, our method performs well with a small number of restarts, while Pikovsky’s method requires
a relatively larger number of restarts. Panels (c) and (d) display the error rate of the adjacency matrix. Again, both methods perform well with 10 or more restarts. Our method
provides more accurate reconstructions when the number of restarts is five or less.

selected at the beginning of the experiment and these same oscillators
are perturbed repeatedly, and random subsets, in which a random
subset of the system is selected for each perturbation. Although a
perturbation to the phase of a particular oscillator does propagate
to the phases of neighboring oscillators through the coupling terms,
those perturbations decay quickly and are, therefore, most effective
for revealing the local structure of the network. As such, although
perturbations to a fixed subset might be more practical in a phys-
ical experiment, one must typically perturb a larger fraction of the
system to obtain comparable performance to that which is obtained
with perturbations to random subsets.

We also consider two types of phase perturbations: phase resets,
in which selected oscillators have their phases reset to 0, and phase
shifts, in which selected oscillators have their phases modified by
adding a random shift ηpert ∼ N (0, σ 2

pert). Phase resets may be more
feasible from an experimental perspective but have the drawback of
preserving the mutual synchrony of the subset of oscillators that are
perturbed. As such, one will typically need to use random subsets in
tandem with phase resets in order to be able to resolve the connec-
tions between the perturbed oscillators.

In Figs. 6(a)–6(c), we use phase shifts with σpert = 0.01 to a fixed
subset of size 1, i.e., a single oscillator out of 10. This gives poor recon-
struction regardless of the number of perturbations due to the small
size of the perturbation. On the other hand, in Figs. 6(d)–6(f), we
perturb a fixed subset (3 out of 10 oscillators) with random phase
shifts with σpert = 10. (These phase shifts are virtually indistinguish-
able from uniform perturbations X ∼ U[−π ,π].) In this case, the

perturbations affect a sufficiently large proportion of the oscillators,
and performance begins to improve once there are 5 or more pertur-
bations. The results in Figs. 6(g)–6(i) illustrate that one only needs
to perturb 1 out of 10 oscillators to obtain similar performance
when the oscillators selected for phase shifts are chosen randomly.
In Figs. 6(j)–6(l), we show the results using phase resets to ran-
dom subsets of 3 oscillators. Again, performance begins to improve
dramatically once 5 or more perturbations are used. The tables sum-
marizing the results of these perturbation strategies are provided
in Appendix C.

B. Comparison with previous work

The amount of transient data necessary for reconstruction is
also useful in comparing our method to previous approaches. As dis-
cussed in Sec. II B, Pikovsky proposes an alternative method where
distinct coupling functions are considered for the interaction of each
pair of oscillators.29 This ensures that the system of equations is lin-
ear; however, it also increases the number of unknown coefficients
significantly. Our approach relies on the assumption that the same
coupling function Ŵ is used for all pairs of oscillators. This is a
reasonable approximation for physical systems where the physical
mechanisms governing the interactions between oscillators are the
same.

Figure 7 shows that when the coupling functions are identi-
cal, our method provides more accurate reconstructions of both the
network topology and the coupling function with smaller amounts
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of transient data. As the amount of transient data increases, both
methods ultimately achieve perfect network reconstruction, while
the approach in Ref. 29 ultimately obtains slightly better estimates for
the coupling function. Therefore, our approach would be preferred
under circumstances where the amount of data is limited and when
the coupling functions are nearly identical.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have designed a method for reconstructing
models of coupled oscillator networks including both the network
connections and the intrinsic oscillator properties. We hope analysts
might investigate (non)convexity of our penalty function and prop-
erties of minimizers. These issues aside, after testing our method
with many different parameters, we conclude that our algorithm can
successfully infer the model.

A common challenge that our method and many related ones
encounter is that the procedure fails if the system synchronizes too
quickly. One remedy is to have a sufficient number of observations
during the desynchronized transients. As we demonstrate, one can
ensure that these data are available by repeating experiments with
multiple initial conditions or by adjusting the model parameters
to inhibit synchronization by instituting large frequency variability
(σ ) or dynamic noise. An alternative remedy is to move the system
away from synchrony using perturbations, preferably ones that are
physically realizable. The introduction of these perturbations pro-
vides useful transient data. By perturbing a sufficiently large subset
of oscillators with a large enough change, we are able to infer the
model accurately. Our hope is that this method will be adopted by
experimentalists and used with experimental data to aid with the
construction of interpretable models for the dynamics of networks
of coupled oscillators.

Although the numerical experiments outlined here involve
Erdös-Rényi networks, the method can be applied more generally to
a broad class of networks. Preliminary testing suggests that similar
results can be obtained for other topologies such as star, small-world,
scale-free networks, and clique networks.

It is also straightforward to extend this approach to other mod-
els for coupled phase oscillators such as the Winfree model46 or even
more general oscillator models such as the Stuart-Landau model47 in
which both phase and amplitude variations are permitted. Indeed,
any system where the unknown functions are periodic can be repre-
sented using our technique.

Formodels containing unknown functions that are not periodic
such as the Hodgkin-Huxley model,48 a Fourier series representa-
tion is not possible. In these cases, one could represent the coupling

functions using feed-forward neural networks, which are capable of
representing continuous functions to arbitrary accuracy using a finite
number of parameters.49 Given a sufficiently rich data set, one could
still use our approach with backpropagation to learn the structure of
the neural network approximation for the coupling function.
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APPENDIX A: COUPLING FUNCTIONS

The coupling functions investigated are described in Table IV.
The first three classes of functions were selected due to their use
in popular coupled oscillator models. The last was an example of
a generic coupling function with higher order harmonics that was
tested to verify that reconstruction of the adjacencymatrix is possible
even with an imperfect approximation to the coupling function.

APPENDIX B: EVALUATION METRICS FOR

CLASSIFICATION

The F1 score is defined as

(

precision−1 + recall−1

2

)−1

= 2 ×
precision × recall

precision + recall
.

Here, precision is the fraction of true positives among all inferred
positives, while recall is the fraction of true positives among all pos-
itives. The F1 score is a value between 0 and 1; when reporting the

TABLE IV. Coupling functions used in parameter sweeps described in Sec. III.

Name Function Reference

Kuramoto sin (θ) 11
Kuramoto-Sakaguchi sin (θ − 0.1) 35
Hodgkin-Huxley 0.383+ 1.379sin (θ + 3.93)+ 0.568sin (2θ + 0.11)+ 0.154sin (3θ + 2.387) 36

Square wave
sin(θ − π/4)

| sin(θ − π/4)|
N/A
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TABLE V. Sweep through the coupling function Ŵ.

Param Value
Normalized

difference in area
Mean absolute

deviation Error rate
Area under the
ROC curve

Interval width
(> 90%)

Ŵ Kuramoto 0.0175± 0.0075 0.004± 0.001 0.0± 0.0 1.0± 0.0 0.4338
Ŵ Kuramoto-Sakaguchi 0.0169± 0.0054 0.005± 0.002 0.0± 0.0 1.0± 0.0 0.3924
Ŵ Hodgkin-Huxley 0.0343± 0.0159 0.011± 0.004 0.0± 0.0 1.0± 0.0 0.7054
Ŵ Square wave 0.1518± 0.0044 0.006± 0.002 0.0± 0.0 1.0± 0.0 0.4059

TABLE VI. Sweep of the number of oscillators N.

Param Value
Normalized

difference in area
Mean absolute

deviation Error rate
Area under the
ROC curve

Interval width
(> 90%)

N 5 0.026± 0.0125 0.0052± 0.003 0.0± 0.0 1.0± 0.0 0.1193
N 10 0.0164± 0.007 0.0047± 0.0031 0.0± 0.0 1.0± 0.0 0.4057
N 20 0.015± 0.0057 0.0046± 0.0016 0.140± 0.601 0.9997± 0.0016 0.3041
N 40 0.0189± 0.0104 0.0045± 0.0011 1.231± 1.018 0.9946± 0.0053 0.223

TABLE VII. Sweep of the standard deviation of the oscillator frequencies σ .

Param Value
Normalized

difference in area
Mean absolute

deviation Error rate
Area under the
ROC curve

Interval width
(> 90%)

σ 0.01 0.0198± 0.0052 0.0022± 0.0008 0.0± 0.0 1.0± 0.0 0.8142
σ 0.1 0.0175± 0.0057 0.004± 0.0014 0.0± 0.0 1.0± 0.0 0.8095
σ 1 0.0161± 0.0049 0.0042± 0.0021 0.0± 0.0 1.0± 0.0 0.7975

TABLE VIII. Sweep of the level of observation noise.

Param Value
Normalized

difference in area
Mean absolute

deviation Error rate
Area under the
ROC curve

Interval width
(> 90%)

Noise 0 0.0193± 0.0098 0.0048± 0.002 0.0± 0.0 1.0± 0.0 0.4204
Noise 1× 10−05 0.0202± 0.0108 0.0053± 0.0024 0.0± 0.0 1.0± 0.0 0.3845
Noise 0.0001 0.018± 0.0076 0.0048± 0.0023 0.0± 0.0 1.0± 0.0 0.4365
Noise 0.001 0.0186± 0.0081 0.0053± 0.002 0.0± 0.0 1.0± 0.0 0.3956
Noise 0.01 0.0186± 0.0079 0.0052± 0.0025 0.0± 0.0 1.0± 0.0 0.4135
Noise 0.1 0.0385± 0.0138 0.0086± 0.0021 0.0± 0.0 1.0± 0.0 0.3544
Noise 1 0.831± 0.1343 0.118± 0.0629 46.296± 8.579 0.5122± 0.0741 0.0472

TABLE IX. Sweep of the level of noise in system dynamics.

Param Value
Normalized

difference in area
Mean absolute

deviation Error rate
Area under the
ROC curve

Interval width
(> 90%)

dyn_noise 0 0.0211± 0.0067 0.0055± 0.0018 0.0± 0.0 1.0± 0.0 0.3814
dyn_noise 1× 10−05 0.0117± 0.0069 0.0032± 0.0023 0.0± 0.0 1.0± 0.0 0.4048
dyn_noise 0.0001 0.0146± 0.0049 0.0032± 0.0013 0.0± 0.0 1.0± 0.0 0.411
dyn_noise 0.001 0.0241± 0.0056 0.0049± 0.0017 0.0± 0.0 1.0± 0.0 0.4517
dyn_noise 0.01 0.0633± 0.0189 0.0128± 0.0034 0.370± 1.025 0.9982± 0.0072 0.3282
dyn_noise 0.1 0.2136± 0.065 0.0312± 0.0055 14.148± 5.003 0.8903± 0.0496 0.2224
dyn_noise 1 0.9716± 0.0399 0.1552± 0.0971 42.444± 8.953 0.5177± 0.1004 0.0406
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TABLE X. Sweep of the network connectivity parameter p.

Param Value
Normalized

difference in area
Mean absolute

deviation Error rate
Area under the
ROC curve

Interval width
(> 90%)

p 0.1 0.1199± 0.2314 0.0054± 0.0047 3.111± 14.97 0.9688± 0.1548 0.3387
p 0.2 0.023± 0.0098 0.004± 0.0022 0.074± 0.41 0.9999± 0.0006 0.5222
p 0.3 0.0186± 0.0073 0.0047± 0.0025 0.0± 0.0 1.0± 0.0 0.5175
p 0.4 0.0207± 0.0089 0.0047± 0.0022 0.0± 0.0 1.0± 0.0 0.5167
p 0.5 0.0189± 0.0097 0.0051± 0.0024 0.0± 0.0 1.0± 0.0 0.4669
p 0.6 0.0183± 0.0072 0.006± 0.0019 0.0± 0.0 1.0± 0.0 0.349
p 0.7 0.0169± 0.0071 0.005± 0.0025 0.0± 0.0 1.0± 0.0 0.3227
p 0.8 0.0194± 0.0077 0.0057± 0.0026 0.0± 0.0 1.0± 0.0 0.2725
p 0.9 0.0289± 0.0271 0.0077± 0.0056 0.0± 0.0 1.0± 0.0 0.2739

TABLE XI. Sweep of the simulation time tmax (duration of each transient).

Param Value
Normalized

difference in area
Mean absolute

deviation Error rate
Area under the
ROC curve

Interval width
(> 90%)

tmax 2 0.0204± 0.011 0.0042± 0.002 0.0± 0.0 1.0± 0.0 0.8225
tmax 5 0.0185± 0.0064 0.0047± 0.0022 0.0± 0.0 1.0± 0.0 0.8186
tmax 10 0.0193± 0.0066 0.004± 0.0013 0.0± 0.0 1.0± 0.0 0.8175
tmax 20 0.0192± 0.0053 0.0041± 0.0013 0.0± 0.0 1.0± 0.0 0.565
tmax 50 0.0191± 0.0093 0.0064± 0.0038 0.0± 0.0 1.0± 0.0 0.2964

TABLE XII. Sweep through the number of transients observed for a simulation that reinitializes all oscillator phases from U [0, 2π ].

Param Value
Normalized

difference in area
Mean absolute

deviation Error rate
Area under the
ROC curve

Interval width
(> 90%)

Nres 1 0.0513± 0.0266 0.0237± 0.0127 3.111± 3.531 0.9815± 0.027 0.447
Nres 2 0.0343± 0.0222 0.0082± 0.007 0.148± 0.564 0.9986± 0.0067 0.6943
Nres 5 0.019± 0.0094 0.0039± 0.002 0.0± 0.0 1.0± 0.0 0.806
Nres 10 0.0201± 0.0084 0.0042± 0.0028 0.0± 0.0 1.0± 0.0 0.808
Nres 20 0.018± 0.0033 0.0042± 0.0017 0.0± 0.0 1.0± 0.0 0.8295
Nres 40 0.0192± 0.0055 0.0041± 0.0016 0.0± 0.0 1.0± 0.0 0.8178

TABLE XIII. Sweep through the number of transients observed for a simulation that selects a fixed oscillator and adds a random Gaussian perturbation to its phase with standard

deviation 0.01.

Param Value
Normalized

difference in area
Mean absolute

deviation Error rate
Area under the
ROC curve

Interval width
(> 90%)

Npert 1 0.9318± 0.082 0.118± 0.0719 48.667± 7.459 0.2934± 0.0999 0.0252
Npert 2 0.9054± 0.1176 0.3284± 0.0747 49.778± 6.920 0.2904± 0.0783 0.0306
Npert 5 0.7928± 0.1568 0.3853± 0.1243 51.852± 8.702 0.3281± 0.0895 0.0688
Npert 10 0.7828± 0.1698 0.2566± 0.1579 50.593± 5.110 0.3843± 0.0697 0.1403
Npert 20 0.9818± 0.0083 0.0024± 0.0011 43.630± 9.383 0.5153± 0.0959 0.1026
Npert 40 0.931± 0.0234 0.0019± 0.0007 47.556± 9.403 0.4909± 0.0935 0.0931

Chaos 29, 103116 (2019); doi: 10.1063/1.5120784 29, 103116-13

© Author(s) 2019

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

TABLE XIV. Sweep through the number of transients observed for a simulation that selects a random oscillator and adds a random Gaussian perturbation to its phase with

standard deviation 10.

Param Value
Normalized

difference in area
Mean absolute

deviation Error rate
Area under the
ROC curve

Interval width
(> 90%)

Npert 1 0.9193± 0.1111 0.1161± 0.0643 49.778± 7.042 0.3189± 0.1051 0.0298
Npert 2 0.7919± 0.2112 0.343± 0.0724 49.852± 6.331 0.279± 0.0949 0.0409
Npert 5 0.4298± 0.1535 0.3328± 0.0691 39.778± 11.032 0.5271± 0.1261 0.2041
Npert 10 0.3211± 0.1187 0.1697± 0.0769 22.741± 10.975 0.7388± 0.0974 0.2111
Npert 20 0.1311± 0.0931 0.0288± 0.0302 4.667± 5.296 0.9536± 0.0601 0.3584
Npert 40 0.0447± 0.0311 0.0036± 0.0026 0.222± 0.679 0.9988± 0.0057 0.4824

TABLE XV. Sweep through the number of transients observed for a simulation that selects 3 fixed oscillators and adds a random Gaussian perturbation to their phases with

standard deviation 10.

Param Value
Normalized

difference in area
Mean absolute

deviation Error rate
Area under the
ROC curve

Interval width
(> 90%)

Npert 1 0.8851± 0.1332 0.1203± 0.0716 50.0± 5.277 0.316± 0.1035 0.0293
Npert 2 0.7678± 0.215 0.2857± 0.0916 50.963± 6.879 0.315± 0.0915 0.0326
Npert 5 0.286± 0.0821 0.1973± 0.0625 30.963± 9.096 0.6136± 0.1118 0.1767
Npert 10 0.1567± 0.0624 0.0788± 0.0609 15.704± 4.246 0.7659± 0.0863 0.3186
Npert 20 0.0783± 0.056 0.0268± 0.06 10.815± 4.943 0.8699± 0.0777 0.4238
Npert 40 0.0262± 0.0191 0.0041± 0.0078 7.185± 4.837 0.9391± 0.0565 0.5419

TABLE XVI. Sweep through the number of transients observed for a simulation that selects 3 random oscillators and resets their phases to 0.

Param Value
Normalized

difference in area
Mean absolute

deviation Error rate
Area under the
ROC curve

Interval width
(> 90%)

Npert 1 0.891± 0.1231 0.1058± 0.0706 46.889± 8.444 0.3337± 0.1156 0.0299
Npert 2 0.9214± 0.088 0.3684± 0.0897 50.444± 7.031 0.2938± 0.0783 0.0474
Npert 5 0.2075± 0.0319 0.0313± 0.0179 23.704± 10.379 0.7769± 0.0874 0.2803
Npert 10 0.0294± 0.0061 0.0033± 0.0014 1.926± 2.592 0.9894± 0.0157 0.3855
Npert 20 0.0184± 0.003 0.0015± 0.0007 0.074± 0.406 0.9999± 0.0008 0.522
Npert 40 0.0116± 0.0028 0.0015± 0.0005 0.0± 0.0 1.0± 0.0 0.6206

TABLE XVII. Sweep through the number of transients observed for a simulation that carries out the optimization for a linear system as proposed in Ref. 29.

Param Value
Normalized

difference in area
Mean absolute

deviation Error rate
Area under the
ROC curve

Interval width
(> 90%)

Nres 1 0.8188± 0.1236 8633.13± 25 993.8 45.852± 8.159 0.5239± 0.0886 2012.5215
Nres 2 0.8895± 0.2663 3481.08± 9497.15 23.037± 11.635 0.7415± 0.1298 1.6593
Nres 5 0.2267± 0.3482 2.5746± 11.3136 2.148± 7.063 0.9756± 0.0733 0.75
Nres 10 0.0238± 0.0242 0.0061± 0.0078 0.074± 0.406 0.9979± 0.0114 0.8436
Nres 20 0.0099± 0.0037 0.0024± 0.001 0.0± 0.0 1.0± 0.0 0.9131
Nres 40 0.0077± 0.0033 0.0023± 0.001 0.0± 0.0 1.0± 0.0 0.9329
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error rate for the reconstructed adjacency matrix, we use the thresh-
old ǫ = ǫmax that corresponds to the largest F1 score. We also deter-
mine the interval of thresholds that yield F1 scores above 90% of this
largest value. The width of this interval is reported in Tables V–XVII
in Appendix C as “Interval width (>90%).”

The error rate is defined as the percentage of entries in A that
are incorrectly classified. We report the error rate for the optimal
threshold ǫ at the end of Sec. II D.

The ROC curve, or receiver operating characteristic, is a para-
metric curve that uses the classification threshold as a parameter and
uses the true positive rate and the false positive rate as the variables.50

The area under the ROC curve measures the quality of a classifier
independent of any particular threshold. A value of 1/2 is consis-
tent with blind guesses, and a value of 1 indicates a perfect classifier
since it implies the existence of a threshold for which the rate of true
positives is 1 and the rate of false positives is 0. Our ROC curves were
generated using the scikit-learn package in Python.51

APPENDIX C: TABLES OF RESULTS

Tables V–XVII report the averaged numerical results of the
experimental parameter sweeps described in Sec. III and reported in
Sec. IV. The performance metrics used are defined in Appendix B.
Values given in the tables represent the mean plus or minus one stan-
dard deviation of the corresponding performance metric over the 30
trials run at that parameter value. We note that some of the distribu-
tions, such as the error rate (which is nonnegative by definition), are
skewed.
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