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1 CHAPTER

Introduction

F
ossil fuels have been and will remain for decades the main energy source.
Since the worlds’s energy demand increases every year, the oil & gas in-

dustry makes a continuous effort to improve fossil fuel recovery. This chapter
first provides an overview of the processes that take place nowadays during
the exploration and production phases of hydrocarbon recovery, and finishes
with the research objective and the outline of this thesis.

1.1 Importance of fossil fuels

Fossil fuels consist of coal and liquid or gaseous hydrocarbons such as crude oil
and natural gas and are millions of years old. Fossil fuels were initially used as
a source of light and heating, and for military purposes. The first reference to
oil pits is from the fifth century BC, written by the Greek historian Herodotus.
The possibility of using natural gas as fuel was discovered by the ancient Chi-
nese, while the use of coal was mentioned by the Greek scientist Theophrastus,
in a geological treatise, where he classified rocks based on their behavior when
heated. The end of the 18th century was the beginning of the industrial revolu-
tion, which was a major turning point in human history. Many important inven-
tions took place, which resulted in changes in agriculture, manufacturing, mining,
transport, cultural conditions, and almost every aspect of daily life. The introduc-
tion of steam power, fueled primarily by coal, and powered machinery under-
pinned the dramatic increases in production capacity, while the development of
all-metal machine tools made the development and production of manufacturing
machines used in other industries easier. The greatest technical discoveries of that
period were made by: Thomas Edison who invented the electric light bulb, Robert
Bunsen who invented the Bunsen burner, Alphonse de Rochas who patented the
four stroke internal-combustion engine, Henry Ford who built the first motor car,
the Wright Brothers who built the first successful airplane. Petroleum fossil fu-
els started to be burned in internal combustion engines to provide power. Since
the industrial revolution, fossil fuels became important stock, and many oil & gas
companies were created and new fields were discovered on different continents.

1



2 Chapter 1 Introduction

For decades the oil & gas industry developed technologies to produce petroleum
in a safe and efficient manner. The industry also improved the infrastructure to
transport it and the processes to refine it into more useful petroleum products,
such as gasoline, diesel fuel, heating oil, kerosene, and liquefied petroleum gas.
Nowadays, fossil fuels also provide lubricants, asphalt base, paraffin waxes; and
it is a feedstock in petrochemical processes that manufacture such products as
plastics, detergents, solvents and fibers like nylon and polyesters.

Fossil fuels are the main energy source and together with nuclear energy and re-
newable energy satisfy the world’s demand. Renewable energy uses geothermal,
solar, wind or water resources and combustible renewable & waste. The latter
comprises solid and liquid biomass (such as wood, vegetal waste, ethanol, animal
materials) and additionally biogas, industrial waste as well as wastes produced by
the residential, commercial, and public service sectors. In Fig. 1.1, the historical
use and the projection of energy use by its type is presented, while in Fig. 1.2 the
historical use and the projection of the use of energy is compared in three regions:
The United States, China and India, and the rest of the world.
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Figure 1.1: Marketed energy use by type (according to IEO (2009)).

Fig. 1.1 shows that the world market energy consumption increases each year and
is expected to grow, while Fig. 1.2 shows that higher energy consumption is pre-
dicted for developing countries as China and India. This increase is expected to be
satisfied both by the renewable energy and fossil fuels. It is more difficult nowa-
days for oil & gas companies to meet those expectations because many discovered
fields are already at a mature state, while new fields are much more difficult to
produce. Only a certain portion of the petroleum can be produced from reservoirs
and around 10 − 15% of every produced barrel of oil is used in the process of ex-
tracting it from the ground and refining it into a customer product. Even more is
used when harder to produce oil and gas is extracted (petroleum more difficult to
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Figure 1.2: Marketed energy use by regions (according to IEO (2009)).

produce such as heavier crude or petroleum buried below difficult terrains, such
as kilometers below the sea’s surface or in arctic regions). Therefore, oil & gas
companies must maximize the production from the existing fields and work on
technologies to reduce the energy consumption during hydrocarbon production
and processing.

1.2 Exploration and production

Petroleum (or crude oil) is found in geologic formations beneath the Earth’s sur-
face. It is trapped in the pores of the rock. It can be found by interpreting geolog-
ical and seismic data. Seismic data are measurements of wave signals that have
traveled from a source at the surface, through the formation. They are reflected
from a subsurface layer and are recorded by receivers at the surface. The waves
carry information about the properties of the formation through which they travel,
and are used to map the formation structure and property fields. When a potential
oil or gas field is found, exploration wells are drilled to investigate the presence
of oil or gas. In 1931 Conrad and Marcel Schlumberger successfully identified
presence of oil in a formation by measuring resistivity, which was a beginning of
well-logging measurements, which are nowadays commonly taken in exploration
wells. After drilling, the field is investigated to find out if the hydrocarbons can be
recovered in an economically and an environmentally acceptable way. This phase
is called the exploration and appraisal phase of reservoir development. Several
properties of the rock, such as porosity and permeability, are very important for
petroleum extraction. Porosity is the fraction of the rock that is occupied by flu-
ids and gases, while permeability describes how easily they can flow through the
rock. If the pores are connected such that the fluids and gases can move through
them, then the rock is called permeable. The properties of the rock can largely
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influence the dynamic processes in the reservoir. The rock can be greatly hetero-
geneous, i.e. through some parts of the reservoir the fluids and gases can flow
easily and through others they cannot. This information strongly influences de-
cisions about the position of the wells as well as the operation strategies during
recovery. The wells should be distributed and operated in a way that the total
amount of the produced hydrocarbons is maximized.
The recovery process is divided into three phases (Ewing (1983)): primary recov-
ery, secondary recovery, and tertiary recovery. The primary recovery phase takes
place during the first stage of the reservoir life. Initially, the natural pressure in
the reservoir is higher than the pressure in the wells, which causes natural flow
to the surface. In time the reservoir pressure declines and at some point it is not
sufficient to drive the gas and oil to the surface. This phase usually takes several
years and yields around 20-30% recovery.
The secondary recovery phase takes place under flooding of the reservoir with
water or gas. The injection of water or gas via injection wells re-pressurizes the
reservoir and sweeps the remaining petroleum toward the production wells. Usu-
ally, the injection wells are surrounded by production wells to which the displaced
oil is directed. Secondary recovery can improve the recovery factor of oil and gas;
however, still 50% or more stays in the reservoir.
In the tertiary recovery phase or enhanced oil recovery phase gas, chemicals or
steam are injected to alter the fluids’ properties and wash the rock. For example,
during thermal recovery steam is injected to change the viscosity of the oil and
to make it more fluid. In chemical recovery, polymers or surfactants are used to
increase the viscosity of the injected water, or modify the wetting behavior of the
rock.

1.3 Closed-loop reservoir management

The initial geological model is a physics-based model of the subsurface reservoir
based on knowledge from geology, exploration wells, and seismic data. Numer-
ical geological models are typically very detailed (millions of ”voxels” or grid
blocks) and therefore they have to be upscaled. The flow in porous media and
into the wells is described by partial differential equations which are based on
the mass balance law and Darcy’s law combined with initial and boundary condi-
tions. Those equations are a complex set of coupled equations, which need to be
solved numerically. Numerical methods are applied to calculate the model vari-
ables (which are pressures, and saturations of phases or accumulations of compo-
nents) at discretized time and space domain.
Using a numerical model (or computer model) initial predictions for future reser-
voir performance are made. If those predictions are economically profitable, the
reservoir enters the field development phase. During field development, the main
target is to maximize an economic criterion. For this purpose, the numerical mod-
els are used, which are expected to mimic the processes occurring in the reservoir
during production phase. In the ideal situation when the numerical models fully
describe the dynamical behaviour of the reservoir system, the optimal operation
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strategy can be found. Unfortunately, numerical models can only be a crude ap-
proximation of reality. This is due to several reasons. First, not all processes occur-
ring in the reservoir can be modeled in an appropriate way, i.e. many times some
simplifications are made to make the problem easier to trace, or there is not suf-
ficient knowledge of the modeled phenomena. This error can to a certain extent
be modeled as a model error. Second, many rock properties, such as permeabil-
ity and porosity, are poorly known. Those errors can be expressed by parameter
uncertainty. Moreover, the amount of hydrocarbon in the reservoir is unknown.
This can be modeled by the initial-condition error. Ignoring the uncertainty and
assuming that those properties are correct may result in wrong predictions and
consequently, in wrong decisions. Therefore, when the production process starts,
the data from wells are gathered and compared with the data predicted by the nu-
merical models. If the numerical data do not match to the collected data, it is an
indication that the numerical model requires a calibration. For the reminder of the
thesis the model variables will be referred to as state variables of the system; the
rock and fluid properties are referred to as parameters of the model; the setting of
the wells, which determine the operation strategies are referred to as the control
variables.
The measured data together with numerical simulations can be used in reservoir
management for improving the model and increasing the recovery from a field.
The concept of closed-loop model-based reservoir management provides a frame-
work for this purpose. The main idea is presented in Fig. 1.3.

Figure 1.3: Closed-loop model-based reservoir management (after Jansen et al.
2009).
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The system box in Fig. 1.3 represents reality: the reservoir with wells, facilities,
and sensors. The system is controlled by a number of inputs which are located
in the wells and which influence the flooding process. The input to the system is
known to a limited extent due, for example, to unknown aquifer support, which is
indicated in the figure by noise. The production is monitored by a number of sen-
sors located in the wells, or by additional seismic data gathered all over the reser-
voir. The measured data is contaminated with noise. This is also indicated in the
figure. The box named ”system and sensor models” represents the model equa-
tions that mimic the real system and are used to simulate its dynamic behavior.
The multiple boxes represent the possible geological models of a given reservoir.
These models are created after detailed analysis of the available data and then
they are upscaled. Fig. 1.3 contains two loops representing two processes. The red
loop represents a data-assimilation process while the blue loop represents a pro-
duction optimization process. Both loops are extensively studied in the petroleum
literature. The new aspect of the model-based closed-loop reservoir management
framework is the combination of the data-assimilation and production optimiza-
tion loops. When new data becomes available, the data-assimilation loop is per-
formed providing a better estimate of the model parameters (and states). The as-
similation is then followed by an optimization loop that uses the updated model
(or models) to provide the updated optimal strategy for future production. The
procedure is iterated whenever new data becomes available. See Brouwer et al.
(2004), Sarma et al. (2008), Nædval et al. (2006), Wang et al. (2009a), Jansen et al.
(2008), Jansen et al. (2009).

1.3.1 Data assimilation

In data assimilation, one combines the information present in the observations
and an existing numerical model, as well as the uncertainties in the observations
and the models, to produce more realistic results. Data assimilation is required
in several fields including meteorology (Talagrand and Courtier (1987)), oceanog-
raphy (Bennett (2002)), groundwater flow (Valstar et al. (2004)), and petroleum
engineering. In the latter, it is is known as history matching, and it typically aims
to improve the model parameters. Traditionally, history matching was performed
on a campaign basis by manual adjustment of parameters (so called manual his-
tory matching). Nowadays, the results of semi-automatic procedures performed by
computers are analyzed and adjusted by engineers based on their experience and
opinions. This technique is known as the computer-assisted history matching. The
main data assimilation methods developed for reservoir problems are briefly de-
scribed in the next chapter (see e.g. Oliver and Chen (2011), Oliver et al. (2008)).

1.3.2 Production optimization

During production optimization1, one tries to identify the position of wells or/and
configurations that optimize the production. The optimization objective is usu-
ally expressed in terms of Net Present Value or total hydrocarbon recovery. Since the
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reservoir is usually very heterogeneous, the fluids flow with different velocities
in different parts of the reservoir. During waterflooding, the injected fluid will
move much faster through paths which are highly permeable and if the high per-
meable region is connected with a production well it will reach the production
well very fast, leaving the oil located outside this region in the reservoir. Con-
tinuing the injection will result in the production of water instead of oil. This is
called water breakthrough. To avoid early water breakthrough in the wells, one
can try to find the operation strategy that will sweep the oil uniformly towards the
production wells. This is typically done by controlling the injection and produc-
tion settings in the wells. Such a long-term optimization strategy should result
in higher recovery factors compared to a reactive production strategy, in which
no action is undertaken until significant changes are observed in the production
wells. This problem has been investigated by many authors. It has been studied
both under the assumption that the model parameters are perfect as well as in the
presence of uncertainty. Initially, the production optimization was performed for
the optimization of tertiary recovery processes, see Ramirez (1987), later followed
by water flooding optimization, see e.g. Asheim (1988), Sudaryanto and Yortsos
(2000), Brouwer and Jansen (2004), Sarma et al. (2008), Zandvliet et al. (2007) and
Doublet et al. (2009). For an overview see Jansen (2011a).

1.4 Research objective and solution directions

Both processes, history matching and production optimization, are very challeng-
ing. Since reservoir models are described by nonlinear system of equations, the
optimization is much more difficult than would be in case of a linear system. The
difficulties appear in the implementation of some well-known methods as well
as in the chance of finding the global optimal solution. Well-known methods to
solve those problems are iterative gradient-based optimization techniques, where
the gradient is calculated by so-called adjoint-method. The difficulties in the im-
plementation are caused by the complex form of the reservoir model equations,
which results in a tremendous implementation effort to obtain the adjoint model
and the sensitivities of the model with respect to parameters or controls. Usually,
in reservoir models, the Jacobian matrices of the system are available because they
are used in a Newton-Raphson time-step iteration during reservoir simulation.
Even so, the implementation of the adjoint equations required in gradient cal-
culations is a considerable programming effort which, moreover, requires access
to the simulation code. This implies that there is a need for gradient-based, but
adjoint-free optimization methods. This requirement becomes even more pressing
if reservoir simulation is combined with another simulation, e.g. of geomechanics
or rock physics, with a code for which no Jacobians are available.

1The term ”production optimization” is normally used for maximization of the instantaneous oil
production, not for the optimization of the long term oil production.
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1.4.1 Research objective

The considerations exposed above have led to the following research objective of
this thesis:

The objective of this research is to investigate adjoint-free gradient-based
methods for history matching of production data, and furthermore, to ap-
ply these methods to production optimization of a waterflooded reservoir
operated under induced fracturing conditions.

1.4.2 Solution directions

In history matching problems, one deals with a large number of uncertain pa-
rameters and very sparse observations. The uncertainty is present in geological
parameters, in the initial or boundary conditions, and in the inputs, while the in-
formation available from various kinds of data is very limited and noisy. Since in
realistic reservoir models the number of grid blocks is very large, usually in the
order of 104-106, the number of states and parameters is very large too. A disad-
vantage of this situation is that the values of the model parameters (and states)
cannot be verified with measurements due to the relatively low information con-
tent present in them. This is a conclusion of work done by Van Doren (2010) and
it raises a question: can the reservoir dynamics relevant for data assimilation or
production optimization be represented by much simpler models than the orig-
inal one? Recent results on model reduction in fluid flow models indicate that
indeed the reservoir dynamics can be accurately described with significantly re-
duced models, see e.g. Heijn et al. (2004), Markovinović and Jansen (2006), and
Cardoso et al. (2009). The proposed approach is inspired by these results.
We aim to solve history-matching problems (or production-optimization prob-
lems) assuming that the simulator does not contain automatic gradient calcula-
tions for the desired parameters (or controls), and that the users do not have access
to the simulation source code. The first method that satisfies these assumptions
is a method based on reduced-order modeling techniques. This approach avoids
the implementation of the adjoint method by replacing the original model with
a low-order linear approximation. The Jacobians required for linearization of the
model are approximated by finite differences. Since it uses a linearized low-order
model, an adjoint model is created by the transpose of the Jacobians. To compare
the quality of the obtained results, we estimate the parameters for which the clas-
sical adjoint-based gradient is indeed available. This allows us to verify the results
of the proposed methods with the classical approach. Additionally, for the com-
parison of the efficiency of the methods, the naive finite-difference gradient-based
approach is used.
A second approach satisfying our requirements is the simultaneous perturba-
tion stochastic algorithm (SPSA) proposed by Spall (1998). It is a gradient-based
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method where gradients are approximated by a random perturbation of all pa-
rameters in once. A detailed description of this method, as well as references to
the relevant petroleum engineering papers, are given in this thesis. This approach
is very simple to implement because it only requires measuring the response of
the objective function to a perturbation of model parameters.
Another method satisfying our requirements is the ”ensemble optimization” tech-
nique proposed for recovery optimization by Lorentzen et al. (2006), and there-
after refined by Chen et al. (2009). This approach uses an ensemble of control
variables and computes the cross-covariance between the control variables and
the objective function which can then be used as an approximate gradient. This
approach is also simple to implement; however, it is not tested in this thesis.

1.5 Thesis outline

The outline of this thesis is as follows:

• Chapter 2 consists of a brief overview of flow modeling in a porous medium.
Additionally, the adjoint model derivation is presented and an overview of
a coupling of the reservoir flow model with a geomechanical model describ-
ing fracture propagation or shrinkage is presented. The possibility of ex-
tending the existing adjoint code to coupled system is also described. The
chapter concludes with remarks about the simulation tools and the imple-
mentation difficulties associated with the adjoint model.

• Chapter 3 defines the history matching problem, describes the available
data, and gives a brief overview of existing methods, paying special atten-
tion to their computational complexity and implementation aspects. In ad-
dition, an overview of reparameterization techniques is presented.

• Chapter 4 consists of the description of two data-driven projection-based
model reduction techniques: proper orthogonal decomposition and balanced
proper orthogonal decomposition. The chapter finishes with comments on
the connection between them.

• In Chapter 5, the model-reduced gradient-based method is described in de-
tail. The computational complexity of the method is summarized and the
implementation complexity is described. In addition, the classical gradient-
based adjoint-based method as well as two gradient-based adjoint-free meth-
ods, namely, the finite difference method and the simultaneous perturbation
stochastic algorithm (SPSA), are presented. This chapter is partly based on
Kaleta et al. (2008) and Kaleta et al. (2011).

• Chapter 6 consists of results for two synthetic models, which differ in com-
plexity and dimension. This chapter is to a large extend based on Kaleta
et al. (2010) and Kaleta et al. (2011).

• In Chapter 7, the production optimization of a simple reservoir model with
induced fracture is presented. Implementation issues associated with the
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model-reduced approach are discussed. The simultaneous perturbation sto-
chastic algorithm (SPSA) and the finite-difference based method are applied
to solve production optimization problem.

• In Chapter 8, conclusions are drawn and recommendations for future work
are given.



2 CHAPTER

Reservoir flow model without and
under induced fracturing conditions

T
o predict reservoir performance under different business decisions a sim-
ulation model is created. This model describes the physical processes

taking place in a reservoir and is solved numerically. Typically, commercial
software is used. In this chapter, a numerical model based on simplistic flow
equations is presented, and comments on the complexity of the commercial
simulators are given. Additionally, an adjoint model for reservoir flow model
is derived, which is a very important element to solve parameter estimation
and production optimization problems. A coupled system that combines the
standard reservoir flow model with a geomechanical model is also described.
This coupling is used to model a fracture that can be created around an in-
jection well during the production process. A possibility of completing the
adjoint code for this coupled system is described. The chapter concludes with
a short discussion of the difficulties in the adjoint implementation and of the
simulators used in this thesis.

2.1 Reservoir flow model

Reservoir flow simulation typically is performed in two stages: first, one or more
geological models are created by geologists and geophysicists which aim to pro-
vide a static description of the reservoir; secondly, reservoir simulation models are
created by reservoir engineers using information about reservoir geometry and
fluids present in the reservoir. Depending on the processes involved in the reser-
voir recovery, e.g. water flooding, steam injection, polymers or chemical flooding,
specialized simulation tools are chosen that model them adequately. These ”dy-
namic” reservoir models are then used to simulate the reservoir performance. The
presented here models are described in more details in Aziz and Settari (1979) and
Jansen (2011b).

11
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2.1.1 Reservoir geometry and properties

Typically, the reservoir geometry, i.e. the domain of the model, is three-dimen-
sional. The typical grid to model reservoir geometry is a Cartesian grid, where
the grid blocks are defined as small boxes. Some simulators offer other griding
options such as radial coordinates, or map coordinates, or direct corner-point co-
ordinates. To guarantee an accurate solution of the simulation the grid blocks
should be small enough to accurately represent the reservoir heterogeneities, but
large enough to assure that the computational time of the model stays within prac-
tical limits. In some simulators to produce more accurate modeling of selected
region a multi-level local grid refinement is possible by subdividing a grid block
into a number of sub-blocks. This allows the accurate modeling within practical
limits. For each grid block of the model the absolute permeabilities, (pressure-
dependent) porosities and, for fractured reservoirs optional permeability com-
paction data need to be specified. The effect of aquifers or faults, if present, needs
to be modeled too.
A geometry of the simplistic flow model presented in this thesis is two-dimen-
sional with a Cartesian grid, no-flow boundary conditions, no fractured structure,
no aquifers and no faults are present.

2.1.2 Phase behavior

The reservoir is a porous medium which pores are filled with hydrocarbons and
water. The hydrocarbons are mixtures of a large number of chemical components,
however, a full multi-component modeling is usually prohibitively expensive in
terms of computation time. Therefore simplifications are usually made to the
reservoir fluid description in order to obtain a computationally acceptable model.
A commonly made assumption is to model phases by very limited number of
chemical components. The most simple approach is to model a phase by a single
chemical component. Usually this assumption is used only for the water phase,
but is not valid for the hydrocarbon phases because they can share the same com-
ponents. Since the heavier and lighter hydrocarbon components do not interact
in many reservoir situations, it is common to assume that the hydrocarbon mix-
ture consists of two pseudo-components: ”heavy” and ”light” hydrocarbon. The
heavy component is defined as the part of the reservoir fluid that becomes the
stock tank oil when taken to surface, and the light component is defined as the
part that becomes stock tank gas when taken to surface. This assumption leads
to the black oil description (Aziz and Settari (1979)). The distribution of the compo-
nents over the phases are usually specified with the aid of semi-empirical rules.
After the phase distribution is fixed, each phase requires specification of differ-
ent properties, such as, viscosity µ (expressed in [Pa · s] ), density ρ (expressed

in
[

kg
m3

]

) and phase compressibility (expressed in [1/psi]). These properties are

typically not known for the whole reservoir and they are derived by fitting the
parameters to results of well tests and laboratory tests. Since the density and vis-
cosity depend on pressure, temperature or fluids composition, these dependen-
cies need to be modeled too. For liquids (oil and water), the density and viscosity
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depend mostly only weakly on the pressure, while for vapors (gas), they depend
mostly strongly on pressure and relatively weakly on the fluid composition. The
viscosities of oil and gas are generally strongly dependent on temperature. The
presented here simplistic flow model assumes the presence of oil and water phase
and constant viscosity, density and compressibility.

2.1.3 Modeling flow in porous medium

The common model variables are pressure, phase saturation (or component accu-
mulation) and temperature which are called the primary variables or state vari-
ables and they are determined at every time step of a simulation. In this thesis
we assume isothermal conditions within the reservoir, i.e. constant temperature;
therefore temperature is not a primary variable. The derivation of the flow equa-
tions in porous media is based on the law of conservation of the mass and Darcy’s
law (see Aziz and Settari (1979)). In this thesis we assume that there is no flow
across the boundaries of the reservoir, i.e. the reservoir is surrounded by imper-
meable rock, and the only boundary flow occurs through the wells. This results
in following partial differential equations for phase l = {o, w}, where o stands for
oil and w for water:

∇ · (αρlvl) + α
∂(ρlφsl)

∂t
− αρlql = 0. (2.1)

The first term in Eq. 2.1 is called the transmissibility term and describes the dif-
ference in the mass of phase l that flows with the velocity vl in and out of a unit
volume per unit time. The second term, called the accumulation term, describes
the accumulation of the mass of phase l per unit time and volume. The third
term, called source/sink term, describes the mass added or extracted from reser-
voir through the wells per unit time and volume. α stands for a geometric factor
which accounts for the translation of the 1D or 2D model into the 3D. sl [−] stands

for saturation of phase l, and t [s] stands for time. ρl

[

kg
m3

]

denotes the density of

the phase l, φ [−] denotes the porosity of the rock. ql

[

1
s

]

is the rate of phase l in

a well per unit volume. vl

[

m
s

]

is the velocity of the phase l in the porous media
and is modeled by the Darcy’s law:

vl = − krl

µl
K(∇pl − ρl g∇d) (2.2)

where pl [Pa] denotes the pressure of phase l, µl [Pa · s] is the viscosity of the
phase l, and krl [−] is the relative permeability of phase l (which physical mean-

ing will be discussed below). g
[

m
s2

]

is the gravity acceleration and d [m] is the

depth of the reservoir. K
[

m2
]

is the absolute permeability tensor, which is a full
3 × 3 matrix. Often the orientation of the coordinate system can be aligned with
geological layering in the reservoir such that the permeability tensor becomes a
diagonal matrix:
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1D : K = k, 2D : K =

[

kx 0
0 ky

]

and 3D : K =





kx 0 0
0 ky 0
0 0 kz



 .

It is commonly assumed that horizontal permeability is isotropic (i.e. kx=ky). This
never really occurs, but permeability along various directions of a formation is
often close enough for calculation purposes. The reservoir model used in this
thesis is simplified by assuming isotropic horizontal permeability field (thus kx =
ky = k). By substituting the velocity of phase l in Eq. 2.1 by the Darcy’s velocity
the following system of partial differential equations is obtained:

∇ · (−αρl
krl

µl
k(∇pl − ρl g∇d)) + α

∂(ρlφsl)

∂t
− αρlql = 0, l ∈ {o, w}. (2.3)

It is a system of two equations with four unknowns, however, additional informa-
tion is given by the closure equations, i.e.

so + sw = 1 (2.4)

and

po − pw = pc(sw), (2.5)

where pc(sw) [Pa] is a capillary pressure (the physical meaning of capillary pres-
sure will be discussed below). Using these equations two unknowns are elimi-
nated. By introducing the dependencies of density on pressure or fluids compo-
sition Eq. 2.1 is changed adequately. In the simplistic model we assume that the
density depends on pressure; therefore the accumulation term becomes

∂(ρlφsl)

∂t
=

∂ρl

∂pl

∂pl

∂t
φsl +

∂φ

∂pl

∂pl

∂t
ρlsl + ρlφ

∂sl

∂t
. (2.6)

In case of liquids (oil and water), the density depends mostly only weakly on
pressure and its sensitivity can be expressed by using the compressibility of the
phase, which for a constant temperature is defined as

cl(pl) :=
1

ρl

∂ρl

∂pl
, (2.7)

and is assumed to be constant over the range of pressures of interest and equal
cl , for l ∈ {o, w}. If the capillary pressure effects are very small, the oil pressure
is approximately equal to the water pressure and the compressibility of the water
can be expressed as function of the oil pressure, i.e.

cw(po) :=
1

ρw

∂ρw

∂po
. (2.8)

The compressibility of the rock, for a constant temperature, is defined as

cr(pl) :=
1

φ

∂φ

∂pl
, (2.9)
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and is assumed to be constant over the range of pressures of interest and equal cr.
Combining Eq. 2.3, closure equations (Eq. 2.4 and Eq. 2.5) and the compressibility
definitions one obtains:

−∇ · (αρw
krw

µw
k

[

∇po −
∂pc

∂sw
∇sw − ρwg∇d

]

)

+αρwφ

[

sw(cw + cr)
∂po

∂t
+

∂sw

∂t

]

− αρwqw = 0, (2.10)

−∇ · (αρo
kro

µo
k(∇po − ρog∇d))

+αρoφ

[

(1 − sw)(co + cr)
∂po

∂t
− ∂sw

∂t

]

− αρoqo = 0. (2.11)

This is a system of coupled nonlinear equations. In this thesis the gravity forces
and capillary pressures are ignored.

Here short explanations of the physical meaning of relative permeability and cap-
illary pressure (used in Eq. 2.2 and Eq. 2.5, respectively) are given.
Relative permeabilities
Relative permeabilities are required when several phases in the porous media are
modeled. If several phases are flowing simultaneously through a porous medium,
then the flow of each phase is slowed down by the resistance of the pore structure
and additionally by the presence of the other phases. The resistance of the pore
structure is expressed by the absolute permeability (denoted as K), while the rel-
ative permeability of a phase l, krl , accounts for the permeability reduction in the
presence of other phases. The relative permeability is a dimensionless quantity in
the range between zero to one, whereas the absolute permeability is a rock prop-
erty and is measured in square meters or Darcy units (

[

1Darcy ≈ 9.87 · 10−13m2
]

).
The effective permeability of a phase is the product of the absolute permeability
and the relative permeability (see Eqs. 2.10 and 2.11). The relative permeability
of the phase depends on the phase saturations. The main influence on the shape
of the relative permeability functions is the wettability of the rock. The phase that
preferentially sticks to the rock surface is called the wetting phase, whereas the
phase that flows preferentially in the center of the pores is the non wetting phase.
The remaining phase (if present) is called the intermediate phase. Commonly it
is assumed that water is the wetting phase, gas is the non wetting phase and oil
is the intermediate phase. The relative permeabilities are typically considered as
functions of their own saturations and they are derived from experiments in a
laboratory. By definition the relative permeability is zero when the saturation of
the phase equals its residual saturation which is defined as the largest saturation
for which the phase does not flow. The sum of the relative permeabilities is usu-
ally less than one. In this thesis the Corey model of the relative permeability was
chosen, which defines the relatives permeabilities as:

krw = k0
rwsnw , (2.12)

kro = k0
ro(1 − s)no , (2.13)
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where

s =
sw − swc

1 − sor − swc

and k0
ro and k0

rw are the end-point relative permeabilities for oil and water respec-
tively, no and nw are Corey exponents, sor is the residual oil saturation and swc is
the connate water saturation. The relative permeability curves used in this thesis
are show in Fig. 2.1.
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Figure 2.1: Corey type relative permeabilities.

Capillary pressures
The capillary pressure is defined as the difference in pressure across the interface
between two immiscible phases, and thus defined as

pc = pnon−wetting phase − pwetting phase. (2.14)

At the oil-water interface, water is typically the wetting phase, while at a gas-oil
interface, oil is typically the wetting phase. In this thesis capillary pressures are
neglected.

Well model

The average pressures and phase saturations in an unit volume grid block is de-
scribed by Eqs. 2.10 and 2.11, however, the grid blocks in which wells are located
require special modeling. A so-called well model gives a relationship between grid
block pressures and pressures in the well (bottom hole pressure). The well flow
equations used in reservoir simulation are a set of algebraic equations:

qt = Jp(pbh − pgb), (2.15)

where qt is the total flow rate, pbh is the bottom hole pressure, pgb is the grid block
pressure and Jp is the well index which is defined as a function of saturation,
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permeability, grid block geometry and reflects the effect of near-well flow. See
Aziz and Settari (1979) for more details. A well operates at specified constraints,
which control the maximum or minimum bottom hole pressure or maximum total
flow rate. If the bottom hole pressure constraint is active, i.e. pbh = p̄bh, then the
total flow rate qt can be calculated from Eq. 2.15 as

qt = Jp( p̄bh − pgb). (2.16)

In case of operating a well at fixed total rate qt = q̄, the bottom hole pressure can
be calculated as

pbh = pgb + J−1
p q̄. (2.17)

Spatial discretization

Eqs. 2.10 and 2.11 define a system of coupled nonlinear partial differential equa-
tions, which cannot be solved analytically. A solution of this system is approx-
imated at a given spatial and temporal grid. The numerical methods are re-
quired to approximate the terms of continuous partial differential equations in
the discrete domains. In spacial discretization the reservoir is divided into block-
centered grid, where the unknown variables are placed in the middle of each
block. In case of a 2D model, each grid block is indexed by two indexes i, j, which
describes their position in x and y direction, respectively. The transmissibility
term at grid block (i, j) for water phase (when the gravity forces and capillary
pressures are ignored) is approximated by

∇ ·
[

α
krw

µw
k∇po

]

ij

≈
T(sw)i+ 1

2 ,j(pi+1,j − pi,j) − T(sw)i− 1
2 ,j(pi,j − pi−1,j)

∆x∆y
+

T(sw)i,j+ 1
2
(pi,j+1 − pi,j) − T(sw)i,j− 1

2
(pi,j − pi,j−1)

∆y∆x

where the subscript o for pressure of oil is dropped for clarity, ∆x and ∆y are the
grid block sizes in x and y directions, respectively, and

T(sw)i± 1
2 ,j :=

∆y

∆x

α

µw
(kkrw(sw))i± 1

2 ,j, (2.18)

T(sw)i,j± 1
2

:=
∆x

∆y

α

µw
(kkrw(sw))i,j± 1

2
(2.19)

are the transmissibilities between two grid blocks. The absolute permeability at
the interface between grid blocks (i, j) and (i ± 1, j) is calculated as harmonic av-
erage, i.e.

ki± 1
2 ,j =

2
1

ki±1,j
+ 1

ki,j

(2.20)

and the relative permeability: (krw)i± 1
2 ,j is approximated using the upstream weight-

ing, i.e.

(krw)i± 1
2 ,j =

{

(krw)i±1,j, pi±1,j ≥ pi,j

(krw)i,j, pi±1,j < pi,j
. (2.21)
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Similarly the transmissibility term for oil phase is approximated.

State space representation of the reservoir flow model

After the spatial discretization on a chosen grid the system of the partial differen-
tial equations becomes a system of ordinary differential equations which can be
expressed as

E(x(t))ẋ(t) = A(x(t))x(t) + B(x(t))u(t), (2.22)

x(0) = xinit,

where x(t) is a vector of all unknowns at time t, called a state vector, xT = [pT sT ],
where p denotes an oil pressure vector and s denotes a water saturation vector. E
is the accumulation matrix obtained after discretization of the accumulation term,
matrix A is the transmissibility matrix which is obtained after discretization of
the transmissibility term, and u is the vector of the well controls. Expression ẋ(t)
denotes the derivative of the state vector with respect to time. xinit is the initial
condition for the state vector. The initial condition is not known and is typically
uncertain, but its uncertainty is much smaller compared to the uncertainty in pa-
rameters. In this thesis the initial condition is assumed to be perfect. The matrices
E, A, B are sparse matrices which are functions of state x, and therefore the differ-
ential equations are nonlinear. Matrix A depends on the state vector through the
relative permeability term which is a function of saturation. In case of presence
of capillary pressure (which is a function of saturation too) another source of state
dependencies in this term would be introduced. The matrix B, which is related to
the sink/source term, is dependent on the state vector because in the well model
Jp is a function of saturation (see Jansen (2011b)). In realistic reservoir models the
nonlinearities are larger because of more complex modeling of density, porosity,
viscosity or even permeability.

The discrete-time state space representation of the reservoir flow model

A commonly used time discretization in the reservoir simulation models is the
fully implicit scheme, i.e. all dependent variables and inputs are evaluated at the
next time step. Using Euler implicit time stepping Eq. 2.22 becomes

E(x(tn)) − ∆tA(x(tn))x(tn) = E(x(tn))x(tn−1) + ∆tB(x(tn))u(tn), (2.23)

x(0) = xinit,

where tn−1 denotes the current time step, tn denotes the next time step, Deltat =
tn − tn−1 and n ∈ {1, . . . ,N}, where tN is the simulation length. This can be
written as

gn(x(tn), x(tn−1), u(tn)) = 0, (2.24)

x(0) = xinit.
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This system needs to be solved iteratively. Commonly, to solve the nonlinear sys-
tem of flow equations the iterative Newton-Raphson method is used (Burden and
Faires (2001)). At each simulation step a few Newton-Raphson iterations:

xk(tn) = xk−1(tn) − [
∂gn

∂x(tn)
]−1gn(xk−1(tn), x(tn−1), u(tn)), (2.25)

x0(tn) = x(tn−1)

are required, where the Jacobian
∂gn

∂x(tn)
is evaluated at xk−1(tn) and k stands for a

Newton-Raphson iteration number. When the specified stopping criterion are sat-
isfied an iteration terminates, i.e. the Newton-Raphson iteration converges, and
xk(tn) is a solution of the system at time tn. If Newton-Raphson does not succeed
to converge then the time step size is reduced and the procedure is iterated again.
In practice the inverse of Jacobian is never formed, instead at every iteration a
linear system of equations is solved. The fully implicit method is uncondition-
ally stable and therefore is commonly implemented. However, a too large time
step may lead to many Newton-Raphson iterations or failure of convergence, and
larger discretization errors.

In the remainder of this thesis a reservoir system is described by the implicit sys-
tem of equations

gn(x(tn), x(tn−1), u(tn), θ) = 0,

jn(y(tn), x(tn), u(tn), θ) = 0, (2.26)

x(t0) = xinit

or the explicit one

x(tn) = fn(x(tn−1), u(tn), θ),

y(tn) = hn(x(tn), u(tn), θ), (2.27)

x(t0) = xinit

where x(tn) is the state vector, a functional fn and gn describe the evolution of
the state vector from time tn−1 to time tn, θ is a vector of uncertain parameters,
u(tn) is a vector of the well controls, xinit is a given initial state of the system and
y(tn) are the outputs of the system at time tn given by the observation operator
hn or jn. In this thesis, the reservoir flow simulation always uses the implicit time
discretization.

2.2 Adjoint model of the reservoir flow model

The reservoir flow models are used to solve parameter estimation or production
optimization problems. Both of these problems can be formulated as optimization
of a scalar objective function:

J = J(x(t1), ..., x(tN), θ), or (2.28)

J = J(x(t1), ..., x(tN), u), (2.29)
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where N corresponds to the total number of time steps and tN represents the sim-
ulation time. J is typically a function of production data, and therefore depends on
the state vectors (see Eqs. 2.27 or Eqs. 2.26). A computation of the gradient of the
objective function with respect to model parameters or control variables requires
the sensitivity of the system (given by Eqs. 2.26 or Eqs. 2.27), and is commonly
performed by the adjoint method. In this section we present the derivation of the
adjoint model of the reservoir system given by Eqs. 2.26 and the gradient of the
objective function given by Eq. 2.28.
In the adjoint approach, first, a modified function J̄ is obtained by adjoining the
system equations (2.26) to J, and is given by

J̄ = J(x1, ..., xN , θ) +
N

∑
n=1

λT
n gn(xn, xn−1, θ) (2.30)

where xn represents x(tn), λn represents the adjoint variables at time tn, and (at
this moment) is an arbitrary vector. The total variation of J̄ which is sum of the
variations with respect to dxn, for n = 1, . . . , N, and dθ, is

dJ̄ = dJ +
N

∑
n=1

{

λT
n

∂gn

∂xn
dxn

}

+
N

∑
n=1

{

λT
n

∂gn

∂xn−1
dxn−1

}

+
N

∑
n=1

{

λT
n

∂gn

∂θ
dθ

}

. (2.31)

Changing the index in terms which involve x(tn−1) yields

dJ̄ = dJ +
N

∑
n=1

{

λT
n

∂gn

∂xn
dxn

}

+
N−1

∑
n=0

{

λT
n+1

∂gn+1

∂xn
dxn

}

+
N

∑
n=1

{

λT
n

∂gn

∂θ
dθ

}

. (2.32)

Rearranging the limits of the sums involving x(tn) yields

dJ̄ = dJ +
N

∑
n=1

{

λT
n

∂gn

∂xn
dxn + λT

n+1
∂gn+1

∂xn
dxn

}

+ (2.33)

λT
1

∂g1

∂x0
dx0 − λT

N+1
∂gN+1

∂xN
dxN +

N

∑
n=1

{

λT
n

∂gn

∂θ
dθ

}

.

Since the initial conditions are fixed in our model, the term λT
1

∂g1
∂x0

dx0 vanishes.

The boundary term λT
N+1

∂gN+1

∂x(tN)
dxN is required to be zero for any differential dxN ,

which implies that λN+1 = 0. The total variation of J, which is a first term in Eq.
2.30, is the sum of variations with respect to all state variables xn and parameters
θ, and it is,

dJ =
N

∑
n=1

{

∂J

∂xn
dxn

}

+
∂J

∂θ
dθ. (2.34)

It yields

dJ̄ =
N

∑
n=1

{

∂J

∂xn
dxn

}

+
∂J

∂θ
dθ + (2.35)

N

∑
n=1

{

λT
n

∂gn

∂xn
dxn + λT

n+1
∂gn+1

∂xn
dxn

}

+
N

∑
n=1

{

λT
n

∂gn

∂θ
dθ

}

.
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Rearranging again the terms results in

dJ̄ =
N

∑
n=1

{

λT
n

∂gn

∂xn
+ λT

n+1
∂gn+1

∂xn
+

∂J

∂xn

}

dxn (2.36)

+
N

∑
n=1

{

λT
n

∂gn

∂θ

}

dθ +
∂J

∂θ
dθ.

The adjoint model is obtained by setting all coefficients of dx(tn) to zero, i.e.

λT
n

∂gn

∂xn
+ λT

n+1
∂gn+1

∂xn
+

∂J

∂xn
= 0. (2.37)

Taking the transpose of the above equations gives the system of adjoint equa-
tions

(

∂gn

∂xn

)T

λn +

(

∂gn+1

∂xn

)T

λn+1 +

(

∂J

∂xn

)T

= 0, (2.38)

for n = {1, . . . , N}. This system is solved backward in time because of the given
ending condition λN+1 = 0, which can be interpreted as the initial condition for
the adjoint system.
If λn satisfy Eq. 2.38 then the total variations of J̄ are given by

dJ̄ =
∂J

∂θ
dθ +

N

∑
n=1

{

λT
n

∂gn

∂θ
dθ

}

, (2.39)

and it follows that the total derivatives of J with respect to θ are given by

dJ̄

dθ
=

∂J

∂θ
+

N

∑
n=1

{

λT
n

∂gn

∂θ

}

. (2.40)

An important remark is that the reservoir equations are nonlinear, whereas, the
adjoint equations are linear. The Newton-Raphson method requires few iterations
to converge at each time step of the reservoir flow model, whereas the adjoint
model uses the sensitivity of the system at the converged solution of the Newton-
Raphson method and, therefore, requires only one system of equations at each
time step to be solved.

2.3 Reservoir flow model under induced fracturing con-

ditions

The process of waterflooding-induced hydraulic fracturing has been studied by
Hagoort (1981), Perkins and Gonzalez (1985), Koning (1988), Dikken and Niko
(1987), Clifford et al. (1991) and Tran et al. (2004), to mention a few. In the past,
fracturing conditions were preferably avoided, even if it resulted in a very low
injection rates and a very slow oil recovery. Recent studies showed that in low-
mobility reservoirs it is practically impossible to avoid fracturing conditions and
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that water injection and part of enhanced oil recovery operations (polymer flood-
ing and steam injection) nearly always take place under induced fracturing condi-
tions. The induced fractures may grow to several hundreds of meters and there-
fore it introduces a risk of an unfavorable sweep. Van den Hoek et al. (2008)
showed that induced fractures in a waterflooded reservoir are very sensitive to
parameters such as fluid mobility, mobility ratio, position of wells, 3D saturation
distribution, geological details and injection strategy. In this work the dynamic
behavior of a fracture under different conditions was studied and optimization of
the injection strategy using a simple finite difference approach was performed.
In this chapter a two way coupling of a fracture growth simulator and a reser-
voir fluid flow simulator described in Zwarts et al. (2006); Hustedt et al. (2008) is
presented.

2.3.1 Stress calculation

To describe the induced fracturing conditions in waterflooded reservoir a geome-
chanical model is required. It provides a basis to model induced fracturing condi-
tions. The geomechanical model derived in this thesis is described in more details
in Zoback (2007). A key element of a comprehensive geomechanical model is
knowledge of the current state of stress field. The in-situ stress field at depth, i.e.
the local stress in a given rock mass at depth, in practice can, to some extent, be
determined from borehole measurements and regional geological features.
In terms of continuum mechanics, the stresses acting on a homogeneous, isotropic
body at depth are describable as a second-rank tensor, with components:

σ =





σxx σxy σxz

σyx σyy σyz

σzx σzy σzz



 . (2.41)

The individual stress component represents a force acting in a specific direction
on a unit area of given orientation. The stresses perpendicular to the plane (with
two identical subscripts) may be compressive or tensile, while the stresses parallel
to the plane are called shear.
Acting forces may result in a deformation. The deformation of a body can be
described as a transformation from a reference configuration into another one (the
displacement) and can be defined by considering the second-order strain tensor,
defined as

ǫij :=
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

, (2.42)

where xi, xj, i, j ∈ {x, y, z} and u = [ux, uy, uz] is a displacement vector describing
the deformation from a reference configuration. The deformation is caused by
forces; if these are removed a purely elastic body comes back to its original form. A
linearly elastic material is one in which stress and strain are linearly proportional
and deformation is reversible. The rock formation is not really an elastic body but
its behavior can be described as linearly elastic as long as the deformations are
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sufficiently small. Under these assumptions and for an isotropic medium, stress
can be expresses in terms of strain by the following relation

σij = λδij(ǫxx + ǫyy + ǫzz) + 2Gǫij, (2.43)

where the Kronecker delta, δij, is given by

δij =

{

1 i = j
0 i 6= j

. (2.44)

The shear modulus G is defined as the ratio of an applied shear stress to a corre-
sponding shear strain, i.e.

G =
1

2

σij

ǫij
(2.45)

and it is a material property. The Lamé’s parameter, λ, satisfies given relations

λ =
2Gν

1 − 2ν
=

Eν

(1 + ν)(1 − 2ν)
, (2.46)

where ν denotes the Poisson’s ratio which under a uni-directional stress in the
x-direction is defined as

ν = − ǫzz

ǫxx
= − ǫyy

ǫxx
, (2.47)

and describes the proportion of the lateral expansion ǫzz = ∂uz
∂z and ǫyy =

∂uy

∂y to

axial shortening ǫxx = ∂ux
∂x , and it is a material property too. Young’s modulus, E,

is a stiffness of the rock in simple uni-axial compression, i.e.

E =
σxx

ǫxx
, (2.48)

and it is a material property as well. In an isotropic material the shear modulus is
related to Young’s modulus and the Poisson ration by

G =
E

2(1 + ν)
. (2.49)

Eq. 2.43 describes the relation between stress and strain of a rock, however, a
reservoir is saturated with fluids. In this thesis we assume that reservoir pores are
uniformly saturated with fluid, that the volume of pores is small compared to the
volume of the rock and that pressure in the pore is the total stress acting on the
rock externally. The absolute stress in a porous medium is carried by the rock and
the fluid in the pores of the rock. This additional stress related to the pore pressure
is called backstress. When the formation behaves in a linear poro-elastic manner,
the effective stress on the rock, σ′

ij, is related to the absolute stress σij and the fluid

pressure p by
σ′

ij = σij − δijap p, (2.50)

where ap is the poro-elastic constant and i, j ∈ {x, y, z} (see Terzaghi (1943) for
more details). Eq. 2.50 says that only the normal components of the stress tensor
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are influenced by the pore pressure (and not the shear components). Assuming
linear elasticity of the reservoir rock (Eq. 2.43) and linear poro-elasticity of a for-
mation (Eq. 2.50) result in the following relation

∆σij =
E

1 + ν

[

ǫij +
ν

1 − 2ν
δij

(

ǫxx + ǫyy + ǫzz

)

]

+
Eαp

1 − 2ν
∆pδij, (2.51)

where ∆σij and ∆p denote the change in the stress profile and pore pressure in
reference to their initial conditions and

αp =
1 − 2ν

E
ap. (2.52)

Eq. 2.51 says that the change in the stress field is described by a function that
depends on the pore pressure and the strain. Moreover, the relation between
stress and pressure is linear. The final formula for the stress calculation can be
found in Koning (1988). When cold water is injected into a reservoir the for-
mation temperature changes. Assuming that the expansion of the rock is pro-
portional to the temperature change, thermo-elasticity can be described using the
thermo-poro-elasticity theory. In this thesis, however, we consider isothermal con-
ditions.

2.3.2 Fracture propagation or closure

If the formation contains a crack, then at each time step of the simulation the
following situations can be observed:

1. stable or unstable fracture propagation,

2. fracture shrinkage,

3. no fracture propagation or shrinkage.

The propagation is called stable if it is caused by the fluid injection in the well,
while it is called unstable if it grows without fluid injection. The calculation of
new fracture size is based on the principle that the pressure inside the fracture
and the in-situ minimum stresses around the fracture are balanced. In an elastic
medium that is subjected to a non-uniform force the fracture propagation criterion
is given by

KI = KIC (2.53)

where KIC is called a fracture toughness, which describes the ability of a material
containing a crack to resist fracture, while KI is called the stress intensity factor
(mode I) at the particular tip of the fracture, which depends on the entire load
profile on the fracture face (more about fracture mechanics can be found in An-
derson (1995)). If we assume an uniform load on the fracture face then the amount

of pressure sufficient to propagate the fracture is KIC
πL , where L stands for the half-

length of the fracture (see Barenblatt (1962)). If the fracture pressure is KIC
πL higher
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than the in-situ stress on the fracture tip, then the fracture grows. If we define the
propagation pressure as

pprop :=
KIC

πL
+ σ (2.54)

then the propagation criterion becomes

p f rac = pprop, (2.55)

p f rac is the pressure inside the fracture, and σ is the in-situ stress at the fracture
tip. The fracture closes if the fracture pressure becomes smaller than the in-situ
stress on the fracture tip. Defining the closure pressure as

pclosure := σ (2.56)

the closure criterion becomes

p f rac = pclosure. (2.57)

If the calculated fracture pressure is larger than the closure pressure but smaller
that the propagation pressure then no shrinkage and no growth of the fracture
takes place.

2.3.3 Coupling routine

In the fracture simulator considered for this thesis a fracture is modeled as a plane
of an elliptical shape, perpendicular to the fixed minimum (mostly horizontal)
stress direction, and with a small aperture. The center of the fracture is posi-
tioned in the well interval, where the fracture is initiated. A fracture is modeled
by three parameters, L = [L1, L2, L3] (left-right horizontal length (L1) and upward-
downward length (L2 − L3), see Fig. 2.2). Orientation, initial size and width of a
fracture are assumed to be known.

Figure 2.2: Section through the main axes of a fracture.

Changes in the reservoir pressures influence the in-situ stresses, changes in the in-
situ stresses and fracture pressure influence the size of the fracture, while changes
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in the fracture size influence the reservoir pressure. It requires thus a two-way
coupling. The reservoir pressure is calculated by the standard reservoir flow
model, in which fracture is modeled by assigning new transmissibilities to the
reservoir grid blocks that are intersected with the fracture or which are very close
to it. Since the outflow area occurs on both side of the fracture, the grid block
pressure around the fracture is modeled in similar way as the grid block pres-
sure around a well. A flow around a small fracture is modeled using a radial flow
model, and the transmissibility of the grid block affected by the fracture is defined
by

T :=
2πkh

ln
(

2RP
L

) , (2.58)

where RP is the Peaceman radius (see Peaceman (1977)), k is the absolute perme-
ability, h is the hight of the grid block, and L is one fracture size. A flow profile
around a fracture with a size larger than 2RP is assumed to be elliptical, which
results in the following transmissibility of the affected grid block:

T :=
2πkh

sinh−1
(

2RP
L

) . (2.59)

From Eqs. 2.58 and 2.59 we see that the transmissibility becomes dependent on
the fracture size L.
Using the updated transmissibility matrix the standard reservoir flow simulator is
capable to model the flow under induced fracturing conditions. When the reser-
voir pressures is computed, the fracture growth simulator calculates the in-situ
stress and the closure/propagation pressure. If the fracture propagates, then the
size of the propagation is determined and a new fracture size is calculated. If the
new fracture size satisfies the propagation criterion, then the new time step is it-
erated, otherwise the fracture size is corrected. One proceeds similarly when the
fracture closes. When no closure and no propagation takes place, the fracture sizes
are not updated, and a new time step is calculated.

2.4 Adjoint model of the reservoir flow model under

induced fracturing conditions

In the described coupling the reservoir flow simulator is adapted to model the
flow in porous media under induced fracturing conditions. This modeling does
not require any internal code adjustment of the flow simulator but does require
an internal adjustment of the adjoint code. Because our system is a two-way cou-
pling, changes in the state vector cause changes in the fracture size, while changes
in the fracture size cause changes in the transmissibility matrix and consequently
changes in the state vector. It means that the transmissibility depends on the state
vector, which has to be included in the adjoint model. In this section we present
the adjoint equations for this coupled system and we discuss the possibility to
combine it with the existing adjoint code.
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Let us assume that the fluid flow in the reservoir with induced fracture is de-
scribed by the following system of equations

ci+1(x(ti+1), x(ti), u(ti+1)) = 0, i = 0, ..., N − 1, (2.60)

and the output data y(ti+1) is described by

hi+1(u(ti+1), x(ti+1), y(ti+1)) = 0, i = 0, ..., N − 1. (2.61)

Let us assume that we are interested in the production optimization of this system.
An objective function is defined then as an explicit function of the production/in-
jection rates and can be written as

J(u) =
N−1

∑
i=0

Ji+1 (ui+1, yi+1), (2.62)

where yi+1 is given by Eq. 2.61 which requires an evaluation of the state vector
x(ti+1) described by Eq. 2.60. It can be shown that the adjoint model for this
coupled problem is

λT
i+1

∂ci+1

∂xi+1
+ λT

i+2

∂ci+2

∂xi+1
+

(

∂Ji+1

∂yi+1

)T ∂hi+1

∂xi+1
= 0. (2.63)

It looks similar to the adjoint model of the reservoir flow model without frac-
turing condition. However, since the coupled system imposes certain changes in

the reservoir flow model, the Jacobians of the coupled system,
∂ci+1
∂xi+1

and
∂ci+2
∂xi+1

are

changed. In the coupled system the time step evolution described by operator
ci+1 consists of few trial runs of the flow simulator and the fracture simulator.
During those runs an appropriate fracture size is calculated. To solve a coupled
system first the reservoir flow equations are solved given the fracture dimensions
Li+1 = L(ti+1). The transmissibilities, Ti+1, of the grid blocks which are affected
by the fracture are recalculated using Eq. 2.58 or Eq. 2.59. This can be represented
by the following operator:

Ti+1 = ψi+1(Li+1), i = 0, ..., N − 1. (2.64)

Using updated Ti+1 the standard flow equations are solved, i.e.

gi+1(xi+1, xi, ui+1, Ti+1) = 0, i = 0, ..., N − 1. (2.65)

Next, the fracture growth simulator is used to calculate the backstresses and the
propagation or closure criterion. Since stress depends linearly on pressure it can
be described as follows

σi+1 = Fi+1ai+1, i = 0, ..., N − 1 (2.66)

where Fi+1 denotes the linear operator, σi+1 denotes the stress vector at time ti+1,
and ai+1 denotes the data required from reservoir flow simulation (i.e. the reser-
voir pressure), and can be interpreted as an operation on the state vector x:

ai+1 = φ(xi+1), i = 0, ..., N − 1. (2.67)
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The stress σi+1 is required to calculate the propagation (or closure) pressure pprop

(or pclosure) and criterion criti+1, which is defined as

criti+1(σi+1, Li+1, ai+1) := pprop/closure(σi+1, Li+1) − p f rac(ai+1), (2.68)

and it is required to be zero (see Eqs. 2.55 and 2.57), i.e.

criti+1(σi+1, Li+1, ai+1) = 0. (2.69)

If the propagation (closure) criterion is satisfied for each fracture tip then the next
time step can be evaluated; otherwise the fracture sizes are updated. The size
of the fracture is updated using a gradient of the criterion criti+1 with respect to
Li+1. The gradient is approximated by finite differences, hence, it requires a few
additional iterations of flow simulator. These intermediate steps, however, are not
important for the adjoint calculations because the adjoint model is derived using
the Jacobians of the system at the final solution of the coupled system, that is,
when the propagation (or closure) criterion is satisfied. The adjoint code for the
reservoir flow model under induced fracturing conditions requires the implemen-

tation of the Jacobians
∂ci+1
∂xi+1

which are given by

∂ci+1

∂xi+1
=

∂gi+1

∂xi+1
+

∂gi+1

∂Ti+1

∂Ti+1

∂Li+1

∂Li+1

∂xi+1
, (2.70)

for i = 0, ..., N − 1, and differ from the Jacobians of the reservoir flow model with-

out induced fracturing conditions. The term
∂gi+1
∂xi+1

is implemented already in reser-

voir flow simulator, while the terms
∂Ti+1
∂Li+1

,
∂Li+1
∂xi+1

and
∂gi+1
∂Ti+1

are new. The missing

terms
∂gi+1
∂Ti+1

should be relatively easy to derive because reservoir flow simulator

contains the adjoint-based gradient for the transmissibilities.
∂gi+1
∂Ti+1

is not directly

available but is part of gradient calculation and can be retrieved from the code.

The term
∂Ti+1
∂Li+1

is obtained by differentiation of Eq. 2.64, i.e.

∂Ti+1

∂Li+1
=

∂ψi+1

∂Li+1
(2.71)

and is easy to derive (see Eqs. 2.58 and 2.59). To calculate
∂Li+1
∂xi+1

we need to differ-

entiate Eq. 2.69. A small variation of the state vector, δxi+1, gives a rise to a small
variation δLi+1 of the fracture size, a small variation δai+1 to the data given to
fracture growth simulator and a small variation δσi+1 of a stress profile, i.e.

∂criti+1

∂xi+1
=

∂criti+1

∂Li+1
· ∂Li+1

∂xi+1
+

∂criti+1

∂ai+1
· ∂ai+1

∂xi+1
+ (2.72)

∂criti+1

∂σi+1
· ∂σi+1

∂ai+1
· ∂ai+1

∂xi+1
.
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Since Eq. 2.69 has a zero on the right hand side, its derivative has to be zero as

well. Thus,
∂Li+1
∂xi+1

is given by the following relation

∂criti+1

∂Li+1
· ∂Li+1

∂xi+1
= −∂criti+1

∂ai+1
· ∂ai+1

∂xi+1
(2.73)

−∂criti+1

∂σi+1
· ∂σi+1

∂ai+1
· ∂ai+1

∂xi+1
,

where
∂ai+1
∂xi+1

is given by

∂ai+1

∂xi+1
=

∂φi+1

∂xi+1
(2.74)

and
∂σi+1
∂ai+1

= Fi+1 (see Eq. 2.66). The remaining terms (
∂criti+1
∂σi+1

and
∂criti+1
∂ai+1

) are also

simple to derive (see Eq. 2.69).

2.5 Difficulties implementing an adjoint model

In real life reservoir simulation, the level of modeled details can be very advanced
and the system can be very complex. A simulator that offers an advanced model-
ing solves a nonlinear system of equations and consists of millions of lines, which
were built by many different people in few decades time. In such a case, the imple-
mentation of the adjoint method is a collarwork, because the implementation of
the partial derivatives of the system (see section 2.2) requires detailed knowledge
of the simulation code. Even if the sensitivity matrices with respect to the current
state vectors are available (because they are used in the Newton-Raphson itera-
tions), the sensitivity matrices with respect to parameters can be very complicated
to derive. Moreover, the sensitivity matrices with respect to the previous state
vectors are not implemented; similarly, the sensitivities of the objective function
are not available. Nowadays, if all partial derivatives of the system are available,
then the adjoint code is relatively straightforward. Nevertheless, till a few years
ago a storage capability was also a limitation for the adjoint code. To solve the ad-
joint equations it is necessary to save the state vectors of the forward simulation.
This problem was solved by storing only a limited number of state vectors and by
recomputing the remaining ones. Nowadays, all the simulated state vectors can
be stored to disk.

For the purpose of this thesis we used three reservoir simulators: SIMSIM (SIM-
ple SIMulator) developed at Delft University of Technology, MoReS (The Modu-
lar Reservoir Simulator) built at Shell International Exploration & Production and
coupling of MoReS with FRAC-IT simulator (FRACture simulator) built at Shell
International Exploration & Production too.
The SIMSIM simulator models two phase flow in a 2D reservoir, it assumes isother-
mal conditions, absence of capillary pressure, and constant fluid and rock param-
eters. It is an open source simulator, and therefore it was used for the initial re-
search purposes. Additionally, it contains the implementation of the adjoint-based
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gradient for the permeability field. We used those gradients for an evaluation of
the proposed methods.
MoReS and FRAC-IT simulators are fully capable to model complex reservoir con-
ditions, but the user has no access to the source code. The MoReS simulator con-
tains the adjoint-based gradients for permeability field, porosity, controls and few
more parameters. The coupled simulator, however, does not contain the adjoint-
based gradients. In this research, we consider methods that do not require an
access to the source code and are derivate-free.
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History matching

I
n typical reservoir simulation models many parameters are uncertain, e.g.
grid block permeabilities and porosities, relative permeabilities, and fault

multipliers. A prior reservoir characterization is generally based on wellbore
and logging data that are interpolated to give regional descriptions of uncer-
tain geological properties. The interpolation process introduces uncertainty
in those parameters that directly translates into uncertainty in the reservoir
behavior. The geological model can be improved by using surface and down-
hole production data (flow rates and bottom-hole pressures) or seismic data
in a process called history matching. History matching identifies the param-
eter values that minimize an objective function representing the mismatch
between modeled and observed production data. The objective function is
usually defined as a sum of weighted squared differences between observed
and modeled data. History matching is challenging and integral aspect of
reservoir modeling. This chapter describes the data that is typically collected
during the evaluation phase and the data that is available during the pro-
duction process. Additionally, the history matching problem is formulated
in the Bayesian framework and a brief review of different history matching
methods is presented. The chapter concludes with a review of adjoint-free
gradient-based history matching and parameterization methods.

3.1 Data

While modeling the reservoir two kind of data are typically available: the data
collected at the exploration stage (prior data) and data collected during the pro-
duction process (data measured at well locations and seismic data). They provide
information about the reservoir and improve the quality of predictions.

31
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3.1.1 The prior probability

In the exploration phase of the reservoir trial wells are drilled to inspect the pres-
ence of hydrocarbons. The drill cutting, i.e. the chips of rock removed from the
reservoir, are gathered and inspected. In addition, cores are taken over important
parts of the reservoirs. These core samples are long cylinders of rock approx-
imately two or five inches in diameter. Various measurements are taken from
smaller core plugs which are one or one and half inches in diameter. They are
used to see fluid content, the depositional environment, the diagenetic effects and
the presence of fractures. The rock and fluid properties such as a litologic descrip-
tion, porosity, permeability, grain density, fluid saturation, relative permeabilities,
capillary pressure relations are estimated from these samples too. Those mea-
surements are called wellbore data and they are the only direct measurements of
rock formation and fluid properties. Another commonly used data are obtained
by lowering down into a well a probe equipped with sensors. The signals are
transmitted to the surface through a cable and then they are processed and in-
terpreted. This process is called well-logging and taken measurements are called
log data. They give information about water or salt content, the age of the rock
and its porosity, presence of sand and shale minerals, fluid properties in near-
well region. The well-logging measurements can be categorize roughly in three
groups: electric, acoustic and radioactivity logging (Oliver et al. (2008)). The well-
bore data and logs data are sometimes called the hard data. They are collected
from a wellbore region that is much smaller than the size of a reservoir simula-
tion gridblock. To cover a large area of a model seismic data should be collected.
Seismic data are measurements of wave signals that have traveled from a source
at the surface, through the formation, are reflected from a subsurface layer, and
are recorded by receivers at the surface. The wave carry information about the
properties of the formation through which they travel, and are used to map the
formation structure and property fields. A seismic survey is the most widely used
geophysical method in subsurface mapping. It covers a large area and is helpful
in understanding sedimentary series, overall formation thickness and large-scale
properties of sedimentation.
The hard data, seismic data and the geologic constraints are used to describe the
prior information about geological model. The parameters of the geostatistical
models describing the spatial relationship within a field are based on informa-
tion present in those data. These data, however, contain noise. The core data is
contaminated by random noise and interpretation errors. The log data may be
contaminated by many errors: the randomness in the phenomenon measured,
lack of calibration, incorrect choice of parameters, interpretation process. The er-
rors are estimated based on a comparison between multiple estimates. In case of
seismic data noise is introduced during an acquisition process and during com-
plicated data processing procedures. The errors may be caused by poorly planted
geophones, wind motion, wave motion in the water that vibrates the receivers
and cables, static noise from recording instruments and production operations in
an adjacent oil field. However, the procedures in the seismic data processing are
often interpretive and the decisions on parameter settings may be based on geo-
logical intuition and personal preference. The quantification of the error level is
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therefore difficult.

3.1.2 Production data

One type of the measurements available during an operation process are the pro-
duction data. They refer to measurements observed in production and injection
wells. Since they are taken at well locations, they are usually very limited in space
but they can be frequently repeated in time. Available production measurements
are: bottom hole pressure, tubing head pressure, flow rates or water-oil ration,
gas-oil ratio. Bottom hole pressure i.e. pressure measured at the bottom of a
well by the downhole pressure sensors can be collected typically on a daily ba-
sis, unfortunately the pressure sensors are not available in most wells. Tubing
head pressure is measured at the top of the well, typically on a daily basis. Flow
rates, for a well or a group of wells, are measured on a monthly basis, after a
separation of the produced fluid is performed. Similarly, the water-oil or gas-oil
ratios are determined. Likewise the prior data, the production data contain er-
rors. Nowadays used gaugers have often a resolution of 0.01 psi, but the accuracy
of the pressure data is not as good. The reasons for that are transient tempera-
ture effects and drift in electronics. Rate measurements may be obtained from a
separator whose accuracy could be estimated reasonably well. In many cases a
well is tested at most once per month, and intermediate rates are estimated from
a well-head pressure. It does not make much sense to take the accuracy of the
instantaneous measurement as the accuracy of the monthly rate, because usually
the modeling error is more important than the measurement error. In the history
matching procedure it is very important to know the magnitude of the errors be-
cause it is useless to match the data to the greater accuracy than the accuracy of
the measurements.

3.2 History matching problem in the Bayesian frame-

work

In history matching uncertain observations are used to improve the uncertain
model parameters, θ. A full solution of this inverse problem is the a-posteriori
probability density function for the model parameters. The complete characteri-
zation of the probability distribution function is usually impractical. Only under
the assumption that the model is linear, the prior model is Gaussian and the mea-
surement noise is Gaussian, the a-posteriori distribution is Gaussian, and is com-
pletely characterized by mean and covariance. In the general case, by matching
production data an estimate of θ is obtained which is an approximate sample of
the a-posteriori probability distribution function.

In the Bayesian framework the unknown model parameters are treated as random
variables described by multivariate probability distributions. We let f (θ) denote
the prior probability density function for the parameter θ which is based on the
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hard data, geologic and seismic data. This represents the initial knowledge about
the model parameters and their initial uncertainty. We look for an estimate of the
conditional probability density function for model parameters given production
data d(ti), for i = 1, . . . , No. The conditional probability density function should
reduce the uncertainty about the unknown parameters below the level given by
the prior model. Bayes’s rule says that the conditional probability density function
for model parameters given production data d(ti) is

f (θ |{d(ti) : i = 1, . . . No} ) =
f ({d(ti) : i = 1, . . . No} |θ) f (θ)

f ({d(ti) : i = 1, . . . No})
. (3.1)

f ({d(ti) : i = 1, . . . No} |θ) is the conditional probability of the data given the mo-
del parameters θ. It is a measure of how likely the measurements are given a cer-
tain geological model. f ({d(ti) : i = 1, . . . No}) is the probability of the measure-
ments, and it does not depend on θ. It is calculated as a normalization factor for
the a-posteriori probability density function. The model with the highest probabil-
ity density f (θ |{d(ti) : i = 1, . . . No} ) is called the maximum a-posteriori (MAP)
estimate. Because of the imperfect measuring techniques, the observed data con-
tains the noise, which can be modeled by the following relationship:

d(ti) = hi(θ) + v (3.2)

where hi is an operator describing the relationship between measurements and
parameters at time ti, and v is the noise vector. Assuming that the measure-
ments errors are Gaussian distributed with zero mean and covariance matrix Ri,
the likelihood function of observations, given a certain model θ, can be expressed
as:

f ({d(ti) : i = 1, . . . No} |θ) ∝ e

{

− 1
2 ∑

No
i=1(d(ti)−hi(θ))T R−1

i (d(ti)−hi(θ))}
. (3.3)

Furthermore, assuming that model parameters are Gaussian distributed with mean
θinit and covariance matrix Rb, the prior probability density function is

f (θ) = e−
1
2 (θ−θinit)

TR−1
b (θ−θinit) (3.4)

and the a-posteriori probability density function is given by

f (θ |{d(ti) : i = 1, . . . No} ) = ce−J(θ) (3.5)

where

J(θ) =
1

2
(θ− θinit)

TR−1
b (θ− θinit) +

1

2

No

∑
i=1

(d(ti) − hi(θ))T R−1
i (d(ti) − hi(θ)) .(3.6)

If the relation between the observations and model parameters is linear, then the a-
posteriori probability density function is also Gaussian, with mean given as

E(θ) = θinit +
No

∑
i=1

(

R−1
b + HT

i R−1
i Hi

)−1
HT

i R−1
i (d(ti) − Hiθinit)
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and the following covariance matrix

Cov(θ) =
No

∑
i=1

(

R−1
b + HT

i R−1
i Hi

)−1
,

where Hi is the Jacobian of the observation operator at time ti (see Oliver et al.
(2008)). The maximum a-posteriori estimate of the model parameters can be found
by maximizing the logarithm of the posterior probability function given by Eq. 3.5
or by minimizing the objective function J. In case that measurement operator is
nonlinear, the probability density function may have many modes, which corre-
spond to different local minimum of J. In case of linear observation operator the
MAP estimate is equal to the estimate of mean and is given as

θMAP = θinit +
No

∑
i=1

(

R−1
b + HT

i R−1
i Hi

)−1
HT

i R−1
i (d(ti) − Hiθinit).

In this specific case the objective function is quadratic, which guarantees an unique
solution.

3.3 Overview of history matching algorithms

History matching has been investigated for the last few decades and many algo-
rithms have been developed; see Oliver et al. (2008) and Oliver and Chen (2011).
They can be classified in four groups: gradient-based algorithms, Kalman filter
algorithms, streamline-based algorithms and stochastic algorithms. They differ
in the computational efficiency, implementation complexity, assumptions on the
flow model, assimilation kind: recursive (sequential) or in time-windows, the ca-
pability to honor complex geological constraints and the sensitivity to local op-
tima. Due to the high computing cost of a reservoir model simulation, a number
of model simulations involved in history matching procedures is an important
characteristic. Reviewing the methods we will emphasize the computational cost
and implementation difficulty of the methods.

3.3.1 Gradient-based history matching algorithms

A particularly efficient class of history matching methods are gradient-based his-
tory matching algorithms, where the gradients of the objective function with re-
spect to the model parameters are calculated by solving an adjoint, or co-state,
problem as introduced by Courant and Hilbert (1953). Those methods have been
studied by the meteorological community where they are called 4D-VAR (see e.g.
Talagrand and Courtier (1987), Courtier et al. (1994), Courtier (1997)). In reser-
voir engineering the adjoint method was for the first time used by Chen et al.
(1974) and later applied by, among others, Wasserman et al. (1975), Chavent et al.
(1975), Watson et al. (1980), Lee and Seinfeld (1987), Yang et al. (1988), Zhang and
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Reynolds (2002), and Oliver et al. (2008). In the adjoint approach the history-
matching problem is treated as an optimal control problem where the control
variables are the unknown model parameters, and where the objective function
is minimized subject to the constraint that the state variables obey the prescribed
reservoir model. Another use of adjoint-based methods in reservoir engineering
is for recovery optimization or production optimization. In that case the objective
function, which is ultimate recovery or net present value, is optimized with re-
spect to control variables, which are the well rates, well pressures, or well valve
settings. Initially adjoint-based method was applied to the optimization of ter-
tiary recovery processes, see Ramirez (1987), and later followed by water flooding
optimization, see e.g. Asheim (1988), Brouwer and Jansen (2004), Doublet et al.
(2009), Sarma et al. (2008), Sudaryanto and Yortsos (2000) and Zandvliet et al.
(2007). In both, the history matching and the recovery optimization problems,
the necessary conditions for optimality lead to the gradients. These gradients
can subsequently be used in gradient-based optimization routines. The adjoint
approach is computationally very efficient because one gradient calculation re-
quires just a single simulation of the reservoir model and a single simulation of
the adjoint model, irrespective of the number of parameters. Usually, first order
gradient-based minimization algorithms, which avoid explicit computation of the
Hessian, are used to perform the minimization process. In particular with the
Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) or the Levenberg-
Marquardt algorithm, the history matching process can be performed efficiently
(see for further details Oliver et al. (2008)). The disadvantage of this method is its
difficult implementation, which was discussed in Chapter 2.

3.3.2 Streamline-based history matching algorithms

Streamline-based methods consist of a two-step inversion: first the breakthrough
times at the production wells are lined up and secondly the production data are
matched. Streamlines identify the instantaneous flow directions and the regions of
the field that are flowing to each production well. As a consequence, it is possible
to identify what parts of the reservoir impact the flow to each production well,
and adjust the permeability and porosity of these regions to match production
data. The computation of the sensitivities requires only a single simulation, which
makes this routine very time efficient. This method has been introduced by Vasco
and Datta-Gupta (1997), and then used by Wen et al. (1998), Vasco et al. (1999),
Wang and Kovscek (2001), Caers (2003), Wu and Datta-Gupta (2002), Agarwal
and Blunt (2003) and Cheng et al. (2004).

3.3.3 Stochastic history matching algorithms

Two popular stochastic algorithms are: the probability perturbation method and
the gradual deformation method. The gradual deformation method was proposed
by Roggero and Hu (1998) and then was extended by Hu et al. (2001); Hu and
Jenni (2005). It is an iterative procedure where the direction of search for the best
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parameter is expressed as a realization sampled from the prior probability dis-
tribution function. At each iteration a new random realization is generated and
estimate is expressed as a linear combination of the previous and new realization.
The coefficients which provide the best match to the data are found by solving an
inner 1D optimization problem. The method iterates until the data is matched.
The restriction of this method is that it can only be used with a Gaussian distri-
bution for the parameters, where the variogram model is used. Another popular
stochastic method is probability perturbation method (PPM) proposed by Caers
(2003). This approach uses a training image to approximate the multiple point
statistics of the facies distribution. The training image should depict the desired
geostatistical constraints. PPM is an iterative procedure. At each iteration a fa-
cies realization is perturbed in geologically consistent fashion, however, instead
of perturbing the given realization, the probability model is perturbed. The op-
timal size of the perturbation is determined by solving an inner 1D optimization
problem. The method forms two loop approach, which iterates until history data
is matched or the maximum number of iterations is exceeded. Compared to the
gradual deformation method this method can be applied to a much larger variety
of geological continuity constraints. Both those methods are relatively easy to im-
plement and they do not put any assumption on the flow model. They claim to
be globally convergent due to the stochastic nature but they are computationally
inefficient, because they require large number of iterations to converge, see Wu
(2001).

3.3.4 Kalman filter-based history matching algorithms

The Kalman filter is a recursive method to estimate the state of a linear dynami-
cal system from a series of noisy measurements, and it was proposed by Kalman
(1960). The method is based on model equations, where the current state is asso-
ciated with an uncertainty. The measurements are given by a linear operator of
the state and are associated with uncertainty too. The predictions of the state are
calculated by the model equations, in a so-called forecast steps, up to the moment
that the new observations are available. In a so-called analysis step, an estimate
of the state and its uncertainty are corrected by taking into account the available
observations. The correction is weighted by the so-called Kalman gain matrix
which combines the information from the uncertain data and from the uncertain
state. The method assumes that the measurement noise is independent in time,
there is no correlation between model noise and the measurement noise, and the
model noise and the measurement noise have Gaussian distribution. Under these
assumptions the conditional probability of the state given data is Gaussian and
is fully characterized by the first two statistics, a mean and a covariance. The
extension of the Kalman filter method to nonlinear systems was done by Jazwin-
ski (1970), and is called the extended Kalman Filter (ExKF). In this approach the
nonlinear model and measurement operators are replaced by tangent linear ap-
proximations of them and the Kalman filter analysis is applied. In both methods
the covariance matrices of the state variables and parameters need to be updated
at every analysis step. Since the number of states and parameters is typically very
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large in reservoir models these methods are computationally very expensive and
consequently prohibitive for history matching. The ExKF method also requires the
implementation of the tangent linear model, which is as difficult as the implemen-
tation of the adjoint model. The method which resolves the two major problems
of which suffers the ExKF is the ensemble Kalman filter (EnKF). In this method
the use of tangent linear models and the huge computational requirements as-
sociated with the storage and forward integration of the error covariance matrix
are eliminated. Therefore, this method is computationally feasible for large sys-
tems and is relatively simple to implement. The method was originally proposed
by Evensen (1994) as a stochastic or Monte Carlo alternative to the deterministic
ExKF. The importance of including random observations to each ensemble mem-
ber was pointed out by Burgers et al. (1998) and independently included in the
formulation used by Houtekamer and Mitchell (1998). To petroleum engineering
it has been introduced by Lorentzen et al. (2001), where the model parameters for
a dynamic two-phase model of fluid flow in a well were calibrated. The improved
predictions of pressure behavior of the well were obtained applying the full-scaled
experimental data. This studies were continue in Lorentzen et al. (2003). For the
first time the EnKF was used to estimate the permeability field for near well reser-
voir models by Nævdal et al. (2002, 2003). In those papers it was shown that
the improved prediction and improvement in the quality of the estimated per-
meability field were obtained by assimilating additional data. In Nævdal et al.
(2005) the permeability of a 2D field was estimated for a synthetic field. In Gu
and Oliver (2004) it was used to estimate permeability and porosity field of the
PUNQ-S3 model. The first published demonstration of the EnKF on the real field
was given by Skjervheim et al. (2007), where real 4D seismic data from North-
ern Sea field were used. The EnKF has gained popularity because of its simple
conceptual formulation and relative ease of implementation, e.g. it requires no
derivation of a tangent linear operator or adjoint equations. It has been studied
further by Evensen (2007), Aanonsen et al. (2009) and many more. In the EnKF an
ensemble of model parameters or states is used (typically 40-100). This ensemble
is supposed to reflect the uncertainty of the estimated variables and their proba-
bility distributions. Similarly to the Kalman filter, in the forecast step the elements
of an ensemble are propagated in time until the first observations become avail-
able. The forecast step is based only on forward model equations. In the analysis
step the state variable and model parameters are updated to honor the measure-
ments. Each ensemble member is updated using the Kalman gain, resulting in
a new ensemble. A given ensemble of finite size provides an approximation to
the error covariance matrix, but instead of storing and computing the covariance
matrix, one computes and stores only a square root of it. For a nonlinear problem,
it may be difficult to update the state variables to be consistent with the updated
model parameters without resolving the nonlinear forward problem to obtain the
state variables, but doing so increases significantly the computational burden. A
review of various issues with the EnKF, including covariance localization, filter di-
vergence, sampling error because of small ensemble, and model error was given
by Ehrendorfer (2007). For non-Gaussian problems, the EnKF does not produce
the correct estimate of the posterior probability distribution because the analysis
equations are based only on the first and second statistics (i.e. mean and covari-
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ance). The particle filter, Doucet et al. (2001), can give a better approximation of
the a-posteriori distribution. In this method the forward step is computed for a
large number of random samples and the posterior distribution after the analy-
sis step is computed by combining the empirical distribution obtained from the
samples with information provided by the measurements. This method is not fea-
sible for large systems, because it is difficult to locate particles in regions of high
likelihood.

3.3.5 Alternative history matching algorithms

The genetic algorithm (GA) for history matching was proposed by Romero et al.
(2000). It is a randomized search techniques, which is based on an analogy to the
mechanics of natural selection according to Darwinian evolutionary theory and
the ”survival of the fittest” principle. They draw ideas from genetics to describe
solutions to the problem under consideration as individuals. GAs start with an
initial population of feasible solutions (individuals), from which individual so-
lutions are selected according to a stochastic process that favors the individuals
with better performances, and their genetic information is recombined and modi-
fied following probabilistic transition rules such as the genetic operators, to form
a new population. The process is repeated until a convergence is detected, or a
specified maximum number of function evaluations is reached. The formulation
of a GA for a specific problem requires the definition of three main issues: the
design of the genome to contain the variables that define a possible solution and
the generation of the phenotype (a realization of the reservoir simulation model),
the selection and breeding structures used to generate solutions, and the genetic
operators such as crossover and mutation used to generate new solutions. Those
approaches are relatively easy to implement but computationally expensive.
The evolutionary algorithms have been demonstrated to history matching of three-
phase black-oil reservoir (Schulze-Riegert et al. (2002)). The paper addresses the
improvement of the convergence and parallel computations. The main step of
the method is mutation of the ensemble of models, which are performed on the
basis of individual step sizes. In the mutation process the model parameters are
changed which increases the variability of a population. The goal of the selection
process is to reduce the number of individuals on the basis of an objective func-
tion. Out of each population, two best sets of model parameters survive to define
the starting point of the next generation. To improve the slow convergence, which
is typical in the evolutionary algorithms, a heuristic reparameterization was ap-
plied. The parameters are divided into regions in which the parameters are as-
sumed to be correlated. For each region a set of realization is generated from the
prior geological information. The optimization algorithm chooses among the set
of realizations instead of arbitrary combinations among model parameters. This
approach requires relatively many simulations but is simple to implement.
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3.4 Literature overview of adjoint-free gradient-based

data assimilation algorithms

The adjoint-based gradient-based approach does have a few drawbacks: it can
converge to a local minimum rather than the global one, it requires a significant
storage of intermediate results, and it requires the implementation of an adjoint
model. Nevertheless, if correctly implemented, it is one of the most efficient ap-
proaches existing today to solve the history matching problem.
In reservoir engineering, gradient-based adjoint-free methods have been proposed
in recent years. We note that the naive solution of computing the gradients through
finite differences, i.e. by perturbing the parameters one by one and computing the
associated changes in the objective function, is not a realistic option for reservoir
models which may have up to millions of parameters. A somewhat more feasible
finite difference approach is one where reparameterization is used to reduce the
number of parameters, e.g. with the aid of a limited number of spatial basis func-
tions that are linear combinations of the original parameters. An example of this
approach was presented by Dadashpour et al. (2009). However, also in this case
the number of forward simulations required for the finite difference approach may
be too large for realistic applications in reservoir engineering. In Gao et al. (2007)
the simultaneous perturbation stochastic approximation (SPSA) method of Spall
(1998) is used where an approximate gradient is calculated using a stochastic per-
turbation of all parameters together. The same method was applied by Wang et al.
(2009b) for the recovery optimization problem and by Bangerth et al. (2006) for op-
timal placement of the oil wells. Another adjoint-free method uses an ensemble of
control variables and computes the cross-covariance between the control variables
and the objective function which can then be used as an approximate gradient.
This ”ensemble optimization” technique was proposed for recovery optimization
by Lorentzen et al. (2006), and thereafter refined by Chen et al. (2009). For his-
tory matching a similar approximate gradient is obtained in the EnKF. Although
somewhat disguised, because the EnKF assimilates data sequentially rather than
all together, the basic idea of replacing an exact gradient by an ensemble-based
correlation is also present in this method.
A way to overcome the problems coming from the complexity of the forward
model is to replace it with a simplified model, for which the adjoint derivation
is simpler. This approach has been proposed in weather prediction modeling by
Courtier et al. (1994) as a solution to the computationally expensive large-scale in-
verse problem. They derived an incremental approach, in which the forward so-
lution of a high-resolution nonlinear model is replaced by the solution of a lower
resolution, approximate linear model. The disadvantage of this method is the
need to develop a new, linear model, which is an approximation of the original
model (with simplified physical parameterizations).
A different way to obtain an approximated model is by the use of reduced or-
der modeling (ROM) techniques (in Lawless et al. (2008) a combination of re-
duced order modeling with incremental approach is presented). The application
of ROM reduces the CPU time of the model simulation but does not change the
complexity of the problem, and consequently, does not solve the implementation
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problem of the adjoint model. Vermeulen and Heemink (2006) proposed an ap-
proach based on model reduction, that avoids an implementation of the adjoint
model of the tangent linear approximation of the original nonlinear model. First,
they construct the reduced-order tangent linear approximation of the original for-
ward model, and thereafter, thanks to the linear character of the reduced-order
model, they easily derive the adjoint model. In this approach, the Proper Orthog-
onal Decomposition (POD) method (introduced by Karhunen (1946) and Loéve
(1946) as a statistical tool to analyze random process data) is used to obtain an
approximate low-dimensional version of the tangent-linear model. In the POD
method the projection subspace is determined by processing data obtained from
numerical simulations of the high-dimensional model, which are expected to pro-
vide relevant information about the dynamic behavior of the system. The high-
dimensional equations are projected on the low-dimensional subspace resulting
in a low-dimension model. Since the high-order tangent linear model is not avail-
able, Vermeulen and Heemink (2006) uses the POD method in a somewhat differ-
ent manner than the conventional application of the POD method for state-space
reduction. Afterwards, due to the reduced model size the minimization prob-
lem is solved efficiently. Vermeulen and Heemink (2006) applied this method to
groundwater flow problems where it proved to be computationally very efficient.
Later it was applied by Altaf et al. (2009) for water depth estimation in a coastal
engineering problem and also there it proved to be very efficient. In this thesis we
apply this method to the history matching problem. This new algorithm is not bet-
ter in terms of efficiency or robustness than the classical adjoint-based approach,
but it does not require the implementation of the adjoint code, it operates in a
low-dimensional space, which makes it much more efficient than the naive finite
difference method, and it can easily be implemented with any simulator without
having access to simulation source code.

3.5 Parameterization

Since the vector θ may consists of properties in each grid block of the model,
e.g. permeabilities or porosities, the number of uncertain parameters can be very
large. In real reservoir models it ranges from 104 to 106. In case of a gradient-
based history matching algorithm, one needs to calculate the gradient of the ob-
jective function with respect to the parameters. Using the adjoint-based method
it can be calculated by one solution of the reservoir model and one solution of the
corresponding adjoint model independently of the number of model parameters.
Moreover, to efficiently update the Hessian matrix during the quasi-Newton opti-
mization the Limited Memory BFGS method can be used. Hence, gradient-based
methods can efficiently history match data even for large scale reservoir models.
However, in case of matching only the production data, the available data are very
sparse. This implies that the identifiability of the parameter space is very low (see
Zandvliet et al. (2008)) and the history matching is ill-posed problem. It means
that this problem does not have an unique solution (see Gavalas et al. (1976)). The
resulting history matched field might honor observed data but it might provide
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incorrect predictions or it might represent an unrealistic estimate. This gives the
motivation for using a smaller number of parameters, i.e. to make the problem
better-posed. The objective of parameterization is to express the model parame-
ters by a lower number of new variables and to preserve the important geological
features in the new parametrization. During the recent decade, many methods
to reduce the number of parameters have been developed, and some of them are
briefly discussed here.

3.5.1 Zonation

Zonation was introduced by Jacquard and Jain (1965) and it is one of the earliest
and the most straightforward method for a low dimensional parameterization. In
this approach the reservoir is divided into a small number of subregions in which
the parameters are assumed to be homogeneous. Then the model parameters are
adjusted for each subregion by history matching dynamic data. The gradzone pro-
cedure (Bissell (1994)) or adaptive multiscale methods (Grimstad and Mannseth
(2000)) represent modern extensions of this method.

3.5.2 Pilot point method

The pilot point method was proposed by de Marsily et al. (1984). In this approach
one chooses only a limited number of parameters, at which the permeability val-
ues are adjusted during the history matching procedure and then those updated
values are interpolated to the neighboring points by kriging. RamaRao et al. (1995)
proposed to place the pilot points at locations where the data is the most sensitive,
hence their potential for decreasing the objective function is the highest. This ap-
proach is not fully automatic because it is not very clear how many points one
should use.

3.5.3 Discrete cosine transform

The discrete cosine transform (DCT) for parameterization of the permeability field
has been proposed by Jafarpour and McLaughlin (2009). This method originates
from image processing and is widely used as an image-compression standard.
In this approach the permeability field is expressed as a linear combination of
predefined basis functions weighted by uncorrelated random coefficients. The
basis functions are defined as cosine functions. The total number of basis func-
tions is equal to the number of permeability values. For a known permeability
field, only the basis functions with the highest coefficients in the expansion are
retained, which reduces the number of parameters. In history matching the pa-
rameter field is unknown; therefore it is not possible to identify the most relevant
basis functions by ordering the coefficients, but prior information in the form of a
training set of permeability fields can be used to identify the most dominant basis
function. The absolute value of the coefficients of the permeability fields from a
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training set is taken and the basis functions with the highest average values of
coefficients are selected to create the DCT parameterization. If no prior fields are
available but there is an information about the orientation of the channels, this can
be used to make a decision which cosine functions should be retained in the DCT
parameterization.

3.5.4 Wavelets

A discrete wavelet transform proposed by Sahni and Horne (2005) uses Haar
wavelets to parametrize the permeability field. The permeability field is expressed
as linear combination of Haar wavelets weighted by uncorrelated random coef-
ficients. First the wavelet coefficients that are the most sensitive to the history
match data are fixed and the history matching procedure is performed. In the
second step, the remaining free coefficients are modified in order to integrate the
variogram information into the reservoir description. This process is done by min-
imizing the objective function which is defined as a norm between the reference
variogram and the variogram of the history matched field. Since the wavelet co-
efficients constraining the history match are not changed, the history match is
retained after the second step.

3.5.5 Karhunen-Loéve expansion

The Karhunen-Loéve expansion (Karhunen (1946), Loéve (1946)) is a powerful
parameterization approach very well suited for history matching. It has been
applied for permeability and porosity parameterization by Gavalas et al. (1976),
Reynolds et al. (1996). In this approach the permeability at each gridblock is ex-
pressed as a linear combination of deterministic basis functions weighted by un-
correlated random coefficients. The basis functions are defined by the eigenvec-
tors of a specified permeability covariance matrix and are obtained by solving an
eigenvalue problem. The covariance matrix is often approximated as the sample
covariance matrix, which significantly reduces the size of an eigenvalue problem.
In such a case the parameterization is data-dependent and the reliability of it de-
pends on the representativeness of a set of samples. Usually only the eigenvectors
corresponding to the largest eigenvalues are used in the Karhunen-Loéve expan-
sion. The neglected part corresponds to the shortest correlation lengths present in
the sample.

3.5.6 Kernel Principal Component Analysis

Sarma et al. (2007) has proposed the kernel PCA method as an extension to the
Karhunen-Loéve expansion (also know as the PCA). Unlike the standard PCA
which preserves only second moment statistic, this approach preserves higher or-
der statistics, and hence it can be used to parameterize more complex geological
models than Gaussian distributed fields. In the posterior probability distribution
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we want to preserve the geological features of the field that are known from the
prior information. The realizations of the geological model are transformed to the
feature space which is defined as a nonlinear mapping of the original space. In
the feature space the dot product between elements is defined by a kernel func-
tion. Polynomial kernels of higher order are applied. The PCA is performed in
the feature space, which results in a parameter expansion in the feature space too.
To come back to the original space the pre-image problem is solved. The obtained
parameterization is a continuously differentiable implicit nonlinear parameteriza-
tion. Due to its implicit character it requires some additional methods to compute
the coefficients of the expansion.

3.5.7 Other parameterizations

Shah et al. (1978) has proposed the parameterization method that is based on in-
formation coming from the model outputs. They perform the eigenvalue decom-

position of
(

∂h(θ)
∂θ

)T ∂h(θ)
∂θ , where

∂h(θ)
∂θ is the sensitivity matrix of the model out-

puts with respect to model parameters. In this approach the permeability at each
grid block is expressed as a linear combination of the largest eigenvectors result-
ing from this decomposition.
Similar approach was presented in Van Doren et al. (2008), where the identifiable
parameterizations based on a singular value decomposition of the information
matrix was proposed. The information matrix is expressed in terms of controlla-
bility and observability properties of the system and the sensitivities of the system
matrices with respect to the parameter vector. The columns of the left-side singu-
lar vectors corresponding to non-zero Hankel singular values are regarded as the
directions in the reduced parameter space. This reparameterization was moti-
vated by the fact that only parameters changes that result in state perturbations of
the observable part of the system can be identified (see Van Doren (2010) for more
details).
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Reduced Order Modeling

R
e duced Order Modeling (ROM) aims at capturing dynamics of high-
order dynamical system by means of a low-order approximation. This

chapter presents two model reduction techniques: Proper Orthogonal De-
composition (POD) and Balanced Proper Orthogonal Decomposition (BPOD).
Both methods are based on the projection of high-order system equations onto
a subspace derived from the data. The chapter starts with a motivation for the
choice of ROM methods followed by their description, and concludes with
remarks about the connection between the POD and the BPOD methods.

4.1 Motivation

Oil & gas reservoirs have been produced under increasingly more difficult con-
ditions. As consequence, there is a compelling need for the accurate simulation
of the dynamical behavior of reservoir systems. This lead to large and complex
models. Reduced order modeling (ROM) techniques, also called model reduction tech-
niques or model order reduction techniques, play an indispensable role in providing
efficient computational prototyping tools to replace large-scale models by approx-
imate smaller models, which are capable of capturing critical dynamical behavior
and faithfully preserving essential properties of the larger models. A good model
reduction technique tries to keep the necessary information and throws away the
irrelevant. The speed-up of simulation is the main reason for using model reduc-
tion techniques. Consequently, if scientists and engineers can significantly reduce
the simulation time, that is, the experiments run in hours instead of days, then
they can re-evaluate the methods which were considered computationally too ex-
pensive or improve the results by allowing for more simulations. An accurate
and effective reduced-order model can be applied then for production optimiza-
tion, history matching or prediction uncertainty quantification. In this thesis we
use the reservoir model for the production optimization and parameter estima-
tion purposes. In those cases we are not interested in a very accurate approxi-
mation of all state variables, but rather in a good approximation of the produc-
tion data. Therefore, we should be able to compress the high-dimensional model
significantly. The conventional application of the ROM for state-space reduction

45
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reduces the CPU time of the model simulation but does not change the complex-
ity of the model, and consequently, does not solve the implementation problem
of the adjoint model. In this application the model reduction is not used in the
standard way, that is, it is mainly a technique to obtain an approximate reduced-
order version of the tangent-linear reservoir model and its adjoint. The Jacobians
of these models are approximated in the reduced-order space by finite differences
and therefore the reduced-order model is constructed without projection of the
original model equations. The detailed explanation of this method is described
in Chapter 5 while this chapter introduces the ROM techniques in their standard
form.

4.2 Projection-based Reduced Order Modeling meth-

ods

The balanced POD method and the POD method fall in the category of projection-
based methods. The basic idea of projection-based reduced-order modeling is to
project the high dimensional state space X onto a low dimensional subspace that
contains the essential dynamics of the system. A projection is a linear transforma-
tion and can be represented by projection matrix Π ∈ R

n ×R
n, which satisfies the

condition Π = ΠΠ
T . A projection Π is called an orthogonal projection if it is self-

adjoint, i.e. Π = Π
T . A Galerkin projection Π is an orthogonal projection defined

as Π = ΦΨ
T , where Φ, Ψ ∈ R

n×l , Ψ
T

Φ = Il , Ψ = Φ, and the columns of Φ form
an orthogonal set. In case that Φ 6= Ψ, the projection Π is called a Petrov-Galerkin
projection. The various projection-based techniques differ in the choice of the ma-
trices Φ and Ψ. Roughly speaking, three main strategies for choosing Φ and Ψ can
be identified: heuristic schemes (include choosing Φ and Ψ based on eigenvector
analysis), methods based on rigorous system-theoretic analysis (balanced trunca-
tion), and parameter-matching techniques (Krylov methods), see Antoulas (2005)
for more details.
The projection-based methods consist of the following steps:

• to determine the l-dimensional subspaces SΦ and SΨ, and their basis Φ and
Ψ,

• to compress the state information by projecting the state variables onto a
subspace spanned by Φ,

• to compress the system equations by multiplying them by Ψ
T .

To describe those steps let us consider the Hilbert space X ⊂ R
n×n, where n is the

number of state variables needed to describe the system. Let the dynamic of the
system be modeled by the following equations

x(ti) = fi[x(ti−1), θ], (4.1)

y(ti) = hi[x(ti), θ], (4.2)

x(t0) = xinit,
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where i = {1, ..., N} indicates the time steps, x(ti) is a solution of a functional
fi at time ti, x(t0) = xinit is a given initial state of the system and y(ti) are the
outputs of the system at time ti given by the observation operator hi. We assume
that for all time instants x(ti) belongs to the Hilbert space X. For given matrices
Φ and Ψ the system described by equations (4.1) and (4.2) is approximated by the
reduced-order system in the following form

z(ti) = Ψ
Tfi(Φz(ti−1), θ),

y(ti) = hi(Φz(ti), θ), (4.3)

z(t0) = Ψ
Tx(t0),

where z(ti) is the reduced-order state variable which operates in the subspace
SΦ ⊂ X of lower dimension l spanned by Φ, and z(t0) is the initial state of the
reduced-order system. The reduced-order system (4.3) describes the dynamic evo-
lution of the l dimensional vector z. Of course the arbitrary choice for matrices Φ

and Ψ would bring us to a model that is unable to reproduce the dynamics of
the original model. The choice of those matrices is the main obstacle of the ROM
methods.

4.3 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) method is also known as the Karhunen-
Loève method, principal component analysis (PCA) or the method of empirical orthogo-
nal functions. The origin of this method goes back to 1946, when it was introduced
independently by Karhunen (1946) and Loéve (1946) as a statistical tool to ana-
lyze random process data. According to Lumley it was introduced independently
by even more people including Kosambi (1943), Pougachev (1953) and Obukbov
(1954). The method was called for the first time POD by Lumley (1967), when
it was used for the study of turbulent flow. It has been used in various disci-
plines including random variables (Papoulis (1965)), image processing (Rosenfeld
and Kak (1982)), signal analysis (Algazi and Sakrison (1969)), data compression
(Andrews et al. (1967)), and it has been successfully applied to increase the com-
putational efficiency of reservoir simulation by Heijn et al. (2004), Markovinović
et al. (2002), Markovinović and Jansen (2006), and Cardoso et al. (2009). The use
of the POD method in combination with adjoint-based production optimization
in reservoir simulation has been investigated by Van Doren et al. (2004) and by
Markovinović (2009). The POD method has desirable features for our applica-
tion: it allows nonlinearities in the system, it is suitable for model reduction of
spatio-temporal systems and it is feasible for large-scale systems.

4.3.1 Snapshots

In the POD method the projection subspace SΦ is determined by processing data
obtained from numerical simulations of the high-dimensional model (4.1). This
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data consists of selected state vectors of a forward simulation of the large-scale
numerical model, called snapshots. The selected data should provide relevant in-
formation about the dynamical behavior of the system, and should be able to rep-
resent the behavior of the system for different spatial and time instants. Typically,
the snapshots are created in the following way:

xj(ti) = fi[x(ti−1), θ], (4.4)

where ti = t1, . . . , tN and θ is a parameter vector and x(ti−1) is a state vector deter-
mined by θ. When the reduced-order model is used for parameter estimation, the
snapshots should be able to represent the behavior of the system also for modified
parameter values, which results in the following snapshots

xj(ti) = fi[x
pert(ti−1), θ + θpert], (4.5)

where θpert is a perturbation to the initial parameter values and xpert(ti−1) is a state
vector determined by the perturbed parameters. These snapshots are the sampled
solutions of numerical model at particular time steps and at particular parameter
values. In case of using the reduced-order model for production optimization the
control variables have to be perturbed while generating snapshots. All snapshots
are put as columns in matrix

X = {x1(t1), ..., x1(tN), ..., xp(t1), ..., xp(tN)} (4.6)

of size n × s, where p is the number of parameters perturbations and s = N × p is
the total number of snapshots. In general it is assumed that s ≪ n.

4.3.2 Projection matrices

One of the main issues of the POD method is to express the essential information
present in the collected data by means of a few basis vectors Φ. POD gives an
optimal set of basis vectors, i.e. it guarantees the best reconstruction of the data set
X in the mean square error sense among all linear bases of the same size. Here we
give a short explanation how the POD basis are constructed and how to calculate
them efficiently. As it was said, the aim of the POD is to find an orthogonal n × l
basis Φ such that the total mean squared error between the snapshots and their
projections on the subspace spanned by basis Φ is minimized for any l, i.e. the
given value

1

s

s

∑
i=1

∥

∥

∥
xi − ΦΦ

Txi

∥

∥

∥

2

2
, (4.7)

is minimal, where ‖·‖2 is an L2 norm and xi ∈ X, i = 1, . . . s, where 1 ≤ s ≪ n is
assumed. This problem can be expressed as

min
Φ:φT

i φj=0,∀i 6=j‖φi‖2=1

1

s

s

∑
i=1

∥

∥

∥
xi − ΦΦ

Txi

∥

∥

∥

2

2
. (4.8)
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Due to the identity

∥

∥

∥
xi − ΦΦ

Txi
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∥

∥

2

2
= ‖xi‖2

2 −
∥

∥

∥
ΦΦ

Txi

∥

∥

∥

2

2
(4.9)

which holds for any orthogonal projection, the minimization problem (4.8) is equiv-
alent to the following maximization problem

max
Φ:φT

i φj=0,∀i 6=j‖φi‖2
2=1

s

∑
i=1

∥

∥

∥
ΦΦ

Txi

∥

∥

∥

2

2
(4.10)

where each element
∥

∥

∥
ΦΦ

Txi

∥

∥

∥

2
of this sum can be rewritten as

∥

∥

∥
ΦΦ

Txi

∥

∥

∥

2
=

√

(

ΦΦ
Txi

)T (

ΦΦ
Txi

)

=
√

xT
i ΦΦ

T
ΦΦ

Txi

=
√

xT
i ΦΦ

Txi

=
∥

∥

∥
Φ

Txi

∥

∥

∥

2
.

Therefore, problem (4.8) is equivalent to the following maximization problem

max
Φ:φT

i φj=0,∀i 6=j‖φi‖2
2=1

s

∑
i=1

∥

∥

∥
Φ

Txi

∥

∥

∥

2

2
(4.11)

which is a constrained optimization problem that can be solved by considering
the first-order necessary optimality conditions. First, we solve this problem in
case that l = 1, i.e. Φ consists of a single vector φ. Let L be the Lagrangian
functional associated with (4.11)

L(φ, λ) =
s

∑
i=1

∥

∥

∥
φTxi

∥

∥

∥

2

2
− λ(1 − ‖φ‖2

2). (4.12)

A first-order necessary optimality condition is given by

∇L(φ, λ) = 0, (4.13)

and the gradient of L with respect to φ is

∂L

∂φ
(φ, λ) =

∂

∂φ

(

s

∑
i=1

(φTxi)
T(φTxi) + λ(1 − φTφ)

)

=

∂

∂φ

(

s

∑
i=1

(xT
i φφTxi) + λ(1 − φTφ)

)

=

2
s

∑
i=1

φTxix
T
i − 2λφT =

2
(

φTXXT − λφT
)

. (4.14)
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Thus,
XXTφ − λφ = 0. (4.15)

The above equation yields the eigenvalue problem

XXTφ = λφ. (4.16)

It means that φ is the eigenvector corresponding to the largest eigenvalue of prob-
lem (4.16), and the maximum reached value is equal to λ. Using (finite) mathe-
matical induction it can be proven (see Volkwein (2008)) that for any l ∈ {1, ..., s}
the solution to problem (4.8) is given by the first l largest eigenvectors of matrix
XXT . Summarizing, the optimization problem (4.8) is solved by Φ consisting of
l eigenvectors corresponding to l first largest eigenvalues of the correlation ma-
trix

R :=
1

s
XXT . (4.17)

Alternatively, instead of correlation matrix R, the covariance matrix

R̃ :=
1

s − 1

s

∑
i=1

(xi − x̄)(xi − x̄)T (4.18)

can be used, where x̄ represents a mean of the snapshots, i.e. x̄ = 1
s ∑

s
i=1 xi.

The decision about l is usually based on the cumulative relative importance defined
as

l

∑
i=1

λi

∑
s
j=1 λj

> αe (4.19)

where l is chosen as the smallest number, such that

l

∑
j=1

αj ≥ αe. (4.20)

By choosing l patterns with the largest relative importance, defined as αi = λi

∑
s
j=1 λj

,

an orthonormal projection matrix Φ is created by taking vectors φi as its columns,
for i ∈ {1, ..., l}. The accuracy of a reduced-order model increases with an increase
in the number of patterns in the matrix Φ. For a given number of snapshots, the
highest accuracy is achieved by taking the expected variance equal to 100%. On
the other hand, more patterns means lower computational efficiency. Therefore,
there is a trade-off between efficiency and accuracy.

Numerical issues
XXT ∈ R

n×n is a symmetric matrix satisfying

φT(XXT)φ = (XTφ)T(XTφ) ≥ 0 ∀φ ∈ R
n

which means that XXT is positive semi-definite, and therefore has non-negative
eigenvalues. Since R is approximated by s snapshots we know that it has at most
s eigenvalues λ1 ≥ . . . ≥ λs ≥ 0 and corresponding s eigenvectors. For large
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system solving eigenvalue problem given by Eq. 4.16 is computationally demand-
ing. This eigenvalue problem is formulated as a spatial eigenvalue problem, how-
ever, an equivalent formulation can be derived in which the eigenvalue problem
is formulated in the snapshots coordinate. It is a so-called method of snapshots
(Sirovich (1987)) and has a numerical advantage, because typically s ≪ n. If we
multiply both sides of Eq. 4.16 with ciX

T (ci 6= 0) it gives

XTXvi = λivi, (4.21)

where vi = ciX
Tφi. Thus, XTX and XXT have the same s (or s− 1) eigenvalues and

their eigenvectors satisfy vi = ciX
Tφi. Because the problem (4.21) works on much

smaller matrix XTX ∈ R
s×s compared to problem (4.16), it is much more efficient

to solve. The condition that the eigenvectors are normalized, i.e.

1 ≡ ‖vi‖2 = vT
i vi =

(

ciX
Tφi

)T
ciX

Tφi = c2
i φT

i XXTφi = c2
i φT

i λiφi = c2
i λi (4.22)

results in the following relation

ci = λ
− 1

2
i (4.23)

and thus

φi = λ
− 1

2
i Xvi. (4.24)

From relation (4.24) we see also that the POD patterns are linear combination of
the collected snapshots, which was observed by Sirovich (1987).

Another alternative way to calculate the POD patters is to perform a singular
value decomposition (SVD) on the snapshot matrix X. It avoids the calculation
of the product XTX (or XXT) which are dense matrices in our application and the
matrix X is decomposed as

X = UΣVT (4.25)

where U ∈ R
n×n, V ∈ R

s×s are orthogonal (UTU = In, VTV = Is) and Σ ∈ R
n×s

is an pseudo diagonal matrix with elements ordered in the decreasing manner, i.e.
σ1 ≥ σ2 ≥ . . . ≥ σs ≥ 0. If we consider again the correlation matrix XXT then we
see that

XXT = UΣVT(UΣVT)T = UΣVTVΣTUT = UΣΣTUT . (4.26)

It follows that the POD patterns Φ can be computed as left singular vectors U,
whereas λi = σ2

i . Alternatively we can also express them using right singular

vectors, V, because for XTX holds

XTX = (UΣVT)TUΣVT = VΣTUTUΣVT = VΣTΣVT . (4.27)

4.3.3 Reduced order model

The projection Π = ΦΨ
T is defined as a Galerkin projection with Ψ = Φ, where

Φ consists of l eigenvectors φi corresponding to l leading eigenvalues. The state
of the system is then expressed in the new space as linear combination of the POD
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patterns, i.e. x(ti) = Φz(ti) or x(ti) = x̄ + Φz(ti) if the mean value was subtracted
from snapshots, and the reduced-order system is described by

z(ti) = Φ
Tfi(Φz(ti−1), θ) (4.28)

y(ti) = hi(Φz(ti), θ),

z(t0) = Φ
Tx(t0),

This reduced-order system preserves the states which characteristics were present
in the snapshots.

4.3.4 Comments on the POD method

POD method has a few drawbacks.

• Optimality of a particular basis does not imply optimality of the reduced-
order dynamic model. Since it is a data-driven method, the reduced order
model is highly dependent on the given data. Therefore, it is essential to
choose snapshots which represent the behavior of model in the range of the
parameters or control variables that we are interested in. However, there is
no guarantee that the reduced-order model will give the dynamic behavior
corresponding to the original model.

• Using the POD method we can not calculate error bounds because it is sys-
tem representation dependent. Hence, we can not estimate the uncertainty
of the solution coming from the reduced-order model.

• Furthermore, the original sparse structure of the partial differential equa-
tions is lost during the projection of the equations on the reduced-order
space. Hence, the resulting reduced-order model has a dense structure. It
means that in some applications the advantage of having a reduced-order
model does not lead to remarkable gain in simulation time.

• Finally, the POD method does not respect the underlying model equations, it
means, that the underlying physics is not preserved exactly in the reduced-
order model.

• In case of nonlinear systems the system matrices, fi(Φz(ti−1), θ), need to
be recomputed at every time step of the simulation and projected to lower
space. This takes a lot of time, and therefore POD is much less efficient than
for the linear cases, where system matrices have to be projected only once.

4.4 Balanced Proper Orthogonal Decomposition

Model reduction aims to eliminate the part of the state variables which modeling
is not relevant for the chosen application. It is important to understand which
properties of the system we want to preserve and which we can neglect. In this
section we present another projection-based technique which is an approximation
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to a well known balanced truncation method. First, the description of the balanced
truncation method is given, and then the Balanced Proper Orthogonal Decompo-
sition is presented. Balanced truncation is based on a system-theoretic analysis,
i.e. the input-output response of the system. We present a description of the bal-
anced truncation method for linear time invariant systems, for which the theory
of balancing was derived. The use of balancing for model reduction was proposed
in 1981 by Moore (1981). Nowadays, it is a well-developed method that appears
in standard textbooks (see Antoulas (2005)) and it has been very successfully used
in control design. In reservoir applications this method has been investigated by
Vakili-Ghahani (2010), Markovinović (2009), and Van Doren (2010).

4.4.1 Controllability and observability of Linear Time Invariant
systems

The controllability and observability of a dynamic system reflect to what extent
the inputs influence the states, and to what extent the states influence the out-
puts.

Controllability

Let us consider an n-dimensional, stable and minimal, time continuous linear time
invariant system:

dx

dt
= Ax(t) + Bu(t), x(0) = x0, (4.29)

y(t) = Cx(t) + Du(t)

with p inputs and m outputs.

Definition 4.1 The dynamic system (4.29) is called controllable if for any x0 ∈ R
n and

the final state xT there exists a finite time T and a (piecewise continuous minimum amount
of finite control) input u such that the solution to (4.29) satisfies x(tN) = xT . Otherwise
the system is called uncontrollable.

To answer a question if the system is controllable one can check a rank of the
controllability matrix Cn which is defined as

Cn :=
[

B AB A2B . . . An−1B
]

∈ R
n×np (4.30)

If Cn has a full rank, then system (4.29) is controllable and state x can be reached
by a proper choice of u. Alternatively, we can verify the controllability of a linear
dynamic system with the aid of the controllability Gramian, see e.g. Antoulas
(2005). The controllability Gramian for finite time is defined as

Pn :=
n−1

∑
i=0

(AiB)(AiB)T = CnCT
n , (4.31)
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while for infinite time it can be computed by solving a Lyapunov equation given
by

APAT + BBT = P. (4.32)

The system (4.29) is controllable if a controllability Gramian is positive definite.
Hence, the following conditions are equivalent: the given system is controllable or
the controllability Gramian is positive definite or the controllability matrix Cn has
a full row rank. The significance of the Gramian comes from the fact presented
in Glover (1984), which says that in a controllable system the minimal energy
required to steer a state x0 to a state xt which are n time steps apart is

(xt − x0)
TP−1

n (xt − x0) > 0. (4.33)

Thus there exist a sequence of inputs ui such that

n

∑
i=1

uT
i ui = (xt − x0)

TP−1
n (xt − x0) > 0 (4.34)

and it is the minimal energy1that is required. From (xt − x0)
TP−1

n (xt − x0) it fol-

lows that P−1
n gives us a measure to say which state requires the least energy to

be reached. For a system which is controllable the inverse of the Gramian Pn ex-
ists and is also positive definite. The eigenvectors of the controllability Gramian
and its inverse are the same, only their corresponding eigenvalues are inverted.

Hence, the eigenvector with the smallest eigenvalue in P−1
n corresponds to the

eigenvector with the largest eigenvalue in Pn. The largest eigenvalues of Pn indi-
cates the dominant directions of the most controllable states, while small eigenval-
ues indicate the directions that play a minor role in the controllable space.

Observability

Now we define the observability of a dynamic system which reflects to what ex-
tent the states influence the outputs.

Definition 4.2 The dynamic system (4.29) is called observable if for any time t ∈ (0, T],
the initial condition x0 ∈ R

n can be determined from the time history of the input u(t) and
the output y(t) in interval [0, t] ⊂ [0, T]. Otherwise, the system is called unobservable.

The observability of the system can be determined by analyzing the rank of the
observability matrix defined as

On :=













C
CA

CA2

. . .
CAn−1













∈ R
nm×n. (4.35)

1The term ’energy’ is used loosely here, motivated by the fact that energy can often be written as a
quadratic form (e.g. potential energy as a function of squared pressure).
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If On has full rank, then system (4.29) is observable and the state x0 can be detected
from y(t) and u(t). Alternatively, we can check the observability of the system
(4.29) by using an observability Gramian, which for a finite time is defined as

Qn :=
n−1

∑
i=0

(CAi)T(CAi) = OT
n On, (4.36)

and for an infinite time can be computed by solving a Lyapunov equation given
by

ATQA + CTC = Q. (4.37)

The system (4.29) is observable if the observability Gramian is positive definite.
Hence, the following conditions are equivalent: the given system is observable,
or the observability Gramian is positive definite, or the observability matrix Qn

has a full row rank. Similarly, a very important fact is presented in Glover (1984),
namely, in the observable system the maximal energy of the output of the model
with initial state x0 and a current state xt that are n time steps apart is given
by

(xt − x0)
TQn(xt − x0) > 0. (4.38)

Thus
n

∑
i=1

yT
i yi = (xt − x0)

TQn(xt − x0) > 0, (4.39)

and it is the maximal energy of the given outputs. Therefore, Qn gives us a mea-
sure how much of energy a state gives. The largest eigenvalues of Qn indicates
the dominant directions of the most observable states, while small eigenvalues in-
dicate the directions which play a minor role in the observable space. Moreover,
the observability Gramian of the system (4.29) is the same as the controllability
Gramian of the adjoint system (see Antoulas (2005)) defined as

dλ

dt
= −ATλ(t) − CTv(t), λ(tn+1) = 0, (4.40)

u(t) = BTλ(t) + DTy(t).

4.4.2 Balanced representation of the Linear Time Invariant sys-
tems

Balancing is a technique that combines the controllability and observability prop-
erties of a system and finds a linear transformation that produces an equivalent
model with equal and diagonal controllability and observability Gramians. The
equality of the Gramians implies that the states which are difficult to reach are
simultaneously difficult to observe.

Definition 4.3 The system (4.29) is called balanced if

Pn = Qn = Σ (4.41)

where Σ is the diagonal matrix and its elements on the diagonal are called Hankel singular
values.



56 Chapter 4 Reduced Order Modeling

Each state of the balanced system has the same controllability and observabil-
ity degree. Since the Gramians are basis dependent we can look for a basis for
which the Gramians are equal and diagonal. Such a basis is called a balanced basis.
These balanced Gramians are obtained by applying the transformation T, such
that,

TPnTT = T−TQnT−1 = Σ, (4.42)

which is found by solving the following minimization problem

min
T

trace[TPnTT + T−TQnT−1]. (4.43)

The balancing consists of the simultaneous diagonalization of the controllability
and observability Gramians. The minimum value of the above expression is twice
the sum of the Hankel singular values, and the minimizing T is called a balancing
transformation. In Antoulas (2005) four numerical approaches for computing a
balancing transformation are presented. Here we follow one of them. First, we
express the controllability Gramian as Pn = XXT , and similarly, the observability
Gramian as Qn = YYT . Then the SVD of the product XTY can be written as

XTY = WΣVT (4.44)

where X, Y ∈ R
n×s, W ∈ R

s×s and V ∈ R
s×s are orthogonal matrices and Σ ∈

R
s×s is the diagonal matrix, s ≤ n.

Lemma 4.1 Given the controllable, observable and stable system and the corresponding
Gramians Pn and Qn, a balancing transformation is given as

T = Σ−1/2VTYT ,

T−1 = XWΣ−1/2.

To verify that T−1 is an inverse of T we need to check that

T−1T = XWΣ−1/2Σ−1/2VTYT

= XWΣ−1VTYT = I,

TT−1 = Σ−1/2VTYTXWΣ−1/2

= Σ−1/2VTVΣWTWΣ−1/2 = I.

The fact that it is a balancing transformation is proved by the following

TPnTT = Σ−1/2VTYTXXT
(

Σ−1/2VTYT
)T

=

Σ−1/2VTYTXXTYVΣ−T/2 =

Σ−1/2VT(XTY)TXTYVΣ−T/2 =

Σ−1/2VT(WΣVT)T(WΣVT)VΣ−T/2 =

Σ−1/2VT(VΣTWT)(WΣVT)VΣ−T/2 = Σ,
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and in similar way it can be shown that

T−TQnT−1 = Σ.

Then the system is transform to a balanced representation such that

dx̂

dt
= TAT−1x̂(t) + TBu,

x̂(0) = Tx0, (4.45)

y = CT−1x̂ + Du.

Furthermore, if we partition

W = [W1W2], Σ =

(

Σ1 0
0 Σ2

)

, V = [V1, V2] (4.46)

where W1, V1 consist of l columns and Σ1 ∈ R
l×l , the transformation

T1 = Σ−1/2
1 VT

1 YT

T−1
1 = XW1Σ−1/2

1

satisfies T1T−1
1 = Il . A reduced-order system representation, known as balanced

truncation, is obtained by expressing the system dynamics in terms of a limited
number of linear combinations of the Hankel singular vectors corresponding to

the leading Hankel singular values Σ1, i.e. by taking Φ = T−1
1 and Ψ

T = T1 the
system is transformed to the truncated representation:

dz

dt
= Ψ

TAΦz(t) + Ψ
TBu,

z(0) = Ψ
Tx0, (4.47)

y = CΦz + Du,

where a new trajectory z operates in lower dimension l.

4.4.3 Balanced truncation for nonlinear systems using empirical
Gramians

Extensions of the method to nonlinear systems have been proposed by Scherpen
(1993) (based on energy functions), Lall et al. (2002) (based on empirical Grami-
ans), Hermann and Krener (1977) (based on linearization). In the case of large-
scale nonlinear system only two approaches can be considered: Lall et al. (2002)
and Hermann and Krener (1977). In the approach based on linearization, the non-
linear model is first linearized along a state trajectory resulting in an Linear Time
Varying model (LTV) and then the controllability and observability properties are
analyzed with linearized system matrices or by using the Gramians of a linearized
model. This approach has been used in Van Doren (2010) to analyze the control-
lability and observability of two phase flow in a porous medium but it can not be
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applied under assumptions of this thesis, since the tangent linear approximation
of the original reservoir system is not available. The second way to handle the
nonlinearities of the system is by using the Balanced Proper Orthogonal Decom-
position (BPOD) method, which is an approximation to balanced truncation. In
linear systems the Gramians are computed by solving Lyapunov equations but
for large systems this is computationally very demanding, if possible at all. When
balanced truncation is generalized to nonlinear systems, or when a linear system
is too large then empirical Gramians are used. Empirical Gramians were proposed
by Moore (1981) although this was not directly connected to balanced truncation.
For balanced truncation empirical Gramians were used by Lall et al. (1999), who
combined the features of the POD method and balanced truncation. This method
requires only standard matrix computations, and makes use of data from either
simulation or experiment to identify the dynamics relevant to the input-output
map of the system. The resulting reduced-order model is nonlinear, and has in-
puts and outputs suitable for control. When it is applied to linear systems it results
in the standard balanced truncation, Lall et al. (2002). Here, we follow the ap-
proach of Rowley (2005), and we compute the balancing transformation directly
from snapshots of empirical Gramians, without computing the Gramians them-
selves. Similar approaches were used by Willcox and Peraire (2002) and Antoulas
(2005).

Controllability Gramian using snapshots
The most dominant direction in the controllability Gramian indicates the states
that can be reached most easily, i.e. we can reach them with a minimal energy. If
we collect the snapshots of the nonlinear system with a specific initial condition
x0 for different input strategies u1, . . . , up then these snapshots span the subspace
to which we can steer a given system in a given time tN . The correlation matrix
of the states approximated by the snapshots is an approximation of the control-
lability Gramian and we refer to it as the empirical controllability Gramian. The
following definition is taken from Lall et al. (2002).

Definition 4.4 Let T be a set of r orthogonal p × p matrices, {T1, . . . , Tr}, and let M be
a set of o positive constants, {c1, . . . , co}. Further define E =

{

e1, . . . , ep

}

standard unit
vectors in R

p. The input signal is constructed as

uk(t) = ciTjekδ(t) + ū (4.48)

where ci is the input size, Tjek describes the input pattern, δ(t) is a delta function and ū
is the mean input. Then using the system trajectories corresponding to different inputs uk

the empirical controllability Gramian is defined by

Pn =
o

∑
i=1

r

∑
j=1

p

∑
k=1

1

rpc2
i

N

∑
t=1

Φ
ijk
t (4.49)

where Φ
ijk
t is given by

Φ
ijk
t = (x

ijk
t − x̄ijk)(x

ijk
t − x̄

ijk
t )T (4.50)

and where x̄
ijk
t is the state of the system at time step t when a constant in time input

strategy ū was applied, x
ijk
t is the state of the system at time step t with modified input uk.
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The inputs should be chosen such that they represent the typical inputs of the
system. The matrix Ti is usually chosen as I or −I, and refers to positive and
negative perturbations in the input variables, respectively. It has been shown in
Lall et al. (2002) that for a stable, linear system using impulse inputs, the empir-
ical Gramian is identical to the controllability Gramian. In order to compute the
empirical controllability Gramian for a system with p inputs, the state responses
to the perturbation of the inputs are collected and are put as columns in the ma-
trix

X = {x1(t1), ..., x1(tN), ..., xp(t1), ..., xp(tN)} (4.51)

of size n × s, where s is the total number of snapshots and is equal to p × N. Then
the empirical controllability Gramian is given by

Pn = XXT . (4.52)

Observability Gramian using snapshots
The observability Gramian indicates how much energy comes from a specific state
vector. An approximation of the observability Gramian can be calculated from
samples of the system with perturbed initial condition and fixed inputs ū. This ap-
proach may require a very large data set, since the initial state is of large size. Us-
ing the fact that the observability Gramian is equal to the controllability Gramian
of an adjoint system (see Antoulas (2005)) we can define the empirical observabil-
ity Gramian as follows:

Definition 4.5 Let T be a set of r orthogonal n × n matrices, {T1, . . . , Tr}, and let M be
a set of o positive constants, {c1, . . . , co}. Further define E = {e1, . . . , em} standard unit
vectors in R

m. The input signal of the adjoint system (see Eqs. 4.40) is constructed as

vk(t) = ciTjekδ(t) + v̄ (4.53)

where ci is the input size, Tjek describes the input pattern, δ(t) is a delta function and
v̄ is the mean input of the adjoint system. Then using the adjoint system trajectories
corresponding to different adjoint inputs vk the empirical observability Gramian is defined
by

On =
o

∑
i=1

r

∑
j=1

m

∑
k=1

1

rmc2
i

N

∑
t=1

Ψ
ijk
t (4.54)

where Ψ
ijk
t is given by

Ψ
ijk
t = (λ

ijk
t − λ̄ijk)T(λ

ijk
t − λ̄

ijk
t ) (4.55)

and where λ̄
ijk
t is the state of the adjoint system at time step t when a constant in time

input strategy v̄ was applied, λ
ijk
t is the state of the adjoint system at time step t with

modified input vk.

To compute the empirical observability Gramian we compute the impulse re-
sponses of the adjoint model and we put them as columns in matrix

Y = {λ(t1), ..., λ1(tN), ..., λm(t1), ..., λm(tN)}. (4.56)
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Then the empirical observability Gramian is given by

Qn = YYT . (4.57)

The adjoint variable can be interpreted as a multiplier which indicates the rele-
vance of each state in the calculation of the output of the system.

Balanced POD using the method of snapshots
Following Rowley (2005) it is not necessary to compute the empirical Gramians
explicitly, instead we can use the square roots of them ( Pn = XXT and Qn = YYT).
In the method of snapshots used here, the balancing patterns are computed by
solving the SVD of the matrix YTX, i.e.

YTX = WΣVT =
[

W1 W2

]

[

Σ1 0
0 Σ2

] [

VT
1

VT
2

]

, (4.58)

where YTX ∈ R
sP×sQ and sP and sQ are the number of columns in X and Y, respec-

tively. Since usually the number of snapshots is much smaller than the number
of states, solving the SVD problem is computationally feasible. The computation
time required to build the projection subspace is about twice more expensive than
in the case of the POD method, because in this approach we need to generate
snapshots of the adjoint model which is computationally almost as expensive as
generating snapshots of the forward model.

Given the SVD of the matrix YTX, the balancing transformation is defined as

T = Σ
−1/2
1 WT

1 YT (4.59)

and its inverse is given by:

T−1 = XV1Σ
−1/2
1 . (4.60)

The projection Π = ΦΨ
T is defined as a Petrov-Galerkin projection, where Ψ

T

consists of first l columns of matrix T corresponding to the largest singular val-
ues, and Φ consists of the first l rows of T−1. The reduced-order system is then
described by

z(ti) = Ψ
Tfi(Φz(ti−1), θ) (4.61)

y(ti) = hi(Φz(ti), θ),

z(t0) = Ψ
Tx(t0).

This reduced-order system preserves the states which are relatively easy to control
and at the same time relatively easy to observe.
The drawbacks of the POD method presented in the previous section are also
present in the BPOD method.
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4.5 Connection between the POD and the BPOD meth-

ods

There is a connection between the POD and the BPOD methods. In the POD
method the inner product used for computing the POD patterns and for project-
ing the dynamic system is arbitrary. Usually the standard dot product is used, as
in our case, because it is not obvious which inner product is the most suitable. For
stable linear systems the BPOD method can be seen as the POD method using an
impulse response dataset and using the observability Gramian to define an inner
product as

∀ a, b ∈ R
n

< a, b >Qn
:= aTQnb (4.62)

where Qn is the observability Gramian.

In the POD method to find the projection matrix Φ the following eigenvalue prob-
lem is solved:

XXTQnφi = λiφi. (4.63)

If the POD method uses an impulse respond dataset then Pn ≈ XXT . Using the
assumption that Qn ≈ YYT and multiplying both sides of Eq. 4.63 by ciY

T with
ci 6= 0 we obtain the following equivalent problem

(

YTX
) (

YTX
)T (

ciY
Tφi

)

= λi

(

ciY
Tφi

)

. (4.64)

If YTX = WΣVT then

(

YTX
) (

YTX
)T

= WΣ
2WT , (4.65)

and thus

ciY
Tφi = wi. (4.66)

Multiplying Eq. 4.66 by wT
i and using the fact that wT

i wi = 1 we obtain

ciw
T
i YTφi = 1, (4.67)

which defines ψT
i :

ψT
i = ciw

T
i YT , (4.68)

where ci = σ−1/2
i . The obtained POD-based projection matrix Ψ is the same as in

the BPOD method. Moreover, using the decomposition YTX = WΣVT we know
that

(

YTX
)T (

YTX
)

= VΣ
2VT . (4.69)
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Thus,

XTYYTXvi = σi
2vi. (4.70)

Multiplying it by ciX we obtain

XXTYYT (ciXvi) = σ2
i (ciXvi) . (4.71)

Hence,

φi = ciXvi, (4.72)

where ci = σi
−1/2. The POD-based projection matrices are the same as the BPOD-

based projection matrices. Therefore, the BPOD method can be seen as the POD
method with norm defined by (4.62) and snapshots X such that P ≈ XXT .
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Model-reduced gradient-based
history matching

G
r adient-based history matching algorithms can be used to adapt the un-
certain parameters in a reservoir model using production data. How-

ever, they require the implementation of an adjoint model and sensitivity
matrices of the reservoir model with respect to uncertain parameters, which
usually involves a considerable programming effort. We propose a new ap-
proach to gradient-based history matching based on model reduction, where
the original (nonlinear and high-order) forward model is replaced by a linear
reduced-order forward model and, consequently, the adjoint of the tangent
linear approximation of the original forward model is replaced by the adjoint
of a linear reduced-order forward model. The reduced-order model is con-
structed by means of the Proper Orthogonal Decomposition (POD) method or
Balanced Proper Orthogonal Decomposition (BPOD) method. The reduced-
order model is not, however, obtained by projection of the nonlinear system
of equations as in the conventional projection-based ROM techniques, but is
built in the reduced subspace. The conventional POD method requires the
availability of the high-order tangent model, i.e. of the Jacobians with re-
spect to the states that we do not have. Model-reduced method obtains a
reduced-order approximation of the tangent linear model directly by com-
puting approximate derivatives of the reduced-order model. Then due to
the linear character of the reduced model, the corresponding adjoint model
is easily obtained. The gradient of the objective function is approximated and
the minimization problem is solved in the reduced space; the procedure is
iterated with the updated estimate of the parameters if necessary. The POD-
based approach is adjoint-free and can be used with any reservoir simulator,
while the BPOD-based approach requires an adjoint model but does not re-
quire the sensitivity matrices of the model with respect to uncertain param-
eters. The methods are compared with a few other gradient-based history
matching algorithms, including: a classical adjoint-based history matching
algorithm, a simultaneous perturbation stochastic approximation algorithm,
and a gradient-based finite-difference algorithm.

63
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5.1 Introduction

History matching problem
The history matching problem can be interpreted as a constrained minimization
problem of the given objective function

J(θ) =
1

2
(θ− θinit)

TR−1
b (θ− θinit) +

+
1

2

No

∑
i=1

[d(ti) − hi[x(ti), θ]]T R−1
i [d(ti) − hi[x(ti), θ]] . (5.1)

where the constraints are formed by the system equations:

x(ti) = fi(x(ti−1), θ, u(ti)) (5.2)

with x(t0) = xinit. No is the number of time instants at which observations were
collected and θinit is the prior parameter vector. The system equations and obser-
vation operator hi have been defined in Chapter 4 (see Eq. 4.1 and Eq. 4.2), while
the objective function J has been defined in Chapter 3 (see Eq. 3.6).

Reparameterization
Since the vector θ may consists of properties in each grid block of the model, e.g.
permeabilities or porosities, the number of uncertain parameters p can be very
large. In case of the model-reduced method and the finite-difference method it is
necessary to reparameterize the vector θ. In this thesis we use the POD method
(the Karhunen-Loéve expansion) to reparameterize the parameter space and, con-
sequently, to reduce the number of parameters to be estimated. In particular we
consider reparameterization of the permeability field as preparation to the nu-
merical example to be discussed in the next chapter. The permeability vector θ is
approximated by

θ ≈ θinit + Φηη ⇐⇒ ∆θ = Φηη, (5.3)

where the permeability patterns creating Φη are the first pred dominant eigen-
vectors of a low-rank approximation of the covariance matrix of the permeabil-
ity field, represented by an ensemble of prior permeability fields and θinit is the
average of the ensemble. Alternatively, other reparameterization methods such
as the discrete cosine transform (Jafarpour and McLaughlin (2009)), or a discrete
wavelet transform (Sahni and Horne (2005)) may be chosen, as long as they lead
to a significant reduction in the number of parameters. See Chapter 3 for their
short descriptions.

History matching problem with reparameterization
After replacing θ with θinit + Φηη the objective function can be rewritten as

J(η) =
1

2
ηT

Φ
T
η R−1

b Φηη + (5.4)

+
1

2

No

∑
i=1

[

d(ti) − hi[x(ti), θinit + Φηη]
]T

R−1
i

[

d(ti) − hi[x(ti), θinit + Φηη]
]

.
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5.2 Gradient-based model-reduced history matching

algorithm

Classical gradient-based history matching formulated for a general model repre-
sents a nonlinear constrained optimization problem that is very difficult to solve
(see the next section). It can be greatly simplified with the hypothesis that the ob-
jective function can be made quadratic by assuming that the fi and hi operators
can be linearized. The quadratic problem has theoretical advantages since it in-
volves solving only linear equations and it has a unique solution. Therefore, the
tangent linear model of the original model is written using the first-order Taylor
formula in the vicinity of the background parameter θb; this results in the follow-
ing equation:

∆x̄(ti) =
∂fi[x(ti−1), θ]

∂x(ti−1)
∆x̄(ti−1) +

p

∑
j=1

∂fi[x(ti−1), θ]

∂θj
∆θj, (5.5)

where p is the size of the parameter space and ∆x̄ is a deviation of the model from
the background trajectory. The partial derivatives in Eq. (5.5) are evaluated at
(xb(ti−1), θb), where xb is the nonlinear state vector with a parameter value θb,
that is, xb(ti) = fi[x

b(ti−1), θb]. Eq. (5.5) can be rewritten as

[

∆x̄(ti)
∆θ

]

=

[

∂fi [x(ti−1),θ]
∂x(ti−1)

∂fi [x(ti−1),θ]
∂θ

0 I

]

[

∆x̄(ti−1)
∆θ

]

, (5.6)

which is a linear model in terms of variations. The minimization process is then
performed by the following iterative steps:

• linearize the model around the background geological parameters θb
k, where

k denotes the iteration number and θb
1 = θinit,

• find ∆θk, such that it minimizes the quadratic objective function (details are
given in the next sections, see Eq. 5.27),

• update θb
k+1 = θb

k + ∆θk .

The history matching procedure turns into a scheme that consists of two loops:
an inner loop, which finds the minimum of the quadratic objective function and
an outer loop, where the original model is used to redefine the model trajectory
and to calculate the original objective function. It iterates until some predefined
convergence criteria are met. In practice, in order to make the computation more
efficient, the tangent linear model is replaced by a simpler low-resolution linear
model. This is called the incremental approach. It has been described in Courtier
et al. (1994) and is used in operational systems for weather forecasting. The dif-
ference with the model-reduced approach is that we do not need to develop and
implement a simpler linear model. We construct it by using a reduced-order mod-
eling technique and information from the perturbations of the original model. Be-
cause the reduced-order model is designed to capture the dominant dynamics of
the original system we expect that we can successfully use it for a fast minimiza-
tion of the objective function in the inner loop. We note, however, that there is
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no guarantee that the reduced-order model will always lead to the same response
with respect to parameter variations as the full-order model.

5.2.1 Initialization

The initial parameter vector, θinit, is chosen as a first guess of the uncertain pa-
rameters, θb

1 = θinit. To keep the notation simple we skip the index indicating the

outer iteration and we denote the reference parameters as θb. Next the high-order
reservoir model is simulated with parameters values θb, and the initial objective
function is calculated.

5.2.2 Collection of snapshots and pattern selection

POD-based model reduction

The POD method can be used to obtain an approximate low-order version of the
tangent-linear model. This is a somewhat different procedure than the conven-
tional application of the POD method for state-space reduction. In the conven-
tional method, a data matrix is built from selected state vectors of a forward simu-
lation of the large-scale numerical model, called snapshots. Spatial basis functions
are obtained by computing a low-rank approximation of the covariance matrix
of the data, and by selecting the leading eigenvectors. Next, the (tangent-) linear
model equations are projected on the low-order basis formed by the basis func-
tions. It results in a reduced-order model, in terms of coefficients multiplying the
basis functions, which is still able to reproduce the dominant dynamic behavior
of the original model, see e.g. Cardoso et al. (2009) or Van Doren et al. (2004) for
further details. If the original model is nonlinear, the matrix coefficients of the
tangent-linear high-order model need to be recomputed every time step before
applying the reduction, which significantly reduces the computational advantage
of the POD method as compared to the linear case. Moreover, the conventional
POD method requires the availability of the high-order tangent model, i.e. of
the Jacobians with respect to the states. In our approach we aim at obtaining a
reduced-order approximation of the tangent linear model directly by computing
approximate derivatives of the reduced-order model.
In this application the reduced-order model is used for parameter estimation and
therefore the snapshots should be able to represent the behavior of the system for
modified parameter values. They are created in the following way:

xj(ti) = fi[x
b(ti−1), θb + φ

j
ηηj] − fi[x

b(ti−1), θb], (5.7)

where φ
j
η is the jth pattern in matrix Φη and ηj is the size of the perturbation, and

they are put as columns in matrix

X = {x1(t1), ..., x1(tN), ..., xpred
(t1), ..., xpred

(tN)} ∈ R
n×s, (5.8)
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where s is the total number of snapshots, n is the dimension of the state vector
and pred is the dimension of the parameter space after reparameterization. The
given set of snapshots spans a subspace on which the reduced-order model is
built. Since typically s ≪ n, instead of solving the eigenvalue problem of matrix
XXT ∈ R

n×n, the reduced eigenvalue problem

(XTX)wi = λiwi; i ∈ {1, ..., s} (5.9)

is solved. The eigenvalues of those problems are the same and the following re-

lationship holds between the eigenvectors: φi = λ
− 1

2
i Xwi, for i ∈ {1, ..., s}. The

eigenvectors corresponding to the largest eigenvalues of matrix XXT represent the
dominant directions present in the snapshots, called patterns. For each pattern its
relative importance αi, defined as the percentage of the eigenvalues in the total

sum of eigenvalues, is calculated, that is, αi = λi

∑
s
j=1 λj

. By choosing the nred pat-

terns with the largest relative importance an orthonormal projection matrix Φ is
created by taking vectors φi as its columns, for i ∈ {1, ..., nred}, where nred ≤ s.
In order to select the number nred we use the relative importance αi. nred is chosen
as the smallest number, such that ∑

nred
j=1 αj ≥ αe, where αe is some percentage of

the total relative importance. One can notice that if the last eigenvector which is
included in the set of patterns Φ has the same eigenvalue as the next eigenvector
which is not selected because the required level of relative importance is satisfied,
then this procedure is not uniquely defined and depends on the sorting routine
used to order the eigenvalues. Hence, one may check the next eigenvalue and
include a corresponding eigenvector if the eigenvalues are equal.

Balanced POD-based model reduction

When the BPOD method is used to obtain an approximate reduced-order tangent-
linear model, then forward and adjoint snapshots are required, and they are col-
lected in the matrices X and Y, respectively. Typically, the balanced truncation
and the BPOD methods are applied to the systems which can be controlled. In
this application we can control the system but it is not of our interest. Because
the history matching routine analyzes the past data, the inputs which were used
in the past are known (to certain extent) and they can not be changed. We aim,
however, to steer the uncertain parameters to the values that match the past data.
We adopted in this work the terminology and the ideas of balanced truncation to
history matching problems, i.e. we aim to control the numerical model by chang-
ing the uncertain parameters. To compute the empirical controllability Gramian
for a system with pred parameters, the state responses to the perturbations of the
parameters are collected exactly in the same way as in the POD method. To gener-
ate the data for the observability Gramian calculation we should excite the adjoint
model with impulses to obtain an approximation to the true Gramian. Since we
analyze past data, the outputs of the ’true’ system are known. Therefore, we excite
the adjoint model with the observed data weighted with the measurement covari-
ance matrix. If No is the number of time instants where the outputs are observed
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and m is the number of measurement at each time instant then the Gramian cal-
culation requires No × m integrations of the adjoint system. Since observations
are sparse we take all measurements available at a certain point in time together
and we integrate the adjoint model once. The adjoint state takes non-zero values
from the time instant at which the observation is included, and it is integrated
backward in time to quantify which part of the state is relevant in the gradient
calculation. We include all time instants at once as well. Because the system is
nonlinear with respect to parameters we collect snapshots using adjoint models
corresponding to the forward models that are used to collect snapshots for the
controllability Gramian.
In the method of snapshots used here, the balancing patterns are computed by
solving the SVD of the matrix YTX, which can be decomposed as

YTX = WΣVT =
[

W1 W2

]

[

Σ1 0
0 Σ2

] [

VT
1

VT
2

]

, (5.10)

where YTX has dimensions equal to the number of snapshots collected for the con-
trollability Gramian times the number of snapshots collected for the observability
Gramian. The Gramians themselves never need to be computed and only a single
SVD is solved. Since usually the number of snapshots is much smaller than the
number of states, this is computationally efficient.
The balancing transformation is given by the matrix:

T = Σ
−1/2
1 WT

1 YT (5.11)

and its inverse is given by:

T−1 = XV1Σ
−1/2
1 . (5.12)

The projection Π = ΦΨ
T is defined as a Petrov-Galerkin projection, where Ψ

consists of nred columns of matrix T corresponding to the largest Hankel singular
values that we want to retain, and Φ consists of the first nred rows of T−1. In or-
der to select the number nred we use, as before, the relative importance of patterns.

Remarks
The tangent linear approximation of the original model is

∆x̄(ti) =
∂fi[x(ti), θ]

∂x(ti−1)
∆x̄(ti−1) +

∂fi[x(ti), θ]

∂θ
∆θ, (5.13)

and its adjoint model is

λ(ti) =

(

∂fi+1[x(ti), θ]

∂x(ti)

)T

λ(ti+1) +

(

∂h(ti)[x(ti), θ]

∂x(ti)

)T

v(ti), (5.14)

where v(ti) = R−1
i [d(ti) − hi[x(ti), θ]]. Projecting the equations of the tangent

linear model using Π we obtain the following reduced-order linear model

z(ti) = Ψ
T ∂fi[x(ti), θ]

∂x(ti−1)
Φz(ti−1) + Ψ

T ∂fi[x(ti), θ]

∂θ
∆θ. (5.15)
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The adjoint model of the reduced-order linearized model has the form

γ(ti) =

(

Ψ
T ∂fi+1[x(ti), θ]

∂x(ti)
Φ

)T

γ(ti+1) +

(

∂h(ti)[x(ti), θ]

∂x(ti)
Φ

)T

v(ti). (5.16)

One can notice that if we require that λ(ti) ≈ Ψγ(ti), then the projection of the
original adjoint model corresponds to the adjoint of the reduced-order model.
This does not have to be true if the external projection Ψ is chosen only based
on the reconstruction of the forward model. Patterns that accurately represent
the original state do not necessary accurately represent the adjoint state. There-
fore, we should aim to find a projection that represents both, the original forward
model and the adjoint model with acceptable accuracy. This is achieved by the
BPOD method, where we reduce the model by constructing the projection matrix
Π using both the forward and the adjoint states.

5.2.3 Building the reduced-order linear model

A model can be reduced by reconstructing the incremental state ∆x̄(ti) according
to

∆x̄(ti) = Φz(ti), (5.17)

where Φ is the projection matrix derived in the previous subsection and z ∈ R
nred

is the reduced state vector. Combining equations (5.17), (5.5) and (5.3) results
in

z(ti) = Niz(ti−1) + Nθ
i η, (5.18)

where

Ni = Ψ
T ∂fi[x(ti−1), θ]

∂x(ti−1)
Φ, (5.19)

Nθ
i = Ψ

T ∂fi[x(ti−1), θ]

∂θ
Φη, (5.20)

and where z represents the response of the original model to a perturbation of the
parameters, such that we can write:

[

z(ti)
η

]

=

[

Ni Nθ
i

0 I

] [

z(ti−1)
η

]

. (5.21)

The partial derivatives in formulas (5.19) and (5.20) can not be easily computed
explicitly and should be approximated by

[

∂fi[x(ti−1), θ]

∂θ

]

j

≈
fi[x(ti−1), θ + ǫθiθ

j ] − fi[x(ti−1), θ]

ǫθ
, (5.22)

and
[

∂fi[x(ti−1), θ]

∂x(ti−1)

]

j

≈
fi[x(ti−1) + ǫij, θ] − fi[x(ti−1), θ]

ǫ
(5.23)
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where ǫ and ǫθ are the intervals in which the partial differentials are linearized,
and ij and iθ

j are the jth columns of identity matrices with dimension, n × n and

p × p respectively. Of course, those perturbations are too expensive for large-scale
models. From (5.19) and (5.20), however, we see that there is no need to calculate

those partial derivatives explicitly, and instead of approximating terms
∂fi [x(ti−1),θ]

∂x(ti−1)

we approximate the terms
∂fi [x(ti−1),θ]

∂x(ti−1)
Φ as

∂fi[x(ti−1), θ]

∂x(ti−1)
φj ≈

fi[x(ti−1) + ǫφj, θ] − fi[x(ti−1), θ]

ǫ
, (5.24)

where φj is the jth column of Φ. In the same manner we approximate the terms
∂fi [x(ti−1),θ]

∂θ Φη as

∂fi[x(ti−1), θ]

∂θ
φ

j
η ≈ fi[x(ti−1), θ + ǫθφ

j
η] − fi[x(ti−1), θ]

ǫθ
, (5.25)

where φ
j
η is the jth column of Φη. It results in a reduced-order model which is lin-

earized along the patterns. The dimension of the reduced-order model depends
on the number of patterns nred, and on the number of variables pred to be esti-
mated, which are both expected to be small (see Chapter 3). Moreover, the matri-
ces in the reduced-order model are known explicitly and the reduced-order model
is linear. Therefore, the CPU time of a single reduced-order model simulation is
negligible. However, the computational overhead to construct the reduced-order
model may be significant.

We described how to build the reduced-order linear model, which is a low-order
approximation to the high-order tangent linear approximation of the original reser-
voir model. We presented the formulation of the method using an explicit form
of the reservoir equations which was motivated by the resulting simplification in
the description of the method. An explicit method calculates the state of a system
at a current time step explicitly from the parameters and the state of the system
at the previous time step, while an implicit method finds a solution by solving
an equation involving both: the current state of the system and the previous one.
Since, the tangent linear model in both cases can be rewritten such that it calcu-
lates the approximate state at a current time step from the approximate state at
the previous time step, and from the parameters, the choice of an explicit or an
implicit method is irrelevant.

5.2.4 Improving parameters in the reduced space

When the reduced-order approximate linear model is available, the adjoint model
is easy to implement (due to its linear character) and is governed by the following
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equation

λ(ti) = NT
i+1λ(ti+1) +

(

∂hi[x(ti), θ]

∂x(ti)
Φ

)T

R−1
i

[

d(ti) − hi[x
b(ti), θb] − ∂hi[x(ti), θ]

∂x(ti)
Φz(ti) −

∂hi[x(ti), θ]

∂θ
Φηη

]

,

(5.26)

where λ represents a vector of the reduced adjoint state and λ(tN+1) = 0. The
objective function for the reduced-order model is

Ĵ(η, z(ti)) =
1

2

No

∑
i=1

[

d(ti) − hi[x
b(ti), θb] − ∂hi[x(ti), θ]

∂x(ti)
Φz(ti) −

∂hi[x(ti), θ]

∂θ
Φηη

]T

R−1
i

[

d(ti) − hi[x
b(ti), θb] − ∂hi[x(ti), θ]

∂x(ti)
Φz(ti) −

∂hi[x(ti), θ]

∂θ
Φηη

]

+
1

2

[

θinit − θb − Φηη
]T

R−1
b

[

θinit − θb − Φηη
]

,

(5.27)

and the gradient is

(

dĴ

dη

)T

= −
N

∑
i=1

(

Nθ
i

)T
λ(ti) − Φ

T
η R−1

b

[

θinit − θb − Φηη
]

−

No

∑
i=1

(

∂hi[x(ti), θ]

∂θ
Φη

)T

R−1
i

[

d(ti) − hi[x
b(ti), θb]−

∂hi[x(ti), θ]

∂x(ti)
Φz(ti) −

∂hi[x(ti), θ]

∂θ
Φηη

]

.

(5.28)

If not available, we can approximate the partial derivatives of the observation
model in the same manner as we did for the forward model, namely

∂hi[x(ti), θ]

∂x(ti)
φj ≈

hi[x(ti) + ǫφj, θ] − hi[x(ti), θ]

ǫ
(5.29)

and

∂hi[x(ti), θ]

∂θ
φ

j
η ≈ hi[x(ti), θ + ǫθφ

j
η] − hi[x(ti), θ]

ǫθ
. (5.30)

The minimization is performed using a quasi-Newton optimization where the
Hessian of the objective function is updated using the BFGS method. No scaling
of the parameters in BFGS is used because after reparameterization they are of the
same order of magnitude. The minimization algorithm terminates when

• the objective function hardly changes, i.e.

| Ĵ(ηk+1) − Ĵ(ηk)|
max{| Ĵ(ηk+1)|, 1}

< ǫJ , (5.31)

and
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• the estimates hardly changes, i.e.

|ηk+1 − ηk|
max{|ηk+1|, 1} < ǫη , (5.32)

where ǫJ = 10−4 and ǫη = 10−3 and | · | is L2 norm. The alternative methods

can also be used to solve the minimization of the objective function Ĵ because this
part of the algorithm is not computationally expensive. One can even write a
formula for the Hessian calculation and use a Newton’s like update. We use the
BFGS update because the same method is used in the history matching routine
with the original reservoir model and its adjoint. Additionally, it converges in less
iterations than the number of parameters plus one (Fletcher (1991)).

5.2.5 Improving parameters in high-order space

The solution of the inner loop is an optimum for the reduced-order linearized
system but not necessarily for the original one. Therefore, we check the value of
the original objective function for the new parameters θb

k+1 = θb + Φηηopt, where
ηopt is the solution of minimization process. The process is repeated as long as the
objective function satisfies

mNo − 2
√

2mNo ≤ 2J(θb
k+1) ≤ mNo + 2

√
2mNo, (5.33)

where m denotes number of observations collected at each time ti and No denotes
the number of those time instants. This convergence criterion is a consequence of
the assumption that the model is linear and θ has a normal distribution. Moreover,
model errors are not considered. In this case the minimum of objective function
J has a χ2 distribution with mNo degrees of freedom (see Tarantola (1987)). As
stated in Oliver et al. (2008) it is reasonable to assume that this fact also approx-
imately applies in the nonlinear case. The constraint (5.33) tells us that the ob-
jective function should fall in the interval of two standard deviations (2

√
2mNo)

distance from the mean expected value (mNo). If J has a χ2 distribution with mNo

degrees of freedom, then as mNo tends to infinity, the distribution of J tends to a
standard normal distribution. This property justifies the interval of two standard
deviations, which implies that if we would repeat the numerical experiment with
different random measurement errors drawn from the same distribution, about
95% of the results would be within two standard deviations away from the mean.
If the objective function does not obey the stopping criterion, then the process
is iterated with a new background parameter θb

k+1. Since a relationship exists
between patterns and model parameterization, whenever the background param-
eter is changed, a new background state and a new set of patterns need to be
identified. Thereafter, a new reduced-order model is built and the inner loop is
performed again. The advantage of this criterion compared to alternative criteria
is that it works even if only a single outer loop is performed. The history matching
algorithm described in this section has been summarized by the flow chart in Fig.
5.1.



5.2 Gradient-based model-reduced history matching algorithm 73

Figure 5.1: Model-reduced gradient-based history matching algorithm.

5.2.6 Computational complexity

The overall computational costs of the model-reduced approach consist of two
parts:
(i) Preprocessing costs of constructing the reduced-order model:

• Cost of generating representative snapshots which span a large portion of
the variability of the permeability field:
The generation of ’good’ snapshots is an important part of the POD and
BPOD methods. Our strategy is as follows: First, we check the range of the
permeability values that are present in the ensemble of prior realizations.
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Then, we choose a number of permeability patterns, which we change dur-
ing one simulation. We can reduce the CPU time by changing a few patterns
per simulation during initial outer loops. The size of the perturbation de-
pends on the number of outer iterations as well, namely, we perturb with
the maximum range in first loop and we reduce it in subsequent loops. We
have not yet established a fully systematic approach which guarantees the
best compromise between efficiency and representativeness of the snapshots
but from our experience the described approach works well.

• Cost of solving the reduced eigenvalue problem:
This cost is equivalent to the cost of a Singular Value Decomposition of ma-
trix X in case of POD method and of matrix YTX in case of BPOD method.
Since the number of snapshots can be kept low, this cost is low. Moreover,
we may use a Lanczos procedure to only compute the nred largest singular
values.

• Cost of approximating partial derivatives along patterns:
This is computationally the most expensive part of the proposed procedure
and its CPU time is comparable to the time of pred + nred simulations of the
high-order model.

(ii) Cost of solving the reduced system and simplified history matching prob-
lem:

• Cost of solving the reduced system:
The cost of solving a system of nred linear equations is equal to O

(

(nred)
2
)

,
which can be neglected in our case.

• Cost of the optimization procedure:
In case of a quadratic objective function the quasi-Newton routine iterates
approximately pred + 1 times; see Fletcher (1991).

5.2.7 Additional issues

Pressure and saturation variables have a totally different physical behavior, a dif-
ferent order of numerical values and generally a different variability in their val-
ues. The POD procedure favors variables which values show greater variability;
this can have negative consequences on the pattern identification. If all variables
are of the same kind, then the data can be preprocessed before the POD proce-
dure by normalizing them to have unit variance. Therefore, we decided to col-
lect snapshots for pressures and saturations separately, following Van Doren et al.
(2004). Instead of solving one eigenvalue problem to obtain the POD matrix Φ,
we solve two separate eigenvalue problems (one for the matrix of pressure snap-

shots Xp ∈ R
n
2 ×s and one for the matrix of saturation snapshots Xs ∈ R

n
2 ×s). It

yields two different POD matrices, Φp ∈ R
n
2 ×np and Φs ∈ R

n
2 ×ns for pressure,

and saturation, respectively, and the final POD matrix Φ is formed as

Φ =

[

Φp 0 n
2 ×ns

0 n
2 ×np

Φs

]

∈ R
n×nred ,
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where np and ns are number of patterns for pressure, and saturation, respectively,
and nred = np + ns. The same separation is applied when the snapshots of the
adjoint model are collected in the BPOD method. By this separation we assume
that pressure and saturation are not correlated, which is not the case, but it is a
way to solve the problem associated with different scales of state variables.

5.3 Gradient-based adjoint-based history matching al-

gorithms

The history matching problem can be solved using iterative gradient-based mini-
mization methods, where each iteration consists of the following steps:

• determine a direction gk in parameter space, which leads to a lower objective

function,i.e. gk = − dJ
dθ ,

• find the size of the step length αk along that direction, such that it minimizes
J(θk + αkgk),

• set the new estimate θk+1 = θk + αkgk.

The down-hill direction is given by the opposite gradient of the objective function
with respect to the parameters and it can be obtained by reformulating the min-
imization problem as an unconstrained one, through inclusion of the constraints
with the aid of Lagrange multipliers; see Chapter 2 and e.g. Oliver et al. (2008).
This leads to:

(

dJ

dθ

)T

= −
N

∑
i=1

(

∂fi[x(ti−1), θ]

∂θ

)T

λ(ti) − R−1
b (θinit − θ) −

No

∑
i=1

(

∂hi[x(ti), θ]

∂θ

)T

R−1
i [d(ti) − hi[x(ti), θ]] ,

where λ represents a vector of adjoint states (or Lagrangian multipliers) which
satisfies the following equation:

λ(ti) =

(

∂fi+1[x(ti), θ]

∂x(ti)

)T

λ(ti+1) + (5.34)

(

∂hi[x(ti), θ]

∂x(ti)

)T

R−1
i [d(ti) − hi[x(ti), θ]]

for i = N, ..., 1 with an end condition λ(tN+1) = 0. The size of the step length αk

is usually determined by line search methods. In an exact line search method the
optimal αk is found by solving an optimization problem

min
αk

J(θk + αkgk), (5.35)

which requires multiple runs of the simulator. Since this can be computationally
costly, typically an exact line search is not used and instead conditions which guar-
antee a sufficient decrease in the objective function at each iteration are applied,
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e.g. the strong Wolfe conditions (see e.g. Oliver et al. (2008)).
The algorithm proceeds until the minimum of the objective function is found or
certain stopping criteria are satisfied. When the problem is not well scaled, the
steepest descent method may converge very slowly. This can be improved by us-
ing Newton-like methods, where the exact Hessian matrix, i.e. the second deriva-
tive of the objective function with respect to parameters, or its approximation is
used. Then the iterative steps become:

• determine a direction gk in parameter space, which leads to a lower objective

function, i.e. gk = − dJ
dθ

• approximate the Hessian matrix Hk(θk),

• find the size of the step length αk along that direction, such that it minimizes

J(θk + αkH−1
k gk),

• set the new estimate θk+1 = θk + αkH−1
k gk.

The Hessian matrix can be approximated by using a Gauss-Newton Hessian ma-
trix or alternatively, using an iterative manner, such as the BFGS formula (see
Fletcher (1991) and Oliver et al. (2008) for more details). In this thesis the BFGS
formula is used. In case of a reparametrized parameter vector, the gradient is
given by

(

dJ

dη

)T

=

(

dJ

dθ

)T

Φη (5.36)

and the same iterative steps are applicable.

5.4 Simultaneous Perturbation Stochastic Approxima-

tion algorithm

In the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm pro-
posed by Spall (see Spall (1992), Spall (2000)), one minimizes the objective function
J in the following iterative steps:

• determine a stochastic direction gk in parameters space, which leads to a
lower objective function,

• find the size of the step length αk along that direction,

• set the new estimate θk+1 = θk + αkgk.

Let us define gk = −ĝk(θk), where ĝk(θk) is a stochastic approximation of the
gradient of the objective function with respect to θ evaluated at the old iterate, θk,
and a realization of this stochastic gradient is calculated by

ĝk(θk) =
J(θk + ckΦη∆k) − J(θk − ckΦη∆k)

2ck
× ∆

−1
k , (5.37)
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where ck is a positive coefficient, ∆k :=
[

∆k,1, ∆k,2, . . . , ∆k,pred

]T
∈ R

pred is a si-

multaneous perturbation vector which elements, ∆k,i, are independent samples
from the symmetric ±1 Bernoulli distribution (i.e. ∆k,i can take only the values

+1 or −1) and ∆
−1
k :=

[

1
∆k,1

, 1
∆k,2

, . . . , 1
∆k,pred

]T

. In the SPSA method it is required

that the random vector ∆ is a vector of pred mutually independent mean-zero ran-
dom variables symmetrically distributed around zero satisfying the condition that

the E
∣

∣

∣
∆−1

k,i

∣

∣

∣
and

∣

∣∆k,i

∣

∣ are bounded, where E stands for an expected value. The

Bernoulli distribution obeys those conditions. If additionally for almost all θk the
third derivative of the objective function exists in an open neighborhood of θk and
is bounded, then the bias in the stochastic gradient goes to zero as the number of
iterations goes to infinity.
Parameters αk and ck have to be chosen according to the guideline presented by
Spall in (Spall (1992), Spall (2000)). According to his experience and theoretical
derivations, they should be chosen as

αk =
a

(A + k + 1)α
(5.38)

and
ck =

c

(k + 1)γ
, (5.39)

where A, a, c, α and γ are positive real numbers, 0 < α ≤ 1 and α− γ > 0.5. Those
parameters are case dependent, but it is recommended to start with α = 0.602,
γ = 0.101 and A equal to 5 − 10% of the maximum number of allowed iterations.
The SPSA method was designed for noisy objective functions and for those prob-
lems c is recommended to be equal to the standard deviation of the noise in J. In
this application c is chosen as a small ratio of the prior parameter value, while a is
chosen based on at least one gradient sample.
The SPSA method requires only two evaluations of the objective function at each
iteration (i.e. J(θk + ckΦη∆k) and J(θk − ckΦη∆k)) and in case that ∆ is only a sin-
gle value, Eq. 5.37 represents a central difference approximation of the gradient.
In case of reparametrized parameter space the SPSA gradient, ĝk, is created by
simultaneous perturbation of all model patterns.

Since in case of nonlinear problems the steepest descent method is known to con-
verge very slowly, Spall (2000) proposed a modification to his approach, called
adaptive SPSA or second order SPSA,

θk+1 = θk + αkH−1
k gk, (5.40)

where the Hessian matrix is approximated by the following equation:

Hk =
k

k + 1
Hk−1 +

1

k + 1
Ĥk, (5.41)

and
H−1

k = fk(Hk), (5.42)
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where fk is a mapping that represents the modification of the matrix Hk to ensure
that the resulting Hk is positive definite, and Ĥk is given by

Ĥk =
1

2

[

∆
−1
k δgT

k

(

∆
−1
k δgT

k

)T
]

, (5.43)

where

δgk =
1

2ck

[

g+
k (θk + ckΦη∆k) − g−k (θk − ckΦη∆k)

]

, (5.44)

with

g+
k (θk + ckΦη∆k) =

J(θk + ckΦη∆k + c̃k∆̃k) − J(θk + ckΦη∆k)

c̃k
× ∆̃

−1
k

and

g−
k (θk + ckΦη∆k) =

J(θk + ckΦη∆k − c̃k∆̃k) − J(θk + ckΦη∆k)

c̃k
× ∆̃

−1
k ,

where c̃k is a perturbation size, ∆̃k =
[

∆̃k,1, ∆̃k,2, . . . , ∆̃k,pred

]T
is a simultaneous

perturbation vector which elements, ∆̃k,i, are independent samples from the ±1

Bernoulli distribution, and ∆̃
−1
k =

[

1
∆̃k,1

, 1
∆̃k,2

, . . . , 1
∆̃k,pred

]T

. g+
k and g−k are one-

sided gradient approximations which reduces the number of model simulations
compared to two-sided approximation.
Another way to improve the convergence of the SPSA method is by using an av-
erage of few stochastic gradients, i.e.

gk =
1

M

M

∑
i=1

ĝk(θk), (5.45)

where M is the number of gradient samples. This averaged gradient should be
a better approximation of the true gradient, and therefore should result in faster
convergence of the method.

5.5 Gradient-based finite-difference algorithm

This procedure has exactly the same iterative steps as the classical adjoint-based
algorithm, but the calculation of the gradient is done according to the formula:

dJ

dηj
≈

J(θk + ckΦηηj) − J(θk)

ck
, (5.46)

where ck is the size of the perturbation. It is a one-sided gradient approximation
and it requires pred + 1 model simulations for a single gradient calculation. Since
the history matching problems can take between 50-100 iterations to converge, this
approach even after reparameterization can be computationally very demanding.
In this method the iterative steps are:
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• approximate a direction gk, which leads to a lower objective function, by

using Eq. 5.46, i.e. gk = − dJ
dηj

,

• approximate the Hessian matrix Hk(θk),

• find the size of the step length αk, such that it minimizes J(θk + αkH−1
k gk),

• set the new estimate θk+1 = θk + αkH−1
k gk.

The Hessian matrix can be approximated by the BFGS formula.

5.6 Parallelization

When frequent model evaluations are required parallel computing is a very pow-
erful form of computation. However, parallel computing is beneficial only if many
calculations can be carried out simultaneously. Parallelism has been employed for
many years, and nowadays clusters of the multiple processors are available to en-
gineers. The communication and synchronization between the different subtasks,
which are typically one of the greatest obstacles to getting good parallel program
performance, are not an issue in the methods presented here. A parallel computer
program for those methods is no more difficult to write than a sequential one.
Obviously, for the presented methods, each node of the cluster has to contain the
necessary reservoir simulation software.

In the model-reduced method, the simulation of the model trajectory around which
the system is linearized can be computed in parallel with the snapshot simula-
tions. It means that the snapshot preparation can be performed in the time of one
model simulation. Then, just as in the sequential computer program, the POD
method is performed and the patterns are identified. After this step the parallel
computations can start again. Each sensitivity along each pattern is computed
using information about the background trajectory and the selected patterns. It
means that the all sensitivity calculation can be computed in a single time step
evaluation, assuming that the sensitivity at each time step along each pattern is
calculated on a separate processor. This requires too many nodes in the cluster;
therefore we assume that only the sensitivity with respect to each pattern is com-
puted simultaneously, which requires the time of about one full simulation. Addi-
tional single run is required to verify the optimal result of the inner loop. Summa-
rizing, one outer iteration of the model-reduced approach can be performed in the
time of three model simulations, if the required number of nodes is available. Fur-
thermore, if the reduced order approach requires the repetition of the outer loop,
then a total computational time is equal to three times the number of outer loops
simulations. The number of nodes, necessary to accomplish the calculations of the
model-reduced method in about three simulations, depends strongly on the num-
ber of parameters and on the number of selected patterns. For example, estimating
50 parameters for which 25 snapshot simulations are performed and 60 patterns
are selected, the maximum required number of nodes is 110 (in the first part of the
calculations we require 1+25 nodes in the cluster to generate snapshots, but in the
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second part of the calculations we need 50+60 nodes to calculate the sensitivities,
thus the maximum of these two values gives the required number of nodes). If
the model-reduced method requires, for example, 3 outer iterations, then all cal-
culations can be accomplished in 9 (= 3 · 3) model simulations. If the maximum
number of nodes in the cluster is e.g. 55, then the model-reduced method requires
12 (= 3 · 4) model simulations.

Now we compare the potential of the parallelization capability of the model re-
duced approach to the finite-difference and SPSA methods. In the finite differ-
ence method the simulation of the model with the reference parameter and all
its perturbations can be computed simultaneously. This means that one gradient
computation requires the time of one simulation. The optimization technique is
an iterative routine which uses the gradient at each iteration. The total cost of the
parallelized finite difference approach depends therefore on the number of itera-
tions required to converge, i.e. it is about the time required to simulate the model
as many times as the number of iterations required in the optimization routine.
The number of nodes necessary in the finite-difference approach is equal to the
number of parameters plus one. If the finite-difference method requires, for ex-
ample, 50 iterations to converge, then this routine costs 51 (= 50 · 1 + 1) model
simulations.
The simultaneous perturbation method becomes less attractive than the finite dif-
ference method if parallel computing is involved. This method approximates the
gradient by making finite difference approximation simultaneously for all param-
eters at once. The calculated gradient may be less accurate than the finite dif-
ference gradient, hence it may require more iterations to converge than the finite
difference approach. The gradient can be calculated in the time of one simula-
tion and the total computational time is equal to the number of iterations of the
optimization routine.



6 CHAPTER

Application to history matching
problems

T
he model-reduced approaches described in Chapter 5 were compared
with two other gradient-based history matching algorithms: a classi-

cal adjoint-based history matching algorithm and a gradient-based finite-
difference algorithm. The first comparisons were done on a very simple
two-phase 2D reservoir. For this case study, we found that model-reduced
approaches were much more efficient than the finite-difference based ap-
proach. Furthermore, they showed to be at most twice less efficient than the
adjoint-based method. The second experiment was performed for a water-
flood 3D reservoir with a channelized permeability field. A comparison with
an adjoint-based history matching procedure showed that the model-reduced
approach produces a comparable quality of history matches and predictions.
For this problem, the computational efficiency of the model-reduced approach
was at most six times less efficient than of an adjoint-based approach, but at
least twice more efficient than of the finite-difference based approach.

6.1 Application to a simple 2D model

6.1.1 Model settings

In the numerical experiments presented in this section the model-reduced ap-
proaches, the classical adjoint-based approach and the finite-difference approach
were used to estimate the permeability field of a simple synthetic 2D reservoir
model, which describes iso-thermal slightly compressible two-phase (oil-water)
flow in a five-spot well configuration (see Fig. 6.1). The SPSA method described
in the previous chapter showed very slow convergence compared to the model-
reduced methods, and is therefore not presented.
All experiments were performed using a simple in-house 2D two-phase reservoir
simulator SIMSIM (described in Jansen (2011b)). All the model parameters, except
the permeability field, were assumed to be known. The uncertainty of the perme-
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ability field was expressed by an ensemble of model realizations. The ”true” field
was chosen as one realization out of a given ensemble of 1000 members. We per-
formed a so-called ”twin experiment” in which synthetic noisy production data
was used. The synthetic data was created using the true model and by adding
random errors, which were assumed to be Gaussian distributed random variables
with zero mean and known variance equal to a fixed percentage of the true data.
Additionally, all observations were assumed to be independent.
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Figure 6.1: The well locations in the reservoir used in this section. The red dots
correspond to the production wells and the blue dot to the injection well.

• Model assumptions:
We assumed that the reservoir operates under water flooding condition.
During that process dispersive and diffusive effects take place. The diffu-
sive effect of capillary pressure plays a role during the displacement process
on a relatively small length scale and is usually much smaller than the dis-
persion. The dispersive effect of geological heterogeneities takes place and
should be modeled using a velocity-dependent dispersion tensor, see Rus-
sell and Wheeler (1983). Additionally to diffusion and dispersion caused by
physical phenomena, diffusion caused by numerical errors of the discretiza-
tion occurs. Since in many cases this numerical diffusion is of the same
order of magnitude as the physical diffusion and dispersion, we neglected
the capillary forces and dispersion all together. We assumed that the effects
of gravity can be neglected, that the permeability is isotropic, and that all
parameters are pressure-independent.

• Fluids properties:
The relative permeabilities which represent the additional resistance to flow
of a phase caused by the presence of the other phase has a Corey model.
Corey exponents for oil and water are equal 2, and the end point relative
permeabilities for oil and water equals 0.9 and 0.6, respectively. The residual
oil saturation and the connate water saturation equal 0.2. The oil and water
viscosity equals 0.5 · 10−3 Pa · s and 1.0 · 10−3 Pa · s, respectively. The water,
oil and rock compressibility equal 1.0 · 10−9 1/Pa. The residual oil saturation
and connate water saturation equal 0.2.
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• Reservoir geometry:
The total size of the reservoir is 700m × 700m × 2m and it is divided into
21 × 21 × 1 uniform Cartesian grid blocks (̃33.33m × 33.33m × 2m ).

• Reservoir properties:
The porosity is assumed to be homogeneous and equals 0.3. The ”true”
permeability fields on a log scale are shown in Fig. 6.6 and 6.30, and are
assumed to be unknown.

• Initial conditions:
The initial reservoir pressures is 30 · 106Pa and the initial water saturation is
taken as connate water saturation.

• Well locations and constraints:
Water is injected at a rate of 0.003 m3/s in a vertical injector placed in the
middle of the reservoir, while four vertical producers at the corners are op-
erated at constant pressures of 25 · 106Pa. The distribution of the wells is
depicted in Fig. 6.1.

6.1.2 History matching settings

All the assimilation experiments were performed with the same settings. Namely,
the assimilation period was chosen to be 250 days and observations were taken
from 4 production wells and one injection well after each 30 days of production,
resulting in 40 observations. During this period no water was observed in the pro-
duction wells. In the injection well the bottom hole pressure was measured and
was assumed to have 10% error. In the production wells the total production rates
were measured and were assumed to have 5% error. The errors were generated
from Gaussian distributions with zero mean and a standard deviation equal to
10% and 5% of actual data in the injection and production wells, respectively. We
assumed that distinct observations were affected by physically independent noise,
resulting in a diagonal covariance matrix for the observation errors. The uncer-
tainty of the permeability field was expressed by an ensemble of 1000 realizations.
Each realization was a linear combination of the eigenvectors of the permeability
covariance matrix conditioned to the hard data. The coefficients of this linear ex-
pansion were sampled from Gaussian distributions with zero means and standard
deviations equal to the corresponding eigenvalues. The hard data was assumed to
be perfect and therefore, the values of permeability were assumed to be known at
well locations, and were not estimated. The true permeability field was removed
from the given ensemble and the remaining ensemble members were used to cre-
ate the background permeability field and to estimate the background covariance
matrix. The covariance matrix used to create the realizations was not available.
Fig. 6.2 presents a random sample of 9 out of 999 ensemble members.
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Figure 6.2: 9 realizations of the log of permeability field chosen randomly from an
ensemble of 1000 realizations (units: [m2]).

The natural logarithm of the permeability was reparametrized using the Karhunen-
Loéve expansion. We have decided to parametrize the permeability field using 20
parameters, i.e. θ = θprior + Φηη, where η = [η1, . . . , η20], which gave a good re-
construction of the field. This parameterization represents 91% of the total relative
importance present in the given ensemble. The chosen patterns are presented in
Fig. 6.3. In Fig. 6.3 the relative importance of the patterns decreases moving from
the top to the bottom of the figure starting from the left side of each row. The most
important patterns represent the most common shapes which can be recognized
in many realizations. For example, the first pattern is evidently present in the re-
alizations presented in Fig. 6.4, while the second pattern can be clearly recognized
in the realizations shown in Fig. 6.5. The first rows of Figs. 6.4 and 6.5 correspond
to the permeability fields which have very high negative coefficients for the given
patterns while the second rows correspond to the permeability fields with high
positive coefficients. The patterns with lower relative importance represent more
detailed aspects of the fields, and they are not as frequently present in the realiza-
tions as the patterns with the high relative importance, and they are difficult to
point out only by an visual inspection.
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Figure 6.3: 20 patterns of the log permeability field identified in the given ensem-
ble. The most important pattern is located in the left top corner, while the least
important pattern is located in the right bottom corner (units: [−]).
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Figure 6.4: 8 realizations of the log permeability field that after reparameteriza-
tion have the largest negative (the first four) or the largest positive (the last four)
coefficients for the first pattern shown in Fig. 6.3 (units: [m2]).
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Figure 6.5: 8 realizations of the log permeability field that after reparameteriza-
tion have the largest negative (the first four) or the largest positive (the last four)
coefficients for the second pattern shown in Fig. 6.3 (units: [m2]).

The true permeability field and its reparameterized representations are presented
in Fig. 6.6. The prior permeability field (presented in Fig. 6.7) after reparameteri-
zation stays unchanged (see Eq. 5.3).
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Figure 6.6: True (left) and reconstructed true (right) permeability fields [m2].
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Figure 6.7: The average and covariance matrix approximations derived based on
the given ensemble of 999 permeability fields.
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The spatial dependencies between permeability values are described by the co-
variance matrix presented in Fig. 6.7. After reparameterization this covariance
matrix becomes a diagonal matrix with the eigenvalues of the most important pat-
terns on the main diagonal. The differences between original and reparametrized
permeability field result in differences in the simulated saturation and pressure
fields, however, these differences are very small (see Figs. 6.8 and 6.9). In case of
saturation the differences are mostly visible along the fluid front.
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Figure 6.8: The differences (at different time instants) between the pressure field
resulting from the simulation using the true permeability field and the pressure
field resulting from the simulation using the reparametrized permeability field
(units: [Pa]).
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Figure 6.9: The differences (at different time instants) between the saturation field
resulting from the simulation using the true permeability field and the saturation
field resulting from the simulation using the reparametrized permeability fields
(units: [−]).

Figs. 6.10, 6.11 and 6.12 present the rates of the produced water in the production
wells, and bottom hole pressure in the injection well simulated with original and
reparametrized permeability fields. Since the differences in the production data
are small, we decided to use the chosen reparameterization.



88 Chapter 6 Application to history matching problems

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

Time [DAYS]

W
a
te

r 
ra

te
 [
M

3
/S

]

Producer North East

 

 

true logΘ
reparametrize logΘ
prior logΘ

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8
x 10

−4

Time [DAYS]

W
a
te

r 
ra

te
[M

3
/S

]

Producer North West

 

 

true logΘ
reparametrize logΘ
prior logΘ

Figure 6.10: Comparison between the predictions of water breakthrough time and
water flow rates for North-East and North-West production wells, located at the
top of the reservoir, using the true, reconstructed and prior permeability fields.
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Figure 6.11: Comparison between the predictions of water breakthrough time and
water flow rates for South-East and South-West production wells, located at the
bottom of the reservoir, using the true, reconstructed and prior permeability fields.
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Figure 6.12: Comparison between the predictions of bottom hole pressure in the
injection well, located in the middle of the reservoir, using the true, reconstructed
and prior permeability field.
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6.1.3 Reduced-order model settings

Pressure and saturation variables have a totally different physical behavior and
generally a different variability in their values, and therefore we considered them
separately. Figs. 6.15 and 6.16 present the pressure fields at different time in-
stants, for two different permeability fields: the true field and the prior field, while
Figs. 6.13 and 6.14 show the corresponding saturation fields. As noticed in Heijn
et al. (2004), Van Doren et al. (2004) and Cardoso et al. (2009) the pressure behav-
ior shows less variability than the saturation behavior. Therefore, we expect that
more patterns are required to represent the saturation field than the pressure field.
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Figure 6.13: Water saturation distributions at different time instants simulated for
the true permeability field (units: [−]).

Additional settings are required for the model-reduced approaches, in particular,
the number of snapshots and the number of patterns used to built the reduced-
order model. In order to cover the dynamic behavior of the system, snapshots
should be taken during all the assimilation times for different permeability fields.
Snapshots were created by perturbing the permeability field and simulating the
reservoir behavior for the period of time when data were available. We perturbed
each parameter separately, and therefore the number of snapshot simulations was
equal to the number of parameters. The size of the perturbation was based on the
ensemble of realizations; i.e. each realization was projected to the space spanned
by the permeability patterns and the average of the absolute value of the coeffi-
cients was taken as the size of perturbation. When BPOD method is used, ad-
ditional adjoint snapshots are required. The adjoint snapshots were taken sep-
arately for pressure and saturation. Moreover, since the adjoint model changes
when different permeability field is used, the adjoint model was simulated for
each forward simulation used to generate forward snapshots. The settings related
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Figure 6.14: Water saturation distributions at different time instants simulated for
the prior permeability field (units: [−]).
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Figure 6.15: Oil pressure distributions at different time instants simulated for the
true permeability field (units: [Pa]).
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Figure 6.16: Oil pressure distributions at different time instants simulated for the
prior permeability field (units: [Pa]).

to the number of patterns were determined by choosing the relative importance.
Because we considered pressure and saturation separately it gave us the flexibility
to choose different levels of relative importance for each of them. In case of the
POD method the relative importance was set to 99% for saturation and 99.9% for
pressure, while for the BPOD method it was fixed to 99.9% for both of them. In
the BPOD method the number of patterns was lower, and therefore a higher range
of relative importance could be afforted.

6.1.4 History matching results: experiment 1

In history matching our aim is to find a model that is geologically consistent and
gives an acceptable history-match. In this chapter we aim to show that the model-
reduced approach provides such a model in less computation time than the finite-
difference based approach. We performed parameter estimation using the adjoint
approach, the finite difference approach, and the model-reduced approaches and
in all cases we iterated until the objective function reached comparably low val-
ues. The number of measurements used in the assimilation routine was 40. Ac-
cording to criterion given by Eq. 5.33 the value of the objective function for the
estimated parameters θ should fall in the interval:

11.06 ≤ J(θ) ≤ 28.94. (6.1)

The inequality given in Eq. 6.1 is the first quantitative measure to evaluate the
quality of obtained estimates. Another measure is the Root Mean Squared Error
(RMSE) defined as the square root of the mean squared difference between the
true parameter vector and its estimate. Since the objective function derived for
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this problem contains a background term, the true permeability field is not an ar-
gument that minimizes the given objective function, and therefore, RMSE can be
only an indication of the quality of the estimate obtained.
The results of the adjoint-based method are summarized in Table 6.1. The initial
objective function was 1657 and resulted from a simulation with the prior perme-
ability field. The adjoint-based history matching converged after 67 iterations and
resulted in the objective function equal 18.65. The minimization was performed
using a quasi-Newton optimization where the Hessian of the objective function
was updated using the BFGS formula (see Fletcher (1991)). The total computa-
tion time of this method was about 135 simulations (67 evaluations of the adjoint
model and 68 evaluations of the forward model). The estimated permeability field
is presented in Fig. 6.17. The final estimate closely resembles the true field, and its
root mean squared error is 0.55. The same figure shows that the estimate obtained
after 30 iterations is already very similar to the true field and gives the objective
function that falls in the middle of the interval given by Eq. 6.1.
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Figure 6.17: Experiment 1. The estimated permeability fields using the adjoint-
based method after 10, 20, 30, and 67 iterations [m2].

Iter no J nred pred nsim

0 1657 − 20 1
10 31.22 − 20 21(= 1 + 2 · 10)
20 22.72 − 20 41(= 21 + 2 · 10)
30 20.05 − 20 61(= 41 + 2 · 10)
40 19.57 − 20 81(= 61 + 2 · 10)
50 19.01 − 20 101(= 81 + 2 · 10)
60 18.74 − 20 121(= 101 + 2 · 10)
67 18.65 − 20 135(= 121 + 2 · 7)

Table 6.1: Adjoint-based gradient-based history matching. pred, nred and nsim de-
note the number of parameters, the number of patterns and the number of simu-
lations, respectively.

The estimation results of the POD-based model-reduced method are given in Ta-
ble 6.2 and Fig.6.18. We selected 31 pressure and 41 saturation patterns, which
means that the reduced-order model operates in dimension 72 + 20. Some of
those patterns are presented in Figs. 6.19 and 6.20. Those patterns describe the de-
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viations of the pressure and saturation fields from their background trajectories.
From Table 6.2 one can see that a significant decrease in the objective function was
obtained after the first outer iteration. Additional outer iterations were performed
using the same system matrices of the reduced-order model and by updating only
the trajectory. The third outer loop terminated with estimate for which the value
of the objective function decreased to 20.27 and the root mean squared error de-
creased to 0.57. A new reduced-order model could be created in a very closed
neighborhood of the current estimate and additional outer iteration could be per-
formed. Since it is computationally expensive to rebuild the reduced-order model
and the value of the objective function already indicated a good quality estimate,
we did not iterate further.

Outer iter J nred pred nsim

0 1657 − 20 1
1 43.52 72(= 31 + 41) 20 113(= 1 + 20 + 72 + 20)

2 (1) 20.90 72 20 114(= 113 + 1)
3 (1) 20.27 72 20 115(= 114 + 1)

Table 6.2: The POD-based model-reduced gradient-based history matching. pred,
nred and nsim denote the number of parameters, the number of patterns and the
number of simulations, respectively.
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Figure 6.18: Experiment 1. The estimated permeability fields from the POD-based
method after first, second and third outer iterations [m2].

The estimation results using the BPOD-based method are summarized in Table
6.3 and Fig. 6.21. The BPOD-based reduced-order model required 6 pressure and
42 saturation patterns (all pressure and first eight dominant saturation patterns
are presented in Figs. 6.23 and 6.22, respectively). Performing six additional outer
loops resulted in the objective function value that falls in the middle of interval
given by Eq. 6.1. The root mean squared error eRMSE = 0.55 is exactly the same as
the one obtained when using the adjoint method.
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Figure 6.19: Experiment 1. 8 patterns of the saturation field with the largest im-
portance identified by the POD method.
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Figure 6.20: Experiment 1. 8 patterns of the pressure field with the largest impor-
tance identified by the POD method.

Outer iter J nred pred nsim

0 1657 − 20 1
1 66.93 48(= 6 + 42) 20 109(= 1 + 2 · 20 + 48 + 20)

2 (1) 27.12 48 20 110(= 109 + 1)
3 (1) 20.23 48 20 111(= 110 + 1)
4 (1) 19.02 48 20 112(= 111 + 1)
5 (1) 18.76 48 20 113(= 112 + 1)
6 (1) 18.73 48 20 114(= 113 + 1)

Table 6.3: The BPOD-based model-reduced gradient-based history matching. pred,
nred and nsim denote the number of parameters, the number of patterns and the
number of simulations, respectively.
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Figure 6.21: Experiment 1. The estimated permeability fields from the BPOD-
based method after first, second, and sixth outer iterations [m2].
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Figure 6.22: Experiment 1. 8 patterns of the saturation field with the largest im-
portance identified using the BPOD method.
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Figure 6.23: Experiment 1. 6 patterns of the pressure field with the largest impor-
tance identified using the BPOD method.
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In order to compare the computational efficiency of the model-reduced approaches
we performed an additional computation using a finite-difference approach. The
results of this approach are summarized in Table 6.4 and Fig. 6.24. We terminated
the iterations when the objective function reached value 19.85. This required 43
iterations and about 1054 simulations of the forward model. The estimated per-
meability field closely resembles the true field, and has a root mean squared error
eRMSE = 0.68. Moreover, the estimate obtained after 30 iterations is already very
similar to the true field.
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Figure 6.24: Experiment 1. The estimated permeability fields from the finite-
difference based method after 10, 20, 30, and 43 iterations [m2].

Iter no J nred pred nsim

0 1657 − 20 1
10 31.01 − 20 210(= 21 · 10)
20 22.46 − 20 420(= 210 + 21 · 10)
30 20.17 − 20 630(= 420 + 21 · 10)
40 19.91 − 20 840(= 630 + 21 · 10)
43 19.85 − 20 1054(= 840 + 21 · 10 + 4)

Table 6.4: Experiment 1. Finite-difference based gradient-based history matching.
pred, nred and nsim denote the number of parameters, the number of patterns and
the number of simulations, respectively.

We showed that the presented history matching methods were able to find the
geologically consistent models that gave the acceptable history-matches. It is ex-
pected that those models give also better predictions of production curves, such as
oil rates and water rates. An important aspect during water flooding is the right
prediction of the moment when water breaks through in the production wells.
From that moment on, the injected water follows a preferable path to the pro-
duction well and the well starts to produce mostly water. Such a well in the end
becomes unprofitable and has to be closed. Therefore, the next measure to com-
pare the results of the assimilation routines is the water breakthrough time predic-
tion capability. The water breakthrough time was evaluated over a period of 1500
days and is depicted in Figs. 6.25 and 6.26. The curves represent produced water
rates for the true permeability field (red), the prior permeability field (blue), the
permeability field obtained from the adjoint-based method (green), the estimate
obtained from the finite-difference based approach (light blue), the estimate ob-
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tained from the POD-based model-reduced approach (pink) and the BPOD-based
model-reduced approach (yellow). We see that the history matching exercises
resulted in the improved predictions for all the estimates compared to the prior
permeability field. It is difficult to point out the estimate which gave the best
predictions, because it differs from well to well. In the North-East well the best
prediction was given by the POD-based estimate, while in the North-West by the
BPOD-based and the adjoint-based estimates. In the South-West and South-East
the POD-based estimate performed the best.

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

Time [DAYS]

W
a
te

r 
ra

te
 [
M

3
/S

]

Producer North East

 

 

true logΘ
prior logΘ
ADJ logΘ
FD logΘ
POD logΘ
BPOD logΘ

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8
x 10

−4

Time [DAYS]

W
a
te

r 
ra

te
[M

3
/S

]

Producer North West

 

 

true logΘ
prior logΘ
ADJ logΘ
FD logΘ
POD logΘ
BPOD logΘ

Figure 6.25: Experiment 1. Comparison between the predictions of water break-
through time and water flow rates for two production wells, located at the top of
the reservoir, using the estimates obtained with different methods.
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Figure 6.26: Experiment 1. Comparison between the predictions of water break-
through time and water flow rates for two production wells, located at the bottom
of the reservoir, using the estimates obtained with different methods.

In model-reduced data assimilation the calculated gradients are only the approxi-
mations of the true gradients. In Fig. 6.27 the exact gradient used in the first step of
the optimization is compared with the gradients approximated using the BPOD-
based and the POD-based reduced-order forward and adjoint models. We see
that the approximated gradients look very much like the true gradient. Examining
carefully Fig. 6.27 one can notice that the BPOD-based gradient resembles the true
gradient better than the POD-based gradient. The state reconstruction, however,
looks slightly better for the POD-based model than the BPOD-based model.
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Figure 6.27: Experiment 1. The adjoint-based gradient (left), the POD-based gra-
dient (middle) and the BPOD-based gradient (right).
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Figure 6.28: Experiment 1. Comparison of the saturation fields at different time
steps (20th, 30th and the last one) from the original model (left), the POD-based
model (middle) and the BPOD-based model (right).
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Figure 6.29: Experiment 1. Comparison of the pressure fields at different time
steps (20th, 30th and the last one) from the original model (left), the POD-based
model (middle) and the BPOD-based model (right).

In general, the adjoint-based approach is computationally very effective. In this
experiment the largest decrease in the objective function was observed after the
first iterations, and already after 30 iterations it reached a value in the middle of
the statistical interval given by Eq. 6.1. It is known that in case of a quadratic func-
tion the quasi-Newton optimization should converge in a number of iterations
smaller or equal to the number of parameters plus one (which in this experiment
is 21). In our case the objective function was not quadratic and therefore the num-
ber of iterations was larger, and equal 67. The objective function might be more
irregular closer to the optimum, which might cause slower convergence. Since
we used reparametrized parameters, scaling was not an issue; new parameters
were of the same order of magnitude. The total cost of the adjoint-based routine
was approximately 135 simulations. The BPOD-based routine required about 114
simulations. About 40 simulations were performed to collect the snapshots of the
forward model and the adjoint model; 48 simulations were used to approximate
the partial derivatives of the system along selected patterns; 20 additional simu-
lations were required to approximate the partial derivatives of the model along
the permeability patterns; 6 simulations were used to update the trajectory of the
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system. In this experiment the computational cost of the BPOD-based approach
was slightly lower than of the adjoint-based approach. The POD-based method
required about 115 simulations, which is a summation of 20 simulations during
which snapshots were collected, 72 simulations required to approximate the par-
tial derivatives of the model along the state patterns, and 20 simulations required
to approximate the partial derivatives along the permeability patterns and 3 sim-
ulations to calculate the original trajectory of the model. The final value of the
objective function resulting from the POD-based method was comparable to the
value of the objective function resulting from the adjoint routine after 30 itera-
tions, which computational cost was about 61 simulations. Hence, for this exper-
iment the POD-based method was about twice as expensive as the adjoint-based
approach. The finite-difference routine was very expensive, after 43 iterations it
reached the value of the objective function equal 19.85, which required about 1054
simulations. This method was therefore more than 9 times as expensive as the
BPOD-based method. After 30 iterations the finite-difference approach reached
the objective function equal 20.17 which was more than 5 times as expensive as
the POD-based approach.

6.1.5 History matching results: experiment 2

The shape of the true permeability field and the well distribution used in previ-
ous experiment is favorable to the estimation process. The high permeable streak
connecting the injector with two producers results in very informative production
data. Therefore, the true permeability field of the above example turned out to be
easy to estimate, and the conclusions drawn from this case might not be represen-
tative for more complicated shapes. The new true field and its reconstruction are
presented in Fig. 6.30.
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Figure 6.30: Experiment 2. True (left) and reconstructed true (right) permeability
fields [m2].

The results of the adjoint-based method are summarized in Table 6.5 and in Fig.
6.31. The starting value of the objective function was equal 226.49. The routine
terminated after 56 iterations, which required about 113 simulation. The objective
function reached value of 20.33, while the estimated permeability field decreased



102 Chapter 6 Application to history matching problems

the root mean squared error to 0.75. The estimate obtained after 30 iterations was
already very similar to the true field. The computational cost was in this case com-
parable to about 61 simulations.

Iter no J nred pred nsim

0 226.49 − 20 1
10 23.97 − 20 21(= 1 + 2 · 10)
20 22.01 − 20 41(= 21 + 2 · 10)
30 21.21 − 20 61(= 41 + 2 · 10)
40 20.60 − 20 81(= 61 + 2 · 10)
50 20.42 − 20 101(= 81 + 2 · 10)
56 20.33 − 20 113(= 101 + 2 · 6)

Table 6.5: Adjoint-based gradient-based history matching. pred, nred and nsim de-
note the number of parameters, the number of patterns and the number of simu-
lations, respectively.
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Figure 6.31: Experiment 2. The estimated permeability fields from adjoint-based
method after 10, 20, 30, and 56 iterations [m2].

The estimation results of the POD-based method are summarized in Table 6.6 and
Fig. 6.32. We selected 30 pressure and 42 saturation patterns. After first outer
loop the objective function decreased significantly to the value 22.38. The next
outer loop was performed using the same matrices of the reduced-order model
and only updating the trajectory. The additional outer loop resulted in a small de-
crease of the objective function. The root mean squared error of the final estimate
is 0.69.

Outer iter J nred pred nsim

0 226.49 − 20 1
1 22.38 72(= 30 + 42) 20 113(= 1 + 20 + 72 + 20)

2 (1) 22.04 72 20 114(= 113 + 1)

Table 6.6: The POD-based model-reduced gradient-based history matching. pred,
nred and nsim denote the number of parameters, the number of patterns and the
number of simulations, respectively.
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The results of the BPOD-based reduced-order model are summarized in Table 6.7
and Fig. 6.32. The dimension of the reduced-order model was 9 + 49 (resulting
from 9 pressure and 49 saturation patterns). After three outer loops the estimate
improved significantly and resulted in the value of the objective function 20.44
that falls in the center of the interval given by Eq. 6.1. The root mean squared
error of the final estimate equals 0.66. The additional iterations were performed
using the same matrices of the reduced-order model.
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Figure 6.32: Experiment 2. The estimated permeability fields from the POD-based
method (left) and the BPOD-based method (right) [m2].

Outer iter J nred pred nsim

0 226.49 − 20 1
1 26.28 58(= 9 + 49) 20 119(= 1 + 2 · 20 + 58 + 20)

2 (1) 20.60 58 20 120(= 119 + 1)
3 (1) 20.44 58 20 121(= 120 + 1)

Table 6.7: The BPOD-based model-reduced gradient-based history matching. pred,
nred and nsim denote the number of parameters, the number of patterns and the
number of simulations, respectively.

The results of the finite-difference based approach are summarized in Table 6.8
and Fig. 6.33. The routine converged after 36 iterations, which required the time
comparable to about 851 simulations of the forward model. The estimated perme-
ability field resembles the true field, and has a root mean squared error eRMSE =
0.70. Already after 30 iterations very similar results were obtained.

Iter no J nred pred nsim

0 226.49 − 20 1
10 23.94 − 20 210(= 21 · 10)
20 22.13 − 20 420(= 210 + 21 · 10)
30 21.65 − 20 635(= 420 + 21 · 10 + 5)
36 21.56 − 20 851(= 635 + 21 · 10 + 6)

Table 6.8: Finite-difference based gradient-based history matching. pred, nred and
nsim denote the number of parameters, the number of patterns and the number of
simulations, respectively.
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Figure 6.33: Experiment 2. The estimated permeability fields from finite-
difference based method after 10, 20, 30, and 36 iterations [m2].

The water breakthrough time was evaluated over a period of 1500 days and is
depicted in Figs. 6.34 and 6.35. The colors of the curves remained the same as in
Experiment 1. Figs. 6.34 and 6.35 show that for North-West and South-West wells
the predictions of water breakthrough time improved for all the estimates (com-
pared to those obtained from the prior permeability field) but are not perfect. For
the South-East well all the estimates showed the improvement of the magnitude
of the produced water but the water breakthrough moment was predicted worse
compared to the prediction obtained for the prior estimate. In the North-East well
no considerable changes were observed. Since all obtained estimates resulted in
almost identical predictions, the assimilation routines might require more data to
improve the predictions.

In this experiment the adjoint-based approach converged after 56 iterations, which
required about 113 simulations. After 20 iterations of this method the objective
function decreased to 22.01, which is similar to the result obtained from the POD-
based method. The computational effort of those 20 iterations is comparable to
about 41 simulations, while the computational effort of the POD-based method is
comparable to about 114 simulations. In this case the POD-based approach was
about 3 times more expensive than the adjoint-based approach. The BPOD-based
routine converged to a very low value using about 121 simulations, which was
slightly more than for the adjoint-based approach. The finite-difference based
routine was again very expensive. After 36 iterations it reached the value of the
objective function equal to 21.56, which required about 851 simulations. It is there-
fore more than 7 times as expensive as the BPOD-based routine. After 20 iterations
the finite-difference approach reached the objective function equal to 22.13 which
is about 4 times as expensive as the POD-based approach.

6.1.6 Conclusions

In the experiments presented in this chapter, two different realizations from an
ensemble of realizations were chosen to define the true permeability field and the
model-reduced history matching methods were tested. The following conclusions
can be drawn from those studies:

• In both cases presented the model-reduced approaches performed very well.
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Figure 6.34: Experiment 2. Comparison between the predictions of water break-
through time and water flow rates for North-East and North-West production
wells, located at the top of the reservoir, using the estimates obtained with dif-
ferent methods.

The obtained estimates of the permeability field significantly improved com-
pared to the prior fields and gave an acceptable history-match.

• The quality of the prediction capabilities of the models estimated by the
model-reduced methods were very high and comparable to those obtained
by the classical adjoint-based approach.

• The computational time of the presented methods differed. The adjoint-
based method was computationally very effective. In the presented cases the
POD-based method was approximately twice as expensive as the classical
approach, but the BPOD-based method was as efficient as the adjoint-based
method. Both methods were considerably cheaper than the finite-difference
based approach. For the small examples considered (882 states and 441 pa-
rameters) the model-reduced approach showed to perform very well.
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Figure 6.35: Experiment 2. Comparison between the predictions of water break-
through time and water flow rates for South-East and South-West production
wells, located at the bottom of the reservoir, using the estimates obtained with
different methods.

• The classical adjoint-based approach gives the exact gradients of the objec-
tive function with respect to the parameters. The model-reduced history
matching procedure uses a simplified reduced-order forward model and
a corresponding reduced-order adjoint model, and therefore the calculated
gradients are not exact. In the presented cases the approximated gradients
were very close to the true gradients.

• For complex models the classical adjoint-based history matching procedure
is very difficult to implement. The presented POD-based approach is adjoint-
free, is relatively easy to implement and can be used with any reservoir
simulator. The balanced POD-based method requires the adjoint model but
does not require the Jacobians with respect to the parameters.

• The presented cases are probably too small to draw general conclusions. In
large scale models, it might be computationally very expensive to use 99.9%
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of the relative importance to construct the reduced-order model. However,
the reduced-order model offers many tuning parameters that might be used
to reduce the computational time, e.g. the number of simulations to ob-
tain snapshots and the number of patterns used to build the reduced-order
model can be changed. Another relevant parameter in this approach is the
size of the perturbations used to generate snapshots.

• Several tests were performed to assess the impact of these parameters on the
performance of the model-reduced assimilation scheme. Those tests showed
that the perturbation size of the permeability patterns used to generate the
snapshots is a relevant parameter. Obviously, the perturbations which bring
the estimate to the true values would be the most desirable, but they are not
essential to construct a good reduced-order model. Because the reduced-
order model is a linearized form of the original equations, the snapshots
should be taken in a relatively close neighborhood of the linearized trajec-
tory. Another relevant parameter is the number of simulations used to gen-
erate snapshots. Choosing less snapshots and less patterns results in less
variability, and therefore the optimization may not converge to a solution
comparable to that of the adjoint-based method. In the model-reduced ap-
proaches if the assimilation routine does not result in an improvement, the
user may increase the number of patterns used to create the reduced-order
model. This step does not require to recompute all partial derivatives, but
only the partial derivatives along the new patterns. This is not the case when
the number of snapshots have to be increased. The new snapshots can be
added to the existing set of snapshots but since the patterns are recomputed
all partial derivative have to be recomputed too. This is computationally
an expensive part of the model-reduced approach, and therefore, the set of
snapshots should be chosen carefully to avoid the unsuccessful outer loops.

• From our experience we can conclude that using half of the collected snap-
shots or less, an accurate reduced-order model and very good data assimila-
tion results can be obtained. However, to get the results as good as with the
adjoint-based method we need to keep the accuracy relatively high. Based
on several tests we built a guideline for assisted history matching with model-
reduced approaches, i.e.

1. Create snapshots while perturbing two patterns simultaneously, e.g.
perturb in one simulation the most dominant pattern together with the
least dominant ones, and so on.

2. Build the reduced-order model with 80%-90% of the relative impor-
tance and perform the assimilation.

3. Make additional iterations using exactly the same system matrices and
update only the trajectory.

4. Add patterns to the model if necessary, perform assimilation and go to
Step 3 again.

The coming experiment is focused on quantifying the computational bene-
fits of the model-reduced methods for larger and more complex models.
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6.2 Application to a complex 3D model

In the simulator used for the experiments considered in this section, the adjoint
variable is accessible only for the saturation state and results from the adjoint
model of the implicit form of the reservoir equations. This is different than the
adjoint of the explicit form that is assumed in our methodology. Therefore, we
present here only results obtained with the POD-based method.

6.2.1 Model settings

We performed another ’twin experiment’ in which we used the described ap-
proaches to estimate the uncertain permeability field of a 3D reservoir model from
synthetic noisy production data. The model, originally introduced by Van Es-
sen et al. (2009), describes iso-thermal slightly compressible two-phase (oil-water)
flow, in a channelized reservoir with eight injection and four production wells;
see Fig. 6.36. The model is based on the assumptions that the effects of capillary
pressure can be neglected and that the permeability is isotropic.

Figure 6.36: The ’true’ reservoir permeability field with well locations. Producers
are indicated in red, injectors in blue.

• Reservoir geometry:
The reservoir model is a part of a quadrilateral of the size 480m × 480m ×
28m, divided into 60 × 60 × 7 uniform Cartesian grid blocks, of which there
are 18553 active, forming an egg-shaped domain with no-flow boundaries.

• Reservoir properties :
The porosity is assumed to be uniform and equals 0.2. The ’true’ perme-
ability field on a log scale is shown in Fig. 6.37. The permeability contrast
between the channels and the background fill is relatively mild (about a fac-
tor of ten). The rock compressibility cr = 0 · 1/Pa.

• Initial conditions :
The initial reservoir pressures is 40MPa and the initial water saturation is
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taken as connate water saturation Swc = 0.2.

• Well locations and constraints :
Water is injected at a rate of 32m3/d in the eight vertical injectors, while the
four vertical producers are operated at constant bottom-hole pressures of
39.5MPa. All wells are perforated at each layer of the reservoir.

• Fluid properties :
The oil and water viscosities are identical: µo = µw = 10−3Pa · s, and so are
the compressibilities: cw = co = 10−101/Pa. The densities of oil and water
are given by ρo = 900kg/m3, and ρw = 1000kg/m3.

• Relative permeabilities:
We assumed Corey-type relative permeabilities with
Corey exponents for oil and water: no = 4 and nw = 3. The residual oil
saturation was taken as Sor = 0.15, and the connate water saturation as
Swc = 0.2.
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Figure 6.37: Natural log of true permeability field in the 4th layer [m2].

6.2.2 History matching settings

The assimilation period was chosen to be three years during which observations
were taken from 4 production and 8 injection wells every 60 days, resulting in
18 time instances. During this assimilation period water breakthrough occurred
in one well, after about 500 days. Noisy observations were generated from the
model with the ’true’ permeability field, and consisted of bottom-hole pressures
in the injectors, and water and oil rates in the producers, with a random nor-
mally distributed noise of 5% of their values. It resulted in 72 oil rates and 5
water rates measured in the producers and 144 bottom-hole pressures measured
in the injectors, which gives in total 221 data points. In the assimilation proce-
dure, the errors statistics were assumed to be known, i.e. errors were represented
by a normal distribution with zero mean and a standard deviation equal to 5% of
the observed data. Moreover it was assumed, correctly, that distinct observations
were affected by physically independent noise, resulting in a diagonal covariance
matrix for the observation errors. The ensemble of reservoir models was created
using in-house geostatistical software with an anisotropic variogram. We used
an ensemble of 100 realizations which are Gaussian distributed random fields in
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each layer, conditioned to the well data corrupted with an error in the order of
10−4 of the true value. All realizations were conditioned to the same hard data.
Each layer had a randomly-oriented ellipsoidal covariance with randomly-chosen
correlation length between 4 to 8 grid blocks for each layer at each realization. No
vertical correlation was assumed. An ensemble of 100 permeability fields was
used to create the background permeability θinit, taken as the ensemble average,
and to estimate the background error covariance matrix. The permeability field
was reparameterized using a KL-expansion, resulting in 22 permeability patterns
with 22 corresponding parameters. Such a small number of parameters to rep-
resent the 18553 gridblock permeability values is motivated by the fact that the
available data are very sparse, which implies that the identifiability of the param-
eter space is very low (Zandvliet et al. (2008)).

6.2.3 Reduced-order model settings

Additional numerical parameter settings are required for the model-reduced ap-
proach, in particular, the number of snapshots and the number of patterns used
to build the reduced-order model. In order to cover the dynamic behavior of the
system, snapshots should be collected during all the assimilation times for differ-
ent ranges of the permeability fields. However, to get a rough idea of the direction
of the parameter update, we started with a lower number of snapshots in the first
outer iteration (reducing also the dimension of the eigenvalue problem) and we
increased it in the successive ones. We selected a snapshot every 60 days from
11 simulations, where each simulation was based on a different permeability field
created by perturbing two different parameters per simulation. We collected snap-
shots for pressures and saturations separately, which resulted in 200 snapshots for
pressures and 200 snapshots for saturations, and two eigenvalue problems to be
solved. This separation allowed us to choose different relative importance lev-
els for pressure and for saturation, which varied over the iterations. We started
with a lower relative importance in the first outer iteration and increased it in the
successive ones. The relative importance for the pressures was initiated at 85%
for the first iteration and was set to increase 5% in each successive iteration up to
95%. Because the saturation field displays a much larger spatial variability than
the pressure field, it results in a higher number of patterns for the same level of
relative importance. We fixed the relative importance for saturation to 80% in
the first iteration, increasing it in the successive iterations up to 90%, in steps of
5%.

6.2.4 History matching results: experiment 1

It was noticed in Heijn et al. (2004), Van Doren et al. (2004), Cardoso et al. (2009)
and previous experiments that the pressure behavior can be well represented by
a few patterns, but that the situation is worse for the saturation behavior, which
is caused by the moving fluid interface. A significantly larger number of patterns
is therefore required to satisfy the chosen accuracy level. We selected 54 + 11
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patterns for the first iteration (54 for saturation and 11 for pressure), which means
that the reduced-order model operates in dimension 65 + 22. The results of the
first data assimilation experiment are summarized in Table 6.9.

Outer iter J nred pred nsim

0 338 − 22 1
1 113 65 22 98(= 11 + 54 + 11 + 22)

Table 6.9: Model-reduced gradient-based history matching. pred, nred and nsim

denote the number of parameters, the number of patterns and the number of sim-
ulations, respectively.

The initial value of the objective function was 338 and resulted from a simulation
with the prior parameters, as depicted in Fig. 6.38.
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Figure 6.38: Experiment 1. Log of prior permeability field in layer 4 [m2].

The first outer iteration terminated with parameters for which the original objec-
tive function decreased to 113. The stopping criterion for the outer loop, (5.33),
was satisfied (179 ≤ 2J(θ) ≤ 263), and the procedure terminated. The computa-
tional cost of the model-reduced approach was about equal to the time required
to simulate 98 high-order model evaluations. More precisely, 98 is a summation of
11 simulations during which snapshots are collected, 54 + 11 simulations required
to approximate the partial derivatives along saturation and pressure patterns and
22 simulations required to approximate the partial derivatives with respect to the
parameters. The final estimate is presented in Fig. 6.39.

From a geological point of view the obtained estimate does not represent the true
reservoir (see Fig. 6.37 and Fig. 6.39). Clearly, the information coming from sparse
well data is not sufficient to capture the complicated geological structure, a well
known issue in petroleum reservoir history matching. However, if we consider
the match between observed data and predictions in Fig. 6.40, we see that the
history matching exercise resulted in an improved match for past data in all four
producers and improved predictions in three out of the four producers.
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Figure 6.39: Experiment 1. Log of permeability field from the model-reduced ap-
proach in layer 4[m2].
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Figure 6.40: Experiment 1. Oil rate in the production wells, obtained with the
prior permeability field (blue), the true permeability field (red), and the estimated
permeability field (green) using the model-reduced approach. The black vertical
lines indicate the end of the assimilation period.

In an attempt to further reduce the computing time, we repeated the model-
reduced history matching exercise with an even smaller number of patterns to
build the reduced-order model. We obtained similar results in approximately 68
iterations; see Table 6.10 for further details.

Outer iter J nred pred nsim

0 338 − 22 1
1 114 35 22 68(= 11 + 29 + 6 + 22)

Table 6.10: Model-reduced gradient-based history matching with fewer patterns.
pred, nred and nsim denote the number of parameters, the number of patterns and
the number of simulations, respectively.
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Next, we compared the results with those of the classical approach using the ad-
joint of the tangent linear model. Because the convergence of any minimization
problem strongly depends on the number of estimated parameters, we used the
same reparameterization for the adjoint-based case as for the model-reduced case.
It was stopped according to the criterion defined by Eq. 5.31 and Eq. 5.32.

Iterations J nred pred nsim

0 338 − 22 1
15 97 − 22 79(= 15 × 2 + 49)

Table 6.11: Classical adjoint-based history matching. pred and nsim denote the
number of parameters and the number of simulations, respectively.

The adjoint-based history matching exercise converged after 15 iterations (see
Fig. 6.41 and Table 6.11).
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Figure 6.41: Experiment 1. Successive iterations of the objective function value.

The minimization was performed using a quasi-Newton optimization where the
Hessian of the objective function was updated using the BFGS method; see Fletcher
(1991). It required 15 evaluations of the adjoint model and 49 evaluations of
the forward model (additional evaluations of forward model were caused by the
line-search procedure) and obtained a minimal value of the objective function of
97. The estimated parameters and the liquid rates are presented in Fig. 6.42 and
Fig. 6.43, respectively.
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Figure 6.42: Experiment 1. Log of permeability field from the adjoint-based ap-
proach in layer 4 [m2].
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Figure 6.43: Experiment 1. Oil rate in the production wells, obtained with the
prior permeability field (blue), the true permeability field (red), and the estimated
permeability field (green) using the adjoint-based approach. The black vertical
lines indicate the end of the assimilation period.

The results closely resemble those of the model-reduced approach. Both meth-
ods converged to solutions that give good matches for all producers and good
predictions for three out of four producers. In both cases, the difficulty in the pre-
diction is related to the same well, located in the region that is swept least, and for
which the observed production rates are the lowest. Summarizing, for the exam-
ple considered, the approximate derivatives as obtained from the model-reduced
approach resulted in a similar behavior of the optimizer as the ’exact’ derivatives
obtained from the adjoint-based approach.
In order to compare the computational effort of the model-reduced approach we
performed an additional computation using a finite-difference approach. We iter-
ated the optimization until we obtained a value of the objective function compa-
rable to the result of the model-reduced approach. Table 6.12, Fig. 6.44 and Fig.
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6.45 represent those results.

Iterations J nred pred nsim

0 338 − 22 1
6 111 − 22 141(= 6 × 23 + 3)

Table 6.12: Finite-difference based history matching. pred and nsim denote the
number of parameters and the number of simulations, respectively.
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Figure 6.44: Experiment 1. Log of permeability field from the finite-difference
based approach in layer 4 [m2].
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Figure 6.45: Experiment 1. Oil rate in the production wells, obtained with the
prior permeability field (blue), the true permeability field (red), and the estimated
permeability field (green) using the finite-difference based approach. The black
vertical lines indicate the end of the assimilation period.

As expected, the numerical performance of the adjoint-based approach is better
than that of the model-reduced approach. In this example we required 79 and
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98 simulations for each of the methods respectively. In fact we could have used
less iterations in the adjoint-based case to achieve a similar reduction in the ob-
jective function as for the model-reduced case: see Fig. 6.41 which indicates that
we could have used just seven iterations. In that case the adjoint-based approach
would have required only about seven forward, seven backward and an estimated
five line search iterations bringing the total to 19. I.e. the adjoint-based approach
would then be about five times as efficient as the model-reduced approach. At
the other hand there is also scope to improve the efficiency of the model-reduced
approach: as indicated by Table 6.10, an almost identical objective function value
could have been obtained with 35 (=29+6) patterns, which reduces the number of
iterations from 98 to 68. More importantly, the model-reduced approach is more
effective than a finite difference approach, even when using the reparameteriza-
tion as applied in our example. A finite difference approach required six iterations
and one additional function evaluation for the line search routine, which gives
6 × (22 + 1) + 3 = 141 simulations which makes the model-reduced approach
with 35 patterns more than twice as efficient as a finite difference approach.
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Figure 6.46: Experiment 1. Log of permeability field from the model-reduced ap-
proach with fewer patterns in layer 4[m2].

6.2.5 History matching results: experiment 2

In the second experiment we repeated the history matching procedure with a dif-
ferent initial guess for the permeability field. All other settings for model reduc-
tion and history matching stayed the same. For this case we assumed, follow-
ing Van Essen et al. (2009), that the main direction of the channels was known,
e.g. from seismic measurements, but that no specific knowledge about the chan-
nel configuration was available. The set of 100 realizations of the reservoir were
sketched by hand based on the geological insight, with a strong vertical corre-
lation, and each realization displayed an alternative channel configuration. The
generated ensemble of permeability fields was used to create the background per-
meability θinit, taken as the ensemble average, and to estimate the background
error covariance matrix. The results of this experiment are summarized in Table
6.13.
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Outer iter J nred pred nsim

0 838 − 22 1
1 100 51 22 84(= 11 + 47 + 4 + 22)

Table 6.13: Model-reduced gradient-based history matching. pred, nred and nsim

denote the number of parameters, the number of patterns and the number of sim-
ulations, respectively.

We selected 51 (=47+4) patterns for the first outer iteration (47 for saturation and 4
for pressure), which means that the reduced model operates in dimension 51 + 22.
We observed again that the pressure behavior is well represented by a few pat-
terns, only 4, but that the saturation requires significantly more patterns, namely
47. The initial value of the objective function was 838, and results from the prior
parameter field presented in Fig. 6.47.
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Figure 6.47: Experiment 2. Log of prior permeability field in layer 4 [m2].

The first outer iteration terminated with parameters for which the objective func-
tion decreased to 100. The stopping criterion for the outer loop, (5.33), was sat-
isfied (179 ≤ 2J(θ) ≤ 263), and the procedure terminated. In this example, the
computational cost of the model-reduced approach was about the time required
to simulate 84 high-order model evaluations (11 simulations during which snap-
shots are collected, about 47 + 4 simulations required to approximate the partial
derivatives along saturation and pressure patterns and 22 simulations required to
approximate the partial derivatives with respect to parameters). In Fig. 6.48, the
comparison of oil production curves resulting from different permeability fields is
depicted. The estimate is able to reproduce the past data from all four producers,
while the prediction is nearly perfect for two wells (top left and top right plots),
and improved for one well (bottom right plot). Similar to the first experiment, the
worst predictions were obtained for the well depicted on the bottom left plot. The
final estimated parameters are presented in Fig. 6.49.
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Figure 6.48: Experiment 2. Oil rate in the production wells, obtained with the
prior permeability field (blue), the true permeability field (red), and the estimated
permeability field (green) using the model-reduced approach. The black vertical
lines indicate the end of the assimilation period.

Also for this second example we checked the performance of the model-reduced
approach in comparison to the classical adjoint-based approach and a finite-diffe-
rence approach (see Tables 6.13, 6.14 and 6.15), respectively.

Iterations J nred pred nsim

0 838 − 22 1
13 92 − 22 59(= 13 × 2 + 33)

Table 6.14: Classical adjoint-based history matching. pred and nsim denote the
number of parameters and the number of simulations, respectively.

Iterations J nred pred nsim

0 838 − 22 1
11 101 − 22 254(= 11 × 23 + 1)

Table 6.15: Finite-difference based history matching. pred and nsim denote the
number of parameters and the number of simulations, respectively.
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Figure 6.49: Experiment 2. Log of permeability field from the model-reduced ap-
proach in layer 4 [m2].
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Figure 6.50: Experiment 2. Log of permeability field from the adjoint-based ap-
proach in layer 4 [m2].
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Figure 6.51: Experiment 2. Log of permeability field from the finite-difference
based approach in layer 4 [m2].
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Figure 6.52: Experiment 2. Oil rate in the production wells, obtained with the
prior permeability field (blue), the true permeability field (red), the estimated per-
meability field (green) using the adjoint-based approach. The black vertical lines
indicate the end of the assimilation period.
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Figure 6.53: Experiment 2. Oil rate in the production wells, obtained with the prior
permeability field (blue), the true permeability field (red), the estimated perme-
ability field (green) using the finite-difference based approach. The black vertical
lines indicate the end of the assimilation period.

Comparison of Fig. 6.49, 6.50 and 6.51, and comparison of Fig. 6.48, 6.52 and 6.53,
respectively, shows that in the second example the results of the model-reduced
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approach and of a finite-difference based approach come very close to those of the
adjoint-based approach.
The adjoint case converged after 13 iterations (see Fig. 6.54).
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Figure 6.54: Experiment 2. Successive iterations of the objective function value.

It required 13 evaluations of the forward model, another 13 of the adjoint model
and 33 line searches, bringing the total to 59 iterations to reach the minimal objec-
tive function value of 92. Just like in example one, we could have used fewer iter-
ations, five in this case, to obtain a similar objective value function, which would
have brought the total number of iterations for the adjoint-based case to about 15.
In other words, for this second example, the adjoint-based approach is up to about
6 times as efficient as the model-reduced approach. However, also in this case
there is scope to improve the efficiency of the model-reduction by further reduc-
ing the number of patterns. Moreover, the model-reduced approach is now about
three times more efficient efficient than the finite difference approach.

6.2.6 Conclusions

The model-reduced history matching method was used to adapt the permeability
field in a two-phase (oil-water) reservoir simulation model containing 18553 grid
blocks. Two different ensembles of realizations were considered as the prior infor-
mation. The following conclusions can be drawn from these synthetic cases:

• The results from two numerical experiments with different prior permeabil-
ity fields showed that the model-reduced approach gives results comparable
to those of a classical adjoint-based history matching procedure.

• In the examples considered the adjoint-based approach was about five to six
times as efficient as the model-reduced approach, but the latter was about
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two to three times as efficient as a finite difference approach. Moreover,
in case of a larger number of wells, allowing for the estimation of a larger
number of (reparameterized) model parameters, it is expected that the effi-
ciency compared to a finite difference approach improves. If the paralleliza-
tion would be applied (see Chapter 5) then all computations would take the
time of about 3 model simulations because only single outer loops were per-
formed.

• The classical gradient-based history matching procedure is a very efficient
one, but for complex models it is very difficult to implement. The model-
reduced approach is computationally more expensive, but it does not re-
quire access to the simulation code and it is relatively easy to implement.

• The classical adjoint-based approach gives the exact downhill directions,
while the model-reduced history matching procedure generates only ap-
proximations of them. In all cases analyzed by us they proved to be accu-
rate enough to decrease the objective function in all iteration steps. There is,
however, no guarantee that the model-reduced approach will always result
in a decline of the objective function.

6.3 Summary

We presented numerical examples of model-reduced gradient-based history match-
ing based on the POD and the BPOD method. The POD technique identifies a low-
dimensional subspace of the state space, in which the dynamics of the reservoir
state are well represented, while the BPOD technique identifies a low-dimensional
subspace which is relevant for the state representation but also relevant for the ob-
servations. Using those methods simplified linear forms of reservoir flow equa-
tions are derived and used to minimize the mismatch between observed and sim-
ulated outputs. In all the presented cases the model-reduced methods performed
better than the finite difference based approach. The results indicate that compa-
rable quality estimates to those from the classical adjoint-based approach can be
achieved.
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Production optimization of a coupled
flow/geomechanics system

I
n this chapter, the Net Present Value function is optimized with respect to
model inputs during water flooding operation, where water injection takes

place under induced fracturing conditions. In this case, the gradient of the Net
Present Value function with respect to model inputs is not available. Based on
experience, we can try to find a good operation strategy by changing the sce-
narios manually and choosing the best among them. However, this trial-and-
error approach can be computationally very expensive. First, we present the
model-reduced approach adapted to compute the optimal operation strategy
and we explain the numerical difficulties associated with this coupling. Then,
we present the results of the simultaneous perturbation stochastic approxima-
tion algorithm and the finite-difference-based method.

7.1 Introduction

Another use of adjoint-based methods in reservoir engineering is for production
optimization or recovery optimization. In this case the objective function is ulti-
mate recovery or net present value (NPV), and the control variables are the well
rates, well pressures, or well valve settings. Initially, this was done for the op-
timization of tertiary recovery processes, see Ramirez (1987), later followed by
water flooding optimization, see e.g. Asheim (1988), Brouwer and Jansen (2004),
Doublet et al. (2009), Sarma et al. (2008), Sudaryanto and Yortsos (2000), Zand-
vliet et al. (2007) and Jansen (2011a). In this chapter we aim to optimize the NPV
function with respect to model inputs during the water flooding operation, where
the water injection takes place under induced fracturing conditions. In this case,
a gradient of the NPV function with respect to model inputs is not available. An
alternative gradient-based algorithm is the simultaneous perturbation stochastic
approximation (SPSA) method of Spall (1998), where an approximated gradient is
calculated using a stochastic perturbation of all parameters together, which was
proposed for use in the recovery optimization problem by Wang et al. (2009b).

123
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Another method uses an ensemble of control variables and computes the cross-
covariance between the control variables and the objective function which can
then be used as an approximate gradient. This ”ensemble optimization” tech-
nique was proposed for recovery optimization by Lorentzen et al. (2006), and
thereafter refined by Chen et al. (2009). The model-reduced production optimiza-
tion method, similar to the model-reduced history matching method, can be con-
sidered as alternative to these methods. In this chapter we present the adaptation
of the model-reduced approach to production optimization problem and we ex-
plain the numerical difficulties which hampered the application of this method
to the coupled system under consideration. The SPSA did not suffer from these
numerical problems, and therefore was applied. The ”ensemble optimization”
technique of Lorentzen et al. (2006) has been compared with the SPSA by Wang
et al. (2009b). Since in their case it performed significantly worse, we did not con-
sider it here, and we compared the SPSA results with the finite-difference based
approach.

7.2 Production optimization

The injection rates in water flooding strongly influence the growth/shrinkage of
induced fractures around the injection wells (see Van den Hoek et al. (2008)). We
aim to optimize the waterflooding under induced fracturing conditions by chang-
ing the injection rates over a time. We search for a configuration of the injection
rates that optimizes the production profit, which is evaluated by the Net Present
Value (NPV) defined as:

J =
∫ tN

0
φ(t)dt, (7.1)

where tN stands for the total simulation time and the integrand φ(t) is a linear
combination of the well rates, and in our case it is defined as

φ(t) = ∑
p

(

r
p
o (t)q

p
o (t) − r

p
w(t)q

p
w(t)

)

− ∑
i

ri
w(t)qi

w(t), (7.2)

where the first summation is done over all production wells, while the second

summation is done over all injection wells, the rates q
p
o (t), q

p
w(t) stand for the

volume rates of oil and water at reservoir conditions in the production well p at
time t, qi

w(t) stands for the volume rate of injected water in the injection well i at

time t, the weight factors r
p
o (t) and r

p
w(t) stand for the (monetary or other) value

assigned to a unit volume of the oil and water components at time t, the weight
factor ri

w(t) stands for the value assigned to a unit volume of injected water in the
injection well i at time t. For each produced fluid the annual interest rate is taken

into account by defining r
p
l (t) as

r
p
l (t) = r

p
l (t0) f (t)(1 + bl)

−(t−t0)/year (7.3)

where l ∈ {o, w} (o stands for oil and w stands for water) and r
p
l (t0) is the unit

price of component l at reference time t0, f (t) is the price factor for component l
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at time t, bl is the annual discount factor for component l and t0 is the discount
reference time.
The oil and water production rates in the NPV are functions of the control vector u
and the dynamic state vector x, and therefore the NPV can be written as a function
of u and x, J = J(u, x). We aim to adjust the control vector u such that the resulting
objective function reaches its maximum. Typically, to prevent unphysical values
the control vector is restricted by specifying lower and upper bounds: ulow and
uup, respectively. Then the production optimization can be written as

max
u=[u1,...,uN ]

J(u, x1:N) =
N−1

∑
i=0

Ji+1 (ui+1, xi+1)), (7.4)

subject to ulow ≤ u ≤ uup.

One way to transform the constrained optimization problem (7.4) into an uncon-
strained one is by applying the log-transformation on the input vector u (as in
Gao and Reynolds (2006)) given by

si = ln

(

ui − ulow
i

u
up
i − ui

)

, (7.5)

where ui, u
up
i and ulow

i stand for i-th component of the control vector u, uup

and ulow, respectively. As ui approaches ulow
i the transformed variable si ap-

proaches −∞, and as ui approaches u
up
i the transformed variable si approaches

+∞. The update of the control vector in the optimization routine is performed on
the log-transformed vector s. To calculate the objective function at the updated
control vector the inverse log-transformation needs to be applied, which is given
by

ui =
esi u

up
i + ulow

i

1 + esi
. (7.6)

7.3 Model-reduced gradient-based production optim-

ization

In the previous chapter the model-reduced approach was tested on history-ma-
tching problems. Now, we apply the same approach to solve production opti-
mization problem. In production optimization we aim to maximize an objective
function with respect to control vector, and therefore the linearization of the reser-
voir system has to be made around a control vector, ub (instead of the parameter
vector θb). The resulting tangent linear model describes the variation in the state
caused by changes in the inputs, i.e.

∆x̄(ti) =
∂ci[x(ti−1), u]

∂x(ti−1)
∆x̄(ti−1) +

∂ci[x(ti−1), u]

∂u(ti)
∆ū(ti), (7.7)
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where ∆x̄(ti) is a state vector of the tangent linear model and ∆ū(ti) is the varia-
tion from the reference input vector ub(ti). The reduction of the linearized reser-
voir model is then performed using the POD method. The snapshots are gener-
ated by simulating the model with perturbed settings of the control vector. The
perturbations of inputs are relatively small, because only in such a space the lin-
earized model is valid. Using the POD method the dominant patterns for pressure
and saturation are identified, and used to build the projection matrix Φ. Then a
high-order model (7.7) is projected onto the subspace defined by Φ resulting in
the reduced-order linearized model:

z(ti) = Niz(ti−1) + Nu
i ∆u(ti) (7.8)

where

Ni = Φ
T ∂ci[x(ti−1), u]

∂x(ti−1)
Φ , Nu

i = Φ
T ∂ci[x(ti−1), u]

∂u(ti)
, (7.9)

where z represents the response of the reduced-order model to a perturbation of u.
The partial derivatives in the formulas (7.9) can not be easily computed explicitly
and should be approximated in the same manner as described in Chapter 5, i.e. in-

stead of approximating terms
∂ci [x(ti−1),u]

∂x(ti−1)
we approximate the terms

∂ci [x(ti−1),u]
∂x(ti−1)

Φ

as
∂ci[x(ti−1), u]

∂x(ti−1)
φj ≈

ci[x(ti−1) + ǫφj, u] − ci[x(ti−1), u]

ǫ
. (7.10)

This results in a reduced-order model that is linearized along the patterns. The
output model is linearized as well, and its partial derivatives are approximated
in the same manner. Then, the adjoint model for a reduced-order model is easily
implemented. Using the reduced-order reservoir model and its adjoint model the
approximated NPV function and its gradient can be calculated, and the maximiza-
tion problem can be solved. A new solution is an optimum for the reduced-order
linearized system but not necessarily for the original one. Therefore, the value of
the original objective function is checked and the process is repeated if necessary.
The described production optimization algorithm has been summarized by the
flow chart in Fig. 7.1.
The model-reduced gradient-based production optimization method requires many
system perturbations, and therefore it requires high accuracy of the simulation
tool. In the coupled simulator to find the fracture size Li+1 satisfying condition
given by Eq. 2.69 the following steps are iterated:
Step k=0
Take Lk

i+1 = Li and calculate crit(ai+1, σi+1, Lk
i+1) defined by Eq. 2.68. If condition

given by Eq. 2.69 is satisfied, then the fracture size is correct (there is no closure
and no propagation) and the iteration stops. If condition given by Eq. 2.69 is
not satisfied, then the fracture should propagate or close. To know how much to
change the fracture size we go to the next step k + 1.
Step k+1
Using a Taylor expansion we can rewrite the criterion at each fracture tip as

criti+1(σi+1, Lk+1
i+1 , ai+1) ≈ criti+1(σi+1, Lk

i+1, ai+1) +
∂criti+1

∂Li+1
∆Lk+1

i+1 , (7.11)
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Figure 7.1: Model-reduced gradient-based production optimization algorithm.

where the total derivatives
∂criti+1
∂Li+1

are evaluated for Lk
i+1 and ∆Lk+1

i+1 is defined
as

∆Lk+1
i+1 = Lk+1

i+1 − Lk
i+1. (7.12)

The change of one fracture size influences the pressure vector, hence it might in-

fluence the criterion for the remaining fracture sizes.
∂criti+1
∂Li+1

is a square matrix,

which elements describe the sensitivity of the criterion to all fracture sizes. From
Eq. 7.11 we see that it is reasonable to update the solution using the following
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equality

∆Lk+1
i+1 = −

(

∂criti+1

∂Li+1

)−1

criti+1(σi+1, Lk
i+1, ai+1), (7.13)

assuming inversion of
∂criti+1
∂Li+1

. The fracture sizes are updated then according to

Lk+1
i+1 = Lk

i+1 + ∆Lk+1
i+1 (7.14)

and the criterion is recalculated. If criterion (2.69) is satisfied, then the iteration
stops; otherwise step k + 1 is repeated.

Step k + 1 should be iterated until the given condition is satisfied (to a certain
numerical precision). In the fracture simulator described in Chapter 2 the explicit
solver is used, which performs only one update of the fracture sizes per simu-
lation time step. If the simulation time steps are very small then probably one
update will be sufficient, while more updates are expected when time steps are
larger. The explicit solver uses therefore very small time steps and stops the frac-
ture sizes update even if the stopping criterion is not satisfied precisely. Because
of this implementation it turned out to be impossible to accurately calculate the
sensitivity matrices of the system with respect to state patterns and system con-
trols. Since fracture sizes are not computed accurately, the state of the system is
not computed accurately as well. Therefore, the resulting finite-difference sensi-
tivities are not a good approximation of the sensitivity matrices, and they result in
an unstable reduced-order model. Another problem may be caused by the large
number of time steps which is required in the explicit form of the fracture simula-
tor. Since each sensitivity matrix introduces an error in the reduced-order system,
a large number of time steps might result in a large modeling error when the time
propagates, because those errors accumulate. A solution to this problem would
be an implicit form of the fracture size update.

7.4 SPSA versus finite-difference production optimiza-

tion

7.4.1 Model settings

We performed optimization experiments on a 3D two-phase reservoir model with
one induced fracture around the injection well. A unit cell of a 5-spot pattern
with one injection and one production well is modeled. Periodic boundary con-
ditions at the model boundary are used. The model is based on the assumptions
that the effects of capillary pressure can be neglected and that the permeability is
uniform.
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Figure 7.2: Reservoir structure and a five spot pattern. The producer is indicated
in red, the injector in blue.

• Reservoir geometry:
The reservoir model is a quadrilateral with flow boundaries of the size 800m×
800m × 50m, divided into 50 × 50 × 5 uniform Cartesian grid blocks, of
which 7500 are active, while the top and bottom layers represent the cap
and base rock and are not part of the reservoir.

• Reservoir properties :
The porosity and permeability are assumed to be uniform and equal 0.3 and
100mD, respectively. The rock compressibility cr = 15 · 10−10 · 1/Pa.

• Initial conditions :
The initial reservoir pressure is 7.5MPa and the initial water saturation is
taken as connate water saturation Swc = 0.2.

• Well locations and constraints :
Water is injected at a rate of 1650m3/d in the vertical injector, while the ver-
tical producer is operated at constant bottom-hole pressure of 74.9MPa. All
wells are perforated at each layer of the reservoir.

• Fluid properties :
The oil and water viscosities are identical: µo = µw = 5.9 · 10−4Pa · s. The
compressibility of water is: cw = 4.4 · 10−10 while the compressibility of oil
is:co = 3.5 · 10−101/Pa. The densities of oil and water are given by ρo =
920kg/m3, and ρw = 1002kg/m3.

• Relative permeabilities:
We assumed Corey-type relative permeabilities with Corey exponents for
oil and water: no = 1.3 and nw = 1.3. The residual oil saturation was taken
as Sor = 0.1, and the connate water saturation as Swc = 0.2. The end point
relative permeability to water and oil is 1.

• Fracture properties:
We assumed that the fracture is located at the injection well and has an ori-
entation to the production well, 45o with respect to unit cell boundary. The
initial high of the fracture is 5m and is constrained to stay between 0.1m to
25m. The initial length of the fracture is 5m and is constrained to be between
0.1m to 560m. The width of the fracture is fixed to 0.1m. The stress gradient
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is 15.8 · 103Pa/m, the Young’s modulus is 1.8 · 109Ps, the Poisson ration is
0.2 and the fracture toughness is 1.0 · 106Pa/

√
m.

7.4.2 Production settings

For the production optimization considered here, we assumed that the price of
oil is 100$ per barrel, the cost of produced water is 0$ per barrel and the cost of
injected water is 3$, which represents onshore conditions. The price factor f (t) is
set to one and the discount factor bo is set to 0.15. The lower and upper bounds
are ulow = 100m3/d and uup = 3000m3/d, respectively. Injecting water at a rate
higher than uup results in an induced fracture that grows significantly and, may
break through in an adjacent producer. By reducing the injection rate the fracture
can close but the reservoir can not come back to its original condition. Preferably,
the optimized injection strategy should avoid the fracture breakthrough condition
and therefore the maximum injection rate is specified.
To specify the initial injection strategy, three trial simulations with three different
injection rates (constant over time) were performed. Fig. 7.3 depicts the cumula-
tive NPVs for injection rates equal 1000m3/d, 1650m3/d and 3000m3/d.
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Figure 7.3: NPV for three different constant-over-time injection rates: 1000m3/d,
1650m3/d and 3000m3/d.

While injecting water with rate of 1000m3/d the fracture grew relatively fast in
first few days. After an initial transient phase the fracture stopped to grow (see
Fig. 7.4), i.e. the constant rate of 1000m3/d was not sufficient to open it signif-
icantly and the fracture remained relatively small. The horizontal length of this
induced fracture was 5.57m, the upper vertical length was 6.63m, while the lower
vertical length was 4.39m. The NPV resulted from this injection strategy was equal
to 1.8293 · 108$.
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Figure 7.4: Fracture sizes in the period of 10 years for injection rate of 1000m3/d.

The injection rate of 3000m3/d opened the fracture to its maximum allowed sizes,
i.e. the horizontal size reached 520m, and both (up and down) vertical sizes
reached 25m. The total recovery in this case was equal to 1.8563 · 108$.
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Figure 7.5: Fracture sizes over a period of 10 years for injection rate of 3000m3/d.

An injection rate of 1650m3/d was chosen as an initial injection strategy. It re-
sulted in the NPV equal 2.8949 · 108$ (see Fig. 7.6), that was considerably higher
compared to 1000m3/d and 3000m3/d rates. During an initial transient phase
the induced fracture grew to a total length of 43.4m(= 2 · 21.7m) and height of
32.66m(= 25m + 7.66m).
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Figure 7.6: Fracture sizes over a period of 10 years for injection rate of 1650m3/d.

The fracture continued to grow when the water broke through in the producer.
The changes in the fracture sizes over a period of 10 years are depicted in Fig.7.6.
According to Van den Hoek et al. (2008) the moment in which water breaks through
the producer is the optimal timing for reduction of the injection rate, when a rela-
tively high injection rate is applied.

7.4.3 Production optimization results

Two different optimization algorithms were applied to improve the initial re-
covery strategy: the finite-difference based method (FD method) and the SPSA
method, see Chapters 5.5 and 5.4. The SPSA method using a single gradient and
an average of three gradients was applied. The injection rate was allowed to be
changed at a yearly basis, which resulted in 10 control variables. The produc-
tion bottom hole pressure was fixed at 74.9MPa. The stopping criterion similar to
(5.31) and (5.32) were selected to terminate the optimization routine, and a com-
plementary stopping criterion that stops the routine if the number of simulations
exceeds 200 was chosen.
The injection strategies obtained by the FD method and the SPSA method (with
single and multiple gradients) are presented in Fig. 7.7(a).
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Figure 7.7: Injection strategies obtained from the FD and SPSA method (a). Con-
vergence of the FD and SPSA method (b).

The successive iterations of the NPV function of the SPSA and the FD methods
are presented in Fig. 7.7(b). The curve with squares represents the performance of
the FD method while the curves with diamonds and circles represent the perfor-
mance of SPSA with single and multiple gradients, respectively. The FD method
converged after 20 iterations, and its total computational time was about 170 simu-
lations. Using the finite difference formula one gradient calculation requires about
6.5 simulations of the coupled system. Namely, to calculate the perturbation with
respect to u1 the full simulation is required, however, to calculate the perturba-
tion with respect to u2 a model can be restarted from the moment when this input
control becomes active. In case that inputs are splitted in 10 equal intervals, it
means that this perturbation requires 0.9 simulation. The perturbation with re-
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spect to u3 requires 0.8 simulation and so on. The perturbation with respect to
the last control u10 requires only 0.1 simulation. The total time of those perturba-

tions is equal to the sum of an arithmetic sequence and is equal to 5.5(= 10 1+0.1
2 )

simulations. One additional simulation is required to calculate the NPV for the
reference case at which the gradient is approximated. Using the FD method, NPV
increased from 2.9 × 108$ to 3.4 × 108$, which gave an increase of 17%. The per-
formance of the SPSA method with multiple gradients (an average of three gradi-
ents) is represented in Fig. 7.7 by the curve with circles. The convergence of this
method was slower compared to the FD method and the final objective function
was 3.315 · 108$, which gave an improvent of 14%. The total computational cost
of the SPSA method using the multiple gradient was 200 simulations (one itera-
tion of the SPSA method using the multiple gradient requires 7 simulations). The
SPSA with a single gradient converged after 39 iterations and the NPV increased
to 3.3141 · 108$. The total computational cost of the SPSA method with single gra-
dient was 200 simulations too. The convergence curves in Fig. 7.7(b) indicate that
it might be beneficial to use the SPSA method in the first iterations to get the first
rough update and then continue the improvement with the FD method.
The final control vector resulting from the SPSA methods and the FD method are
presented in Fig. 7.7(a). The strategy obtained by the FD method shows a signif-
icant increase in the injection rate at the initial time. After a period of four years
the injection is gradually reduced. The operation strategy resulting from the SPSA
method with a single gradient shows a similar trend. The SPSA method with mul-
tiple gradients resulted in similar strategy for the first 9 years, but in the last year
the injection rate is significantly higher. All the operation strategies, however,
agreed about larger injection rate in the initial operation stage, which is followed
by the decrease in later stage. This is in line with the results of Van den Hoek et al.
(2008).
The production rates and fracture sizes for the best operation scenario are pre-
sented in Fig. 7.8. A drop in the injection rate after 1500 days results in a reduction
of the fracture hight. The water breaks through the adjacent production well after
this change.
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Figure 7.8: Water (blue) and oil(red) rates in the production well and fracture sizes
over a period of 10 years.

7.5 Conclusion

This chapter concerns life cycle optimization of a reservoir operating under in-
duced fracturing conditions.

• The dynamic changes in the reservoir flow are modeled using a fully cou-
pled simulator that includes the induced fracture within existing reservoir
fluid-flow simulator, as described in Zwarts et al. (2006); Hustedt et al. (2008).
An advantage of this implementation is its integration in the framework
of standard tools, while an disadvantage is an explicit form of the fracture
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growth calculation, which makes it computationally expensive, and does
not assure a high accuracy of the fracture sizes at each time step of the sim-
ulation.

• Since the induced fracture is not included in the implementation of the gra-
dient of the NPV function a standard optimization package can not be used.
Therefore, we first applied the model-reduced approach to production op-
timization problem but it resulted in the numerical difficulties. Secondly,
we performed the production optimization using two adjoint-free routines:
the SPSA method and the finite-difference based method. Both approaches
were computationally expensive, however, both methods resulted in the op-
timization strategies that improved the total recovery. Moreover, the shapes
of those injection strategies are in line with work of Van den Hoek et al.
(2008). Using an automatic optimization routine for complex models might
help to find effective optimization strategies that might be difficult to find
by manual adjustments. Combining the experience of reservoir engineers
about fracture behavior with an automatic optimization routine might bring
significant improvement in the recovery of reservoirs operating under in-
duced fracturing conditions.

• Summarizing, computer-assisted optimization of the waterflooding process
in a reservoir operating under induced fracturing conditions is possible,
but computationally it is costly. Therefore, there is a need for deriving the
missing part of the adjoint model, or for implementing an implicit fracture
growth simulation and applying the model-reduced production optimiza-
tion method.



8 CHAPTER

Conclusions

T
h e models used for reservoir flow simulation are of a large scale. The
number of state variables and model parameters are typically of the or-

der of 105 − 106. The most important model parameter to describe flow is
the permeability, which is a property of the reservoir rock and therefore it is
not accurately known. Control of the subsurface flow is, to a limited extent,
possible by changing pressures or flow rates in the wells. The permeability
parameters can be calibrated by using past production data while the control
variables can be optimized by using predictions of the production data. The
research objective of this thesis was to evaluate the performance of a gradient-
based history matching routine which involves a model-order reduction. Ad-
ditionally, the use of adjoint-free methods for production optimization of a
reservoir operating under induced fracturing conditions was considered. This
chapter presents the conclusions of this thesis and recommendations for fu-
ture research.

8.1 Conclusions

• The model-reduced history matching routine consists of two nested loops.
In the outer loop, a reduced-order model is constructed by using snapshots
and perturbations of the original high-order system. In the inner loop, an
adjoint-based history matching problem is solved where the reservoir model
is replaced with its reduced-order proxy model. We have presented model-
reduced gradient-based history matching procedures based on the Proper
Orthogonal Decomposition (POD) and the Balanced Proper Orthogonal De-
composition (BPOD) methods. The POD technique identifies a low-dimen-
sional subspace of the state space, in which the dynamics of the reservoir
state corresponding to different model parameters patterns are well repre-
sented. The BPOD technique aims to preserve only those parts of the state
that are influenced by the parameter patterns and which are relevant for
observations. Because the reduced-order model is designed to capture the
dominant dynamics of the original system (relevant for the considered prob-
lem) we could successfully use it for a fast minimization of the objective

137
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function in the inner loop.

• The POD-based method was used to adapt the permeability field in two-
phase (oil-water) reservoir simulation models. Two synthetic reservoir mod-
els that varied in complexity and size were used. In case of simplistic reser-
voir models the model-reduced approaches performed very well. The com-
puted estimates of the permeability field significantly improved with re-
spect to the prior fields and gave an acceptable history match. The quality
of the predictions of the models estimated by the model-reduced methods
was comparable to the quality of the predictions obtained by the classical
adjoint-based approach. Computationally, the POD-based method was ap-
proximately twice as expensive as the classical approach. The results from
the numerical experiments using more complex and larger simulation mod-
els showed that the model-reduced approach gives results comparable to
those of a classical adjoint-based history matching procedure. In the exam-
ples considered, the adjoint-based approach was about five to six times more
efficient than the model-reduced approach, but the latter was about two to
three times more efficient than a finite difference approach.

• The BPOD-based method was used to adapt the permeability field in sim-
plistic two-phase (oil-water) reservoir simulation models. It showed to be as
efficient as the adjoint-based method or even more efficient than the adjoint-
based method, and of course much faster than the finite difference approach.
Using the BPOD-method we achieved very good matches and very good
predictions quality.

• The classical adjoint-based approach gives the exact gradients of the objec-
tive function with respect to the parameter patterns. The model-reduced
history matching procedure uses a simplified reduced-order forward model
and a corresponding reduced-order adjoint model, and therefore the cal-
culated gradients are not exact. In the considered cases they proved to be
accurate enough to decrease the original objective function in all iteration
steps and to bring it to an acceptable value.

• The classical gradient-based history matching procedure is very efficient but
it is very difficult to implement for complex models. The POD-based model-
reduced approach is computationally more expensive, but it does not re-
quire access to the simulation code and is relatively easy to implement. The
BPOD-based method requires the adjoint states but does not require the Ja-
cobians with respect to the parameters, and may therefore be used as a fast
method to add functionality for assimilating additional parameters to an ex-
isting adjoint code.

• In the model-reduced approach, the approximated objective function is quad-
ratic, and therefore the optimization problem solved using reduced-order
models is simpler than the optimization problem in terms of the original
objective function. The model-reduced gradient can be interpreted as an
ensemble-based gradient, which sometimes may help to overcome conver-
gence to local optima in case of a ’rough’ objective function.
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• The model-reduced approach is very attractive for parallel processing and
the implementation of the code for parallel computation of the model-re-
duced method is as simple as the implementation of the sequential code. The
total computational time in case of parallel implementation is comparable
to the time of three simulations times the number of outer loops. (Per outer
iteration: a parallel run to establish a base-line and to collect snapshots, a
parallel run to compute the perturbations, and another single run to verify
the optimal result using the full-order model.)

• Using only a few (parameter and state) patterns the model-reduced meth-
ods provide approximate solutions for history matching problems and rel-
atively good approximations of the gradients. However, when very accu-
rate gradients are required those methods may require high numbers of pat-
terns. Alternatively the model-reduced methods could be used in combina-
tion with conventional techniques. For instance, after one outer loop of the
model-reduced method a global optimization method could be considered
as a method to improve the matches.

• The approach proposed in this work has a few limitations. In particular,
the perturbations needed in the model-reduced method restrict its use to a
limited number of parameter patterns or controls. Since the sensitivities of
the system with respect to these patterns or controls have to be calculated by
finite-differences, a number of controls or parameter patterns of order larger
than 100 can be computationally demanding. Additionally, it can result in a
very large number of snapshot simulations, and consequently in very large
eigenvalue problems and many state patterns.

• Modeling the reservoir fluid flow under induced fracturing conditions is
difficult. It requires the coupling of a reservoir flow model with a geome-
chanical model that describes the changes in the stress field during reservoir
operation. The change in the pressure field causes changes in the stress field,
while the changes in the stress field cause a fracture propagation or closure,
i.e. changes in the fracture sizes. The changes in the fracture sizes influ-
ence the changes of the pressure field. Therefore, modeling this situation
requires a two-way coupling. It has been shown that a fracture significantly
influences the flow in the reservoir and that by changing the injection rates
the injection induced fracture can be controlled.

• We attempted to optimize production under induced fracturing conditions
using an existing combination of a proprietary reservoir simulator explicitly
coupled to a semi-analytical fracture simulator. Because of numerical prob-
lems, application of the model-reduced approach turned out to be infeasible.
As an alternative, production was therefore optimized using the simultane-
ous perturbation stochastic approximation algorithm (SPSA) and the steep-
est ascent method with finite difference gradients. Both methods resulted in
optimization strategies that improved the total recovery, but they were com-
putationally relatively expensive. Using a classical gradient-based routine,
the production could be efficiently optimized under induced fracturing con-
ditions if an automatic gradient calculation were available for this coupled
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system. Therefore, there is a need for deriving the missing part of the adjoint
model, or for implementing an implicitly coupled fracture growth simula-
tion and applying the model-reduced production optimization method.

8.2 Recommendations

The proposed model-reduced methods need to be further tested.

• In this thesis, we mainly focused on estimation of a permeability field. In
reservoir simulation models there are other parameters that are uncertain
and for which the adjoint-based gradient is often not available, e.g. the pa-
rameters of the relative permeability model or capillary pressure model. The
same tests could be performed and assessed for those parameters.

• During the analysis of the BPOD method we used the fact that the adjoint
model remains the same for all parameters (or controls) as long as the ob-
served data remain the same. Therefore, once we have an adjoint model
available, it can be used in gradient calculation of all remaining parame-
ters (or controls). However, besides the adjoint states, the sensitivities of
the system to the parameter patterns (or controls) under consideration are
also required. Those sensitivities are typically not available. One could try
to derive the sensitivity of the model to the uncertain parameter patterns
or controls by using perturbations, and then used them in an iterative opti-
mization routine. Since the calculation of the sensitivities is computationally
expensive they should be computed only when the next iteration step does
not result in a further reduction of the objective function. This approach
might be compared to other adjoint-free methods.

• Many parameters can be tuned in the model-reduced method. The limited
number of models used in this thesis does not allow us to general conclu-
sions about the performance of this method. The performance of the method
or the quality of an obtained gradient should be studied in detail for a larger
number of models, in terms of the number of patterns, the frequency of
snapshots, the perturbation size, the number of snapshot simulations and
the percentage of the relative importance.
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Summary

S
i nce the world’s energy demand increases every year, the oil & gas indus-
try makes a continuous effort to improve fossil fuel recovery. Physics-based

petroleum reservoir modeling and closed-loop model-based reservoir manage-
ment concept can play an important role here. In this concept measured data are
used to improve the geological model, while the improved model is used to in-
crease the recovery from a field. Both problems can be formulated as optimization
problem, i.e. history matching identifies the parameter values that minimize an
objective function that represents the mismatch between modeled and observed
data while production optimization identifies wells controls that maximize the to-
tal oil recovery or monetary profit. One of the most efficient class of methods to
solve history matching and production optimization problems are gradient-based
methods where the gradients are calculated with the use of an adjoint method.
The implementation of the adjoint method for parameter estimation and control
optimization is, however, very difficult if no Jacobians of the model are available.
This implies that there is a need for gradient-based, but adjoint-free optimiza-
tion methods. A requirement becomes even more pressing if reservoir simulation
is combined with another simulation, e.g. simulation of geomechanics or rock
physics, with a code for which no Jacobians are available. The research objective
of this thesis was to evaluate the performance of a model-reduced gradient-based
history matching routine that does not require a difficult implementation and
involves the reduction of the reservoir system. Additionally, the use of model-
reduced method for production optimization of a reservoir operating under in-
duced fracturing conditions was considered.
In history matching problems one deals with a large number of uncertain param-
eters (usually of order of 104-106) and very sparse observations, while in the pro-
duction optimization one controls a large dimensional system by adjusting a lim-
ited number of controls. Consequently, the values of many model parameters
cannot be verified with measurements due to a relatively few information con-
tent present in them, while in the production optimization only a limited part of
the system can be indeed controlled. In this thesis we proposed a new method
inspired by the results in reduced order modeling (ROM) and system-theoretical
concepts of controllability and observability of the reservoir system. The new ap-
proach assumes that the reservoir dynamics relevant for history matching or pro-
duction optimization can be represented accurately by a much smaller number
of variables than the number of grid cells used in the simulation model. Con-
sequently, the original (nonlinear and high-order) forward model is replaced by
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a linear reduced-order forward model and the adjoint of the tangent linear ap-
proximation of the original forward model is replaced by the adjoint of a linear
reduced-order forward model. The reduced-order model is constructed by means
of the Proper Orthogonal Decomposition (POD) method or Balanced Proper Or-
thogonal Decomposition (BPOD) method. The reduced-order model is not, how-
ever, obtained by the projection of the nonlinear system of equations as in the
conventional projection-based ROM techniques, but instead it is approximated in
the reduced subspace. The conventional POD method requires the availability
of the high-order tangent model, i.e. of the Jacobians with respect to the states
which are not available. The model-reduced method obtains a reduced-order
approximation of the tangent linear model directly by computing approximate
derivatives of the reduced-order model. Then due to the linear character of the
reduced model, the corresponding adjoint model is easily obtained. The gradient
of the objective function is approximated and the minimization problem is solved
in the reduced space; the procedure is iterated with the updated estimate of the
parameters if necessary. The POD-based approach is adjoint-free and can be used
with any reservoir simulator, while the BPOD-based approach requires an adjoint
model but does not require the Jacobians of the model with respect to uncertain
parameters or controls.
At first the model-reduced method was applied to history matching problems and
was evaluated based on its computational efficiency and robustness. In order to
make a valuable judgment this approach was compared to the classical adjoint-
based method, which was available for the estimation of the permeability field.
Permeabilities are described at each cell of the model, and therefore they need to
be re-parameterized. The KL-expansion was used to reduce the parameters space.
The significant reduction of the dimension of the dynamic reservoir model and
parameter space made the approximation of the reduced-order system feasible in
acceptable computation time. In the first studies simplistic reservoir models were
used, for which the model-reduced approach showed to perform very well. The
obtained estimates of the permeability field significantly improved compared to
the prior fields and gave the acceptable history-matches; the quality of the predic-
tion capabilities of the estimated models were very high and comparable to those
obtained by the classical adjoint-based approach. The POD-based method was
approximately twice as expensive as the classical approach, but the BPOD-based
method was comparable to the adjoint-based method. Moreover, both methods
were considerably cheaper than the finite difference approach. These preliminary
results were the first applications of the model-order reduction to history match-
ing problems. After this proof of concept, further studies were carried on more
complex and larger models. The proposed method was capable to obtain sat-
isfactory match with a computational efficiency about five times lower than the
adjoint-based method. Similarly, an improvement in the prediction was obtained.
The second problem considered in this research was to apply the adjoint-free
methods to production optimization of the reservoir operating under special con-
ditions that required coupling of two simulators and for which the adjoint code is
not available. The model-reduced method could not be applied because of a low
accuracy of the simulation solution which in case of long time simulations resulted
in large approximation errors. Therefore, simultaneous perturbation stochastic
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algorithm (SPSA) was applied together with the finite difference gradient-based
method to solve the production optimization problem. SPSA is a gradient-based
method where the gradients are approximated by random perturbations of all
controls in once, while the finite difference method approximates the gradients
by perturbation of each control separately. Both approaches were very simple to
implement, they resulted in the improvement of the production, but they were
computationally relatively expensive.
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Samenvatting

D
o or de elk jaar toenemende vraag naar energie in de wereld, is de olie- en
gasindustrie voortdurend bezig met het verbeteren van de winning van fos-

siele brandstoffen. Hierbij kunnen op natuurkundige wetten gebaseerde reser-
voirmodellen en het closed-loop model gebaseerde reservoir beheer concept een
belangrijke rol spelen. In dit concept worden de gemeten data gebruikt om het
geologisch model te verbeteren, zodat vervolgens dit model gebruikt kan wor-
den voor het bepalen van een betere strategie bij het winnen van de olie uit een
veld. Beide problemen kunnen beschreven worden als een optimalisatieprob-
leem. Bij history matching worden de parameterwaardes bepaald door het mini-
maliseren van een doelfunctie als maat voor het verschil tussen de gemodelleerde
data en de waarnemingen, terwijl bij productie-optimalisatie de stuurparame-
ters van de putten die de totale opbrengst van het veld maximaliseren, worden
geidentificeerd. Eén van de meest efficiënte methodes om history matching en
productie-optimalisatieproblemen op te lossen zijn gradiënt gebaseerde metho-
den, waarbij de gradiënten worden berekend met behulp van het geadjugeerde
model. De implementatie van deze methode voor parameterschatting en opti-
malisatieproblemen is echter heel moeilijk als er geen Jacobiaan van het systeem
beschikbaar is. Dit impliceert dat er een gradiënt gebaseerde, maar “adjoint-free”
optimalisatiemethode nodig is. Een dergelijke aanpak wordt nog belangrijker
als de reservoirsimulatie gecombineerd wordt met andere simulaties, zoals van
geo-mechanica of rots-fysica, met een code waarvoor geen Jacobiaan beschikbaar
is. Het doel van dit proefschrift was het ontwikkelen van een nieuwe “model-
reduced gradient-based history matching” routine die relatief eenvoudig te im-
plementeren is. Daarnaast is de methode tevens toegepast ten behoeve van de
optimalisatie van de productie van een reservoir.
In history matching problemen werkt men met een groot aantal onzekere pa-
rameters (normaliter aantallen van 104 − 106) en relatief weinig meetgegevens,
terwijl men in de productie-optimalisatie hoog dimensionale systemen bestuurt
door het aanpassen van een beperkt aantal stuurparameters. Door de beperkte
hoeveelheid informatie kunnen de waarden van de modelparameters niet gev-
erifieerd worden met behulp van metingen, terwijl in de productie-optimalisatie
alleen een beperkt gedeelte van het systeem daadwerkelijk bestuurd kan worden.
In dit proefschrift stellen wij een nieuwe methode voor die geïnspireerd is door
de reduced order modeling (ROM) aanpak en de systeemtheoretische concepten
bestuurbaarheid en waarneembaarheid van een reservoirsysteem. De nieuwe be-
nadering veronderstelt dat het dynamisch gedrag van het reservoir nauwkeurig
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gerepresenteerd kan worden door een veel kleiner aantal variabelen dan het aan-
tal roosterpunten gebruikt in het simulatiemodel. Derhalve wordt de lineaire
benadering van het originele (niet-lineaire en hoog dimensionale) voorwaartse
model in de klassieke aanpak vervangen door een lineair gereduceerd voorwaarts
model. Het gereduceerde model wordt samengesteld met behulp van de Proper
Orthogonal Decomposition (POD) methode of de Balanced Proper Orthogonal
Decomposition (BPOD) methode. Het gereduceerde model is hierbij niet verkre-
gen door de projectie van de niet-lineaire modelvergelijkingen zoals in de con-
ventionele ROM-technieken, maar in plaats daarvan wordt het benaderd in de
gereduceerde deelruimte. De conventionele POD-methode vereist de beschik-
baarheid van het gelineariseerde model, bijvoorbeeld van de Jacobiaan met be-
trekking tot de toestanden. In de praktijk is deze informatie echter meestal niet
beschikbaar. Bij de in dit proefschrift voorgestelde aanpak wordt een benader-
ing van het gelineariseerde model rechtstreeks verkregen door het berekenen van
numerieke benaderingen van de afgeleiden van het gereduceerde model. Ver-
volgens is door het lineair karakter van het gereduceerde model ook het bijbe-
horende adjugeerde model makkelijk te bepalen. De gradiënt van de doelfunctie
kan vervolgens worden benaderd en het minimalisatieprobleem kan dan wor-
den opgelost in de gereduceerde ruimte. De procedure kan daarna worden her-
haald met de aangepaste parameters indien nodig. De POD-gebaseerde benader-
ing is “adjoint-free” en kan gebruikt worden in combinatie met iedere reservoir-
simulator, terwijl de BPOD-gebaseerde benadering wel een geadjugeerd model
vereist, maar geen Jacobiaan van het model met betrekking tot de onzekere mod-
elparameters of stuurparameters. De ROM-methode is eerst toegepast op history
matching problemen en is daarbij uitvoerig geëvalueerd op efficiëntie en robuus-
theid. De ROM-aanpak is hierbij tevens vergeleken met de klassieke geadjugeerde
methode, die beschikbaar was voor de cshatting van het permeabiliteitsveld. De
permeabiliteit is gedefinieerd in iedere cel van het model en moet daarom eerst
geparameteriseerd worden. De KL-expansie werd hierbij gebruikt om de param-
etersruimte te reduceren. De significante reductie van de dimensie van het dy-
namische reservoirmodel en de parametersruimte maakte de benadering van het
gereduceerde systeem in een acceptabele rekentijd mogelijk.
In de eerste studies werden relatief eenvoudige reservoirmodellen gebruikt, waar-
bij de POD-benadering goede resultaten liet zien. De verkregen schattingen van
het permeabiliteitsveld waren significant beter en de kwaliteit van de voorspellin-
gen van het gereduceerde model was erg hoog en vergelijkbaar met die verkre-
gen met de klassieke geadjugeerde benadering. De BPOD-gebaseerde methode
was ook vergelijkbaar met de klassieke geadjugeerde methode. Beide methoden
waren aanzienlijk goedkoper dan de bekende eindige differentiebenadering voor
het bepalen van de gradiënt. Na dit “proof of concept” werden andere studies
gedaan met complexere en grotere modellen. De voorgestelde methode bleek in
staat om bevredigende resultaten te krijgen met een efficiëntie van ongeveer vijf-
maal minder dan de klassieke geadjugeerde methode.
Het tweede probleem bestudeerd in dit onderzoek was het toepassen van de
nieuwe “adjoint-free” methode op de optimalisatie van de productie van een reser-
voir onder speciale condities die een koppeling vereisten van twee simulatoren
en waarbij de geadjugeerde code niet beschikbaar was. De ROM-methode kon
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helaas niet worden toegepast door een lage nauwkeurigheid van de simulatie van
het originele model, die vooral in geval van lange simulatieperioden resulteerde
in significante numerieke fouten. Derhalve werden de “simultaneous perturba-
tion stochastic algorithm” (SPSA) en de eindige differentie gradiënt-gebaseerde
methode beide toegepast om het optimalisatieprobleem op te lossen. SPSA is een
gradiënt-gebaseerde methode waarbij de gradiënten worden benaderd door ran-
dom perturbaties van alle stuurparameters tegelijkertijd, terwijl de eindige differ-
entie methode de gradiënten benadert door perturbaties van ieder stuurparame-
ter afzonderlijk. Beide benaderingen waren erg gemakkelijk om te implementeren
en resulteerden in een duidelijke verbetering van de productie, maar ze waren re-
latief duur om te berekenen.
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