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ABSTRACT

We derive a reduced control system model for the dynam-

ics of compressible gas flow through a pipeline subject to dis-

tributed time-varying injections, withdrawals, and control ac-

tions of compressors. The gas dynamics PDE equations are sim-

plified using lumped elements to a nonlinear ODE system with

matrix coefficients. We verify that low-order integration of this

ODE system with adaptive time-stepping is computationally con-

sistent with solution of the PDE system using a split-step char-

acteristic scheme on a regular space-time grid for a realistic

pipeline model. Furthermore, the reduced model is tractable for

use as the dynamic constraints of the optimal control problem of

minimizing compression costs given transient withdrawals and

gas pressure constraints. We discretize this problem as a finite

nonlinear program using a pseudospectral collocation scheme,

which we solve to obtain a polynomial approximation of the op-

timal transient compression controls. The method is applied to

an example involving the Williams-Transco pipeline.

1 INTRODUCTION

Recent trends compel the development of methods for mod-

eling and optimizing transient dynamics of natural gas pipelines

[1]. Advances in extraction technologies have led to abundant

and inexpensive natural gas, which has resulted in rapid con-

struction of new gas-fired electric power plants, whose gas con-

sumption is far more variable and less predictable than that of

residential and industrial consumers. This has resulted in un-

precedented variability in dynamics of natural gas transmission

systems, which are being subjected to transient stresses under

which they were not designed to operate. A new approach to

modeling such stochastic influences and reducing the risk to gas

pipelines has been proposed [2]. To develop more flexible, se-

cure, and responsive operation of gas transmission pipeline sys-

tems, it is necessary to examine them as dynamical control sys-

tems, and apply control-theoretic principles to formulate effec-

tive and tractable control techniques. Moreover, using a dynamic

optimal control model that incorporates available information on

time-varying gas withdrawals increases the effective capacity of

a pipeline over current operating practices, and hence provides a

solution to the challenge of inconsistent regional demand.

The dynamics of transient flow of natural gas in a transmis-

sion pipeline can be represented by the Euler equations for com-

pressible gas flow in one-dimension [3, 4]. For physically rele-

vant parameters, this system of PDEs is defined over very large

scales in distance and time, and is highly nonlinear even with

physical modeling simplifications [5]. As a result, transient flows

in pipelines on the scale of hundreds of kilometers are problem-



atic to simulate, and many methods have been proposed [6, 7].

Indeed, pipeline simulation is an area of increasingly active re-

search [8–10], and is of interest to gas system operators.

The ultimate goal of pipeline modeling and simulation is to

optimize natural gas transmission operations by managing com-

pressor stations and other system functions. However, the dif-

ficulty of characterizing the dynamics of transient compressible

gas flow in large pipelines presents challenges for engineering,

design, and operation of such systems. The effectiveness and

scalability of an optimization methodology will largely depend

on model reduction and discretization of the PDE constraints that

represent gas dynamics over widely distributed space and time

domains, and any approach is computationally intensive. Early

studies of pipeline optimization [11–13] examined steady-state

gas flows, in which the PDE dynamics reduce to simple alge-

braic relations. Recent efforts have improved and scaled up opti-

mization techniques for similar problems [14–17]. Optimization

of multi-day operations of gas pipeline networks involving tran-

sient flows was examined in several studies [18–20], and recent

work has involved economic model predictive control [21, 22].

In those studies the PDE constraints are represented with im-

plicit first order schemes in space and time, which result in very

large-scale problems due to the fine discretization required to ad-

equately resolve transients on the time-scales of interest.

In this manuscript we extend the notion of the static opti-

mal gas flow (OGF) [16] to the transient case. The objective

is to minimize the power expenditure, hence the operating cost,

of compressors distributed along a gas pipeline, subject to tran-

sient injections and withdrawals along its extent, while satisfying

system pressure constraints. We formulate the gas pipeline man-

agement problem of economic transient compression (ETC) as a

PDE-constrained optimal control problem (OCP). The PDE con-

straints are then approximated by a control system derived from

a model reduction for gas pipeline dynamics [23]. This modified

OCP is then approximated using pseudospectral (PS) discretiza-

tion [24] to yield a nonlinear program (NLP) whose decision

variables are coefficients of a polynomial approximation for the

control model variables. Our approach provides several advan-

tages relative to previous methods. The representation of contin-

uous dynamics using polynomials provides spectral accuracy, so

that comparable fidelity is obtained using coarser discretization,

and thus far fewer decision variables are required. In addition,

the control system model can be integrated using an ODE solver

to validate compression functions produced by solving the NLP.

The manuscript is organized as follows. Section 2 contains

a summary of the physics of compressible gas flow in pipelines.

In Section 3, we formulate the ETC OCP, and in Section 4 a

reduced control system model is derived for compressible gas

flow through a transmission pipeline subject to time-varying in-

jections, withdrawals, and actions of compressors. The model

is computationally validated in Section 5 through comparison to

a split-step characteristic scheme on a regular space-time grid

using realistic pipeline parameters. In Section 6, we reformu-

late the ETC OCP using the reduced model in Section 4 for the

dynamic constraints. We describe implementation of the solu-

tion through approximation of the OCP by an NLP using the

Legendre-Gauss-Lobatto (LGL) PS collocation method, which

is summarized in Appendix A. A simple example is then used to

test the method and interpret the solution. Section 7 describes

a case study of a 1095 mile section of the Williams-Transco

pipeline, for which the ETC solution is computed and compared

to the OGF. Finally, Section 8 contains some discussion and sug-

gests directions for future work.

2 GAS PIPELINE DYNAMICS

Adiabatic flow of a compressible gas in a pipeline is de-

scribed by the Euler equations in one dimension [6], given by

∂tρ+∂x(vρ) = 0, (1)

∂t(ρv)+∂x(ρv2 + p) =− λ

2D
ρv|v|−ρgsinθ, (2)

which represent mass conservation and momentum balance. The

variables are gas velocity v, pressure p, and density ρ, defined

on a domain x ∈ [0,L] at time t. The parameters are the friction

factor λ, pipe diameter D, gravitational acceleration g, and pipe

angle θ. The terms on the right hand side of (2) aggregate friction

and gravity effects. We assume that gas pressure p and density

ρ satisfy the relation p = ρZRT , where Z, R, and T , are the gas

compressibility factor, ideal gas constant, and temperature, re-

spectively. Equation (2) is valid in the regime when changes in

gas consumption and injections are sufficiently slow to not ex-

cite propagation of sound waves. Formally, the term ∂t(ρv) on

the left hand side is much smaller than ∂x(ρv2 + p). The ratio

of the pressure gradient term ∂x p to the term ∂t(ρv) is typically

on the order of 1 : 0.01 [4]. In addition, the flow velocities are

much smaller than the speed of sound, a =
√

ZRT , so that the

gas advection term ∂x(ρv2) can be omitted, even in comparison

with the already small term ∂t(ρv). We assume that the pipeline

is level, thus ignoring the gravity term ρgsinθ on the right hand

side of (2), and that the gas temperature is uniform along the

pipeline, which yields p = a2ρ. With these assumptions, (1) and

(2) can be written in terms of mass flux φ = ρv as

∂tρ+∂xφ = 0, ∂tφ+a2∂xρ =− λ

2D

φ|φ|
ρ

. (3)

The gas dynamics on a pipeline segment are represented

using (3), with a unique solution when any two of the bound-

ary conditions ρ(t,0) = ρ0(t), φ(t,0) = φ0(t), ρ(t,L) = ρL(t), or

φ(t,L) = φL(t) are specified. For both notational and numerical

purposes, we first apply the dimensional transformations

t̂ =
t

ℓ/a
, x̂ =

x

ℓ
, p̂ =

ρ

ρ0
, φ̂ =

φ

aρ0
, (4)

to yield a non-dimensional system

∂tρ+∂xφ = 0, ∂tφ+∂xρ =− λℓ

2D

φ|φ|
ρ

, (5)



Figure 1. Illustration of a pipeline with injection s0, a compressor α, and

withdrawals di. Top: The dynamical solution is determined by functions

for pressure ρi and mass flux φi on multiple domains, with boundary con-

ditions associated with each withdrawal and compression. Shading il-

lustrates density; Bottom: The continuous system is reduced to a graph

representation with flows on links and densities at nodes.

in which the hats have been omitted for readability. In Sections

3-6 we use the non-dimensional units.

Because friction causes pressure to decrease along the

pipeline, gas compressors are used to boost the pressure to main-

tain it above the minimum level required for delivery to cus-

tomers. The compressors provide pipeline operators with the

means to actuate the state of the transmission system. Because

the size of a compressor station is very small compared to the

distance of a pipeline, we model the action of a compressor as a

multiplicative increase in density at a point x = c with conserva-

tion of flow. This action is expressed as ρ(t,c+) = α(t)ρ(t,c−)
and φ(t,c+) = φ(t,c−), where α(t) is a time-dependent com-

pression factor. We use the notation h(c−) = limxրc h(x) and

h(c+) = limxցc h(x). The compressor power is proportional to

C ∝
1

η
|φ(t,c)|(max{α(t),1}2m −1) (6)

with 0 < m < (γ−1)/γ < 1 where γ is the heat capacity ratio and

η is the compressor efficiency [11, 16]. Note that using this for-

mulation, decompression (α(t)< 1) does not require any power.

3 ECONOMIC TRANSIENT COMPRESSION

Consider a large-scale natural gas transmission pipeline with

junctions distributed along its length at which the pressure can be

boosted by a compressor or gas can be injected or withdrawn.

Between such junctions the mass flux and density evolve ac-

cording to (5). The sequence of segments connected at junc-

tions can be considered as a graph G = (V ,E), where each

segment is an edge j ∈ E = {1, . . . ,M} that connects junctions

j−1, j ∈ V = {0,1, . . . ,M}, as illustrated in Figure 1. We only

consider chain graphs here, i.e., with M = |E | edges that connect

M+1 = |V | nodes in a chain.

The state of the jth pipeline segment consists of density ρ j

and flux φ j defined on a time interval T = [0,T ], and in the dis-

tance variable x j ∈ [0,L j] = L j. Defining the domain of the PDE

solution for the jth pipe segment as D j = T ×L j, the state func-

tions are expressed as ρ j : D j → R
+ and φ j : D j → R, which

satisfy

∂tρ j +∂xφ j = 0, ∀ j = 1, . . . ,M, (7)

∂tφ j +∂xρ j =− λℓ

2D

φ j|φ j|
ρ j

, ∀ j = 1, . . . ,M. (8)

For simplicity, we assume that each junction j = 0,1, . . . ,M −1

may have a compressor station that boosts the pressure of gas en-

tering pipe segment j+ 1 ∈ E according to multiplicative com-

pression ratios α j : T → R+ for j = 0, . . . ,M−1. We denote by

s0(t) the density of gas entering the supply terminal 0∈V before

compression by α0(t). Mass flux withdrawals (or injections, if

negative) at remaining junctions j ∈ VD = V \ {0} are denoted

by d j(t). The functions α j(t), d j(t) and s0(t) create density and

flux balance boundary conditions on (7)-(8) in the form of

ρ j+1(t,0) = α j(t)ρ j(t,L j), j = 1, . . . ,M−1 (9)

φ j+1(t,0) = φ j(t,L j)+d j(t), j = 1, . . . ,M−1 (10)

ρ1(t,0) = α0(t)s0(t), (11)

φM(t,LM) = dM(t). (12)

Our objective is to minimize compression costs JE of the

form (6) over T ,

JE =
M

∑
j=1

∫ T

0

1

η
|φ j(t,0)|

(
(max{α j−1(t),1})2m −1

)
dt. (13)

We also impose constraints on the gas density and compression

ratios,

ρmin
j ≤ ρ j(t,x)≤ ρmax

j , j = 1, . . . ,M, (14)

0 ≤ α j(t)≤ αmax
j , j = 0, . . . ,M−1. (15)

In normal operations, we consider periodic boundary conditions

in time, i.e.,

p j(0,x j) = p j(T,x j), j = 1, . . . ,M, (16)

φ(0,x j) = φ(T,x j), j = 1, . . . ,M, (17)

α j(0) = α j(T ), j = 0, . . . ,M−1, (18)

which requires the gas withdrawals and injections to satisfy

d j(0) = d j(T ) for j = 1, . . . ,M, and s0(0) = s0(T ). For day-

ahead operational planning, the time horizon of interest is on the

order of T = 24 hours. The OCP takes the following formulation:

min
α j , ∀ j

JE in (13)

s.t. dynamic PDE constraints: (7)− (8), (19)

nodal boundary conditions: (9)− (12),

density and compression constraints: (14)− (15),

time-periodicity: (16)− (18).

The OCP (19) is analytically intractable, and is computationally

challenging even in the case of M = 1, i.e., a single pipeline seg-

ment [25]. In the next section, we extend a model reduction for



flows on gas networks [23] to derive a control system to replace

the constraints (7)-(8) and (9)-(12) in the OCP (19). This yields

a tractable problem, as described in Section 6.

4 MODEL REDUCTION OF GAS PIPELINE DYNAMICS

We design a control system using a tractable yet accurate

model of the PDEs (7)-(8) on a cascade of pipeline segments with

boundary conditions (9)-(12) resulting from compression and/or

gas injection or withdrawal, as shown in Figure 1. A segment of

(non-dimensional) length L is modeled as a lumped element by

integrating (7)-(8) with respect to x,

∫ L

0
(∂tρ j +∂xφ j)dx = 0, (20)

∫ L

0
(∂tφ j +a2∂xρ j)dx =− λℓ

2D

∫ L

0

φ j|φ j|
ρ j

dx, (21)

with the integrals of ∂t , ∂x, and nonlinear terms evaluated using

the trapezoid rule, the fundamental theorem of calculus, and av-

eraging variables, respectively:

L

2
( d

dt
ρ0

j +
d
dt

ρL
j ) = φ0 −φL, (22)

L

2
( d

dt
φ0

j +
d
dt

φL
j ) = ρ0 −ρL −

λℓ

4D
·L

(φ0
j +φL

j )|φ0
j +φL

j |
ρ0

j +ρL
j

. (23)

Here, ρ0
j , φ0

j and ρL
j , φL

j denote density and flux at the start and

end of the jth segment, respectively.

Defining input and output flows φ0
j and φL

j , and densities

ρ0
j > 0 and ρL

j > 0, equations (22)-(23) for each edge with bound-

ary conditions (9)-(11) yield a differential-algebraic equation

(DAE) system where

0 = ρ0
j+1 −α jρ

L
j , (24)

d j = φL
j −φ0

j+1, (25)

d
dt

ρL
j +

d
dt

ρ0
j

2
=−

φL
j −φ0

j

L j

, (26)

d
dt

φL
j +

d
dt

φ0
j

2
=−

ρL
j −ρ0

j

L j

− λ jℓ

4D j

(
(φL

j +φ0
j)|φL

j +φ0
j |

ρL
j +ρ0

j

)
(27)

for each for each j = 1, . . . ,M, and ρ0
0 = α0s0. Here (24) repre-

sents continuity of pressure at junctions with jumps in the case of

compression, (25) represents nodal flow balance, and (26)-(27)

represent edge dynamics.

We employ graph-theoretic notation from Section 3 to ex-

press (24)-(27) in matrix-vector form. For the graph G , we define

the weighted incidence matrix

Bi j =





1 edge j enters node i, i.e., j = i

−α j edge j leaves node i, i.e., j = i+1

0 else

(28)

as well as the incidence matrix A = sign(B). In addition, let As

and Bs denote the first rows of A and B, and let Ad and Bd de-

note the remaining rows. Then let AL and A0 denote the positive

and negative parts of Ad , so that Ad = AL +A0. Also, define the

diagonal matrices Λ and K by Λii = Li and Kii = ℓλi/Di, where

Li, λi, and Di are the nondimensional length, friction coefficient,

and diameter of the ith pipe segment. Finally, define a func-

tion g : RM ×R
M
+ → R

M by g j(x,y) = x j|x j|/y j. Then letting

ρ = (ρL
1 , . . . ,ρ

L
M)T , φ0 = (φ0

1, . . . ,φ
0
M)T , φL = (φL

1 , . . . ,φ
L
M)T , and

d = (d1, . . . ,dM)T , equations (24)-(27) are written as

d = ALφL +A0φ0, (29)

|BT
s | d

dt
s0 + |BT

d | d
dt

ρ =−4Λ−1 1
2
(φL −φ0), (30)

1
2
( d

dt
φL +

d
dt

φ0) =−Λ−1(BT
s s0 +BT

d ρ)

−Kg( 1
2
(φL +φ0), |BT

s |s0 + |BT
d |ρ). (31)

Note that Ad = AL +A0 and |Ad | = AL −A0, so by defining

φ = 1
2
(φL +φ0) and φ− = 1

2
(φL −φ0) we may replace (29) with

d = Adφ+ |Ad |φ−, the right hand side of (30) with −4Λ−1φ−,

and the left hand side of (31) with d
dt

φ. Then multiplying (30)

by |Ad |Λ results in |Ad |Λ|BT
s | d

dt
s0+ |Ad |Λ|BT

d | d
dt

ρ=−4|Ad |φ− =
4(Adφ− d). The DAE system (29)-(31) may then be written as

an ODE system

d
dt

ρ = (|Ad |Λ|BT
d |)−1[4(Adφ−d)−|Ad |Λ|BT

s | d
dt

s0], (32)

d
dt

φ =−Λ−1(BT
s s0 +BT

d ρ)−Kg(φ, |BT
s |s0 + |BT

d |ρ), (33)

where the element φ j of φ = (φ1, . . . ,φM)T approximates the

mass flux on the jth pipe segment. Note that Ad ∈ R
M×M ,

Bd ∈ R
M×M , and Λ are full rank, hence |Ad |Λ|BT

d | is invertible.

Time-varying parameters are gas withdrawals d ∈R
M , input den-

sity s0 ∈ R+, and compressions α0, . . . ,αM−1 contained in Bd ,

where α j, 6= 1 only if node j ∈ V has an active compressor.

Consistency. For a pipeline of (dimensional) length L with

no compression or intermediate withdrawals and M segments of

uniform length L/M, resulting in nodes at x j ∈ {0,L/M, . . . ,L},

it can be shown that W = |Ad |Λ|BT
d | is tridiagonal with Wj, j−1 =

L/(Mℓ), Wj, j = 2L/(Mℓ), and Wj, j+1 = L/(Mℓ), and matrix Ad

satisfies (Ad) j, j = 1, (Ad) j, j+1 =−1. If at time t we have ρ j(t) =
ρ(t,x j) and φ j(t) = φ(t,x j − 1

2
ℓ), then (32)-(33) yield

1

4
( d

dt
ρ j−1 +2 d

dt
ρ j +

d
dt

ρ j+1) =− L

Mℓ
(φ j −φ j+1), (34)

d
dt

φ j =− L

Mℓ
(ρ j −ρ j−1)−

λℓ

2D

φ j|φ j|
1
2
(ρ j +ρ j−1)

, (35)

as well as in ρ0 = s0 and φM = dM at the boundaries. Taking

the limit as M → ∞ yields (7)-(8). It follows that the equa-

tions (32)-(33) are a consistent space-discretization of the PDEs

(7)-(8) when α j ≡ 1 for j = 0, . . . ,M − 1 and d j ≡ 0 for all

j = 1, . . . ,M − 1. Thus the solution to (32)-(33) using an im-

plicit Euler ODE integrator with a sufficiently small time-step

will converge to the solution to (7)-(8) as M is increased [26].

Equations (32)-(33) were used to simulate a basic pipeline

model [7], with slow transients in input pressure and output flux
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Figure 2. Simulation of pipeline with L = 100 km, D = 0.5 m,

a = 378 m/s, λ = 0.011 and boundary conditions s(t) = 4.5(1 +
0.1sin(6πt/T )) MPa and d(t) = 289(1+ 0.1sin(4πt/T )) kg/m2/s

for T = 12 hours. Steady-state initial conditions are imposed. (a) input

pressure s(t) and (b) output flux d(t); Computed (c) pressure and (d)

flow solutions for reduced model with M = 21 space points and 85 time

points using adaptive solver ode15s in MATLAB with relative error tol-

erance of 10−4; Relative difference in (e) pressure and (f) flow between

the reduced model and split-step solution using 201 space points and 654

time points; (g) output pressure and (h) input flux solutions of the reduced

model (RM) and split-step (SS) solutions differ by under 0.5%.

over 12 hours. The computation can be executed using the adap-

tive solver ode15s in MATLAB with error tolerance 10−4 on a

2.5 GHz core i5 processor in under 0.5 seconds. For boundary

conditions in Figures 2a and 2b, the pressure and flow along the

pipeline are shown in Figures 2c and 2d. In the next section, the

reduced model (32)-(33) is validated by comparing this simula-

tion to one using a split-step method for approximating solutions

to this hyperbolic PDE system.

5 VALIDATION OF THE REDUCED DYNAMICAL

MODEL USING A SPLIT-STEP METHOD

To validate the reduced ODE model (32)-(33), the simula-

tion in Figure 2 is compared to a solution of the same system

using a split-step integrator [27]. The operator splitting method

[28] is used to produce an accurate numerical solution of the sys-

tem (7)-(8) by splitting the operator corresponding to the PDE

system into two simpler operators that can be applied exactly.

Linear step. The first operator corresponds to the solution of the

homogeneous part of (7)-(8):

∂tρ+∂xφ = 0, ∂tφ+∂xρ = 0 (36)

This is a linear hyperbolic system with unit propagation constant,

which in dimensional form is the speed of sound a. This system

can be solved exactly using the method of characteristics after

the following diagonalization:

~w =

(
q

ψ

)
= S

(
ρ
φ

)
where S =

1√
2

(
1 1

1 −1

)
. (37)

The decoupled equations are given by

~wt +

(
1 0

0 −1

)
~wx = 0or

{
qt +qx = 0,

ψt −ψx = 0,
(38)

with solutions propagating along characteristics q(x, t) = q(x−t)
and ψ(x, t) = ψ(x+ t). This yields

ρ(x, t) =
q(x− t)+ψ(x+ t)√

2
, (39)

φ(x, t) =
q(x− t)−ψ(x+ t)√

2
. (40)

Nonlinear step. This operator propagates the ODE system

∂tρ = 0, ∂tφ =− λℓ

2D

φ|φ|
ρ

, (41)

which results in ρ(t) = ρ0 and

φ(t) =
φ(0)

1+ t λℓ
2D

|φ(0)|
ρ0

. (42)

Split-Step Scheme. We denote the action of the linear hyperbolic

operator by L̂ and the nonlinear operator by N̂, and construct the

numerical approximation of the solution by superimposing L̂ and

N̂. This produces the system

∂ty = (L̂+ N̂)y, (43)

where y = (ρ,φ)T
, which is solved exactly over a time step h by

y(t +h) = e(L̂+N̂)h
y(t). (44)

Equation (44) is then approximated by

y(t +h) = e(L̂+N̂)h
y(t) = ehL̂ehN̂

y(t)+O(h2), (45)

which has first order global truncation error. The second order

split-step method amounts to symmetrization of (45) by

y(t +h) = e
h
2 N̂ehL̂e

h
2 N̂

y(t)+O(h3), (46)

which gives second order global truncation error due to non-

commutativity of the operators L̂ and N̂.

Solving the hyperbolic system (36) exactly provides a



significant advantage over traditional numerical discretization

schemes, such as Crank-Nicholson, because no discretization er-

ror is introduced. Moreover, our numerical method and the phys-

ical model share the same dispersion relation ω = ak, where ω
is wave frequency, and k = 2π/λ is the wave number for wave-

length λ. Because of this property, the split-step scheme remains

accurate even in situations with very rapid transients.

The simulation results obtained using the reduced model

(32)-(33) shown in Figures 2c-2d are compared to solution us-

ing the above split-step method, and the difference is shown in

Figure 2e-2f. Globally, the differences are less than 1%. In par-

ticular, the solutions at the pipe inlet and outlet are compared in

Figure 2g-h, and differ by under 0.5%.

6 IMPLEMENTATION OF CONTROL METHOD

Equipped with the reduced model formulated in Section 4,

we now reduce the ETC OCP (19) to a tractable form. The new

dynamic constraints (32)-(33) replace the PDE constraints (7)-

(8) and (9)-(12). The objective and remaining constraints are

rewritten using the reduced model variables. Thus (13) becomes

JE =
M

∑
j=1

∫ T

0

1

η
|φ j(t)|

(
(max{α j−1(t),1})2m −1

)
dt, (47)

the density box constraints (14) become

ρmin
j ≤ ρ j(t)≤ ρmax

j , j = 1, . . . ,M, (48)

and the time-periodicity constraints are simplified to

p j(0) = p j(T ), j = 1, . . . ,M, (49)

φ(0) = φ(T ), j = 1, . . . ,M. (50)

Therefore the OCP (19) can be simplified to

min
α j , ∀ j

JE in (47)

s.t. reduced model constraints: (32)− (33), (51)

density and compression constraints: (48) & (15),

time-periodicity: (49)− (50) & (18).

In this formulation, the system states are nodal densities ρ =
(ρ1, . . . ,ρM)T ∈ R

M
+ and edge fluxes φ = (φ1, . . . ,φM)T ∈ R

M ,

and the decision variable is the vector-valued function α =
(α0, . . . ,αM−1)

T , where α j(t) ≡ 1 at all junctions without com-

pression. The non-zero control functions are embedded in the

time-varying coefficient matrices Bs and Bd . While still a com-

plex and analytically intractable optimization problem over a

function space, the instantaneous state variables of the dynamic

constraints in (51) are now finite vectors, rather than functions on

continuous domains. The decision variables remain continuous

functions, which still presents the challenge of approximating a

continuous object using a finite computational representation.

Among numerous techniques used to discretize OCPs, pseu-

dospectral (PS) methods stand out as particularly effective and

versatile options [29]. In the context of optimal control, such

techniques employ polynomial approximation to discretize a

continuous-time OCP into a finite-dimensional constrained NLP

[30]. Such methods have been widely applied to diverse prob-

lems in science and engineering [31]. The representation of

continuous dynamics by polynomials provides spectral accu-

racy, and moreover, provides a strong guarantee of convergence.

Specifically, given a sequence of optimal solutions to succes-

sively finely approximating NLPs, the corresponding sequence

of interpolating polynomials converges to an optimal solution

of the continuous OCP [24]. The PS approximation technique

for optimal control problems is restated in Appendix A. The re-

duced formulation (51) can be approximated using the LGL PS

method to yield a NLP. Here, N + 1 time collocation points are

used to represent each of the M state functions φ j and ρ j, as well

as C ≤ M non-unit compressor variables α j, yielding a total of

(2M+C)× (N +1) decision variables in the resulting nonlinear

program. We omit the direct formulation of the NLP for (51),

because the discretization is explained in Appendix A.

In the resulting NLP, the decision variables are the PS coeffi-

cients of the states and controls of the OCP, which in this case we

express as ρ̄ = (ρ̄1, . . . , ρ̄M)T ∈ R
M×(N+1)
+ , φ̄ = (φ̄1, . . . , φ̄M)T ∈

R
M×(N+1), and ᾱ = (ᾱ0, . . . , ᾱM−1)

T ∈ R
C×(N+1). For example,

ᾱ j = (ᾱ j0, . . . , ᾱ jN)
T is the vector of Lagrange polynomial co-

efficients of the spectral approximation of the jth compression

function, and α(tk) = ᾱk = (ᾱ0k, . . . , ᾱ(M−1),k)
T is the vector of

Lagrange coefficients for all compressors at a collocation time

tk. We then formulate the objective function and constraints in

terms of the optimization variables. To expedite solution time,

we also formulate the gradient of the objective and the Jacobian

of the constraints to be provided to the solver. These four main

functions are implemented in MATLAB, and then optimized us-

ing the interior point solver IPOPT version 3.11.8 running with

the linear solver ma57 [32], called from a MATLAB interface.

IPOPT is chosen because of its ability to leverage sparse linear

algebra. The Jacobian of the constraints is sparse for the exam-

ple in Section 7, with fewer than 1% non-zero entries. An error

tolerance of 10−4 yields consistent results. Computation is done

using a 3.33 GHz Intel i5 processor with 4 cores and 4GB RAM.

In order to guarantee a smooth, physically relevant solution,

we penalize the square of the L2 norms of the derivatives of the

compression ratios by adding to the objective a term

JS(α) = µ
M−1

∑
j=0

|| d
dt

α j||22 = µ
M−1

∑
j=0

∫ T

0
( d

dt
α j(t))

2dt (52)

≈ µ
2

T

M−1

∑
j=0

N

∑
i=0

(
N

∑
k=0

Dikᾱ jk

)2

wi, (53)

where ᾱ j = (ᾱ j0, . . . , ᾱ jN)
T are the coefficients of the jth com-

pression function, and µ is a relative weighting coefficient. The

cost term JS is eliminated when discussing objective values.

The following basic case study demonstrates our implemen-

tation, and supports the security and economic necessity of con-
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Figure 3. Optimization of a pipeline with L = 100 km, D = 0.5 m,

a = 378 m/s, λ = 0.011, and pressure bounded in [500,800] psi.

s0(t)= 500 psi. (a) compressors at x= 0 and x= L/2; (b) d2(t) ramps

smoothly up 50% during 1 hour from 200 kg/m2/s starting at t = 3.5
hours, then back down during 1 hour starting at 7.5 hours; (c) optimal

compression obtained by solving the NLP (51) with M = 20 space points

and N = 25 LGL collocation points in time; (d) pressure and (e) flux in

the pipeline for the optimal solution; Relative difference in (f) pressure

and (g) flux from the collocation solution and simulation with the reduced

model (32)-(33) given the compression solution is under 1.5%. Spectral

accuracy is seen in exponential drop of (h) maximum error in dynamic

constraints and (i) objective function error.

sidering transient dynamics in gas pipeline optimization.

Example 1. As a preliminary test of the PS method for solv-

ing the OCP (51), consider a pipeline with the parameters in Fig-

ure 2, but now with controllable compressors at the inlet x = 0

and the midpoint x = L/2. Gas is supplied at x = 0 at a pressure

of s0 ≡ 500 psi, and withdrawn at x = L with time-varying out-

put flux shown in Figure 3b over a T = 12 hour cycle. For gas at

temperature between 0 and 30◦C, the average heat capacity ratio

is γ ≈ 2.75 [33], so we use m = 0.6154 and (for simplicity) η = 1

in (47). Pressure is bounded within [500,800] psi.

Transient Optimization. The parameters and results of the

optimization and simulation are shown in Figure 3. For M = 20,

C = 2, and using N = 25 time points, the problem involves 1092

variables, 4.5% nonzero Jacobian entries, and requires 18 sec-

onds to solve with objective value of 67.113. The control solu-

tions are validated by applying them to the reduced model (32)-

(33), and comparing the pressure and flux solutions to the col-

location solutions obtained from the optimization. The relative

difference is less than 1.5%, as shown in Figures 3f-3g. In addi-

tion, the spectral accuracy of polynomial approximation is shown

by plotting the base 10 log of maximum error in dynamic con-

straints and objective function error in Figures in 3h and Figures

in 3i as a function of PS discretization order. The decay in error

fits an exponential decay, as expected.

Static Optimal Gas Flow (OGF). By using a time discretiza-

tion of N = 1, the NLP obtained using the PS scheme reduces to

the static OGF problem [16]. Taking the mean of the withdrawal

flux in Figure 3b yields 233.33 kg/m2/s and solving the static

OGF leads to compression ratios of 1.485 at x = 0 and 1.077 at

x = L/2, with objective value of 60.261. However, simulating

the system with these compression ratios and applying the ac-

tual flux function in Figure 3b results in a minimum density of

248.75 psi, which is far below the minimum bound of 500 MPa.

Such dramatic drops of pressure below intended levels are in fact

observed with current operational practices [34].

Constant Compression with Dynamic Constraints. Our

method can also be used to obtain a constant compression so-

lution that satisfies the pressure bounds given transient injections

and withdrawals. This is done by modifying the ETC problem

to have a constant decision variable for each compression ratio,

while the state variables remain time-dependent functions. Ap-

plying this change to Example 1, we find no feasible solution for

this problem when pressure is bounded below 800 psi, even if the

lower bound is relaxed. If the upper bound is increased to 1000

psi, there are feasible compression ratios of 1.618 at x = 0 and

1.166 at x = L/2, with objective value of 84.89.

7 LARGE-SCALE PIPELINE OPTIMIZATION
To demonstrate the feasibility of our technique for optimal

control of pipeline dynamics in a real-world setting, we con-

sider a case study of gas transport over the main pipeline of the

Williams-Transco system through zones 5 and 6, which is shown

in blue in Figure 5b. This section of the pipeline transports gas

from the border of Georgia and South Carolina to a terminal near

New York City, and contains 90 junctions where gas is injected

or withdrawn, as well as 26 compressor stations [35]. We begin

with the data set used in a previous study of the static OGF on the

same zones of the pipeline network [16]. The balanced steady-

state nominal injections and withdrawals into the system, as well

as compressor station locations, are shown in Figure 5a. Addi-

tional nodes are added to the model so that edge distance is below
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Figure 4. Optimization of Williams-Transco zones 5 and 6 main pipeline.

(a) The area of circles illustrates magnitude of nominal mass flux injec-

tions (blue) and withdrawals (red), and lines denote compressors; (b) Ge-

ographical location of pipeline (blue) from North Carolina to New York; (c)

Gas withdrawal curves: single cycle (SC) power plant (red), typical load

curve (black), “duck curve” with high photovoltaic (PV) penetration (blue).

10 miles, so that the model appropriately resolves transients on

the space-time scale of interest. We then suppose that injections

are constant, while withdrawals are weighted according to three

time-varying profiles representative of natural gas use shown in

Figure 5c. These include the “duck curve”, which is observed

with large penetration of photovoltaic (PV) power sources, and a

typical on/off profile of a single-cycle gas turbine. Crucially, the

pressure throughout the line must be bounded between 500 and

800 psi, and compression ratio is confined to the interval [1, 2].

Transient Optimization. The complete transient problem has

(2M+C)× (N+1) = 8736 variables, with 0.59% nonzero Jaco-

bian entries, and requires 108 minutes to solve to adequate ac-

curacy and smoothness. The optimal compressions are shown in

Figure 5b, and the pressure and flux along the entire pipeline are

given in Figure 5c and Figure 5d. The objective value is 1891.9,

and all constraints are satisfied.

Static Optimal Gas Flow. As for Example 1, we can cre-

ate the fully static case by assuming that all parameters are con-

stant. This can be solved in 14 seconds with an objective value

of 1765.7. Again, as before, applying the constant controls to

the case with transient injections results in large violations of the

pressure constraints, i.e., down to 273.9 psi and up to 946.3 psi.

Constant Compression with Dynamic Constraints. When we

attempt to solve the transient problem using constant compres-

sion ratios, no feasible solution can be found unless the maxi-

mum pressure is relaxed to 1000 psi, in which case a solution is

obtained in about 8 minutes, with objective value 1596.6.

The solutions corresponding to the (1) fully static, (2) con-

stant compression with relaxed-pressure bound, and (3) transient

cases are compared in Figure 5a, with bars denoting the variation
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Figure 5. Optimization of Williams-Transco pipeline zones 5 and 6 main

line. (a) Comparison of static approximation, static compression, and

transient solutions; (b) Optimal pressure boost from 500 psi at input

(black) and optimal compressor ratios from beginning (blue) to end (red);

Optimal pressure (c) and Flux (d) along the pipeline when the transient

solutions in (b) are applied.

of compressions in the transient case. These results are qualita-

tively similar to those observed for Example 1.

8 CONCLUSION

The control system model, simulation technique, and opti-

mal control scheme described above have been demonstrated to

be tractable, accurate, and efficient for modeling, analysis, and

optimization of transient dynamics of compressible gas flow in

a large-scale pipeline system. Based on the examples, we can

conclude that optimization using steady-state assumptions, al-

though useful for long-range planning, will result in drastically

infeasible solutions for the actual short-term transient regime.

Moreover, seeking a static solution while properly accounting

for transient dynamics is infeasible for realistic pressure con-

straints. This creates a strong case for implementing transient

compression solutions in operational planning for gas pipeline

systems. In the current form, our approach already yields a sig-

nificant qualitative and quantitative improvement over previously



published methods, as well as current industry standards. Specif-

ically, a significant increase in effective pipeline capacity and

operational security can be achieved given the highly variable

consumptions currently observed in the gas transmission system.

Further developments involve extension of the methodology to

optimize flows over complex pipeline networks [36], to provide

robust performance guarantees under uncertainty, and account

for system-wide stochastic effects. The path forward requires

obtaining the theoretical guarantees and computational efficiency

such as those available for the static case [16], as well as formu-

lating problems related explicitly to throughput.

A PSEUDOSPECTRAL OPTIMAL CONTROL

Consider an optimal control problem (OCP) defined by

min
u

J(x,u) =
∫ T

0
L(t,x(t),u(t))dt, (54)

s.t. ẋ(t) = f (t,x(t),u(t)), (55)

e(x(0),x(T )) = 0, (56)

g(x(t),u(t))≤ 0, (57)

on the time interval T = [0,T ]. The running cost L ∈ Cκ is in

the space Cκ of continuous functions with κ classical derivatives,

and the dynamic constraints f ∈Cκ−1
n are in the space Cκ−1

n of n-

vector valued Cκ−1 functions, with respect to the state, x(t)∈R
n,

and control, u(t) ∈ R
m. The functions e and g are terminal and

path constraints, respectively. The admissible set for controls u

includes the piecewise Cκ
m functions on T . For mathematical de-

tails, refer to [24]. We now derive a direct collocation procedure

for constructing a finite-dimensional nonlinear program (NLP)

that approximates (54)-(57).

Direct collocation methods use polynomial interpolation to

approximate continuous functions based on values at a set of col-

location points tk. We use Lagrange polynomials to approximate

the states x and controls u,

x(t)≈ x̂N(t) = ∑N
k=0 xkℓk(t), (58)

u(t)≈ ûN(t) = ∑N
k=0 ukℓk(t). (59)

Lagrange interpolation polynomials satisfy ℓk(ti) = δki, where

δki is the Kronecker delta function [29]. It follows that x(tk) =
x̂N(tk) = xk and u(tk) = ûN(tk) = uk, so the physical meaning of

the interpolating polynomial coefficients xk and uk are the values

of the state and control variables at the collocation points.

In addition to providing a finite-dimensional approximation

of the problem (54)-(57), the Lagrange polynomial collocation

scheme must be designed so that the integral in (54) and the

derivative in (55) are computed accurately. The former can be

approximated using Legendre-Gauss quadrature, leading to the

choice of Legendre polynomials as the orthogonal basis for the

PS method. Furthermore, the Legendre-Gauss-Lobatto (LGL)

quadrature points are chosen, because the endpoints of the in-

terval are included. This permits the terminal constraints to be

specified within the discretization scheme. The LGL quadrature

rule for a function f : [−1,1]→ R is given by

∫ 1

−1
f (t)dt ≈

N

∑
i=1

f (ti)wi, wi =
∫ 1

−1
ℓi(t)dt, (60)

and is exact if the integrand f ∈ P2N−1 and the nodes ti ∈
ΓLGL, where P2N−1 denotes the set of polynomials of degree at

most 2N − 1 and where ΓLGL = {ti : L̇N(t)|ti = 0, i = 1, . . .N −
1}⋃{−1,1} are the N +1 LGL nodes determined by the deriva-

tive of the Nth order Legendre polynomial, L̇N(t), and the inter-

val endpoints [29]. Note that the OCP requires evaluation of the

running cost and satisfaction of dynamic constraints over the in-

terval T = [0,T ], whereas Legendre polynomials form a basis on

the domain [−1,1]. In order to apply the LGL PS scheme, time

is re-scaled by t̃ = (2t −T )/T .

The Lagrange interpolating polynomials on the LGL collo-

cation nodes can be re-written in terms of the Legendre poly-

nomial basis, in order to endow the scheme with derivative and

spectral accuracy properties of orthogonal polynomials. Given

tk ∈ ΓLGL, we can express the Lagrange polynomials as [37]

ℓk(t) =
1

N(N +1)LN(tk)

(t2 −1)L̇N(t)

t − tk
.

The derivative of (58) at t j ∈ ΓLGL is then

d

dt
x̂N(t j) =

N

∑
k=0

xk ℓ̇k(t j) =
N

∑
k=0

D jkxk, (61)

where D is the constant differentiation matrix with elements

Dik = ℓ̇k(ti). Using the equations (58), (59), (60), and (61), the

OCP (54)-(57) is written as the following NLP, in which the de-

cision variables are the polynomial interpolation coefficient vec-

tors x = (x0, . . . ,xN) and u = (u0, . . . ,uN):

min J̄(x̄, ū) =
N

∑
k=0

T

2
L(xk,uk)wk (62)

s.t.
N

∑
k=0

Dikxk =
T

2
f (ti,xi,ui) ∀ i = 0,1, . . . ,N (63)

e(x0,xN) = 0 (64)

g(xk,uk)≤ 0 ∀ k = 0,1, . . . ,N (65)

ACKNOWLEDGEMENTS

The authors thank Alexander Korotkevich for ideas includ-

ing the split-step method, and thank Russell Bent, Sidhant Misra,

and Michael Fisher for guidance on modeling the Williams-

Transco pipeline system. This work was carried out under the

auspices of the National Nuclear Security Administration of the

U.S. Department of Energy at Los Alamos National Labora-

tory under Contract #DE-AC52-06NA25396, and was partially

supported by Defense Threat Reduction Agency Basic Research

Project #10027-13399 and by the Advanced Grid Modeling Pro-

gram in the U.S. Department of Energy Office of Electricity.



REFERENCES

[1] MITEI, 2013. Growing concerns, possible solutions: The

interdependency of natural gas and electricity systems.

[2] Chertkov, M., Fisher, M., Backhaus, S., Bent, R., and

Misra, S., 2015. “Pressure fluctuations in natural gas net-

works caused by gas-electric coupling”. In 48th Hawaii

International Conf. on System Sciences (HICSS), IEEE.

[3] Wylie, E., and Streeter, V., 1978. Fluid transients.

McGraw-Hill.

[4] Osiadacz, A., 1984. “Simulation of transient gas flows in

networks”. International Journal for Numerical Methods

in Fluids, 4(1), pp. 13–24.

[5] Dorao, C., and Fernandino, M., 2011. “Simulation of tran-

sients in natural gas pipelines”. Journal of Natural Gas

Science and Engineering, 3(1), pp. 349–355.

[6] Thorley, A. R., and Tiley, C. H., 1987. “Unsteady and tran-

sient flow of compressible fluids in pipelinesa review of

theoretical and some experimental studies”. International

Journal of Heat and Fluid Flow, 8(1), pp. 3–15.

[7] Herty, M., Mohring, J., and Sachers, V., 2010. “A new

model for gas flow in pipe networks”. Mathematical Meth-

ods in the Applied Sciences, 33(7), pp. 845–855.

[8] Seleznev, V. E., and Pryalov, S. N., 2014. “Computational

fluid dynamics of trunklines systems”. M.: KRASAND.

[9] Behbahani-Nejad, M., and Bagheri, A., 2010. “The accu-

racy and efficiency of a matlab-simulink library for tran-

sient flow simulation of gas pipelines and networks”. Jour-

nal of Petroleum Sci. and Eng., 70(3), pp. 256–265.

[10] Chapman, K., et al., 2005. Virtual pipeline system testbed to

optimize the US natural gas transmission pipeline system.

United States. Department of Energy.

[11] Wong, P., and Larson, R., 1968. “Optimization of natural-

gas pipeline systems via dynamic programming”. Auto-

matic Control, IEEE Transactions on, 13(5), pp. 475–481.

[12] Rothfarb, B., et al., 1970. “Optimal design of offshore

natural-gas pipeline systems”. Operations research, 18(6),

pp. 992–1020.

[13] Luongo, C., et al., 1991. “Optimizing the operation of gas

transmission networks”. In Computers in Engineering.

[14] Midthun, K. T., et al., 2009. “Modeling optimal economic

dispatch and system effects in natural gas networks”. The

Energy Journal, pp. 155–180.

[15] Borraz-Sanchez, C., 2010. “Optimization methods for

pipeline transportation of natural gas”. PhD thesis, Bergen

Univ. (Norway).

[16] Misra, S., et al., 2014. “Optimal compression in natural

gas networks: a geometric programming approach”. IEEE

Transactions on Control of Network Systems, p. 1.

[17] Babonneau, F., Nesterov, Y., and Vial, J.-P., 2014. “Design

and operations of gas transmission networks”. Operations

Research, 60(1), pp. 34–47.

[18] Rachford, H., and Carter, R., 2000. “Optimizing pipeline

control in transient gas flow”. Pipeline Sim. Interest Group.

[19] Ehrhardt, K., and Steinbach, M., 2005. Nonlinear optimiza-

tion in gas networks. Springer.

[20] Steinbach, M., 2007. “On pde solution in transient opti-

mization of gas networks”. Journal of computational and

applied mathematics, 203(2), pp. 345–361.

[21] Gopalakrishnan, A., and Biegler, L. T., 2013. “Economic

nonlinear model predictive control for periodic optimal op-

eration of gas pipeline networks”. Computers & Chemical

Engineering, 52, pp. 90–99.

[22] Devine, M. T., et al., 2014. “A rolling optimisation model

of the uk natural gas market”. Networks and Spatial Eco-

nomics, 14(2), pp. 209–244.

[23] Grundel, S., et al., 2013. “Computing surrogates for

gas network simulation using model order reduction”.

In Surrogate-Based Modeling and Optimization. Springer,

pp. 189–212.

[24] Ruths, J., et al., 2011. “Convergence of a pseudospec-

tral method for optimal control of complex dynamical sys-

tems”. In 50th IEEE CDC, pp. 5553–5558.

[25] Herty, M., Kurganov, A., and Kurochkin, D., 2014. “Nu-

merical method for optimal control problems governed by

nonlinear hyperbolic systems of PDEs”. Comm. Math. Sci.

[26] Verwer, J. G., and Sanz-Serna, J. M., 1984. “Convergence

of method of lines approximations to partial differential

equations”. Computing, 33(3-4), pp. 297–313.

[27] Dyachenko, S., Korotkevich, A., et al. Numerical simula-

tion of gas transportation networks using operator splitting

method. In Preparation.

[28] Strang, G., 1968. “On the construction and comparison of

difference schemes”. SIAM J. Numer. Anal., 5, pp. 506–517.

[29] Canuto, C., et al., 2006. “Spectral methods”. Fundamentals

in Single Domains, Springer.

[30] Ross, I., and Fahroo, F., 2003. “Legendre pseudospec-

tral approximations of optimal control problems”. In New

Trends in Nonlinear Dynamics and Control and their Ap-

plications. Springer, pp. 327–342.

[31] Ross, I. M., and Karpenko, M., 2012. “A review of pseu-

dospectral optimal control: From theory to flight”. Annual

Reviews in Control, 36(2), pp. 182–197.

[32] Biegler, L. T., and Zavala, V. M., 2009. “Large-scale non-

linear programming using IPOPT”. Computers & Chem.

Engineering, 33(3), pp. 575–582.

[33] Campbell, J. M., Hubbard, R. A., and Maddox, R. N.,

1988. Gas conditioning and processing: the basic prin-

ciples. Campbell Petroleum Series.

[34] Tennessee GPC ISO NE presentation: 2011. http://iso-

ne.com/committees/comm wkgrps/othr/egoc/mtrls/2011/

mar302011/el paso isone necpuc 032411.pdf.

[35] Williams-Transco Pipeline Informational Postings.

http://www.1line.williams.com/Transco/index.html.

[36] Zlotnik, A., Chertkov, M., and Backhaus, S., 2015. “Opti-

mal control of transient flow in natural gas networks”. In

54th IEEE Conference on Decision and Control.

[37] Boyd, J. P., 2001. Chebyshev and Fourier spectral methods.

Courier Corporation.


