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Model Reduction Based Approximation of the

Output Controllability Gramian in Large-Scale

Networks
Giacomo Casadei, Carlos Canudas-de-Wit and Sandro Zampieri

Abstract—In this paper we consider the problem of deter-
mining the control energy for large-scale networks. Instead of
controlling all the nodes of the network, we are interested
in driving the value of some outputs to the desired value,
by controlling directly some of the nodes. For doing this, we
exploit the concept of output controllability and of output
controllability Gramian that permits to analyze the properties
of the system, both in single-output and multi-output case.
Based on a projection method, we show that it is possible to
obtain an approximated model which makes the computation
of the Gramian and its interpretation much easier. Simulations
show that the reduced model is consistent with the original one
and provides a reliable approximation of the control energy
necessary to control the network.

I. INTRODUCTION

The interest in the control of networks is motivated by

the vast number of applications which can be interpreted

as networks of different natures. Robot swarms [2], power

networks [3] and social networks [4], are few examples

which motivated researchers to study control problems for

networks. Many results about consensus and synchronization

can be found both in the context of linear [5], [6] and

nonlinear systems [7], [8]. Due to the increasing size and

complexity of network applications, many researchers started

to focus on large-scale systems. The analysis of large-scale

networks has been widely covered in the literature and

notable contributions can be found in [9], [10], [11].

The problem of controlling large-scale networks is to a

great extent still open. Controllability of a network [12] re-

lates to the possibility of driving the network state to a desired

value by acting on the driver nodes that are called inputs.

Instead, structural controllability [13] concerns this property

when only the nonzero pattern of the network adjacency

matrix is given. Controllability and structural controllability

for large-scale networks, and in particular the minimum

number of control inputs that makes the network controllable,
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has been treated by several authors in recent years (see for

instance [14], [15]).

A key point that is particularly important in this context

concerns the energy needed for the control. In fact, only

when the energy needed to control is limited, we can say that

control is an operation that is possible not only in principle,

but also in practice. Hence, in this case we can say that

we have practical controllability. It has been shown that

for large-scale networks there might be cases in which we

have exact controllability, but not practical controllability,

because the energy needed to control is not realistic [16].

It has been shown that several aspects, such as the number

of control nodes [17], the real part of the eigenvalues of

the network matrix [18], its centrality measures [19], [20],

or its distance to normality [20] play a fundamental role in

assessing practical controllability. These results are obtained

with the analysis of the controllability Gramian matrix [21].

The latter can be obtained by solving a Lyapunov equation

which is a linear equation in n2 variables, where n is the

network dimension. Even if there are numerically efficient

methods for solving this equation exploiting the sparsity of

the network [22], this computation remains challenging for

large dimensional networks.

One way to simplify the problem consists in replacing

the conventional controllability with the concept of output

controllability. Precisely, controllability may be not a realistic

requirement, since driving the entire state of a large-scale

network to an arbitrary final value may be a too stringent

requirement. It appears more realistic to drive only a function

of the state to a desired value. This function is called the

output of the system. The possibility to drive this output

arbitrarily is called output controllability, while the energy

required to perform this operation is determined by the

output controllability Gramian. By its definition, however, the

output controllability Gramian still requires the controllability

Gramian and thus presents the computational problems men-

tioned previously. To overcome this issue, in this paper we

propose a method for computing an approximation of the out-

put controllability Gramian, relying on an output based model

reduction. In particular, we define a reduced model which

aggregates the dynamics which contributes to the outputs.

Other authors considered the possibility to exploit model-

reduction techniques to simplify the problem of controlling a

large-scale network: between the others, in [23] the authors

introduced different model reduction techniques (based on
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Fig. 1: Schematic of the framework: each partition is composed by nodes which contributes to a certain measure. Partitions are controlled
by boundary nodes and interact with each other.

clusters of the networks) to obtain a simplified representation

of the original dynamics. Another interesting approach has

been presented in [24], where the authors considers Petrov-

Galerkin projection techniques to achieve a partition-based

complexity reduction.

The problem we consider is inspired by two consideration.

On one hand, in many practical cases networks are partitioned

by the physics of the systems (weak couplings between areas

of a network) and the measurements are available for these

partitions (for instance, average quantity of a certain zone).

On the other hand, often it is not possible to select arbitrarily

the controlled nodes: this is case in some notable applica-

tions (e.g. traffic network, deep brain stimulation, heating

networks) where controlled nodes seat on the boundary of the

network. In this context schematically represented in Figure

1, partitions are defined by the output measures (aggregate

measures of zones) which are controlled by a set of boundary

nodes (black nodes in the figure).

In this paper we consider the case of a network of first

order systems and we propose a projection-based model

reduction based on the outputs. We show that, from an

energy perspective, the approximated model is still consistent

with the original one. In fact, from this reduced model it is

possible to compute an approximated output controllability

Gramian of the original system with a drastic reduction of the

computational complexity and with an improved numerical

stability. Furthermore, we will also be able to draw some

conclusions on the impact of the network structure and on

the controllability. Preliminary results were presented in [1],

where we focused on the MISO case (multi-input single-

output).

The paper is structured as follows. In Section II, we

present fundamental facts about controllability and output

controllability of linear systems. In Sections III we tackle the

problem for MISO systems. In Section IV we consider the

more challenging case of MIMO (multi-input multi-output)

systems where we extend our approach to a more general

scenario in which a dynamic controller is required in order

to achieve a decoupling between the partitions.

II. PROBLEM FORMULATION

Consider a network represented by a directed graph, that

is a triplet G = (V, E , A) in which:

• V is the set of n nodes, V = {1, 2, . . . , n}, one for each

of the n agents.

• E ⊂ V × V is the set of edges that models the

interconnection between the agents.

• A ∈ R
n×n is the weighted adjacency matrix such that

Aij = 0 whenever (i, j) 6∈ E . This matrix describes the

strength of the interaction between agents.

For each time t ∈ R
+ and with each node i ∈ V we

associate a real value xi(t) representing its state at time t.
We collect the agents states into a vector x(t) ∈ R

n. The

dynamics of the network with inputs is described by the linear

and time-invariant differential equation

ẋ(t) = Ax(t) +Bu(t) , (1)

where u(t) ∈ R
m is the input which is the way in which we

can influence the state evolution and B ∈ R
n×m. We assume

in the sequel that A ∈ R
n×n is Hurwitz stable.

Remark 1 Compared to the models proposed in [25], in this

paper we consider a simplified model of dynamic network.

Indeed, we assume that each agent dynamics is a first order

differential equation. Although less general than the models

proposed in [26], the model we propose is general enough to

cover many important applications such as diffusive systems

with some dissipation term that makes them Hurwitz For

instance, transportation networks where the dynamics of the

nodes describes a conservation law (reservoir of the network)

with some additional dissipation terms (sinks of the network)
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[27]. Less restrictive assumptions on the network dynamics

and on the nodes dynamics are left for future work.

The dynamic network (1) is said to be controllable if it

is possible to drive its state from any initial value x(0) to

any final value xf at time tf > 0 by a suitable choice

of the input u(τ), τ ∈ [0, tf ]. It is well-known that (1)

is controllable if and only if the n × nm matrix C =
[B AB A2B . . . An−1B] is full row rank.

Another condition ensuring controllability is related to the

controllability Gramian which is defined as

W =

∫ tf

0

eAτBBT eA
T τ dτ . (2)

It is well-known that (1) is controllable if and only if the

controllability Gramian is an invertible matrix. The controlla-

bility Gramian allows also to compute the cost of the control

in terms of the energy needed. Indeed, the energy necessary

to steer the system from x(0) = 0 to a desired final value

x(t) = xf is given by

E(xf , tf ) = ‖uopt(·)‖
2
L2

= xT
f W

−1xf , (3)

where uopt(·) is the optimal input achieving the control

objective while minimizing the control energy and where

‖uopt(·)‖L2
is the L2-norm, namely

‖uopt(·)‖L2
=

√

∫ tf

0

‖uopt(τ)‖2 dτ .

Different controllability metrics can be derived from the

controllability Gramian:

• Worst case energy: It can be shown that

max
‖xf‖=1

E(xf , tf ) =
1

λmin(W)
,

where λmin(W) is the minimum eigenvalue of W . This

implies that, the larger λmin(W), the more controllable

the system is.

• Average control energy: If we assume that xf is

uniformly distributed in the unit sphere, then it can

be shown that E[E(xf , tf )] = Tr(W−1) where E[·]
means the expected value. This implies that, the smaller

Tr(W−1), the more controllable the system is.

• Size of the controllable set: The determinant of W
gives the volume of the hyperellipsoid of final states xf

that are reachable from the initial state x(0) = 0 and

with control input energy E(xf , tf ) ≤ 1.

Given a certain network matrix A, and an input matrix

B, we often have that the associated dynamic network (1) is

controllable. However it could be that the network is practi-

cally not controllable because the energy needed to perform

the control task might be unrealistic. The analysis of the

controllability Gramian plays a fundamental role in assessing

if a system is practically controllable or not. However, for

large-scale networks, the calculation of the Gramian (2) is

computationally demanding and typically suffers of numeri-

cal errors and ill-conditionement [28], [29]. The computation

of the metrics introduced before is thus a delicate task subject

to computational inaccuracies. With respect to this problem,

it is worth pointing out that model reduction techniques may

help in addressing the computational issues mentioned above:

by reducing the size of the system, the computation of the

Gramian and its metrics become less critical at the price of

a reduced accuracy.

A. Output controllability and the H2-norm

In many applications involving large-scale networks, con-

trolling the entire state is an unrealistic task. For this reason,

in this paper we are interested in controlling an output of

the system rather than its full state. A dynamic network with

input and output is given by

Σ :

{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

, (4)

where y(t) ∈ R
r and C ∈ R

r×n. This is said to be output

controllable if for any yf ∈ R
r at time tf > 0 there exists

an input function u(τ), τ ∈ [0, tf ], such that the output is

driven to y(tf ) = yf assuming that x(0) = 0. This property

can be checked through the rank of the output controllability

matrix (see [30]).

Lemma 1 System (4) is output controllable if and only if the

r × nm matrix

CO = [CB CAB CA2B . . . CAn−1B]

has full row rank.

The energy necessary to steer the output to a desired final

value y(tf ) = yf , assuming that x(0) = 0, can be expressed

as a function of the output controllability Gramian

Wo = CW CT . (5)

Lemma 2 Given the dynamic network (4), the minimal en-

ergy necessary to steer the output to a desired final value

y(t) = yf , assuming that x(0) = 0, is given by

E(yf , tf ) = yTf W−1
o yf , (6)

where Wo is given in (5). The optimal input is

uopt(τ) = BT eA
T (tf−τ)CTW−1

o yf . (7)

Proof: The proof is a straightforward extension of [31,

pag. 160]. ⊳
The analysis of the output controllability Gramian defined

in (5) allows to understand the input-output energy rela-

tionship for system (4). However at this stage, the output

controllability Gramian Wo still requires the computation

of the controllability Gramian W . In order to overcome

the issues concerning the computation of the Gramian for

large-scale systems, in Section III we introduce a reduced

model which allows to simplify the calculation of the output

controllability Gramian. As shown in [32, Cap. 5], the

output controllability Gramian can be used to compute the



4

performance of a system. In fact, it is possible to express the

H2-norm of the linear stable system (4) as follows

‖Σ‖H2
=

√

trace[Wo ] . (8)

We recall that the H2-norm of a system gives both the RMS

(root mean square) response to white noise and the L2 norm

of the impulse response matrix of the system, namely

‖Σ‖H2
=

√

∫ ∞

0

trace[g(t)g(t)T ]dt ,

where g(t) = CeAtB.

III. A REDUCED MODEL NETWORK: THE CASE OF SINGLE

OUTPUT

In this section, we are interested in studying a particular

class of systems in the form

ẋ = Ax+Bu
y = Cx

, (9)

in which the output is scalar and so C ∈ R
1×n. In the

applications we have in mind, A ∈ R
n×n is a Hurwitz

Meltzer matrix, B ∈ R
n×m is the input matrix which defines

which nodes are controlled and it is defined as a {1, 0}’s

entries matrix. We assume moreover that the scalar output

depends only on the uncontrolled nodes.

By reordering the nodes in a suitable way, (9) can be

rewritten as
[

ż

δ̇

]

=

[

A11 A12

A21 A22

] [

z
δ

]

+

[

Im
0

]

u

y =
[

01×m HT
]

[

z
δ

] , (10)

in which z = [x1, x2, . . . , xm]T refers to the nodes which are

controlled directly, δ = [xm+1, xm+2, . . . , xn]
T refers to the

nodes which contributes to the output through H ∈ R
n−m.

Conversely we can say that the output is some aggregate

measure of the uncontrolled nodes. The sum or the average

of their values are two important instances of the outputs that

are relevant in the applications that the paper aims to address

[34].

In order to simplify the computation of the output control-

lability Gramian and of the minimal energy control input, we

define a reduced model for (10) by expressing the dynamics

of the uncontrolled nodes as a scalar dynamics related to

the evolution of the output. To this end, we define a matrix

P ∈ R
(m+1)×n and a new state x̂ ∈ R

m+1

P =

[

Im 0
0 HT

]

, x̂ = Px . (11)

From (10), we can write

˙̂x =

[

A11 A12

HTA21 HTA22

]

x+

[

Im
0

]

u

=

[

A11

HTA21

]

z +

[

A12

HTA22

]

δ +

[

Im
0

]

u
. (12)

Furthermore, if we define

P+ =

[

Im 0
0 1

σH

]

∈ R
n×(m+1) ,

where σ = HTH ∈ R, then we have

PP+ =

[

Im 0
0 1

]

P+P =

[

Im 0
0 1

σHHT

]

.

From this we can argue that

x = P+x̂+ (In − P+P )x

=

[

Im 0
0 1

σH

]

x̂+

[

0 0
0 Iη −

1
σHHT

] [

z
δ

]

,

where we set η = n−m and we obtain

δ =
[

0 1
σH

]

x̂+ (Iη −
1

σ
HHT )δ .

Thus (12) can be rewritten as

˙̂x =

[

A11
1
σA12H

HTA21
1
σH

TA22H

]

x̂+

[

Im
0

]

u

+

[

A12(Iη −
1
σHHT )

HTA22(Iη −
1
σHHT )

]

δ

. (13)

System (13) is a reduced model for (10) and in compact

form can be written as

˙̂x = Âx̂+ B̂u+ D̂δ

y = Ĉx̂
. (14)

Note that, if D̂ = 0(m+1)×η , then the output controllability

Gramian Wo of the original system coincides with the output

controllability Gramian Ŵo of the reduced system (14).

However, the case of D̂ = 0(m+1)×η , commonly referred to

as exact projection, holds only in particular cases (see [33]

for more details on the subject). In [34], the authors provide

an extensive study of the conditions under which applying

(11) to a network leads to D̂ = 0(m+1)×η .

If we neglect the effect of δ on x̂, the new system

˙̂x =

[

A11
1
σA12H

HTA21
1
σH

TA22H

]

x̂+

[

Im
0

]

u (15)

is only an approximation of the original system and hence

Wo and Ŵo will be different. We are interested in comparing

these two output controllability Gramians.

Before doing so and to simplify the computations of the

output controllability Gramian of the reduced system, we can

do other manipulations. In general the top-right term 1
σA12H

in Â may be nonzero, namely the controlled nodes can be

influenced by the aggregated uncontrolled nodes. If this is

the case, we can define

u =
[

0 − 1
σA12H

]

x̂+ υ = −
1

σ
A12Hy + υ (16)

in such a way that (15) becomes

˙̂x =

[

A11 0
HTA21

1
σH

TA22H

]

x̂+

[

Im
0

]

υ . (17)
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Notice that, if we apply an input υ to the system (17),

this will generate a state evolution x̂ and a corresponding

output evolution y. If we apply the input u obtained from

x̂ and υ by (16) to the system (15), this will generate the

same state evolution x̂ and output evolution y. However,

the energy of the inputs u and υ will be different. The

following lemma provides an estimation of this difference

and an estimation of the difference between the two output

controllability Gramians.

Lemma 3 Let υ be an input generating a state evolution x̂
of the system (17) and let u in (16) be generated from these

x̂ and

upsilon. Then

‖u(·)‖L2
≤ (1 + γ)‖υ(·)‖L2

, (18)

where

γ :=

∥

∥

∥

∥

1

σs−HTA22H
A12HHTA21(sIm −A11)

−1

∥

∥

∥

∥

H∞

(19)

and ‖ · ‖H∞
means H-infinity norm of the transfer function.

Proof: Notice that

‖u(·)‖L2
≤

∥

∥

∥

∥

1

σ
A12Hy(·)

∥

∥

∥

∥

L2

+ ‖υ(·)‖L2
.

Since y(·) is generated by υ(·) through the transfer function

[

01×m 1
]

(

sI −

[

A11 0
HTA21

1
σH

TA22H

])−1 [
Im
0

]

=

1

s−HTA22H/σ
HTA21(sIm −A11)

−1

,

we have that
∥

∥

∥

∥

1

σ
A12Hy(·)

∥

∥

∥

∥

L2

≤ γ‖υ(·)‖L2
.

where γ is defined in (19). From this we can obtain the thesis.

⊳

Corollary 1 Let Ŵo be the output controllability Gramian of

the reduced system (15) and W̄o be the output controllability

Gramian of the reduced system (17). Then

W̄o ≤ (1 + γ)2Ŵo .

Proof: For any final target output yf it is possible to find

the optimal input υopt(·) such that the system (17) generates

from the zero initial state a state x̂ and an output such that

y(t) = yf . Let instead uopt(·) be the optimal input that drives

the system (14) from the zero initial to a state evolution such

that y(t) = yf . From Lemma 2 we know that

‖υopt(·)‖L2
= W̄−1/2

o |yf | ‖uopt(·)‖L2
= Ŵ−1/2

o |yf | .

Let u(·) be the input obtained from x̂, υ by (16). If we

apply it to the system (12) we obtain the same state evolution

and output evolution. Therefore, by the previous lemma we

argue that

Ŵ−1/2
o |yf | = ‖uopt(·)‖L2

≤ ‖u(·)‖L2
≤

(1 + γ)‖υopt(·)‖L2
≤ (1 + γ)W̄−1/2

o |yf |

.

From this the result claimed is straightforward. ⊳

A. The output controllability Gramian of the reduced system

Let Ā, B̄ the system matrices in (17) with C̄ = Ĉ the

output matrix. Thanks to the definition (16) and to the

resulting block triangular structure of Ā, the Gramian of

the reduced system (17) can be computed explicitly. Lets

simplify slightly the notation by introducing

Ā =

[

A11 0
aT α

]

, (20)

where aT = HTA21, α = 1/σHTA22H . In the following

we will limit our analysis to infinite time controllability

Gramians namely to the case in which tf = ∞. We will

assume moreover that Ā is Hurwitz stable, otherwise the

infinite time controllability Gramian W̄ associated with Ā, B̄
would not be well-defined. Observe that in this case W̄ has

to satisfy the Lyapunov equation ĀW̄ + W̄ĀT + B̄B̄T = 0.

If we partition W̄ according to the block structure of Ā and

B̄ as

W̄ =

[

W̄11 W̄12

W̄T
12 W̄22

]

,

then given the definition of C̄, we have that W̄o = W̄22.

Moreover, the previous Lyapunov equation is equivalent to

the following three equations

A11W̄11 + W̄11A
T
11 + Im = 0

A11W̄12 + W̄11a+ W̄12α = 0

aT W̄12 + αW̄22 + W̄T
12a+ αW̄22 = 0 .

From the second equation we argue that 1 W̄12 = −(A11 +
αIm)−1W̄11a and, using the third equation, we have that

W̄22 =
1

2α
[aT (A11 + αIm)−1W̄11a

+ aT W̄11(A
T
11 + αIm)−1a]

=
1

2α
aT (A11 + αIm)−1[2αW̄11 − Im](AT

11 + αIm)−1a

= aTΦa ,

where

Φ :=
1

2α
(A11 + αIm)−1[2αW̄11 − Im](AT

11 + αIm)−1 .

This implies that W̄o ≤ ‖Φ‖aTa. Notice that, if A11 is

symmetric, then W̄11 = −(2A11)
−1 and so

Φ =
1

2α
(A11 + αIm)−1[−αA−1

11 − Im](A11 + αIm)−1

= −
1

2α
(A11 + αIm)−1A−1

11 .

1Notice that, since Ā is Hurwitz stable, then α < 0. Hence Hurwitz
stability of A11 implies that A11 + αIm is invertible.
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We can observe that:

i) aTa is proportional to the connectivity degree between

the controlled nodes and the output, i.e.

aTa ∝ dz→δ , (21)

where dz→δ is the out-degree from controlled nodes z
to aggregated nodes δ;

ii) Φ can be seen as the network viscosity of the aggregated

dynamics and the controlled nodes. Its norm is given as

follows

‖Φ‖ =
1

−2α2λmax(A11)− 2αλmax(A11)2
, (22)

where λmax(A11) is the largest eigenvalue of A11.

From i), we can infer that controllability depends on the

number of connections between controlled nodes and the

aggregated nodes: the more connections, the less energy

required to control the output of the aggregated nodes. From

ii), we observe that the smaller the time-constant of the

aggregated nodes α and λmax(A11), the bigger Φ and thus

the less the energy required to control the output of the

aggregated nodes.

It is worth pointing out that (21)-(22) can only be obtained

for the reduced system (17): for the original system (10), the

explicit computation of the Gramian is in general impossible.

One of the advantages of considering the reduced system (17)

is thus to enable an analytic study of the Gramian which

in turns allows to assess the impact that the parameters of

the network (such as connectivity and degrees) have on the

energy necessary to control the system output.

B. Application to Large-Scale Networks

We are now interested in comparing Wo with Ŵo in the

case of a large-scale network. We consider networks in which

we fix the number of uncontrolled nodes η = 500 and we

vary the number m of controlled boundary nodes (namely

nodes with a low betweenness centrality). The network

dynamics is described by equation (10) where A is a Hurwitz

Metzler matrix (see also [27]). The graph has been generated

with a Watts-Strogatz model with mean degree 4 (inspired by

Manhattan transportation grids).

We set HT = 1
η1

T , namely we assume that y is the

average of the uncontrolled nodes. This choice is motivated

by transportation networks where typically we are allowed

to control the boundaries of the graph with the goal to steer

some measure of the interior nodes (in this case the average)

to a desired value [34].

In order to compare Ŵo for the reduced system (15) and

Wo for the original system (10), we compute the optimal

input for the original system (10)

uo
out(t) = BT eA

T (tf−t)CTW−1
o yf , (23)

and for the reduced system (15)

ûo
out(t) = B̂T eÂ

T (tf−t)ĈT Ŵ−1
o yf , (24)

where we assumed that the initial state is zero. We set yf = 1
and tf = 10 sec.

0 50 100 150 200 250

# of controlled nodes

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2: Performance of the system for n = 500 and decreasing
values of m, with two different control inputs uo and ûo, respec-
tively calculated on the original system and on the reduced system
for different size of the network.

Then we apply the two inputs uo
out(t) and ûo

out(t) to the

same system (10) and evaluate the output at time tf . Let

y(tf , u
o
out) and y(tf , û

o
out) be these two outputs. To compare

the two inputs we then consider the following ratios

y(tf , u
o
out)

yf
,

y(tf , û
o
out)

yf
. (25)

Figure 2 shows the comparison of the two ratios (25) for

different values of m = {η
2 , . . . ,

η
20}. As long as the m ≥ 1

5η,

the control input (23) (red plot) outperforms (24) (black plot)

by around 20%. However, we find out that around the ratio

m = 1
6η a transition appears in the controllability properties

of a network. In particular the performance when considering

input (23) degrades abruptly for m ≤ 1
6η. This phenomenon

does not appear when we design the input as (24) exploiting

the reduced system. This result is mainly due to the fact

that the computation of Wo in (23) becomes highly ill-

conditioned for small m while Ŵo in (24), though being

an approximation, is a scalar.

Furthermore, to confirm the conclusions drawn in Section

III-A, we considered the same network with a fixed number

of controllers m = 100. In Figure 3, we plot the ratios (25)

and the control energy with the two inputs (23) and (24)

respectively, for increasing connectivity degrees dz→δ . In

Figure 4, we do the same by letting ‖Φ‖ in (22) vary. Figure

3 and Figure 4 show that the network structure (through

dz→δ and Φ) has a real impact on the control energy. This

is well captured by the reduced system (15) being a reliable

energy approximation of the original system.

IV. A REDUCED MODEL NETWORK: THE CASE OF

MULTIPLE OUTPUTS

In many practical cases, we are interested in considering

multiple outputs describing the evolution of a network. This

aspect is strictly related to the possibility of partitioning a

network in multiple zones and to associate a measure to each.

In the context of transportation network for instance, these

partitions might represent areas/districts we are interested in

monitoring and controlling. In this section, the network is

partitioned according to the outputs and the controlled nodes,

sitting on the boundary, associated to each output. In Figure 1
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Fig. 3: Performance and energy computed with respect to the
connectivity degree in (21). The control energy decreases for an
increasing dz→δ .
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Fig. 4: Performance and energy with respect to inertia of the
network ‖Φ‖ in (22). Again, the control energy decreases for an
increasing ‖Φ‖.

an example of this setting is shown: the network is partitioned

according to 4 measured outputs, each partition with its own

set of controlled boundary nodes, each partition potentially

interacting with the others.

We consider again a system in the form (9) where A ∈
R

n×n is an Hurwitz Meltzer matrix, B is an input m ×
n matrix with entries in {1, 0} which defines which nodes

are controlled and C ∈ R
r×n describes the r outputs to

be controlled. We assume that each yi depends on a set of

uncontrolled nodes and that these sets are disjoint for each

output. More precisely, if we define K ⊆ V = {1, 2, . . . , n}
as the set of controlled nodes, then we can partition V \ K
in disjoint sets S1,S2, . . . ,Sr such that

yi =
∑

j∈Si

Cijxj .

If we partition the set of the controlled nodes K in r
disjoint subsets2 K1,K2, . . . ,Kr and we define Vi := Si∪Ki,

we can write each partition dynamics as
[

żi
δ̇i

]

=

[

Ai
11 Ai

12

Ai
21 Ai

22

] [

zi
δi

]

+

[

Imi

0

]

ui +
∑

j 6=i

[

Rij Sij

Tij Uij

] [

zj
δj

]

yi =
[

0 hi
T
]

[

z
δi

]

, (26)

2There is some arbitrarity in this choice.

where the vectors zi ∈ R
mi and ui ∈ R

mi represent

the state and the input of the nodes in Ki and the vector

δi ∈ R
ηi contains the state of the nodes in Si. As mentioned

previously, each partition’s output yi depends only on δi
through the vector hT

i .

The last term in the dynamics (26) describes the coupling

between the different partitions of the network. In [16], the

authors consider the problem of selecting control nodes in

such a way that only Rij 6= 0, namely partitions were copled

through the control nodes. If this is the case, decoupling the

partions by opportunely acting on the control nodes is an

easy task and the resulting Gramian has a block diagonal

structure which eases its computation. In this paper, control

nodes are fixed and setting on the boundary of the network:

then the outputs to be controlled (or rather the nodes δi ∈ Si

contributing to the output yi) are coupled with the other

outputs (or rather with the nodes δj ∈ Sj contributing to

the output yj). In contrast with [16], this leads to coupling

matrices Uij 6= 0, namely a coupling between the different

outputs (i.e. partitions) in the network which cannot be

compensated directly by control.

The off-diagonal terms Sij , Tij are not considered in the

following. As far as Sij is concerned, it would be easy

to compensate this coupling within the same framework

of [16]. As far as Tij is concerned, to compensate this

coupling the same procedure illustrated in the following can

be implemented. Thus, for the sake of simplicity (in notation

and design), we focus only on the inter-partitions coupling,

namely Uij 6= 0.

The entire network, namely the composition of the r
partitions (26) can be rewritten as

[

ż

δ̇

]

=

[

A11 A12

A21 A22

] [

z
δ

]

+

[

Im
0

]

u

y =
[

0r×m HT
]

[

z
δ

] , (27)

where z := (z1, z2, . . . , zr), δ := (δ1, δ2, . . . , δr),

A11 = blkdiag{Ai
11}, A12 = blkdiag{Ai

12}
A21 = blkdiag{Ai

21}, A22 = blkdiag{Ai
22}+ U

,

(28)

where

U =











0 U12 . . . U1r

U21 0 U2r

...
. . .

...

Ur1 . . . Ur,r−1 0











represents the interaction between the different partitions of

the system and where HT ∈ R
r×(n−m) is the matrix which

describes the r outputs defined as HT = blkdiag{hT
i }.

Following the same steps presented in Section III for

the single output case, we obtain a reduced system which
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partition-wise reads as
[

żi
ẏi

]

=

[

Ai
11

1
σi
Ai

12hi

hT
i A

i
21

1
σi
hT
i A

i
22hi

] [

zi
yi

]

+

[

Imi

0

]

ui

+

[

Ai
12(Iηi

− 1
σi
hih

T
i )

hT
i A

i
22(Iηi

− 1
σi
hih

T
i )

]

δi

+
∑

j 6=i

[

0 0
0 1

σj
hT
i Uijhj

] [

zj
yj

]

+
∑

j 6=i

[

0
hT
i Uij(Iηj

− 1
σj
hjh

T
j )

]

δj .

(29)

Again we neglect the effect of δi and δj on the evolution of

the outputs yi, thus obtaining
[

żi
ẏi

]

=

[

Ai
11

1
σi
Ai

12hi

hT
i A

i
21

1
σi
hT
i A

i
22hi

] [

zi
yi

]

+

[

Imi

0

]

ui

+
∑

j 6=i

[

0 0
0 1

σj
hT
i Uijhj

] [

zj
yj

] . (30)

We define a local pre-compensation control as

ui = −
1

σi
Ai

12hiyi + υi , (31)

which yields to local triangular reduced systems
[

żi
ẏi

]

=

[

Ai
11 0

hT
i A

i
21

1
σi
hT
i A

i
22hi

] [

zi
yi

]

+

[

Imi

0

]

υi

+
∑

j 6=i

[

0 0
0 1

σj
hT
i Uijhj

] [

zj
yj

] . (32)

However, system (32) still presents a coupling between

different outputs yi and yj of partitions Si,Sj through

the interaction term 1
σj
hT
i Uijhj . In order to decouple the

partitions we define3

υi = −
(

hT
i A

i
21

)+
{

hT
i A

i
22hi

σi
di + fi

}

+ ῡi (33)

where di is the measured signal

di :=
∑

j 6=i

1

σj
hT
i Uijhjyj

and where fi is the output of the first order system

ẇi = −
1

τ
wi + di

fi = −
1

τ2
wi +

1

τ
di , (34)

where τ > 0.

Proposition 1 Consider the systems (30) and assume that

the control input ui, i = 1, 2, . . . , r is designed according to

(31), (33), (34). Then, there exists a τ⋆ such that, for any

τ ≤ τ⋆, the cascade (32), (33) and (34) is asymptotically

stable for ῡi = 0.

Proof: Observe first that, since the input and the output

of (34) are related through the transfer function s
1+sτ , then for

3Here, given a matrix A ∈ R
m×n, A+ denotes its Moore-Penrose

inverse, namely AA+ = Im.

small enough τ we have that fi ≃ ḋi. Simple computations

show that

ÿi =

(

hT
i A

i
21A

i
11 +

hT
i A

i
22hi

σi
hT
i A

i
21

)

zi

+

(

hT
i A

i
22hi

σi

)2

yi +
hT
i A

i
22hi

σi
di + ḋi + hT

i A
i
21υi

≃

(

hT
i A

i
21A

i
11 +

hT
i A

i
22hi

σi
hT
i A

i
21

)

zi

+

(

hT
i A

i
22hi

σi

)2

yi + hT
i A

i
21ῡi

We see in this way that we have compensated the coupling

effect between yi and yj from neighbor partitions Sj . The

existence of a finite τ⋆ is guaranteed by the fact that A is

Meltzer Hurwitz and as a consequence, by definition of the

projection matrix P in (11), all matrixes
[

Ai
11 0

hT
i A

i
21

1
σi
hT
i A

i
22hi

]

with i = 1, 2, . . . , r are Hurwitz as well (see [35] for more

details on the design of extended high gain observers). Then,

following Proposition 4.7.2 in [36], the claim of the propo-

sition follows by selecting opportunely τ ≤ τ⋆ sufficiently

small. ⊳
As a consequence of Proposition 1, when ῡi 6= 0, we can

rewrite (32) as

[

żi
ẏi

]

=

[

Ai
11 0

hT
i A

i
21

h
T
i Ai

22
hi

σi

]

[

zi
yi

]

+

[

Imi

0

]

ῡi . (35)

Hence, to steer the output of the partition Si to its desired

value, the control energy can be written as a function of three

contributions

‖ui(·)‖L2
≤

∥

∥

∥

∥

1

σi
Ai

12hiyi(·)

∥

∥

∥

∥

L2

+ ‖ῡi(·)‖L2

+ ‖Midi +Nifi‖L2
,

where Mi, Ni are defined as

Mi =
(

hT
i A

i
21

)+ hT
i A

i
22hi

σi
, Ni =

(

hT
i A

i
21

)+
.

From the same arguments used in Lemma 3, we have
∥

∥

∥

∥

1

σi
Ai

12hiyi(·)

∥

∥

∥

∥

L2

≤ γi‖ῡi(·)‖L2
,

where

γi :=

∥

∥

∥

∥

1

σis− hT
i A22hi

Ai
12hih

T
i A

i
21(sImi

−Ai
11)

−1

∥

∥

∥

∥

H∞

(36)

and where ‖ · ‖H∞
means H∞ norm of the transfer function.

Define δj , γij respectively as

δj :=

∥

∥

∥

∥

∥

1

s− 1
σj
hT
j A

j
22hj

hT
j A

j
21(sImi

−Aj
11)

−1

∥

∥

∥

∥

∥

H∞

(37)

γij := ‖
1

σj
hT
i Uijhj‖ (38)
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and observe that the H∞ norm of the transfer function s
1+sτ

is 1/τ . Then

‖Midi+N2fi‖L2
≤

(

‖Mi‖+
1

τ
‖Ni‖

) r
∑

j=1

γijδj‖ῡj(·)‖L2
.

We now set δij :=
(

‖Mi‖+
1
τ ‖Ni‖

)

γijδj and let ∆ be the

r × r matrix with entries δij . Let moreover Γ be the r × r
diagonal matrix with entries 1+γi. Observe that there exists

ῡi(·) driving the system (35) from the zero state to the final

output yif and such that

‖ῡi(·)‖L2
= W̄

−1/2
oi |yif | , (39)

where W̄oi is the output controllability Gramian of the system

(35).

Then, the following result is straightforward.

Lemma 4 Let ῡi, i = 1, 2, . . . , r, be the inputs generating

the state evolutions x̂i, i = 1, 2, . . . , r, of the r systems (30)

and let ui in (31) be generated from these x̂i, υi. Then

‖u(·)‖2L2
=

∑

i

‖ui(·)‖
2
L2

≤ yTf Λ
1/2(Γ + ∆)T (Γ + ∆)Λ1/2yf , (40)

where

Λ := diag{W̄−1
o1 , W̄−1

o2 , . . . , W̄−1
or } .

With (40) in mind, energy properties of the overall net-

works can be upper-bounded by means of the analysis

performed in Section III-A for the each block of the matrix

Λ and by considering the energy required to decouple the

partitions. The latter depends on the L2-gain matrix Γ + ∆
which in turns depends on the coupling terms between

partitions through (37), (38) and on the design of the observer

(34) through (39).

Last, we introduce a corollary that puts in relationship the

output controllability Gramian Ŵo of (30) and the output

controllability Gramians W̄oi of (35).

Corollary 2 Let Ŵo be the output controllability Gramian of

the reduced system (30) and W̄oi be the output controllability

Gramians for the r partitions (35). Then

‖Ŵ−1
o ‖ ≤ ‖Γ +∆‖2‖Λ‖ = ‖Γ +∆‖2 max

i
{W̄−1

oi } .

A. Application to Large-Scale Networks

We are again interested in comparing Wo of (27) with

Ŵo of the network of r partitions (30), when the r outputs

have to be controlled. In this first simulation, we replicate

the same setup of Section III-B, namely we consider the

behavior of the network with a fixed number of uncontrolled

nodes η = 500 and vary the number of controlled nodes m,

while varying the number of outputs r = 3, 5, 10. The graph

connecting the uncontrolled nodes is generated with a Watts-

Strogatz model of mean degree 4 and partitions contain an

equal number of nodes (almost equal for r = 3).

The quality measure for the multi-output case is defined

as

‖y(tf , u
o
out)‖

‖yf‖
,

‖y(tf , û
o
out)‖

‖yf‖
.

where yf ∈ R
r is the set of reference values that are selected

randomly, uo
out is computed according to (23) for system

(27), while ûo
out is computed according to (24) for the system

˙̂x = Âx̂+ B̂u . (41)

which is obtained by grouping the r dynamics (30) with x̂i =
[zi, yi]

T , x̂ = col(x̂1, x̂2, . . . , x̂r), u = col(u1, u2, . . . , ur).

In Figure 5 we can observe that for large values of m the

behavior of the system driven by uo
out is close to the behavior

of the system driven by ûo
out. The difference in performance

is indeed less than 10%. Furthermore the more partitions r we

have, the closer we get to the nominal behavior. Compared

to the case of one output, having multiple partitions implies

that more information about the network is preserved and

thus a better performance is maintained with the reduced

model (30). This, together with the robustness with respect

to a decreasing number of controlled nodes, provides an

interesting insight in the possibility to control a large-scale

network via the proposed reduced model.

These aspects are even more visible when we observe the

behavior of the reduced system with respect to an increasing

size of the network. In this case, we fix the number of outputs

to r = 3, the number of controlled nodes to mi = 30 (for

each of the 3 partitions) and let the size of the network

increase: results are displayed in Figure 6. As we can

observe, for a small network of n = 150 nodes (where thus

the majority are controlled), the performance of the reduced

model is ideal. As the size increases, up to n ≈ 1000 nodes,

the decrease in performances is scarcely influenced by the

size of the network. This aspect confirms the reliability of

the proposed reduced model.

In Figure 7, we illustrate the impact of the coupling

between partitions, i.e. 1
σj
hT
i Uijhj in (32), for a fixed

number of outputs r = 10 and a fixed ratio of controlled

nodes mi =
ηi

5 for each partition. For an increasing number

of connections between the partitions, we compute the energy

necessary to control the system with (7) and compare it

with the energy estimated with (40). We start from weakly

interacting partitions (only 2 connections randomly selected),

to strongly interacting partitions (11 connections between

partitions of ni = 50 nodes). We can clearly observe that,

the more connections between partitions we introduce, the

more energy to control the outputs to their target value

is required. This is reflected both in the nominal energy

(computed through the original system Gramian, red plot) and

through the reduced model with the bound (40) (black plot),

where we explicitly aim to decouple the partitions. Clearly,

the decoupling energy depends on the density of connections

between partitions and the more connections are present, the

more the bound (40) becomes conservative.
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Fig. 5: Performance of the system for η = 500, decreasing values of m and r = 3, 5, 10 partitions respectively, with two different control
inputs uo and ûo, calculated on the original system and on the reduced system respectively.
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Fig. 6: Performance of the system for an increasing number of
nodes n, a fixed number of outputs r = 3 and a fixed number of
controlled nodes per partition mi = 30.
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Fig. 7: Control energy as a function of the number of connections
between partitions, for a fixed number of controlled nodes mi =

ηi/5 for each partitions. In red, the real energy calculated according
to (7), in black the bound obtained in (40).

V. CONCLUSIONS

In this paper we considered the problem of controlling a

large-scale network. Rather than controlling the full state, we

considered the case in which we are interested in controlling

an output, which depends on the nodes that are not directly

controlled. To simplify the computation of the controllability

Gramian (and eventually of the minimum energy control in-

puts), we considered an approximated model of the network,

that is based on an aggregation of the uncontrolled nodes.

This aggregation is defined as a projection of the output

matrix. We showed that the reduced model is closed to the

original network and in particular, the energy necessary to

control the outputs is well approximated, even for small ratios

of controlled nodes.

In the near future we plan to better understand the relation-

ship between the partitions/outputs and the error introduced

in the computation of the Gramian. In particular, simulation

results show that for outputs that represent the state average

of the nodes belonging to the each partition, the approxima-

tion is quite reliable. For a different choice of output, for

instance a normal distribution around the average, the results

are confirmed: yet it would be interesting to quantify the

relationship between degree of asymmetry in the output and

the error in the Gramian approximation.

We also plan to relax some assumption on the system

dynamics (1), for instance the Hurwitz requirement. Another

interesting development would be to consider more complex

dynamics at the nodes (i.e. higher orders linear systems) and

different coupling terms between the nodes.
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[28] D. Raczyński and W. Stanisławski, “Controllability and observability
gramians parallel computation using gpu,” Journal of Theoretical and

Applied Computer Science, vol. 6, no. 1, pp. 47–66, 2012.

[29] J. Sun and A. E. Motter, “Controllability transition and nonlocality in
network control,” Physical review letters, vol. 110, no. 20, 2013.

[30] E. Kreindler and P. E. Sarachik, “On the concepts of controllability
and observability of linear systems,” IEEE Transactions on Automatic

Control, vol. 9, no. 2, pp. 129–136, 1964.

[31] D. G. Luenberger, Optimization by Vector Space Methods. John Wiley,
1969.

[32] S. Boyd and C. Barratt, Linear Controller Design: Limits of Perfor-

mance. Prentice Hall, 1991.
[33] M. Aoki, “Control of large-scale dynamic systems by aggregation,”

IEEE Transactions on Automatic Control, vol. 13, no. 3, pp. 246–253,
1968.

[34] M. U. B. Niazi, C. C. de Wit, and A. Kibangou, “Average observability
of large-scale network systems,” in European Control Conference,
2019, pp. 1–6.

[35] H. K. Khalil, “Cascade high-gain observer for high-dimensional sys-
tems,” in IEEE Conf. on Decision and Control, 2016.

[36] A. Isidori, Nonlinear Control Systems, 3rd ed., ser. Communications
and Control Engineering Series. Springer Verlag, 1995.

Giacomo Casadei is an associate professore in
Ecole Centrale de Lyon at the Departement of
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