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Model reduction by moment matching

for linear and nonlinear systems

Alessandro Astolfi, Fellow, IEEE

Abstract— The model reduction problem for (single-input,
single-output) linear and nonlinear systems is addressed using the
notion of moment. A re-visitation of the linear theory allows to
obtain novel results for linear systems and to develop a nonlinear
enhancement of the notion of moment. This, in turn, is used
to pose and solve the model reduction problem by moment
matching for nonlinear systems, to develop a notion of frequency
response for nonlinear systems, and to solve model reduction
problems in the presence of constraints on the reduced model.
Connections between the proposed results, projection methods,
the covariance extension problem and interpolation theory are
presented. Finally, the theory is illustrated by means of simple
worked out examples and case studies.

I. INTRODUCTION

The model reduction problem for linear and nonlinear

systems has been widely studied over the past decades. This

problem has great importance in applications, because reduced

order models are often used in analysis and design. This is the

case, for example, in the study of mechanical systems, which

is often based on models derived from a rigid body perspective

that neglects the presence of flexible modes and elasticity; and

in the study of large scale systems, such as integrated circuits

or weather forecast models, which relies upon the construction

of simplified models that capture the main features of the

system. From a theoretical point of view, the model reduction

problem generates important theoretical questions and requires

advanced tools from linear algebra, functional analysis and

numerical analysis. The model reduction problem can be

simply, and informally, posed as follows. Given a system,

described by means of linear or nonlinear differential equations

together with an output map, compute a simpler system which

approximates (in a sense to be specified) its behavior. To

render precise this problem formulation it is necessary to

define two concepts. Firstly, the meaning of the approximation.

For linear systems one could introduce an approximation error

given in terms of the frequency response of a suitably defined

error system, or in terms of the response of the system for

classes of input signals. For example, the methods, known as

moment matching methods, which zero the transfer function

of the error system for specific frequencies, belong to this

class [1]. This approach does not have a direct nonlinear

counterpart, despite the recent developments in this direction

[2] (see also the early contributions [3], [4], [5], [6], [7], [8]).

Alternatively, approximation errors expressed in terms of the

H2 or H∞ norm of the error system have been considered

both in the linear case [9], [10], [11], [12] and in the nonlinear
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case [13]. Finally, approximation errors based on the Hankel

operator of the system have been widely considered [14],

[15], [16]. This approach leads to the so-called balancing

realization problem [17], [18], which has been also studied

in the nonlinear framework [19], [20], [21], [22], [23], [24],

[25], [26], [27]. Secondly, the concept of simplicity. For linear

systems this is often understood in terms of the dimension of

the system, i.e. an approximating system is simpler than the

model to approximate if its state-space realization has fewer

states. For nonlinear systems this dimensional argument may

be inappropriate, as one has to take into consideration also

the complexity of the functions involved in the state-space

representation. In addition, the notion of dimension has, for

nonlinear systems, a local nature: the dimension of a good

reduced order model may depend upon the initial condition.

Of course, there are other important issues that have to be

clarified, and investigated, in establishing a model reduction

theory. In particular, one may require that properties of the

model (such as stability or passivity) are retained by the

approximation [28], and one has to consider the computational

cost associated with the construction of the approximating

system. These issues have been widely investigated in the

linear framework, see for example the excellent monograph

[1], but are largely open for nonlinear systems. In particular,

the computation of reduced order models for nonlinear systems

often requires the (approximate) solution of partial differential

equations, and thus it can be performed only in special cir-

cumstances. In addition, some results for time-varying systems

have been proposed in [29], whereas a dedicated method

for systems with the so-called ZIP property [30] has been

developed in [31].

The model reduction problem for nonlinear systems have

been investigated from diverse perspectives. Energy-based

methods have been discussed, for example, in [21], [23],

[32], [33]; model reduction of systems in special forms,

such as differential-algebraic systems, bilinear systems or

mechanical/Hamiltonian systems, have been discussed in [34],

[35], [36], [37], [38], and reduction around a limit cycle or a

manifold has been discussed in [39], [40]. Some computational

issues have been addressed in [41], [42], [40], [27]. Finally,

proper orthogonal decomposition has been proposed as a

model reduction method applicable for linear and nonlinear

systems, see, for example, [43], [44], [42], [45], [46], where

theoretical issues, error bounds and applications have been

discussed. We refer the reader to the references therein for

further detail.

Goal of this work is to develop a theory of model reduction,

based on the notion of moment, for nonlinear systems. In

this process, we revisit the linear theory, providing new

perspectives and results. We note that this work relies upon the
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theory of the steady-state response of nonlinear systems, center

manifold theory and the tools arising in the theory of output

regulation for nonlinear systems [5], [6], [47], [48], [49], [50].

Preliminary versions of this work have been published in [51],

[52], [53].

We complete the introduction noting that, for linear systems,

the problem of model reduction by moment matching provides

a different formulation of the classical (rational) interpolation

problem, which has been solved by Nevanlinna-Pick theory

(illustrated in several textbooks, see e.g. [54]). The interpo-

lation problem has been also extensively studied by Byrnes,

Georgiou and Lindquist (and co-workers), see e.g. [55], [56],

[57], [58], [59], [60], that have developed a complete theory

for analytic interpolation with degree constraint. Note that,

the interpolation problem does not have direct counterpart

for nonlinear systems. However, as a direct byproduct of

the results in this paper, it is possible to pose (and solve)

interpolation problems for nonlinear systems. Note that some

early results on interpolation for nonlinear systems have been

presented in [61], [62]. Therein, the existence of minimal rank

bilinear systems approximating a general (analytic) system up

to order k, for any input, has been demonstrated.

The paper is logically composed of two parts. In the first

part (Section II) the problem of model reduction by moment

matching for linear systems is re-visited from a point of

view that allows for the nonlinear theory to be developed

in the second part (Section III). Obviously, some of the

linear results can be obtained specializing the corresponding

nonlinear results to linear systems. Note however that in the

linear case it is often possible to provide stronger statements,

and in the nonlinear case there are problems or issues that are

worth investigating, but that do not have special interest (or

meaning) in the linear one.

Notation. Throughout the paper we use standard notation.

IR, IRn and IRn×m denote the set of real numbers, of n-

dimensional vectors with real components, and of n × m-

dimensional matrices with real entries, respectively. IR+ (IR−)

denotes the set of non-negative (non-positive) real numbers. IC
denotes the set of complex numbers, IC0 denotes the set of

complex numbers with zero real part, IC− denotes the set of

complex numbers with negative real part. σ(A) denotes the

spectrum of the matrix A ∈ IRn×n. Finally, ∅ denotes the

empty set.

II. MODEL REDUCTION BY MOMENT MATCHING FOR

LINEAR SYSTEMS – REVISITED

A. The notion of moment

Consider a linear, single-input, single-output1, continuous-

time system described by equations of the form

ẋ = Ax+Bu, y = Cx, (1)

with x(t) ∈ IRn, u(t) ∈ IR, y(t) ∈ IR, A ∈ IRn×n, B ∈ IRn

and C ∈ IR1×n constant matrices, and the associated transfer

function

W (s) = C(sI −A)−1B. (2)

1Similar considerations can be performed for multi-input, multi-output
systems.

Definition 1: [1] The 0-moment of system (1) at s⋆ ∈ IC
is the complex number η0(s

⋆) = C(s⋆I − A)−1B. The k-

moment of system (1) at s⋆ ∈ IC is the complex number

ηk(s⋆) =
(−1)k

k!

[
dk

dsk

(
C(sI −A)−1B

)
]

s=s⋆

Note that moments are associated with the transfer function

of the system (1). Therefore, in what follows we make the

following standing assumption.

(SA) The system (1) is controllable and observable.

Moments can be also characterized, for almost all s⋆, in a time-

domain setting, as shown in the following statements (see also

[1, Chapter 6]).

Lemma 1: Consider system (1) and s⋆ ∈ IC. Suppose s⋆ 6∈
σ(A). Then η0(s

⋆) = CΠ, where Π is the unique solution of

the Sylvester equation

AΠ +B = Πs⋆. (3)

Proof: By direct computation, equation (3) yields Π =
(s⋆I −A)−1B, hence CΠ = η0(s

⋆).
Lemma 2: Consider system (1) and s⋆ ∈ IC. Suppose s⋆ 6∈

σ(A). Then





η0(s
⋆)

...

ηk(s⋆)




 = (CΠΨk)′,

where

Ψk = diag(1,−1, 1, · · · , (−1)k) ∈ IR(k+1)×(k+1),

and Π is the unique solution of the Sylvester equation

AΠ +BLk = ΠΣk, (4)

with Lk =
[

1 0 · · · 0
]
∈ IRk+1, and

Σk =










s⋆ 1 0 · · · 0
0 s⋆ 1 · · · 0
...

...
. . .

. . .
...

0 · · · 0 s⋆ 1
0 · · · · · · 0 s⋆










∈ IR(k+1)×(k+1).

Proof: Let Π =
[

Π0 Π1 · · · Πk

]
and note that

equation (4) can be rewritten as

AΠ0 +B = s⋆Π0,
AΠ1 = s⋆Π1 + Π0,

...

AΠk = s⋆Πk + Πk−1.

As a result,

Π0 = (s⋆I −A)−1B,
Π1 = −(s⋆I −A)−2B,

...

Πk = (−1)k(s⋆I −A)−(k+1)B,

hence the claim.

Remark 1: The time domain characterization of moments

in Lemmas 1 and 2 is not valid for s⋆ = ∞ (see Example 9

for a characterization of moments at s⋆ = ∞).

Remark 2: The pair (Lk,Σk) is observable for any s⋆.
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The main disadvantage of the above results is in the fact

that one has to deal with complex matrices and Σk and Lk

have a special structure. To remove this shortcoming note that

moments are coordinate invariant and, by a property of real

rational functions, ηk(s̄⋆) = ηk(s⋆). As a result, the following

statements hold.

Lemma 3: Consider system (1) and s⋆ ∈ IR. Suppose

s⋆ 6∈ σ(A). Then there is a one-to-one relation between the

moments η0(s
⋆), . . . , ηk(s⋆) and the matrix CΠ, where Π is

the unique solution of the Sylvester equation

AΠ +BL = ΠS, (5)

with S any non-derogatory2 real matrix such that

det(sI − S) = (s− s⋆)k+1, (6)

and L such that the pair (L, S) is observable.

Proof: By observability of the pair (L, S) there is a

unique invertible matrix T such that S = T−1ΣkT and

L = LkT . As a result, equation (5) becomes AΠ +BLkT =
ΠT−1ΣkT, and this can be rewritten as AΠ̃ + BLk = Π̃Σk,
with Π̃ = ΠT−1. By Lemma 2, and invariance of the moments

with respect to the coordinates in the state space, the moments

η0(s
⋆), . . . , ηk(s⋆) can be univoquely expressed in terms of

Π̃, hence the claim.

Lemma 4: Consider system (1) and s⋆ ∈ IC \ IR. Let

s⋆ = α⋆ + iω⋆. Suppose s⋆ 6∈ σ(A). Then there is a one-to-

one relation between the moments η0(s
⋆), η0(s̄

⋆), . . . , ηk(s⋆),
ηk(s̄⋆) and the matrix CΠ, where Π is the unique solution of

the Sylvester equation

AΠ +BL = ΠS, (7)

with S any non-derogatory real matrix such that

det(sI − S) = ((s− s⋆)(s− s̄⋆))
k+1

, (8)

and L such that the pair (L, S) is observable.

Proof: The proof is similar to the one of Lemma 3 hence

omitted.

We complete this section with a property which is instru-

mental to derive a nonlinear enhancement of the notion of

moment.

Theorem 1: Consider system (1), s⋆ ∈ IC and k ≥ 0.

Assume σ(A) ⊂ IC− and s⋆ ∈ IC0. Let

ω̇ = Sω, (9)

with ω(t) ∈ IRκ, where

κ =

{

k + 1 if s⋆ ∈ IR,

2(k + 1) if s⋆ ∈ IC \ IR,

and S ∈ IRκ×κ any non-derogatory real matrix with character-

istic polynomial as in (6), if s⋆ ∈ IR, or as in (8), if s⋆ ∈ IC\IR.

Let ω(0) 6= 0.

Consider the interconnection of systems (1) and (9) with

u = Lω, and L such that the pair (L, S) is observable.

2A matrix is non-derogatory if its characteristic and minimal polynomials
coincide.

Then the moments η0(s
⋆), . . . , ηk(s⋆) are in one-to-one

relation with the (well-defined) steady-state response of the

output of such interconnected system.

Proof: We provide a proof which exploits arguments

with a nonlinear counterpart (an elementary, alternative, proof

can be obtained using Laplace transform arguments). The

considered interconnected system is described by

ω̇ = Sω,
ẋ = Ax+BLω,
y = Cx.

By the center manifold theorem [63], [64], which is applicable

because of the assumptions on σ(A) and σ(S), this system

has a globally well-defined invariant manifold (which is a

hyperplane) given by M = {(x, ω) ∈ IRn+κ | x = Πω},
with Π the unique solution of the Sylvester equation (5). Note

that

.
︷ ︸︸ ︷

x− Πω= A(x−Πω), hence M is attractive. As a result

y(t) = CΠω(t) + CeAt(x(0) − Πω(0)), where the first term

on the right-hand side describes the steady-state response of

the system, and the second term on the right-hand side the

transient response, which proves the claim.

Remark 3: The results derived so-far are direct conse-

quences of the definition of moment. However, to the best

of the author’s knowledge, they have not been presented in

this form, see however a similar discussion in [1, Section

6.1], the paper [65], in which Sylvester equations are used to

compute the Krylov subspaces arising in the construction of

the projectors which define the reduced order model, and the

early results [66] (and references therein), in which the relation

between least-square interpolation and moment matching (at

s = 0 and s = ∞) is discussed.

Remark 4: The main advantage of the characterization of

moments in terms of steady-state responses is that it allows one

to define the notion of moment for systems which do not admit

a representation in terms of transfer function, for example

linear time-varying systems, which we do not discuss for

reason of space, and nonlinear systems, which are discussed

extensively in Section III.

The main disadvantage is that this characterization requires

existence of the steady-state response, hence the system to be

reduced has to possess some strong stability property. Note

however that, for unstable systems it is still possible to define

moments by means of the Sylvester equation (5). This type

of definition admits a nonlinear counterpart, which is however

not discussed in this paper (see also Remark 10).

B. Moment matching

We are now in a position to define, precisely, the notion of

reduced order model. The system

ξ̇ = Fξ +Gu, ψ = Hξ, (10)

with ξ(t) ∈ IRν and ψ(t) ∈ IR, is a model of system (1) at

S ∈ IRν̃×ν̃ , with S such that σ(S) ∩ σ(A) = ∅, if

σ(S) ∩ σ(F ) = ∅ (11)

and

CΠ = HP, (12)
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u = Lω y
ω̇ = Sω

ẋ = Ax+Bu

y = Cx

Steady-state response

m
Moments

Fig. 1. A diagrammatic illustration of Theorem 1.

where Π is the unique solution of equation (5), with L such

that the pair (L, S) is observable, and P is the unique solution

of the equation

FP +GL = PS. (13)

Furthermore, system (10) is a reduced order model of system

(1) if ν < n. Note that, consistently with the discussion in

[1], the system (10) solves the model reduction problem with

moment matching at σ(S) for system (1).

C. Model reduction by moment matching

The proposed results can, in principle, be used to solve the

model reduction problem by moment matching for system (1)

in two steps. In the former one has to solve the Sylvester

equation (5) in the unknown Π. In the latter one has to

construct matrices F , G, H and P (possibly with specific

properties) such that equations (12) and (13) hold. This

approach is unsatisfactory because it requires the computation

of the moments, namely of the matrix CΠ and hence of Π,

whereas most of the existing algorithms [1] are able to achieve

moment matching without the need to compute moments. To

avoid the computation of the moments, i.e. of the matrix Π,

one could proceed as follows. Consider system (1), a matrix

S, and construct a reduced order model achieving moment

matching at S with any efficient algorithm that does not

require the computation of the moments, see [1], [67], [68],

[69], [70]. This yields a reduced order model for system (1)

described by equations of the form

ẋM = AMxM +BMu, yM = CMxM , (14)

where xM (t) ∈ IRν and yM (t) ∈ IR. To find a reduced order

model with desired properties it is thus sufficient to apply the

model reduction procedures discussed hereafter to system (14).

This approach is similar in spirit to that described in [60].

We now focus on the second step of the construction,

with the goal to achieve moment matching with additional

constraints on the reduced order model. To simplify this step

we make the following assumptions.

(A1) The matrices F and S have the same dimensions.

(A2) S and A do not have common eigenvalues and S and

F do not have common eigenvalues.

Note now that selecting P = I yields a family of reduced

order models for system (1) at S, hence achieving moment

matching, described by equations of the form (10) with

F = S − ∆L, G = ∆, H = CΠ,

namely

ξ̇ = (S − ∆L)ξ + ∆u, ψ = CΠξ, (15)

with ∆ any matrix such that σ(S) ∩ σ(S − ∆L) = ∅.

Remark 5: The proposed approach differs from the in-

terpolation/projection approach developed, for example, in

[1]. Therein, moment matching is achieved by means of

the selection of two oblique projectors, which are computed

on the basis of so-called interpolation points. Half of these

interpolation points are determined by the location of the

moments that have to be matched, whereas the remaining

interpolation points are free parameters. These free parameters

can be selected to enforce specific properties of the reduced

order model, such as stability, the relative degree, or passivity.

However, the relation between free interpolation points and

properties of the reduced order model is nontrivial and does

not possess a direct (system theoretic) interpretation (see [71],

[12], [28], [72]). Finally, the projectors can also be selected

to enforce a particular structure for the reduced order model,

as discussed in detail in [73].

On the contrary, in this paper, the family of reduced order

models achieving moment matching is parameterized directly

by the matrix ∆, which has to satisfy a generic constraint.

As a result, the relations between the matrix ∆ and properties

of the reduced order model are straightforward and easy to

characterize, as discussed in the following sections.

Before ending this section we discuss two important prob-

lems associated with the parameterization given in equation

(15). The former is the completeness of the parameterization,

i.e. if the family (15) contains all systems, of dimension ν
achieving moment matching; the latter is the connection with

the so-called Georgiou-Kimura parameterization [55], [74],

[75].

Proposition 1: Consider the family of systems (15). Con-

sider a model of system (1) at S of dimension ν, and let W (s)
be its transfer function. Then there exists a unique ∆ such that

W (s) = CΠ(sI − (S −∆L))−1∆, i.e. the family of systems

(15) contains all models of system (1) at S of dimension ν.

Proof: Let W (s) = N(s)
D(s) and select ∆ such that D(s) =

det(sI − (S − ∆L)). Under the stated assumptions, there is

a unique ∆ satisfying this condition. To complete the proof

we need to show that N(s) = CΠ adj(sI − (S − ∆L))∆.
The condition of moment matching implies ν independent

equality conditions on the polynomials N(s) and CΠ adj(sI−
(S − ∆L))∆, which are both of degree ν − 1, hence these

polynomials are identical, which proves the claim.
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We now consider the second issue, i.e. the connection with

the Georgiou-Kimura parameterization [55], [74], [75]. The

Georgiou-Kimura parameterization arises in the solution of

the covariance extension problem. The covariance extension

problem can be recast as the problem of matching k moments

at 0. The solution of this problem, as presented in [75,

Theorem 1], is given by the rational function

WGK(s) =
ψn(s) + γ1ψn−1(s) + · · · + γnψ0(s)

φn(s) + γ1φn−1(s) + · · · + γnφ0(s)
,

where γi ∈ IR, for i ∈ [1, n], and φ(·) and ψ(·) are the

Szegö orthogonal polynomial of the first and second kind,

respectively. It is worth comparing the above parameterization

with the parameterization proposed in this work, which is

given in terms of the vector ∆. To this end, note that, in the

Georgiou-Kimura parameterization, the parameters γi enter

linearly both in the numerator and in the denominator, whereas

in the proposed representation the entries of the parameter

∆ enter nonlinearly in both cases. While this may be a

disadvantage, it is worth stressing that, as will become clear

in what follows, it is possible to relate directly the parameter

∆ with some systems theoretic properties of the reduced

order model (which solves the covariance extension problem),

whereas it is very hard to derive similar interpretation for the

parameters γi. Note finally that, by Proposition 1 and [75,

Theorem 1], the set of all rational transfer functions given by

the Georgiou-Kimura parameterization coincides with the set

characterized in this work.

Example 1: Consider a reduced order model described by

the equations (15), with

S =





0 1 0
0 0 1
0 0 0



 , (16)

and

L =
[

1 0 0
]

CΠ =
[
η0 η1 η2

]
. (17)

This implies that the reduced order model matches the 0-, 1-

and 2- moments at zero. Note that, independently from the

selection of ∆, the transfer function W (s) = CΠ(sI − (S −
∆L))−1∆ of the reduced order model is such that W (s) =
η0 + η1s+ η2s

2 + ......
1) The interpolation problem: As discussed in the introduc-

tion, the main difference between the model reduction problem

and the classical Nevanlinna-Pick interpolation problem, is that

the number of interpolation points is equal to the order of the

approximating system plus one. As a result, the interpolating

problem can be regarded as a model reduction problem by

moment matching in which a model of order n should match

n+1 moments. This problem can be characterized as follows.

(For simplicity, we assume that one of the interpolation point

is real.)

Corollary 1: Consider system (1) and an observable pair

(L̃, S̃) with S̃ ∈ IRν+1×ν+1 and L̃ ∈ IR1×ν+1. Suppose

σ(S̃) ∩ σ(A) = ∅,

S̃ =

[
S S1

0 s2

]

and L̃ =
[
L 0

]
, with S ∈ IRν×ν , S1 ∈ IRν×1, s2 ∈ IR

and L ∈ IR1×ν . Then there exists a reduced order model of

system (1) at S̃ described by equations of the form (15) with

ξ ∈ IRν if and only if there is a ∆ such that

C(s2I −A)−1(Π∆−B)L(s2I − (S−∆L))−1S1 = 0, (18)

with Π the unique solution of the equation AΠ +BL = ΠS.
Proof: The proof is a direct application of the definition

of moment, hence it is omitted.

Remark 6: Let W (s) be the transfer function of the system

ẋ = Ax+ (Π∆ −B)u, y = Cx,

and M(s) be the transfer function of the system

ξ̇ = (S − ∆L)ξ + S1v, ψ = Lξ.

Condition (18) can be written as W (s2)M(s2) = 0, which

expresses that ∆ is such that at least one of the two transfer

functions W (s) and M(s) have a zero at s2. As a result,

condition (18) is equivalent to

det

[
s2I −A Π∆ −B

C 0

]

det

[
s2I − (S − ∆L) S1

L 0

]

= 0.

2) Matching with prescribed eigenvalues: Consider system

(15) and the problem of determining ∆ such that the re-

duced order model has prescribed eigenvalues, i.e. σ(F ) =
{λ1, · · · , λν}, for some given λi’s such that σ(F )∩σ(S) = ∅.

This problem has been solved, using Krylov-type projection

tools, in [71], whereas model reduction by moment matching

and with a stability constraint has been recently discussed in

[76]. This goal is achieved selecting ∆ such that

σ(S − ∆L) = σ(F ). (19)

Note that, by observability of the pair (L, S), there is a unique

matrix ∆ such that condition (19) holds.

Example 2: Consider a reduced order model described by

the equations (15), with S, L and CΠ as in equations (16) and

(17). The selection ∆ =
[

3λ 3λ2 λ3
]′

yields a reduced

order model with three eigenvalues at −λ, and with transfer

function

W (s) =
λ(3η0 + 3λη1 + λ2η2)s

2 + λ2(λη1 + 3η0)s+ λ3η0
(s+ λ)3

=η0 + η1s+ η2s
2 + ......

3) Matching with prescribed relative degree: Consider sys-

tem (15) and the problem of determining ∆ such that the

system has a given relative degree r ∈ [1, ν]. By definition of

relative degree, system (15) has relative degree r if

CΠ∆ = 0,
...

CΠ(S − ∆L)r−2∆ = 0,
CΠ(S − ∆L)r−1∆ 6= 0,

or, equivalently, if







CΠ
...

CΠSr−2

CΠSr−1








∆ =








0
...

0
γ







, (20)
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for some nonzero γ. Therefore, to assign the relative degree

of the reduced order model it is enough to solve the equation

(20) in the unknown ∆. Solvability of this equation, for all

r ∈ [1, ν], is discussed in the next statement.

Theorem 2: The following statements are equivalent.

(RD1) Equation (20) has a solution ∆ for all r ∈ [1, ν].
(RD2) The system

ξ̇ = Sξ, ψ = CΠξ, (21)

is observable.

(RD3) The system

ω̇ = Sω, ẋ = Ax+BLω, y = Cx, (22)

is observable.

Proof: (RD1)⇒(RD2). If equation (20) has a solution ∆
for all r ∈ [1, ν] then CΠ 6= 0, and setting r = 2 yields that

CΠS is linearly independent from CΠ, i.e.

rank

[
CΠ
CΠS

]

= 2.

Using the same arguments we infer that, for each r ∈ [1, ν],

rank








CΠ
CΠS

...

CΠSr−1








= r, (23)

hence for r = ν we conclude observability of system (21).

(RD2)⇒(RD1). Observability of system (21) implies equation

(23), for all r ∈ [1, ν], and hence solvability of equation (20)

for all r ∈ [1, ν].

(RD3)⇒(RD2). We prove this implication by contradiction.

Suppose system (21) is not observable. Then there exist a

(possibly complex) vector v and a scalar λ such that Sv = λv
and CΠv = 0. Let

w =

[
v

Πv

]

=

[
I
Π

]

v

and note that
[

S 0
BL A

]

w =

[
Sv

(BL+AΠ)v

]

=

[
I
Π

]

Sv = λw,

and
[

0 C
]
w = 0, hence system (22) is not observable,

which proves the claim.

(RD2)⇒(RD3). We prove this implication by contradiction.

Suppose system (22) is not observable. Then there exist a

(possibly complex) vector w = [w′
1 w

′
2]

′ and a scalar λ such

that
[

S 0
BL A

]

w = λw
[

0 C
]
w = 0.

This implies Sw1 = λw1 and

BLw1 +Aw2 = ΠSw1 −AΠw1 +Aw2

= λΠw1 −AΠw1 +Aw2

= λw2,

hence (A − λI)(w2 − Πw1) = 0. As a result, since λ is an

eigenvalue of S and S and A do not have common eigenvalues

w2 = Πw1, which implies CΠw1 = 0, hence system (21) is

not observable, which proves the claim.

Remark 7: If system (21), or system (22), are not observ-

able, it may still be possible to assign the relative degree of

the model for some r ∈ [1, ν]. However, if it is possible to

assign a relative degree r, then it is possible to assign any

relative degree r̃ ∈ [1, r].
The matrix ∆ assigning the relative degree to system (10)

is not unique. This degree of freedom may be exploited to

partly assign the eigenvalues or the zeros of the reduced order

model. To illustrate this issue consider the following example.

Example 3: Consider a reduced order model described by

the equations (15), with

S =

[
0 ω⋆

−ω⋆ 0

]

,

L =
[

1 0
]

and CΠ =
[
η0s η0c

]
, with ω⋆ > 0 and

η2
0s + η2

0c 6= 0. This implies that the reduced order model

matches the 0-moment at ±iω⋆.

All matrices ∆ such that the reduced order model has

relative degree one are described by

∆ = γ

[
η0s

η0c

]

+ δ

[
−η0c

η0s

]

,

with γ 6= 0 and δ ∈ IR. The transfer function W (s) of the

reduced order model is given by

W (s) =
γs+ ω⋆δ

s2 + (γη0s − δη0c)s+ ω⋆(ω⋆ + δη0s + γη0c)
,

(24)

and the parameters δ and γ can be used to assign its poles, or

the zero and the DC-gain, or to obtain a reduced order model

which is asymptotically stable and minimum phase (i.e. it is

passive).

All matrices ∆ such that the reduced order model has

relative degree two are described by

∆ =
γ

ω⋆

[
−η0c

η0s

]

,

with γ 6= 0. The transfer function W (s) of the reduced order

model is given by

W (s) =
γ

s2 − η0c
γ

ω⋆ s+ (ω⋆)2 + γη0s

, (25)

and the parameter γ can be selected to ensure asymptotic

stability of the reduced order model provided η0c 6= 0.

It is worth noting that, consistently with the theory, the value

of the transfer functions in equation (24) and (25) for s =
±iω⋆ depends only upon η0s and η0c.

Example 4: Consider a reduced order model described by

the equations (15), with S, L and CΠ as in equations (16)

and (17). Let η0 6= 0.

All matrices ∆ such that the reduced order model has

relative degree three are described by

∆ = γ











η2
1 − η0η2
η3
0

−
η1
η2
0

1

η0













7

with γ 6= 0. The transfer function of the reduced order model

is given by

W (s) =
γη3

0

η3
0s

3 + (η2
1 − η0η2)γs2 − η0η1γs+ η2

0γ
(26)

and the parameter γ can be used to assign, for example, the

high-frequency gain.

4) Matching with prescribed zeros: Consider now the prob-

lem of selecting ∆ such that system (15) has prescribed zeros.

This problem admits the following characterization.

Theorem 3: The following statements are equivalent.

(Z1) The zeros of system (15) can be arbitrarily assigned

by a proper selection of ∆.

(Z2) The zeros of the system

ξ̇ = Sξ + ∆u, ψ = CΠξ, (27)

can be arbitrarily assigned properly selecting ∆.

(Z3) The system (21) is observable.

(Z4) The system (22) is observable.

Proof: The equivalence between (Z3) and (Z4) has been

established in Theorem 2.

(Z1)⇔(Z2). To prove the claim we simply show that the zeros

of the two systems coincide. For, note that

[
sI − (S − ∆L) ∆

CΠ 0

]

=

[
sI − S ∆
CΠ 0

] [
I 0
L 1

]

,

which proves the claim.

(Z2)⇒(Z3). The zeros of system (27) are the roots of the

polynomial

det

[
sI − S ∆
CΠ 0

]

.

Observability of system (21) implies that

rank

[
sI − S
CΠ

]

= n,

for all s ∈ IC. Let zi(s) be the determinant of the minor

of order n obtained eliminating from the observability pencil

the i-th row of the matrix sI − S. By observability, the n
polynomials z1(s), · · · , zn(s) do not have common roots, i.e.

are independent polynomials of degree n−1. This implies that

such polynomials form a basis for the space of polynomials of

degree n− 1. Note now that (setting ∆ = [∆1 ∆2 · · · ∆n]′)

Z(s) = det

[
sI − S ∆
CΠ 0

]

= (−1)n
(
∆1z1(s) − · · · + (−1)n−1∆nzn(s)

)
,

(28)

which implies that it is possible to arbitrarily assign the

polynomial which defines the zeros of the system.

(Z3)⇒(Z2). If the zeros of system (27) can be arbitrarily

assigned, then the polynomial Z(s) in equation (28) can be

arbitrarily assigned, and this implies that the polynomials zi(s)
are independent, hence observability of system (21).

Example 5: Consider a reduced order model described by

the equations (15), with

S =





0 1 0
−1 0 0

0 0 0



 ,

L =
[

1 0 1
]

and CΠ =
[
η0s η0c η0

]
. This implies

that the reduced order model matches the 0-moment at ±i and

at zero. Note that

Z(s)=η0∆3+(η0s∆2−η0c∆1)s+(η0s∆1+η0c∆2+η0∆3)s
2,

and this can be arbitrarily assigned provided η0(η
2
0s+η

2
0c) 6= 0,

which implies, and is implied by, observability of the system

ξ̇ = Sξ, ψ = CΠξ.
5) Matching with a passivity constraint: Consider now the

problem of selecting ∆ such that system (15) is passive. This

problem, addressed from a different perspective in [28], [60],

admits the following characterization.

Theorem 4: The following statements hold.

(P1) The family of reduced order models (15) contains a

lossless system if and only if there exists a symmetric

and positive definite matrix P such that

S′P + PS = Π′C ′L+ L′CΠ. (29)

(P2) The family of reduced order models (15) contains a

passive system if and only if there exists a symmetric

and positive definite matrix P such that

S′P + PS ≤ Π′C ′L+ L′CΠ. (30)

Proof: By definition of losslessness [77], [78], the family

of systems (15) contains a lossless system if and only if there

exists a symmetric and positive definite matrix P such that

(S − ∆L)′P + P (S − ∆L) = 0, P∆ = (CΠ)′, (31)

which is equivalent to the existence of a symmetric and

positive definite matrix P such that equation (30) holds. The

proof of the second statement is similar hence omitted.

Remark 8: In [28] it has been shown that if the system for

which a reduced order model has to be constructed is passive

then it is always possible to obtain a reduced order model

achieving moment matching and which is itself passive. The

result in Theorem 4 is applicable even if the system to be

reduced is not passive, or lossless. Note that the approximation

of a general system by means of a passive system may be

useful to obtain a physical realization of the system.

Corollary 2: Consider the family of system (15). Suppose

σ(S) ⊂ IC−. Then there is a symmetric and positive definite

matrix P such that condition (30) holds.

Proof: The condition σ(S) ⊂ IC− implies that there exists

a symmetric and positive definite matrix X such that S′X +
XS < 0. As a result, there exists a constant κ > 0 such that

condition (30) holds with P = κX .

Example 6: Consider a reduced order model described by

the equations (15), with S, L and CΠ as in equations (16)

and (17). Assume η0 > 03. Setting

P =





P11 P12 P13

P12 P22 P23

P13 P23 P33



 ,

3This is the case, for example, if the system to be reduced is strictly passive.
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condition (30) reduces to




2η0 η1 − P11 η2 − P12

η1 − P11 −2P21 −P13 − P22

η2 − P12 −P13 − P22 −2P23



 ≥ 0.

This can be satisfied selecting P13 = −P22, P12 < 0 and

sufficiently large in modulus, and P23 < 0 and sufficiently

large in modulus. Finally, P can be rendered positive definite

selecting P11 = 1, P22 > 0 and sufficiently large, and P33 > 0
and sufficiently large.

Example 7: Consider a reduced order model described by

the equations (15), with S, L and CΠ as in equations (16)

and (17). Assume η0 = η2 = 0 and η1 > 0. The selection

P =





η1 0 −P22

0 P22 0
−P22 0 P33



 ,

with P22 > 0, and P33 > 0 and sufficiently large, is such that

condition (29) holds with P > 0.

6) Matching with L2-gain: In this section we show how

the result developed so far can be exploited to derive an

asymptotically stable reduced order model achieving moment

matching and with a given L2-gain.

Theorem 5: The following statements are equivalent.

(L1) System (15) has L2-gain not larger than γ > 0.

(L2) There is a symmetric and positive definite matrix P
such that

S′P + PS + Π′C ′CΠ ≤ γ2L′L. (32)

Proof: System (15) has L2-gain smaller or equal to γ > 0
if and only if [79], [80] there exists a symmetric and positive

definite matrix P such that

(S−∆L)′P +P (S−∆L)+P
∆∆′

γ2
P +Π′C ′CΠ ≤ 0. (33)

Equation (33) can be rewritten as

S′P +PS+Π′C ′CΠ+

[

γL′ − P
∆

γ

][

γL−
∆′

γ
P

]

≤ γ2L′L,

which proves the claim.

Remark 9: If, for some γ > 0, there exists a symmetric

and positive definite solution P of the inequality (32) then

∆ = 1
γ2P

−1L′ is such that system (15) has L2 gain not larger

than γ.

Corollary 3: Consider the family of system (15). Suppose

σ(S) ⊂ IC−. Then for any γ > 0 there is a symmetric and

positive definite matrix P such that condition (32) holds.

7) Matching with a compartmental constraint: Finally, we

show that under specific assumptions it is possible to select the

matrix ∆ such that the reduced order model is a compartmental

system [81], [82], [30].

Theorem 6: Consider the family of reduced order model

(15). Assume S = S′. The following statements are equivalent.

(C1) The system (21) is observable.

(C2) The system (22) is observable.

(C3) There is a matrix ∆ such that system (27) has a

diagonal positive realization.

Proof: The equivalence between (C1) and (C2) has been

established in Theorem 2.

(C1)⇔(C3). Let H be the Hankel matrix associated to system

(27), let Hν be the square matrix composed of the first ν rows

and the first ν columns of H , and let σHν be the square matrix

composed of the first ν rows and the second to ν+1 columns

of H . By [30, Proposition 2], system (27) admits a positive

diagonal realization if and only if Hν > 0 and the number

of positive (negative, zero) eigenvalues of σHν is equal to

the number of positive (negative, zero) eigenvalues of S. Let

∆ = (CΠ)′ and note that

Hν =






CΠ
...

CΠSν−1






[
(CΠ)′ · · · (CΠSν−1)′

]

and

σHν =








CΠ

...

CΠSν−1







S

[
(CΠ)′ · · · (CΠSν−1)′

]
.

Hence, Hν is positive definite and the number of positive

(negative, zero) eigenvalues of σHν is equal to the number

of positive (negative, zero) eigenvalues of S if and only if

system (21) is observable.

III. MODEL REDUCTION BY MOMENT MATCHING FOR

NONLINEAR SYSTEMS

A. The notion of moment

In this section we derive a nonlinear enhancement of the

notion of moment. To this end note that while most of the

results in Section II do not have a direct nonlinear counterpart,

we can use Lemma 1 to give a definition of moment.

Consider a nonlinear, single-input, single-output, conti-

nuous-time system described by equations of the form

ẋ = f(x, u), y = h(x), (34)

with x(t) ∈ IRn, u(t) ∈ IR, y(t) ∈ IR and f(·, ·) and

h(·) smooth mappings, a signal generator described by the

equations

ω̇ = s(ω), θ = l(ω), (35)

with ω(t) ∈ IRκ, θ(t) ∈ IR and s(·) and l(·) smooth mappings,

and the interconnected system

ω̇ = s(ω), ẋ = f(x, l(ω)), y = h(x). (36)

Suppose, in addition, that f(0, 0) = 0, s(0) = 0, l(0) = 0 and

h(0) = 0. The signal generator captures the requirement that

one is interested in studying the behavior of system (34) only

in specific circumstances. However, for this to make sense and

to provide a generalization of the notion of moment, we need

the following assumptions and definitions.

Assumption 1: There is a unique mapping π(ω), locally4

defined in a neighborhood of ω = 0, which solves the partial

differential equation

f(π(ω), l(ω)) =
∂π

∂ω
s(ω). (37)

4All statements are local, although global versions can be easily given.
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Assumption 1 implies that the interconnected system (36)

possesses an invariant manifold, described by the equation x =
π(ω). Note that the (well-defined) dynamics of the system

restricted to the invariant manifold are described by ω̇ = s(ω),
i.e. are a copy of the dynamics of the signal generator (35).

Assumption 2: The signal generator (35) is observable, i.e.

for any pair of initial conditions ωa(0) and ωb(0), such that

ωa(0) 6= ωb(0), the corresponding output trajectories l(ωa(t))
and l(ωb(t)) are such that l(ωa(t)) − l(ωb(t)) 6≡ 0.

Definition 2: Consider system (34) and the signal genera-

tor (35). Suppose Assumptions 1 and 2 hold. The function

h(π(ω)), with π(·) solution of equation (37), is the moment

of system (34) at (s(ω), l(ω)).
Definition 3: Consider system (34) and the signal generator

(35). Suppose Assumption 1 holds. Let the signal generator

(35) be such that s(ω) = 0 and l(ω) = ω. Then the function

h(π(ω)) is the 0-moment of system (34) at s⋆ = 0.

The above definitions allow to derive a nonlinear counterpart

of Lemma 1.

Theorem 7: Consider system (34) and the signal generator

(35). Assume Assumption 2 holds. Assume the zero equilib-

rium of the system ẋ = f(x, 0) is locally exponentially stable

and system (35) is Poisson stable5. Assume ω(0) 6= 0.

Then Assumption 1 holds and the moment of system (34) at

(s(ω), l(ω)) coincides with the (locally well-defined) steady-

state response6 of the output of the interconnected system (36).

Proof: To begin with note that, under the stated hy-

potheses, Assumption 1 holds by the center manifold theory

[63] and the results in [6]. Moreover, by [6], the steady-state

response of the system is (locally) well-defined, and this is

given by π(h(ω(t))), hence the claim.

Remark 10: If the equilibrium x = 0 of system ẋ = f(x, 0)
is unstable, it is still possible to define the moment of system

(34) at (s(ω), l(ω)) in terms of the function π(h(·)), provided

the equilibrium x = 0 is hyperbolic and the system (35)

is Poisson stable, although it is not possible to establish a

relation with the steady-state response of the interconnected

system (36).

Remark 11: While for linear systems it is possible to define

k-moments for every s⋆ ∈ IC and for any k ≥ 0, for nonlinear

systems it may be difficult, or impossible, to provide general

statements if the signal θ(t), generated by system (35), is

unbounded. Therefore, if the signal generator is linear we

consider only 0-moments for s⋆ ∈ IC0, whereas if the signal

generator is nonlinear we assume that it generates bounded

trajectories.

Example 8: Consider a linear system described by equa-

tions of the form (1) with x(t) ∈ IRn, n > 3, u(t) ∈ IR,

y(t) ∈ IR and the nonlinear signal generator (35) with ω =
[ω1, ω2, ω3]

′,

s(ω) =










I2 − I3
I1

ω2ω3

I3 − I1
I2

ω3ω1

I1 − I2
I3

ω1ω2










, (38)

5See [64, Chapter 8] for the definition of Poisson stability.
6See [6] for the definition.

with I1 > 0, I2 > 0, I3 > 0, Ii 6= Ij , for i 6= j, and

l(ω) = Lω =
[
L1 L2 L3

]
ω, (39)

with L1L2L3 6= 0. This signal generator, which describes

the evolution of the angular velocities of a free rigid body

in space, is Poisson stable and, under the stated assumption

on L, observable [83], [84].

Suppose system (1) is asymptotically stable. The moment

of system (1) at (s(ω), l(ω)) can be computed as follows. Let,

formally, π(ω) =
∑

i≥0 πi(ω), with

πi(ω) =








π1
i (ω)
π2

i (ω)
...

πn
i (ω)








and πj
i (ω) a homogeneous polynomial of degree i in ω. Then

equation (37) yields

π1(ω) = −A−1BLω, · · · πi(ω) = −A−iBL
di−1ω

dti−1
, · · · .

Hence, the moment of system (1) at (s(ω), l(ω)) is given,

formally, by

Cπ(ω) = −CA−1

(

BLω + · · · +A−i+1BL
di−1ω

dti−1
· · ·

)

,

which is a polynomial series in ω.

Example 9 (Markov parameters of a nonlinear system):

For the linear system (1) the k-moments at infinity are defined

as ηk(∞) = CAkB, i.e. the first k + 1 moments at infinity

coincide with the first k+1 Markov parameters [1]. To obtain

a nonlinear counterpart of this notion recall that7

CAkB =
dk

dtk
(CeAtB)

∣
∣
∣
∣
t=0

= y
(k)
I (0) = y

(k)
F,B(0),

where yI(·) denotes the impulse response of the system and

yF,B(·) denotes the free output response from x(0) = B.

Consider now a nonlinear affine system8 described by

equations of the form

ẋ = f(x) + g(x)u, y = h(x), (40)

with x(t) ∈ IRn, u(t) ∈ IR, y(t) ∈ IR and f(·), g(·) and

h(·) smooth mappings. Integrating the first of equations (40),

with x(0) = 0 and u(t) = δ0(t), evaluating for t = 0, and

substituting in the second equation yields yI(0) = y0
I (0) =

h(g(0)) and9 y
(k)
I (0) = Lk

fh ◦ g(0), for k ≥ 0. It is therefore

7To simplify notation, in this example we use y(i)(t) to denote the i-th
order time derivative of y(·) at time t. Moreover, all time derivatives at t = 0
have to be understood as at t = 0+.

8We focus on affine systems since for non-affine systems the impulse
response, and its derivatives, may not be well-defined functions (e.g. they
may be distributions). To illustrate this consider the system ẋ = u2, y = x,
with x(t) ∈ IR, u(t) ∈ IR and y(t) ∈ IR. Setting u(t) = δ0(t), where δ0(t)
denotes the Dirac δ-function, and integrating, yields

yI(t) =

Z t

0
δ20(τ)dτ !

See [85, Chapter 10], and references therein, for an in-depth discussion on
the above issue.

9Lfh(·) denotes the Lie derivative of the smooth function h(·) along the
smooth vector field f(·), as defined in [64, Chapter 1].
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natural to define the k-moment at infinity, for k ≥ 0, of

the nonlinear system (40) as ηk(∞) = y
(k)
I (0). Note finally

that, for the considered class of nonlinear systems, y
(k)
I (0) =

y
(k)
F,g(0)(0), where yF,g(0)(t) denotes the free output response

of the system from x(0) = g(0).

These considerations allow to derive a reduced order model

which matches the 0, · · · , k − 1 moments at infinity of sys-

tem (40). For, consider a linear system described by equations

of the form (10), with ξ(t) ∈ IRk, and F , G and H such

that HF iG = y
(i)
I (0), for i = 0, · · · , k − 1. (Note that

the matrices F , G and H can be computed using standard

realization algorithms, e.g. Ho-Kalman realization algorithm.

In addition, these matrices are not uniquely defined, hence it is

possible, for example, to assign the eigenvalues of the reduced

order model.) As a consequence of the discussion above, the

linear system thus constructed is a model of the nonlinear

system achieving moment matching at infinity. Note that, the

computation of such a reduced order model does not require

the solution of any partial differential equation, but simply

regularity of the nonlinear system.

To illustrate the above discussion consider the model of an

inverted pendulum on a cart, described by the equations

ẋ1 = x2,

ẋ2 =
mlx2

4 sinx3 −mg cosx3 sinx3 + u

M +m sin2 x3

,

ẋ3 = x4,

ẋ4 =
g(m+M) sinx3 −ml cosx3 sinx3x

2
4 − cosx3u

l(M +m sin2 x3)
,

y = x1

where x1(t) is the position of the cart, x3(t) is the angle of the

pendulum (with respect to an upward vertical), x2(t) and x4(t)
are the corresponding, linear and angular, velocities, u(t) is an

external input force, and m, M , l and g are positive constants.

The first five moments of this system at infinity can

be directly calculated, using the expression above, yielding

η0(∞) = 0, η1(∞) = 1
M
, η2(∞) = 0, η3(∞) = m(glM2−1)

l2M4 ,
η4(∞) = 0. From these expressions it is possible to derive a

reduced order (linear) model.

For example, a reduced order model, matching the first two

moments, is described by equations of the form (10), with

ξ(t) ∈ IR2, and

F =

[
0 1

−f21 −f22

]

G =

[
0
1

]

H =

[
1

M
0

]

.

The coefficients f21 and f22 can be selected to assign the

eigenvalues of the matrix F , or to achieve other interpolation

conditions. For example, selecting f21 = −m glM2−1
M3l2

and

f22 = 0 ensures matching of the first four moments at infinity.

Finally, a four-dimensional reduced order (linear) model

achieving matching of the first four moments at infinity, and

with the same eigenvalues of the linearization of the nonlinear

system around x = 0 is described by equations of the

form (10), with ξ(t) ∈ IR4, and

F =








0 1 0 0
0 0 1 0
0 0 0 1

0 0 g
M +m

Ml
0








G =







0
0
0
1







H =

[

−
m+ glM3

l2M4
0

1

M
0

]

.

Note that this last reduced order model does not coincide with

the linearized model around the zero equilibrium.

1) The frequency response of a nonlinear system: The

discussion in the previous sections allows to derive a nonlinear

enhancement of the notion of frequency response of a linear

system. This relies upon the notion of steady-state response

of a nonlinear system, as developed in [5], [6].

Consider system (34) and the signal generator (35). Let the

signal generator (35) be such that

s(ω) =

[
0 ω⋆

−ω⋆ 0

]

ω, l(ω) =
[
L1 L2

]
ω,

with ω(0) 6= 0, ω⋆ 6= 0 and L2
1 + L2

2 6= 0. Then, under the

hypotheses of Theorem 7, for all ω⋆ ∈ IR, Assumption 1 holds

and the output of the interconnected system (36) converges

towards a locally well-defined steady-state response, which,

by definition, does not depend upon the initial condition x(0).
Moreover, such a steady-state response is periodic hence, if it

has the same period of l(ω(t)), it can be written in Fourier

series as h(π(ω(t))) =
∑∞

k=−∞ cke
kω⋆t. Consider now the

operator P+ which acts on a Fourier series as follows

P+(

∞∑

k=−∞

αke
kω⋆t) =

∞∑

k=0

αke
kω⋆t.

With this operator we can define the frequency response of

the nonlinear system (34) as

F (ω(0), ω⋆) =
P+(h(π(ω(t))))

P+(l(ω(t))
.

This function depends upon the frequency ω⋆, just as in

the linear case, and, unlike the linear case, upon the initial

condition ω(0) of the signal generator. Note finally that if

the system (34) were linear, hence described by the equations

(1), then F (ω(0), ω⋆) = |W (iω⋆)|e∠W (iω⋆), where W (s) =
C(sI −A)−1B.

B. Moment matching

Analogously to the linear case, we now introduce the notion

of reduced order model and characterize the solution of the

model reduction problem by moment matching.

Definition 4: The system

ξ̇ = φ(ξ, u), ψ = κ(ξ), (41)

with ξ(t) ∈ IRν , is a model at (s(ω), l(ω)) of system (34) if

system (41) has the same moment at (s(ω), l(ω)) as (34). In

this case, system (41) is said to match the moment of system

(34) at (s(ω), l(ω)). Furthermore, system (41) is a reduced

order model of system (34) if ν < n.
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Lemma 5: Consider the system (34), the system (41) and

the signal generator (35). Suppose Assumptions 1 and 2 hold.

System (41) matches the moments of (34) at (s(ω), l(ω)) if

the equation

φ(p(ω), l(ω)) =
∂p

∂ω
s(ω) (42)

has a unique solution p(·) such that

h(π(ω)) = κ(p(ω)), (43)

where π(·) is the (unique) solution of equation (37).

Proof: The claim is a direct consequence of the definition

of moment.

C. Model reduction by moment matching

In this section we provide a nonlinear counterpart of the

construction in Section II-C. For, note that to construct a

reduced order model it is necessary to determine mappings

φ(·, ·), κ(·) and p(·) such that equations (42) and (43) hold,

where π(·) is the solution of equation (37).

To solve this problem we make the following assumption.

Assumption 3: There exists mappings κ(·) and p(·) such

that k(0) = 0, p(0) = 0, p(·) is locally C1, equation (43)

holds and det∂p(ω)
∂ω

(0) 6= 0, i.e. the mapping p(·) possesses a

local inverse p−1(·).
Remark 12: Similar to the linear case Assumption 3 holds

selecting p(ω) = ω and k(ω) = h(π(ω)).
A direct computation shows that a family of reduced or-

der models, all achieving moment matching, provided equa-

tion (42) has a unique solution p(·), is described by

ξ̇ = φ(ξ) +
∂p(ω)

∂ω
δ(ξ)u, ψ = κ(ξ),

where κ(·) and p(·) are such that Assumption 3 holds, δ(ξ) =
δ̃(p−1(ξ)), where δ̃(·) is a free mapping, and

φ(ξ) =

[
∂p(ω)

∂ω

(

s(ω) − δ(p(ω))l(ω)

)]

ω=p−1(ξ)

.

In particular, selecting p(ω) = ω yields a family of reduced

order models described by10

ξ̇ = s(ξ) − δ(ξ)l(ξ) + δ(ξ)u, ψ = h(π(ξ)), (44)

where δ(·) is any mapping such that the equation

s(p(ω)) − δ(p(ω))l(p(ω)) + δ(p(ω))l(ω) =
∂p

∂ω
s(ω) (45)

has the unique solution p(ω) = ω.

Similarly to what discussed for the linear case in Section II-

C, it is possible to use the parameter δ(·) to achieve specific

properties of the reduced order model. In what follows, we

implicitly assume that the δ(·) achieving a specific property is

such that equation (45) has a unique solution.

As already noted, in the nonlinear case it is not possible

to obtain the simple characterizations given in Section II-C,

and to address and solve the same problems. On the contrary,

there are problems that are interesting only in the nonlinear

framework.

10Note that this family of models has the same structure as the family given
in equation (15).

1) Matching with asymptotic stability: Consider the prob-

lem of achieving model reduction by moment matching with a

reduced order model, described by equations of the form (44),

such that the model has an asymptotically stable equilibrium.

Such a reduced order model can be constructed selecting, if

possible, the free mapping δ(·) such that the zero equilibrium

of the system (recall that s(0) = 0 and l(0) = 0) ξ̇ = s(ξ) −
δ(ξ)l(ξ) is locally asymptotically stable. This is possible, for

example, if the pair
(

∂l(ξ)
∂ξ

(0), ∂s(ξ)
∂ξ

(0)
)

is observable, or

detectable. Note, however, that this is not necessary.

2) Matching with prescribed relative degree: Consider the

problem of selecting the mapping δ(·) in system (44) such

that the reduced model has a given relative degree r ∈ [1, ν]
at some point ξ0. For such a problem the following fact holds.

Theorem 8: Consider the following statements.

(RD1)∗For all r ∈ [1, ν] there exists a δ(·) such that system

(44) has relative degree r at ξ0.

(RD2)∗ The codistribution

dOν = span{dh(π(ξ)), · · · , dLν−1
s h(π(ξ))}

has dimension ν at ξ0.

(RD3)∗ The system (44) is locally observable at ξ0.

(RD4)∗ The system (36) is locally observable at ξ0.

Then (RD1)∗⇔(RD2)∗⇒(RD3)∗ ⇐(RD4)∗.

Proof: (RD1)∗⇒(RD2)∗. To begin with note that system

(44) has relative degree r at ξ0 if and only if system

ξ̇ = s(ξ) + δ(ξ)u, ψ = h(π(ξ)), (46)

has relative degree r at ξ0. By definition of relative degree

[64, Chapter 4] system (46) has relative degree r if

Lδh(π(ξ)) = LδLsh(π(ξ)) = · · · = LδL
r−2
s h(π(ξ)) = 0,

(47)

for all ξ in a neighborhood of ξ0, and

LδL
r−1
s h(π(ξ0)) 6= 0. (48)

Equations (47) and (48) can be rewritten as







dh(π(ξ))
...

dLr−2
s h(π(ξ))

dLr−1
s h(π(ξ))







δ(ξ) =








0
...

0
γ(ξ)







,

for some function γ(·) such that γ(ξ0) 6= 0. This equation has

a solution for all r ∈ [1, n] if and only if the matrix in the

left hand side has rank r at ξ0. Setting r = ν yields that the

codistribution dOν has dimension ν.

(RD2)∗⇒(RD1)∗. Since dOν has rank ν and it is spanned by

ν differentials, for all r ∈ [1, ν] the distribution

dOi = span{dh(π(ξ)), · · · , dLi−1
s h(π(ξ))}

has dimension i, which implies that the equations (47) and (48)

have a solution δ(·) locally well-defined around ξ0, hence the

claim.

(RD2)∗⇒(RD3)∗. This implication follows from [83, Theorem

3.32].

(RD4)∗⇒(RD3)∗. We prove this statement by contradiction.

Suppose system (44) is not observable at ξ0 then there is a
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point ξa (in a neighborhood of ξ0) which is indistinguishable

from ξ0 (recall [83, Definitions 3.27 and 3.28]). Consider

now system (36) and the points [ξ′0, π(ξ0)
′]′ and [ξ′a, π(ξa)′]′.

Simple computations, recalling that the manifold x = π(ξ) is

invariant, show that these points are not distinguishable, hence

system (36) is not locally observable at ξ0, which proves the

claim.

Remark 13: Although the implication (RD3)∗⇒(RD2)∗

does not hold in general, (RD3)∗ implies that the codistribution

dOν has dimension ν for all ξ in an open and dense set around

ξ0 (see [83, Corollary 3.35]).

3) Matching with prescribed zero dynamics: Consider the

problem of selecting the mapping δ(·) in system (44) such that

the reduced model has zero dynamics with specific properties.

To simplify the study of this problem we assume that condition

(RD2)∗ holds, which allows to obtain a special form for

system (44).

Lemma 6: Consider system (44). Assume condition (RD2)∗

holds. Then there exists a coordinates transformation χ =
Ξ(ξ), locally defined around ξ0, such that, in the new co-

ordinates, system (44) is described by equations of the form

χ̇1 = χ2 + δ̃1(χ)(v − l̃(χ)),

χ̇2 = χ3 + δ̃2(χ)(v − l̃(χ)),
...

χ̇ν = f̃(χ) + δ̃ν(χ)(v − l̃(χ)),
ψ = χ1,

(49)

where [δ̃1(χ), · · · , δ̃ν(χ)]′ = δ(Ξ−1(χ)), l̃(χ) = l(Ξ−1(χ)),
and f̃(χ) = Lν

sh(π(Ξ−1(χ))).
Proof: By condition (RD2)∗ the functions h(π(·)), . . .,

Lν−1
s h(π(·)) qualify as local coordinates around ξ0. In these

coordinates the system (44) is trivially described by equations

of the form (49).

As a consequence of the result established in Lemma 6 we

have the following statement.

Proposition 2: Consider system (44). Assume condition

(RD2)∗ holds and ξ0 is an equilibrium of system (44). Then,

for all11 r ∈ [1, ν−1], there is a δ(·) such that system (44) has

relative degree r and its zero dynamics have a locally expo-

nentially stable equilibrium. In addition, there is a coordinates

transformation, locally defined around ξ0, such that, in the new

coordinates, the zero dynamics of system (44) are described

by equations of the form

ż1 = z2 + δ̂1(z)z1,

ż2 = z3 + δ̂2(z)z1,
...

żν−r = f̂(z) + δ̂ν−r(z)z1,

(50)

where the δ̂i(·) are free functions and

f̂(z) = f̃(χ)

∣
∣
∣
∣
χ=[0,··· ,0,z1,··· ,zν−r]′

.

Proof: By Lemma 6, condition (RD2)∗, and invariance of

the zero dynamics with respect to coordinates transformation,

we can consider the system described by equations of the form

11For r = ν the system does not have zero dynamics.

(49). Fix now r ∈ [1, ν−1]. Select δ̃i(·) such that δ̃r(χ0) 6= 0
and δ̃j(χ) = 0, for all12 j ∈ [1, r − 1]. The resulting system

has relative degree r and the zero dynamics are described by

the last ν − r equations of system (49) with v = l̃(χ) and

χ1 = . . . = χr = 0, which have the form given in equation

(50). To complete the proof, recall that ξ0 is (by assumption)

an equilibrium, hence, the system (50) has an equilibrium

which can be rendered locally exponentially stable by a proper

selection of the functions δ̂1(·), · · · , δ̂ν−r(·).
4) Matching with a passivity constraint: Consider now the

problem of selecting the mapping δ(·) such that system (44)

is lossless or passive. For such a problem the following fact

holds.

Theorem 9: Consider the following statements.

(P1)∗ The family of reduced order models (44) contains,

locally around ξ0, a lossless (passive, respectively)

system with a differentiable storage function.

(P2)∗ There exists a differentiable function V (·), locally

positive definite around ξ0, such that13

dVξs(ξ) = h(π(ξ))l(ξ), (Vξs(ξ) ≤ h(π(ξ))l(ξ) resp.),
(51)

locally around ξ0.

(P3)∗ There exists a differentiable function V (·), locally

positive definite around ξ0, such that equation (51)

holds and

Vξξ(ξ0) > 0. (52)

Then (P1)∗⇒(P2)∗, (P3)∗⇒(P2)∗, and (P3)∗⇒(P1)∗.

Proof: We provide the proof for the lossless case, since

the claims on passivity can be proved with identical arguments.

(P1)∗⇒(P2)∗. As detailed in [48], if the family of systems

(44) contains, locally around ξ0, a lossless system with a

differentiable storage function V (·) then there exists δ(·) such

that Vξ(s(ξ) − δ(ξ)l(ξ)) = 0 and Vξδ = h(π(ξ)), locally

around ξ0. Replacing the second equality in the first yields

the claim.

(P3)∗⇒(P2)∗. This implication is trivial.

(P3)∗⇒(P1)∗. Equation (52) implies that the equation

Vξδ(ξ) = h(π(ξ)), in the unknown δ(·), has a (unique)

solution δ⋆(·), which is locally well-defined, and continuous,

around ξ0. Consider now system (44) with δ(·) = δ⋆(·). Then

Vξ(s(ξ)−δ⋆(ξ)l(ξ)) = 0, and this, together with the definition

of δ⋆(·), implies (P1)∗.

5) Matching with L2-gain: We now consider the problem

of selecting the mapping δ(·) such that system (44) has a given

L2-gain.

Theorem 10: Consider the following statements.

(L1)∗ The family of reduced order models (44) contains,

locally around ξ0, a system with L2-gain not larger

than γ > 0 and with a differentiable storage function.

(L2)∗ There exists a differentiable function V (·), locally

positive definite around ξ0, such that equation (52)

holds and such that

Vξs(ξ) + (h(π(ξ)))2 ≤ γ2l2(ξ), (53)

12If r = 1 this set is empty.
13Vξ and Vξξ denote, respectively, the gradient and the Hessian matrix of

the scalar function V : ξ 7→ V (ξ).
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locally around ξ0.

Then (L2)∗⇒(L1)∗.

The proof of this statement is similar to the proof of

Theorem 9, hence it is omitted.

6) Matching for linear systems at (s(ω), l(ω)): In this

section we consider the model reduction problem for linear

systems at (s(ω), l(ω)), i.e. we consider the case in which

the system to be reduced is linear and the signal generator

is a nonlinear system. For such a problem, under suitable

assumptions, it is possible to obtain in an explicit way a

formal description of reduced order models, as detailed in the

following statement.

Proposition 3: Consider the linear system (1), with x(t) ∈
IRn and σ(A) ⊂ IC−. Consider the signal generator (35), with

ω(t) ∈ IRν , n > ν and l(ω) = Lω. Assume that the signal

generator is Poisson stable and that s(·) can be expressed,

locally around ω = 0, as a formal power series, i.e. s(ω) =
∑

i≥1 s
[i](ω), where s[i](·) denotes a polynomial vector field

which is homogeneous of degree i. Suppose in addition that

s[1](ω) = 0. Then a family of reduced order models achieving

moment matching at (s(ω), l(ω)) is formally described by the

equations

ξ̇ = s(ξ) − δ(ξ)Lξ + δ(ξ)u ψ = Cπ(ξ)

with δ(·) a free mapping and

π(ξ) =
∑

i≥1

π[i](ξ), (54)

where

π[1](ξ) = −A−1BLξ (55)

and

π[k](ξ) = A−1
k−1∑

i=1

∂π[i](ξ)

∂ξ
s[k−i+1](ξ), (56)

for k ≥ 2.

Proof: Note that equation (37) can be written as Aπ(ω)+
BLω = ∂π

∂ω
s(ω). In addition, by the stated assumptions and

Theorem 7, this equation has a unique solution locally around

ω = 0. Then, by a direct computation, we conclude that the

solution π(·) of this equation admits the formal power series

description given by equations (54), (55) and (56). The result

then follows from the discussion in Section III-C.

Example 10 (Example 8 continued): Exploiting the results

in Proposition 3 and the discussion in Example 8, we infer

that a reduced order model for a linear asymptotically stable

system at the (s(ω), l(ω)) given in equations (38) and (39) is

described by

ξ̇ = s(ξ) − δ(ξ)Lξ + δ(ξ)u,

ψ = −CA−1
[

BLω + · · · +A−i+1BLdi−1ω
dti−1 · · ·

]

ω=ξ
.

Simulations have been run selecting I1 = 1, I2 = 2,

I3 = 3, L1 = 1, L2 = 1/2, L3 = 1/3 and δ(·) =
diag(1/I1, 1/I2, 1/I3)L

′, which yields (see [86] for a proof)

a reduced order model with a globally asymptotically stable

equilibrium at ξ = 0.

The linear system, that has to be reduced, is a randomly

selected asymptotically stable system of dimension 15. The

initial conditions of the signal generator have been selected as

ω(0) = 1
5 [1 1 1]

′
.

The linear system and the reduced order model, both driven

by the signal generator, have been numerically integrated from

zero initial conditions. Figure 2 (left) displays the output y(t)
of the linear system when driven by the signal generator, and

the signals ψ[1](t), ψ[2](t) and ψ[3](t), obtained by truncating

the formal power series defining ψ(t) to the first, second and

third order terms, respectively. Figure 2 (right) displays the

approximation errors y(t) − ψ[1](t), y(t) − ψ[2](t), y(t) −
ψ[3](t). Note that, in steady-state,

max(|y(t) − ψ[I](t)|) ≈ 0.276 >
max(|y(t) − ψ[II](t)|) ≈ 0.164 >

max(|y(t) − ψ[III](t)|) ≈ 0.076,

which shows that the approximation error decreases by adding

terms in the formal power series defining the output of the

reduced order model.

7) Matching for nonlinear systems at Sω: In this section

we consider the model reduction problem for nonlinear sys-

tems at s(ω) = Sω, i.e. we consider the case in which the

signal generator is a linear system.

This problem is of particular interest since, exploiting the

discussion in Section III-C, we infer that the reduced order

models have a very simple description, i.e. a family of reduced

order models is given by the equations ξ̇ = (S − δ(ξ)L)ξ +
δ(ξ)u, ψ = h(π(ω)), where δ(ξ) is a free mapping. In

particular, selecting δ(ξ) = ∆, for some constant matrix ∆,

we have that the family of reduced order models is described

by a linear differential equation with a nonlinear output map.

This structure has two main advantages. The former is that

the matrix ∆ can be selected to achieve additional goals,

such as to assign the eigenvalues or the relative degree of

the reduced order model (provided additional assumptions on

the output map holds). The latter is that the computation of

(an approximation of) the reduced order model boils down

to the computation of (an approximation of) the output map

h(π(ω)). This computation can be carried out in the spirit

of the results in [50, Section 4.2 and 4.3]. We complete

this section discussing the model reduction problem with 0-

moment matching at s⋆ = 0, i.e. the model reduction problem

at s(ω) = 0. This problem can be solved, under specific

assumptions, without solving any partial differential equation,

as detailed in the following statement.

Proposition 4 (0-moment matching at s⋆ = 0): Consider

system (34) and the signal generator ω̇ = 0, θ = ω. Assume

the zero equilibrium of the system ẋ = f(x, 0) is locally

exponentially stable. Then the zero moment at s⋆ = 0 of

system (34) is (locally) well-defined and given by h(π(·)),
with π(·) the unique solution of the algebraic equation

f(π(ω), ω) = 0. Finally, a reduced order model, for which

the zero equilibrium is locally asymptotically stable is given

by ξ̇ = −δ(ξ)(ξ − u), ψ = h(π(ξ)), with δ(·) such that

δ(0) > 0.

Proof: We simply need to show that equation (42) has

a unique solution. For, note that in this case, equation (42)

rewrites as −δ(p(ω)) (p(ω) − ω)) = 0, which, by positivity

of δ(0), has indeed a unique solution (locally).
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Fig. 2. Time histories of the output of the driven linear system and of the approximating outputs of the driven reduced order model (left): y(t) (solid),

ψ[I](t) (dotted), ψ[II](t) (dash-dotted) and ψ[III](t) (dashed). Time histories of the approximation errors (right): y(t) − ψ[I](t) (dotted), y(t) − ψ[II](t)
(dash-dotted), y(t) − ψ[III](t) (dashed).

Example 11: The averaged model of the DC–to–DC Ćuk

converter is given by the equations [87]

L1
d

dt
i1 = −(1 − u) v2 + E,

C2
d

dt
v2 = (1 − u) i1 + u i3,

L3
d

dt
i3 = −u v2 − v4,

C4
d

dt
v4 = i3 −Gv4,

y = v4,

(57)

where i1(t) ∈ IR+ and i3(t) ∈ IR− describe currents, v2(t) ∈
IR+ and v4(t) ∈ IR− voltages, L1, C2, L3, C4, E and G
positive parameters and u(t) ∈ (0, 1) a continuous control

signal which represents the slew rate of a PWM circuit used

to control the switch position in the converter. The 0-moment

of the system at s⋆ = 0 is h(π(ω)) = ω
ω−1E, and a locally

asymptotically stable reduced order model achieving moment

matching at s⋆ = 0 is

ξ̇ = −δ(ξ)(ξ − u), ψ = E
ξ

ξ − 1
, (58)

with δ(0) > 0, which is well-defined if ξ 6= 1. This is

consistent with the fact that the 0-moment at s⋆ = 0 is defined

for ω 6= 1. Simulations have been run to assess the properties

of the reduced order model. The parameters have been selected

as in [87], the input signal is piecewise constant, with jumps

every 0.05 seconds. The reduced order model is described by

equations (58), where the function δ(·) depends upon the input

signal u and it is equal to the real part of the slowest eigenvalue

of the system (57) (which is a linear system for constant

u). Figure 3 (top) displays the output y(t) of the averaged

model of the Ćuk converter and of the output of the reduced

order model ψ(t). The figure shows that the reduced order

model provides a good static approximation of the behavior

of the system but does not capture its dynamic (under-damped)

behavior. The dynamic behavior can be captured constructing a

second order model, which is (in the spirit of the model (58)) a

linear system with a nonlinear output map. Since such a model

is required to match only one moment, it is possible to assign

its eigenvalues at the location of the dominant modes of system

(57) with u fixed. The output ψ2(t) of this two dimensional

reduced order model is also displayed in Figure 3. Note that

this signal may provide a better approximation of y(t), as

shown in Figure 3 (bottom), in which the errors y(t) − ψ(t)
and y(t) − ψ2(t) are plotted.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−60

−50

−40

−30

−20

−10

0

t (s)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−30

−25

−20

−15

−10

−5

0

5

10

t (s)

Fig. 3. Time histories of the output of the averaged model of the Ćuk
converter and of the approximating outputs of the reduced order models
(top): y(t) (solid), ψ(t) (dotted), ψ2(t) (dashed). Time histories of the
approximation errors (bottom): y(t)− ψ(t) (dotted), y(t) − ψ2(t) (dashed).

IV. CONCLUSIONS

The problem of model reduction for linear and nonlinear

systems has been posed and solved exploiting the notion of

moment. To this end, a nonlinear enhancement of the notion

of moment has been developed. The linear and nonlinear prob-

lems have been dealt with from a unique perspective, which

shades new light on the linear problem, and allows for a simple

solution of the nonlinear one. Special emphasis has been

devoted to the problem of parameterizing a family of reduced

order models, and to the problem of selecting a member of

the family with specific properties. This type of problems, in

the linear framework, has been solved with projection methods

and in the framework of interpolation theory, which however
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do not provide a unifying perspective, i.e. the selection of

projectors and of interpolation parameters does not have a

simple interpretation. Several issues or research directions are

left open in the present paper: it may be possible to exploit

the connection between moment matching and interpolation

theory, available for linear systems, to develop a nonlinear

interpolation theory; it may be possible to extend the notion

of moment to nonlinear system with unstable, but hyperbolic,

equilibria (as briefly mentioned in Remark 10); the model

reduction problem for specific classes of systems, for example

Hamiltonian systems or periodic systems, may be studied; the

multivariable version of the proposed results can be developed;

the use of reduced order models in control design has to

be investigated, especially in the nonlinear case. Finally, the

engineering relevance of the theory should be evaluated with

more realistic case studies.

ACKNOWLEDGMENTS

The author would like to thank Prof. A.C. Antoulas for

several illuminating discussions on model reduction problems,

and Profs. T.T. Georgiou and A. Lindquist for pointing out

connections with the Georgiou-Kimura parameterization.

REFERENCES

[1] A. Antoulas, Approximation of Large-Scale Dynamical Systems. SIAM
Advances in Design and Control, 2005.

[2] T. Hu, A. Teel, and Z. Lin, “Lyapunov characterization of forced
oscillations,” Automatica, vol. 41, pp. 1723–1735, 2005.

[3] L. Chua and C. Ng, “Frequency-domain analysis of nonlinear systems:
General theory. formulation of transfer functions,” IEE Journal on

Electronic Circuits and Systems, pp. 165–185, 1979.

[4] C. Byrnes and A. Isidori, “A frequency domain philosophy for nonlinear
systems, with application to stabilization and to adaptive control,” in
23rd Conference on Decision and Control, 1985, pp. 1031–1037.

[5] A. Isidori and C. I. Byrnes, “Steady state response, separation principle
and the output regulation of nonlinear systems,” in 28th Conf. Decision

and Control, Tampa, Fl, 1989, pp. 2247–2251.

[6] ——, “Output regulation of nonlinear systems,” IEEE Trans. Autom.

Control, vol. 35, no. 2, pp. 131–140, 1990.

[7] A. Isidori and A. Astolfi, “Disturbance attenuation and H∞-control
via measurement feedback in nonlinear systems,” IEEE Trans. Autom.

Control, vol. 37, pp. 1283–1293, Sept. 1992.

[8] J. Huang, “Frequency domain approach to the robust regulator theory
for volterra systems,” in 34th Conference on Decision and Control, New

Orleans, LA, 1995, pp. 1690–1695.

[9] D. Kavranoglu and M. Bettayeb, “Characterization of the solution to the
optimal H∞ model reduction problem,” Systems and Control Letters,
vol. 20, pp. 99–108, 1993.

[10] X.-X. Huang, W.-Y. Yan, and K. Teo, “H2 near optimal model reduc-
tion,” IEEE Trans. Autom. Control, vol. 46, pp. 1279–1285, 2001.

[11] A. Antoulas and A. Astolfi, “H∞ norm approximation,” in Unsolved

problems in Mathematical Systems and Control Theory, V. Blondel and

A. Megretski Editors. Princeton University Press, 2004, pp. 267–270.

[12] S. Gugercin, A. Antoulas, and C. Beattie, “H2 model reduction for
large-scale linear dynamical systems,” SIAM Journal of Matrix Analysis,
vol. 30, pp. 609–638, 2008.

[13] J. Scherpen, “H∞ balancing for nonlinear systems,” Int. J. Rob. Nonl.

Contr., vol. 6, pp. 645–668, 1996.

[14] V. Adamjan, A. D.Z., and M. Krein, “Analytic properties of Schmidt
pairs for a Hankel operator and the generalized Schur-Takagi problem,”
Mathematics of the USSR Sbornik, vol. 15, pp. 31–73, 1971.

[15] K. Glover, “All optimal Hankel-norm approximations of linear multi-
variable systems and their L∞-error bounds,” International Journal of

Control, vol. 39, pp. 1115–1193, 1984.

[16] M. Safonov, R. Chiang, and D. Limebeer, “Optimal Hankel model re-
duction for nonminimal systems,” IEEE Trans. Autom. Control, vol. 35,
no. 4, pp. 496–502, 1990.

[17] B. Moore, “Principal component analysis in linear systems: Controlla-
bility, observability, and model reduction,” IEEE Trans. Autom. Control,
vol. 26, no. 1, pp. 17–32, 1981.

[18] D. Meyer, “Fractional balanced reduction: model reduction via a frac-
tional representation,” IEEE Trans. Autom. Control, vol. 35, no. 12, pp.
1341–1345, 1990.

[19] J. Scherpen, “Balancing for nonlinear systems,” Systems and Control

Letters, vol. 21, pp. 143–153, 1993.

[20] J. Scherpen and A. van der Schaft, “Normalized coprime factorizations
and balancing for unstable nonlinear systems,” Int. Journal of Control,
vol. 60, pp. 1193–1222, 1994.

[21] J. Scherpen and W. Gray, “Minimality and local state decompositions of
a nonlinear state space realization using energy functions,” IEEE Trans.

Autom. Control, vol. 45, no. 11, pp. 2079–2086, 2000.

[22] W. Gray and J. Scherpen, “On the nonuniqueness of singular value
functions and balanced nonlinear realizations,” Systems and Control

Letters, vol. 44, pp. 219–232, 2001.

[23] J. Scherpen and W. Gray, “Nonlinear Hilbert adjoints: Properties and
applications to Hankel singular value analysis,” Nonlinear Analysis,

Theory, Methods and Applications, vol. 51, no. 5, pp. 883–901, 2002.

[24] K. Fujimoto and J. Scherpen, “Nonlinear input-normal realizations based
on the differential eigenstructure of Hankel operators,” IEEE Trans.

Autom. Control, vol. 50, pp. 2–18, 2005.

[25] W. Gray and J. Scherpen, “Hankel singular value functions from Schmidt
pairs for nonlinear input-output systems,” Systems and Control Letters,
vol. 54, pp. 135–144, 2005.

[26] A. Krener, “Model reduction for linear and nonlinear control systems,”
in 45th Conference on Decision and Control, San Diego, CA, 2006, bode
Lecture.

[27] K. Fujimoto and D. Tsubakino, “Computation of nonlinear balanced
realization and model reduction based on Taylor series expansion,”
Systems and Control Letters, vol. 57, pp. 283–289, 2008.

[28] A. Antoulas, “A new result on passivity preserving model reduction,”
Systems and Control Letters, vol. 54, pp. 361–374, 2005.

[29] S. Lall and C. Beck, “Error bounds for balanced model reduction of
linear time-varying systems,” IEEE Trans. Autom. Control, vol. 48, no. 6,
pp. 946–956, 2003.

[30] A. Astolfi and P. Colaneri, “A note on the existence of positive
realizations,” Linear algebra and its applications, vol. 390, pp. 329–
343, Oct. 2004.

[31] B. Srinivasan and P. Myszkorowski, “Model reduction of systems with
zeros interlacing the poles,” Systems and Control Letters, vol. 30, pp.
19–24, 1997.

[32] E. Verriest and W. Gray, “Geometry and topology of the state space via
balancing,” in Mathematical Theory of Networks and Systems, Kyoto,

Japan, 2006.

[33] W. Gray and J. Mesko, “General input balancing and model reduction
for linear and nonlinear systems,” in European Control Conference,

Brussels, Belgium, 1997.

[34] S. Al-Baiyat, M. Bettayeb, and U. Al-Saggaf, “New model reduction
scheme for bilinear systems,” International Journal of Systems Science,
vol. 25, pp. 1631–1642, 1994.

[35] S. Lall, P. Krysl, and J. Marsden, “Structure-preserving model reduction
for mechanical systems,” Physica D, vol. 184, no. 1–4, pp. 304–318,
2003.

[36] J. Soberg, K. Fujimoto, and T. Glad, “Model reduction of nonlinear
differential-algebraic equations,” in 7th IFAC Symposium on Nonlinear

Control Systems, Pretoria, South Africa, 2007, pp. 712–717.

[37] K. Fujimoto and H. Kajiura, “Balanced realization and model reduction
of port-Hamiltonian systems,” in American Control Conference, New

York, NY, 2007, pp. 930–934.

[38] K. Fujimoto, “Balanced realization and model order reduction for port-
Hamiltonian systems,” Journal of System Design and Dynamics, (to
appear) 2008.

[39] E. Verriest and W. Gray, “Dynamics near limit cycles: Model reduction
and sensitivity,” in Mathematical Theory of Networks and Systems,

Padova, Italy, 1998.

[40] W. Gray and E. Verriest, “Balanced realizations near stable invariant
manifolds,” Automatica, vol. 42, no. 4, pp. 653–659, 2006.

[41] S. Lall, J. Marsden, and S. Glavaski, “A subspace approach to balanced
truncation for model reduction of nonlinear control systems,” Int. J.

Robust Nonlinear Control, vol. 12, pp. 519–535, 2002.

[42] K. Willcox and J. Peraire, “Balanced model reduction via the proper
orthogonal decomposition,” AIAA Journal, vol. 40, no. 11, pp. 2323–
2330, 2002.



16

[43] K. Kunisch and S. Volkwein, “Control of Burgers’ equation by reduced
order approach using proper orthogonal decomposition,” Journal of

Optimization Theory and Applications, vol. 102, no. 2, pp. 345–371,
1999.

[44] M. Hinze and S. Volkwei, “Proper orthogonal decomposition surrogate
models for nonlinear dynamical systems: Error estimates and suboptimal
control,” in Dimension Reduction of Large-Scale Systems, ser. Lecture
Notes in Computational and Applied Mathematics, V. M. P. Benner and
D. Sorensen, Eds. Springer Verlag, Heidelberg, 2005, pp. 261–306.

[45] K. Kunisch and S. Volkwein, “Proper orthogonal decomposition for
optimality systems,” ESAIM: Mathematical Modelling and Numerical

Analysis, vol. 42, no. 1, pp. 1–23, 2008.
[46] P. Astrid, S. Weiland, K. Willcox, and T. Backx, “Missing point

estimation in models described by proper orthogonal decomposition,”
IEEE Trans. Autom. Control, (to appear) 2008.

[47] C. I. Byrnes and A. Isidori, “Asymptotic stabilization of minimum phase
nonlinear systems,” IEEE Trans. Autom. Control, vol. 36, pp. 1122–
1137, 1991.

[48] C. I. Byrnes, A. Isidori, and J. C. Willems, “Passivity, feedback
equivalence, and the global stabilization of minimum phase nonlinear
systems,” IEEE Trans. Autom. Control, vol. 36, pp. 1228–1240, Nov.
1991.

[49] A. Isidori, “A tool for semiglobal stabilization of uncertain non-
minimum-phase nonlinear systems via output feedback,” IEEE Trans.

Autom. Control, vol. 45, pp. 1817–1827, Oct. 2000.
[50] J. Huang, Nonlinear Output Regulation: Theory and Applications.

SIAM Advances in Design and Control, 2004.
[51] A. Astolfi, “Model reduction by moment matching (semi-plenary pre-

sentation),” in IFAC Symposium on Nonlinear Control System Design,

Pretoria, S. Africa, 2007, pp. 95–102.
[52] ——, “A new look at model reduction by moment matching for linear

systems,” in 46th Conference on Decision and Control, New Orleans,

LS, 2007, pp. 4361–4366.
[53] ——, “Model reduction by moment matching for nonlinear systems,” in

47th Conference on Decision and Control, Cancun, Mexico, 2008.
[54] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback control

theory. Macmillan Publishing Comp., New York, 1992.
[55] T. Georgiou, “Partial realization of covariance sequences,” Ph.D. disser-

tation, University of Florida, 1983.
[56] C. Byrnes, A. Lindquist, S. Gusev, and A. Matveev, “A complete

parameterization of all positive rational extensions of a covariance
sequence,” IEEE Trans. Autom. Control, vol. 40, pp. 1841–1857, 1995.

[57] T. Georgiou, “The interpolation problem with a degree constraint,” IEEE

Trans. Autom. Control, vol. 44, pp. 631–635, 1999.
[58] C. Byrnes, A. Lindquist, and T. Georgiou, “A generalized entropy

criterion for Nevanlinna-Pick interpolation with degree constraint,” IEEE

Trans. Autom. Control, vol. 46, pp. 822–839, 2001.
[59] C. Byrnes, T. Georgiou, A. Lindquist, and A. Megretski, “Generalized

interpolation in H∞ with a complexity constraint,” Trans. Amer. Math.

Soc., vol. 358, pp. 965–987, 2006.
[60] G. Fanizza, J. Karlsson, A. Lindquist, and R. Nagamune, “Passivity-

preserving model reduction by analytic interpolation,” Linear Algebra

and Its Applications, vol. 425, pp. 608–633, 2007.
[61] C. Hespel and G. Jacob, “Approximation of nonlinear dynamic systems

by rational series,” Theoret. Comput. Science, vol. 79, pp. 151–162,
1991.

[62] C. Hespel, “Truncated bilinear approximants: Carleman, finite Volterra,
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