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Model reduction for a class of singularly perturbed stochastic
differential equations

Narmada Herath1, Abdullah Hamadeh2 and Domitilla Del Vecchio3

Abstract— A class of singularly perturbed stochastic differ-
ential equations (SDE) with linear drift and nonlinear diffusion
terms is considered. We prove that, on a finite time interval,
the trajectories of the slow variables can be well approximated
by those of a system with reduced dimension as the singular
perturbation parameter becomes small. In particular, we show
that when this parameter becomes small the first and second
moments of the reduced system’s variables closely approximate
the first and second moments, respectively, of the slow variables
of the singularly perturbed system. Chemical Langevin equa-
tions describing the stochastic dynamics of molecular systems
with linear propensity functions including both fast and slow
reactions fall within the class of SDEs considered here. We
therefore illustrate the goodness of our approximation on a
simulation example modeling a well known biomolecular system
with fast and slow processes.

I. INTRODUCTION

Many dynamical systems evolve on multiple timescales.
Examples include chemical reactions, climate systems and
electrical systems. This separation in time-scales allows the
state variables to be categorized into “fast” and “slow”
variables. Such systems can be modeled using the singular
perturbation framework, where a small parameter ε is in-
troduced to capture the separation between the time-scales.
The standard approach in analyzing such systems is to
approximate the original system by a system with reduced
dimension. For deterministic systems, this process is well
established, most notably by the Tikhonov’s Theorem [1],
which quantifies the error between the trajectories of the
original and reduced systems in terms of ε.

Several works have extended this approach to systems
modeled by stochastic differential equations [2], [3], [4], [5].
However, these methods cannot be applied to quantify the
approximation error in the slow variable for systems with
nonlinear diffusion terms when the diffusion term of the fast
variable is of the order

√
ε, as is the case in systems modeled

by chemical Langevin equations [6]. Another approach that
can be used to analyze systems where the diffusion term of
the fast variable is of the order

√
ε, is the averaging principle

for stochastic differential equations pioneered by R. Z. Khas-
minskii in [7], where an approximation is obtained to which
the slow variable dynamics of the original system converge
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weakly, as ε becomes small. However, this approach requires
the integration of the vector field, which may be undesirable
for systems with a large number of states.

In this work, we consider a class of singularly per-
turbed stochastic differential equations with linear drift and
nonlinear diffusion terms that exhibit timescale separation.
The class of systems we consider includes models where
diffusion of the fast variable is of the order

√
ε, as is the

case in biomolecular systems modeled by chemical Langevin
equations. For this class of systems, we aim to obtain
a reduced model that provides an approximation to the
slow variable dynamics via a method that does not require
integration of the vector field. To quantify the error in the
approximation, we use the first and second moments of the
slow variable as they provide a quantification of the mean
and the variance of a random variable. We first prove that
the moment dynamics of the original singularly perturbed
system are also in singular perturbation form. This allows the
application of Tikhonov’s theorem to the moment dynamics
on a finite time interval. This way, we show that the first
and second moments of the reduced system are within an
O(ε) neighborhood of the first and second moments of the
slow variable in the original system. Next, we demonstrate
how the results can be applied to biomolecular systems with
multiple time-scales modeled using the chemical Langevin
equations, where an example corresponding to the model of
a phosphorylation cycle is considered.

This paper is organized as follows. In Section II, we
introduce the multiple timescale SDE model class of interest.
In Section III we use singular perturbation to arrive at a
reduced order model of this system class, and in Section IV
we show that the reduced model is an O(ε)-approximation
of the original system. In Section V, the results are applied
to a biomolecular system modeled by the chemical Langevin
equation.

II. SYSTEM MODEL

Consider the following set of stochastic differential
equations in the singular perturbation form

Σ :

{
ẋ = fx(x, z, t) + σx(x, z, t)Γx, x(0) = x0(1)
εż = fz(x, z, t, ε) + σz(x, z, t, ε)Γz, z(0) = z0 (2)

where x ∈ Rn is the slow variable, z ∈ Rm is the fast
variable, Γx is a dx-dimensional white noise process. Let Γf
be a df -dimensional white noise process. Then, Γz is a (dx+
df )-dimensional white noise process that can be expressed in
the form [ Γx Γf ]T . The functions fx : Rn×Rm×R→



Rn, fz : Rn × Rm × R× R → Rm, σx : Rn × Rm × R →
Rn×dx and σz : Rn × Rm × R × R → Rm×(dx+df ) are
continuous functions in their arguments and we assume that
there exists a unique solution to system (1) - (2). We further
assume that the system Σ satisfies the following assumptions.

Assumption 1. The functions fx(x, z, t) and fz(x, z, t, ε)
are linear functions of the state variables x and z, i.e., we
can write

fx(x, z, t) = A1x+A2z +A3(t), (3)

where A1 ∈ Rn×n, A2 ∈ Rn×m and A3(t) ∈ Rn and there
exists a scalar function α(ε) such that,

fz(x, z, t, ε) = B1x+B2z +B3(t)

+ α(ε)(B4x+B5z +B6(t)), (4)

where B1, B4 ∈ Rm×n, B2, B5 ∈ Rm×m, B3(t), B6(t) ∈
Rn and α(0) = 0.

Assumption 2. The matrix-valued functions σx(x, z, t) and
σz(x, z, t, ε) are such that, there exists matrix valued func-
tions Φ(x, z, t) : Rn × Rm × Rn → Rn×n, Λ(x, z, t, ε) :
Rn×Rm×R×R→ Rm×m, Θ(x, z, t, ε) : Rn×Rm×R×
R→ Rm×n, that satisfy

σx(x, z, t)σx(x, z, t)T = Φ(x, z, t), (5)

σz(x, z, t, ε)σz(x, z, t, ε)
T = εΛ(x, z, t, ε), (6)

σz(x, z, t, ε)[ σx(x, z, t) 0 ]T = Θ(x, z, t, ε), (7)

where the elements of the matrix-valued functions Φ(x, z, t),
Λ(x, z, t, ε), Θ(x, z, t, ε) are affine in x and z, i.e., we
can write E[Φ(x, z, t)] = Φ(E[x],E[z], t), E[Λ(x, z, t, ε)] =
Λ(E[x],E[z], t, ε), E[Θ(x, z, t, ε)] = Θ(E[x],E[z], t, ε).
Also, we have that limε→0 Λ(x, z, t, ε) < ∞ and
limε→0 Θ(x, z, t, ε) = 0 for all x, z and t.

Assumption 3. The matrix B2 is Hurwitz.

Assumption 4. The derivative of B3(t) with respect to t is
continuous.

We will next analyze equations (1) - (2) in two ways. In
Section III-A we will first take ε = 0 to arrive at a reduced
model of (1) - (2) and then derive the moment equations of
this reduced model. In Section III-B we derive the moments
equations of (1) - (2) and then take ε = 0, to obtain reduced
moment equations. By comparing the systems obtained via
these two procedures and applying Tikhonov’s Theorem on
the finite time interval, Theorem 1 in Section IV will show
that the moment dynamics of the reduced system of (1) - (2)
are an O(ε)-approximation of the moment dynamics of (1)
- (2).

III. PRELIMINARY RESULTS

A. Reduced System

When ε = 0 in system (1) - (2) we obtain

fz(x, z, t, 0) = B1x+B2z +B3(t) = 0 (8)

since, from (6), we have that σz(x, z, t, 0)σz(x, z, t, 0)T = 0
and therefore, σz(x, z, t, 0) = 0.

Assumption 3 ensures the existence of a unique global
solution z = γ1(x, t) to (8), given by

γ1(x, t) = −B−1
2 (B1x+B3(t)). (9)

Substituting z = γ1(x, t) into (1), yields the reduced system

˙̄x = fx(x̄, γ1(x̄, t), t) + σx(x̄, γ1(x̄, t), t)Γx, x̄(0) = x0.
(10)

Next, we derive the first and second moment equations of
the reduced system (10). To this end, define the functions
γ2, g1, and g2 for a ∈ Rn and b ∈ Rn×n such that

γ2(a, b, t) = −B−1
2 (B1b+B3(t)aT ), (11)

g1(a, γ1(a, t), t) = A1a+A2γ1(a, t) +A3(t), (12)

g2(a, b, γ1(a, t), γ2(a, b, t), t) = A1b+A2γ2(a, b, t) + bAT1

+A3(t)aT + γ2(a, b, t)TAT2 + aA3(t)T + Φ(a, γ1(a, t), t).
(13)

We can now make the following claim:

Claim 1. The first and second moment dynamics of the
reduced system (10) can be written in the form

dE[x̄]

dt
= g1(E[x̄], γ1(E[x̄], t), t), E[x̄(0)] = x0, (14)

dE[x̄x̄T ]

dt
=

g2(E[x̄],E[x̄x̄T ], γ1(E[x̄], t), γ2(E[x̄],E[x̄x̄T ], t), t),

E[x̄(0)x̄(0)T ] = x0x
T
0 . (15)

Proof. As in [8], we can write the moment dynamics of the
reduced system (10) as

dE[x̄]

dt
= E[fx(x̄, γ1(x̄, t), t)], (16)

dE[x̄x̄T ]

dt
= E[fx(x̄, γ1(x̄, t), t)x̄T ] + E[x̄fx(x̄, γ1(x̄, t), t)T ]

+ E[σx(x, z, t)σx(x, z, t)T ]. (17)

Using the linearity of the expectation operator and equa-
tions (9) and (11), we have that

E[γ1(x̄, t)] = −B−1
2 (B1E[x̄] +B3(t)) = γ1(E[x̄], t),

E[γ1(x̄, t)x̄T ] = −B−1
2 (B1E[x̄x̄T ] +B3(t)E[xT ]),

= γ2(E[x̄],E[x̄x̄T ], t).

Since E[x̄γ1(x̄, t)T ] = (E[γ1(x̄, t)x̄T ])T , we can also write
E[x̄γ1(x̄, t)T ] = γ2(E[x̄],E[x̄x̄T ], t)T . The initial condition
x0 is deterministic, and therefore, we have that E[x̄(0)] = x0

and E[x̄(0)x̄(0)T ] = x0x
T
0 . Then, under Assumptions 1 - 2,

and the function definitions (12) - (13), the moment dynamics
(16) - (17) can be written in the form (14) - (15).



B. moment dynamics of the Original System Σ

In this section we analyze the moment dynamics of the
system (1) - (2). To this end, let us define the functions g3,
g4, g5 for a ∈ Rn , b ∈ Rn×n, c ∈ Rm, d ∈ Rm×m, and
e ∈ Rm×n such that

g3(a, c, t, ε) = B1a+B2c+B3(t)

+ α(ε)(B4a+B5c+B6(t)), (18)

g4(a, b, c, d, e, t, ε) = eBT1 + dBT2 + cB3(t)T

+ α(ε)(eBT4 + dBT5 + cB6(t)T ) +B1e
T + Λ(a, c, t, ε)

+B2d+B3(t)cT + α(ε)(B4e
T +B5d+B6(t)cT ), (19)

g5(a, b, c, d, e, t, ε) = ε(eAT1 + dAT2 + cA3(t)T ) +B1b

+B2e+B3(t)aT + Θ(a, c, t, ε)

+ α(ε)(B4e
T +B5d+B6(t)cT ). (20)

Then, we make the following claim :

Claim 2. The first and second moment equations for Σ in
(1) - (2), can be written in the singular perturbation form:

dE[x]

dt
= E[fx(x, z, t)] = g1(E[x],E[z], t), (21)

dE[xxT ]

dt
= E[fx(x, z, t)xT ] + E[xfx(x, z, t), t)T ]

+ E[σx(x, z, t)σx(x, z, t)T ]

= g2(E[x],E[xxT ],E[z],E[zxT ], t), (22)

ε
dE[z]

dt
= E[fz(x, z, t, ε)] = g3(E[x],E[z], t, ε), (23)

ε
dE[zzT ]

dt
= E[zfz(x, z, t, ε)

T ] + E[fz(x, z, t, ε)z
T ]

+
1

ε
E[σz(x, z, t, ε)σz(x, z, t, ε)

T ]

= g4(E[x],E[xxT ],E[z],E[zzT ],E[zxT ], t, ε), (24)

ε
dE[zxT ]

dt
= εE[zfx(x, z, t)T ] + E[fz(x, z, t, ε)x

T ]

+ E[σz(x, z, t, ε)[ σx(x, z, t) 0 ]T ]

= g5(E[x],E[xxT ],E[z],E[zzT ],E[zxT ], t, ε). (25)

where g1 and g2 are defined in (12) and (13), respectively,
and g3, g4 and g5 are defined in (18) - (20).

Proof. Note that system Σ in (1) - (2) can be written in the
form

ẋ = fx(x, z, t) + [ σx(x, z, t) 0 ]Γz, x(0) = x0

εż = fz(x, z, t, ε) + σz(x, z, t, ε)Γz, z(0) = z0

where [ σx(x, z, t) 0 ] is a matrix-valued function Rn ×
Rm × R → Rn×(dx+df ). Then, we write the dynamics for
the first moments [8] as
dE[x]

dt
= E[fx(x, z, t)],

dE[z]

dt
=

1

ε
E[fz(x, z, t, ε)]. (26)

Similarly, from Proposition III.1 in [8], the second moment
dynamics are given by

d

dt
E
[
xxT xzT

zxT zzT

]
=

[
xfx(x, z, t)T 1

εxfz(x, z, t, ε)
T

zfx(x, z, t)T 1
ε zfz(x, z, t, ε)

T

]

+

[
fx(x, z, t)xT fx(x, z, t)zT

1
ε fz(x, z, t, ε)x

T 1
ε fz(x, z, t, ε)z

T

]

+

[
σx(x, z, t)σx(x, z, t)T

1
εσz(x, z, t, ε)[ σx(x, z, t) 0 ]T

1
ε [ σx(x, z, t) 0 ]σz(x, z, t, ε)

T

1
ε2σz(x, z, t, ε)σz(x, z, t, ε)

T

]
.

(27)

Summing the corresponding entries of the matrices in (27),
multiplying both sides by ε, using Assumptions 1 - 2 and the
linearity of the expectation operator, we can write the system
(26) - (27) in the singular perturbation form in (21) - (25),
where we have eliminated the equation for the dynamics of
E[xzT ] since E[xzT ] = (E[zxT ])T .

Next, we derive the reduced model for the system (21) -
(25), when ε = 0.

Claim 3. The reduced system of moments equations (21) -
(25), obtained when ε = 0, can be written in the form

dE[x]

dt
= g1(E[x], γ1(E[x], t), t), E[x(0)] = x0, (28)

dE[xxT ]

dt
=

g2(E[x],E[xxT ], γ1(E[x], t), γ2(E[x],E[xxT ], t), t),

E[x(0)x(0)T ] = x0x
T
0 , (29)

where g1 is defined in (12) and g2 is defined in (13).

Proof. From Claim 2, setting ε = 0 in system (23) - (25),
under Assumption 1, we obtain the equations

B1E[x] +B2E[z] +B3(t) = 0, (30)

B1E[xxT ] +B2E[zxT ] +B3(t)E[xT ] = 0. (31)

We do not consider the dynamics of the fast variable E[zzT ]
as they do not appear in the slow variable dynamics. Un-
der Assumption 3, we have that E[z] = h1(E[x], t) and
E[zxT ] = h2(E[x],E[xxT ], t) are the unique global solutions
to (30) and (31), given by

h1(E[x], t) = −B−1
2 [B1E[x] +B3(t)], (32)

h2(E[x],E[xxT ], t) = −B−1
2 [B1E[xxT ] +B3(t)E[xT ]].

(33)

By substituting E[z] = h1(E[x], t) and E[zxT ] =
h2(E[x],E[xxT ], t) in (21) - (22) we obtain the reduced
system

dE[x]

dt
= g1(E[x], h1(E[x], t), t), (34)

dE[xxT ]

dt
=

g2(E[x],E[xxT ], h1(E[x], t), h2(E[x],E[xxT ], t), t). (35)

From equation (9), we have that γ1(E[x], t) =
−B−1

2 (B1E[x]+B3(t)), and comparing this expression with
(32) it follows that h1(E[x], t) = γ1(E[x], t). Therefore,



equation (34) takes the form of (28). Comparison of (11) and
(33) shows that h2(E[x],E[xxT ], t) = γ2(E[x],E[xxT ], t),
and therefore equation (35) takes the form of (29).

IV. MAIN RESULTS

Lemma 1. Consider the original system Σ given in (1) -
(2), the reduced system in (10), the moment dynamics of the
original system in (21) - (25), and moment dynamics of the
reduced system in (14) - (15). Then, under Assumptions 1 -
3, the commutative diagram in Fig. 1 holds.

Proof. Setting ε = 0 in the original system given in (1) - (2),
we obtain the reduced system (10). Then taking the moment
dynamics of the reduced system we obtain the system (14)
- (15). From Claim 2, the moment dynamics of the original
system can be written in the singular perturbation form given
in (21) - (25). From Claim 3, it follows that setting ε = 0 in
the moment dynamics of the original system in (21) - (25),
yields the system (28) - (29), which is equal to the system
of moment dynamics of the reduced system given by (14) -
(15).

Definition 1. Consider the original system Σ defined in (1) -
(2) and the reduced system in (10). We say that the reduced
system (10) is an O(ε)-approximation of the original system
(1) - (2) if there exists t1 ≥ 0 such that

‖E[x̄(t)]− E[x(t)]‖ = O(ε), t ∈ [0, t1],

‖E[x̄(t)x̄(t)T ]− E[x(t)x(t)T ]‖F = O(ε), t ∈ [0, t1],
(36)

where ‖.‖F is the Frobenius norm.

From Lemma 1, we see that setting ε = 0 in the moment
dynamics of Σ leads to the moment dynamics of the reduced
system. However, it does not guarantee that the trajectories
of the moments E[x], E[xxT ] will approach the trajectories
of E[x̄], E[x̄x̄T ] as ε→ 0. Therefore, the following theorem
proves that under Assumptions 1 - 4, the moments E[x] and
E[xxT ] approach E[x̄] and E[x̄x̄T ], respectively, as ε → 0,
and therefore the reduced system is a good approximation
of the slow variable dynamics of the original system.

Theorem 1. Under Assumptions 1 - 4, the reduced system
(10) is an O(ε)-approximation of the original system (1) -
(2).

Proof. Consider the commutative diagram in Lemma 2. We
see that the moment dynamics of the reduced system can be
obtained by setting ε = 0 in the moment dynamics of the
original system. As the moment dynamics are deterministic,
under Assumption 3, we can apply Tikhonov’s theorem on
the finite time interval [1] to the moment dynamics of the
original system given in (21) - (25) to obtain (36). To
do so, we prove that under Assumption 3 the boundary
layer dynamics for the system (21) - (25) are globally
exponentially stable. To this end, define the variables

b1 := E[z]− γ1(E[x], t),

b2 := E[zxT ]− γ2(E[x],E[xxT ], t),

where γ1(E[x], t) and γ2(E[x],E[xxT ], t) are
solutions to the equations g3(E[x],E[z], t, 0) = 0
and g5(E[x],E[xxT ],E[z],E[zzT ],E[zxT ], t, 0) = 0,
respectively. The dynamics of the variables b1 and b2 are
given by

ε
db1
dt

= ε
dE[z]

dt
− ε∂γ1(E[x], t)

∂t
− ε∂γ1(E[x], t)

∂E[x]

dE[x]

dt
,

(37)

ε
db2
dt

= ε
dE[zxT ]

dt
− ε∂γ2(E[x],E[xxT ], t)

∂t

− ε∂γ2(E[x],E[xxT ], t)

∂E[x]

dE[x]

dt

− ε∂γ2(E[x],E[xxT ], t)

∂E[xxT ]

dE[xxT ]

dt
, (38)

where ∂γ1(E[x],t)
∂E[x] is the Jacobian of the function γ1(E[x], t),

∂γ2(E[x],E[xxT ],t)
∂E[x] is a third order tensor, and ∂γ2(E[x]E[xxT ],t)

∂E[xxT ]
is a fourth order tensor.

Let τ := t/ε, be the time variable in the fast time scale.
Then, using equation (23) in (37) and equation (25) in (38),
the dynamics of b1 and b2 in the τ timescale are given by

db1
dτ

= E[fz(x, z, t, ε)]−
∂γ1(E[x], t)

∂τ
− ∂γ1(E[x], t)

∂E[x]

dE[x]

dτ
,

(39)
db2
dτ

= εE[zfx(x, z, t)T ] + E[fz(x, z, t, ε)x
T ]

+ E[σz(x, z, t, ε)[ σx(x, z, t) 0 ]T ]

− ∂γ2(E[x],E[xxT ], t)

∂E[x]

dE[x]

dτ
− ∂γ2(E[x],E[xxT ], t)

∂τ

− ∂γ2(E[x],E[xxT ], t)

∂E[xxT ]

dE[xxT ]

dτ
, (40)

where
dE[x]

dτ
= εg1(E[x],E[z], t), (41)

dE[xxT ]

dτ
= εg2(E[x],E[xxT ],E[z],E[zxT ], t), (42)

from equations (21) - (22), and using equations (9) and (11)
we have

∂γ1(E[x], t)

∂τ
= −εB−1

2

dB3(t)

dt
, (43)

∂γ2(E[x],E[xxT ], t)

∂τ
= −εB−1

2

dB3(t)

dt
E[xT ]. (44)

The boundary layer system is obtained by setting ε = 0
in (39) - (40). Due to the linearity of the system (21) - (25),
the solutions E[x],E[xxT ],E[z], and E[zxT ] exist and are
bounded on any compact time interval t ∈ [0, t1]. Therefore,
when ε = 0, we have that dE[x]/dτ = 0 and dE[xxT ]/dτ =
0 from equations (41) - (42). Using Assumption 4, we
have that dB3(t)/dt is continuous on t, and therefore, it is
bounded on any compact interval t ∈ [0, t1]. Thus, it follows
that setting ε = 0 in (43) - (44), yields ∂γ1/∂τ = 0 and



Original System Σ

ẋ = fx(x, z, t) + σx(x, z, t) Γx
εż = fz(x, z, t, ε) + σz(x, z, t, ε) Γz

˙̄x = fx(x̄, γ1(x̄, t), t) + σx(x̄, γ1(x̄, t), t) Γx

d
dt

(
E[x̄]

E[x̄x̄T ]

)
=

(
g1(E[x̄], γ1(E[x̄], t), t)

g2(E[x̄],E[x̄x̄T ], γ1(E[x̄], t), γ2(E[x̄],E[x̄x̄T ], t), t)

)
d
dt


E[x]

E[xxT ]
εE[z]

εE[zzT ]

εE[zxT ]

 =


g1(E[x],E[z], t)

g2(E[x],E[xxT ],E[z],E[zxT ], t)
g3(E[x],E[z], t, ε)

g4(E[x],E[xxT ],E[z],E[zzT ],E[zxT ], t, ε)

g5(E[x],E[xxT ],E[z],E[zzT ],E[zxT ], t, ε)



Moments of the Original System Σ Moments of the Reduced System

Reduced System

ε → 0

ε → 0

Fig. 1: Commutative Diagram.

∂γ2/∂τ = 0. Therefore under Assumption 1 - 2, we obtain
the following boundary layer dynamics for b1:

db1
dτ

= B1E[x] +B2b1 +B2(−B−1
2 (B1E[x] +B3(t)))

+B3(t) = B2b1. (45)

The dynamics of b2 in the boundary layer system are given
by

db2
dτ

= B1E[xxT ] +B2b2 +B2(−B−1
2 (B1E[xxT ]

+B3(t)E[xT ])) +B3(t)E[xT ] = B2b2.

Let b2 = [ b21 ... b2n ], so that

db2i
dτ

= B2b2i, for i = 1, ..., n. (46)

From (45), (46), and Assumption 3 it follows that the
boundary layer system is globally exponential stable. Since
the functions g1 and g2 are linear, the solution of the
system (14) - (15) exists and is unique on any compact
time interval t ∈ [0, t1]. We also have that the functions
g1, g2, g3, g4, and g5 in Lemma 1 are continuous, and
from Assumption 2 and Assumption 4, the first and the
second partial derivatives of g1, g2, g3, g4, and g5 with
respect to their arguments are continuous. The functions
γ1(E[x], t) and γ2(E[x],E[xxT ], t) also have continuous first
partial derivatives with respect to their arguments. Therefore
the assumptions of Tikhonov’s theorem on the finite time
interval are satisfied, and relationship (36) holds.

A. Illustrative Example

The singular perturbation approach used in this paper to
approximate the dynamics of the slow variable does not
provide a valid approximation for the dynamics of the fast
variable, as discussed in [4]. From the reduced system in
(10), we observe that the noise in the fast variable does not
affect the slow variable, which leads to a good approximation
of the slow variable even though the fast variable is not well
approximated. To provide a physical interpretation as to why
this occurs, we consider the system

ẋ = −a1x+ a2z,

εż = −z + v1

√
εΓ,

where a1, a2 > 0. As the system is linear, we can calculate
the second moments at the steady state using the autocorre-
lation function. To this end, let Sxx(ω), Szz(ω) and SΓ(ω)
be the power spectra of x, z and Γ, respectively. We first
calculate Szz(ω). Let HzΓ(jω) be the frequency response
from Γ to z. Then, we have that

Szz(ω) = |HzΓ(jω)|2SΓ(ω) =
(v1/
√
ε)2

(ω2 + (1/ε)2)
,

where SΓ(ω) = 1 since Γ is a white noise process. Then,
the autocorrelation of z, Rzz(τ), is given by

Rzz(τ) =
(v1/
√
ε)2

2(1/ε)
e−(1/ε)|τ |,

so that the steady state second moment of z is given by

E[z2] = Rzz(0) =
(v1/
√
ε)2

2(1/ε)
=
v2

1

2
.

To calculate Sxx(ω), note that z appears as an input to
the slow variable. Then, letting Hxz(jω) be the frequency
response from z to x, we have that

Sxx(ω) = |Hxz(jω)|2Szz(ω),

=
(a2

2v
2
1/ε)/(−a2

1 + 1/ε2)

(ω2 + a2
1)

+
(a2

2v
2
1/ε)/(a

2
1 − 1/ε2)

(ω2 + (1/ε)2)
.

Thus, the autocorrelation of x is given by

Rxx(τ) =
a2

2v
2
1/ε

(−a2
1 + 1

ε2 )(2a1)
e−a1|τ | +

a2
2v

2
1/ε

(a2
1 − 1

ε2 )( 2
ε )
e−

1
ε |τ |,

so that the second moment of x is given by

E[x2] = Rxx(0) =
a2

2v
2
1

2a1

ε

(1 + a1ε)
.

Therefore as ε → 0, E[x2] → 0, that is, noise Γ does
not affect the x-subsystem as ε tends to zero. This can be
explained by visualizing the power spectrum Szz(ω) and the
frequency response |Hxz(jω)|. Consider Szz(ω), illustrated
in Fig. 2. We see that as ε → 0, Szz(ω) at low frequencies
decreases while at high frequencies it increases. However,
Hxz(jω) is a low-pass filter with a cut-off frequency of



a1 that does not change with ε (Fig. 2). Therefore, the x-
subsystem selects only the low frequency components of z,
which decrease with ε, leading to a decrease in power of
signal x as ε decreases.
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Fig. 2: Power spectrum of z and frequency response from z to x.
The parameters used are a1 = 10, a2 = 1.5 and v1 = 1.

V. APPLICATION TO THE CHEMICAL LANGEVIN
EQUATION

In this section, we demonstrate how the results devel-
oped in this paper can be applied to analyze the stochastic
properties of a biomolecular system. Biological systems
are inherently stochastic due to randomness in chemical
reactions. There are several tools that have been developed
to capture the stochastic behavior of biological systems, such
as the chemical master equation, the Fokker-Planck equation
and the chemical Langevin equation. The chemical Langevin
equation is a stochastic differential equation that provides
an approximation to the chemical master equation under the
assumption that the number of molecules in the system is
large [6], [9].

Time-scale separation is a common feature in biomolecular
systems where reactions can be categorized as slow reac-
tions and fast reactions according to the reaction rate. In
this section, we demonstrate the application of the results
to chemical Langevin equations with multiple time-scales,
using a one-step reaction model for a phophorylation cycle
as an example. Furthermore, we validate through numerical
simulations that indeed the reduced system is an O(ε)-
approximation of the original system.

A. Application Example

Phosphorylation is an important mechanism in the regu-
lation of many intracellular events [10]. It has been further
demonstrated that phosphorylation cycles can insulate bio-
logical circuits from loading effects arising from connection
to downstream targets, such as protein substrates or promoter
sites controlling gene expression [11], [12]. We consider
a cycle in which the phosphorylated protein X∗ binds to
promoter p. Since binding/unbinding reactions are much

faster than phosphorylation/dephosphorylation reactions, this
system exhibits multiple time-scales [13].

We can write the following chemical reactions for the
system considered: X + Z

k1−→ X∗ + Z, X∗ + Y
k2−→

X + Y, X∗ + p
kon−−⇀↽−−
koff

C. Protein X is phosphorylated by the

kinase Z at rate k1 and dephosphorylated by phosphotase Y
at rate k2. Phosphorylated protein X∗ binds to promoter p
producing the complex C. We consider the input Z to be of
the form Z(t) = k + A sin(ωt) where k is a constant bias
and A and ω are the amplitude and the frequency of the
input signal, respectively. The total concentration of X and
promoter p, are conserved, hence X +X∗ + C = Xtot and
p + C = ptot. Let Γi be white noise processes and Ω be
the cell volume. Letting Ω = 1 for simplicity, the chemical
Langevin equation for the system is given by

dX∗

dt
= k1Z(t)Xtot

(
1− X∗

Xtot
− C

Xtot

)
− k2Y X

∗

− konX
∗(ptot − C) + koffC

+

√
k1Z(t)Xtot

(
1− X∗

Xtot
− C

Xtot

)
Γ3

−
√
k2Y X∗Γ4 −

√
konX∗(ptot − C)Γ5 +

√
koffCΓ6,

(47)
dC

dt
= konX

∗(ptot − C)− koffC +
√
konX∗(ptot − C)Γ5

−
√
koffCΓ6. (48)

We assume that the cycle is weakly activated [14], giving
X∗ � Xtot, that the concentration of X is much larger than
that of the downstream binding site, giving Xtot � ptot, and
that binding of X∗ to promoter p is weak, giving ptot � C.
Hence (47) - (48) simplify to

dX∗

dt
= k1Z(t)Xtot − k2Y X

∗ − konX
∗ptot + koffC

+
√
k1Z(t)XtotΓ3 −

√
k2Y X∗Γ4 −

√
konX∗ptotΓ5

+
√
koffCΓ6, (49)

dC

dt
= konX

∗ptot − koffC +
√
konX∗ptotΓ5 −

√
koffCΓ6.

(50)

Since binding reactions are much faster than phosphory-
lation/dephosphorylation, we have koff � k2Y . Let kd =
koff/kon be the dissociation constant between X∗ and p, and
write ε = k2Y/koff where ε � 1. Letting a := k2/k1 and
y := X∗ + C, the system (49) - (50) satisfies

dy

dt
= k1Z(t)Xtot − k2Y (y − C) +

√
k1Z(t)XtotΓ3

−
√
k2Y (y − C)Γ4, (51)

ε
dC

dt
=
k2Y

kd
ptot(y − C)− k2Y C +

√
εk2Y

kd
ptot(y − C)Γ5

−
√
εk2Y CΓ6, (52)

which has the structure of (1) - (2), with x = y, z = C and

fx(x, z, t) = k1Z(t)Xtot − k2Y (x− z),



fz(x, z, t, ε) =
k2Y

kd
ptot(x− z)− k2Y z,

σx(x, z, t) = [
√
k1Z(t)Xtot −

√
k2Y (x− z) 0 0 ],

(53)

σz(x, z, t, ε) = [ 0 0

√
εk2Y ptot(x− z)

kd
−
√
εk2Y z ],

(54)

Γ = [ Γ3 Γ4 Γ5 Γ6 ]T . (55)

From (53) - (54), we have that σx(x, z, t)σx(x, z, t)T =
k1Z(t)Xtot + k2Y (x− z), σz(x, z, t, ε)σz(x, z, t, ε)

T =
εk2Y ptot(x− z)/kd+εk2Y z and σx(x, z, t)σz(x, z, t, ε)

T =
0. Therefore, Assumption 1 - 2 are satisfied. We also have
B2 = −(k2Y ptot/kd + k2Y ), satisfying Assumptions 3
and B3(t) = 0 satisfying Assumption 4. We assume that
there exist X∗0 > 0 and C0 > 0 such that X∗ ≥ X∗0
and C ≥ C0, which will guarantee the necessary Lipschitz
continuity properties to ensure the existence of a unique
solution to system (51) - (52). Then, we can proceed to find
a reduced model for (51) - (52).

Setting ε = 0 in (52), we obtain the slow manifold γ1(y) =
yptot/(ptot + kd). Then the reduced system is given by

dȳ

dt
= k1Z(t)Xtot − k2Y ȳ

(
kd

kd + ptot

)
+

√
k1ZXtot + k2Y ȳ

(
kd

kd + ptot

)
Γy,

where we have used the fact that Γi are independent Gaussian
white noise processes to write v1Γ3− v2Γ4 =

√
v2

1 + v2
2Γy .

Then applying Theorem 1, we have that

‖E[ȳ]− E[y]‖ = O(ε), t ∈ [0, t1]

‖E[ȳ2]− E[y2]‖ = O(ε) t ∈ [0, t1].

Fig. 3 shows the errors in the first and second moments.
The simulations are performed using the Euler-Maruyama
method [15] for stochastic differential equations and takes
the average of 1000 simulation runs.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we considered singularly perturbed stochas-
tic differential equations with linear drift and nonlinear
diffusion terms. We obtained a reduced model that approx-
imates the dynamics of the slow variable of the original
system when the time-scale separation is large (ε is small).
Therefore, these results allow the slow dynamics of the
original system to be approximated by a system with lower
dimensions, which will be useful in analysis and simulations
of stochastic systems. In particular, benefits in simulations
include reduced computation time and cost, especially for
stochastic differential equations in the chemical Langevin
form, modeling large biomolecular systems.

In future work, we aim to extend the analysis of the slow
variable approximation to obtain weak convergence, which is
a stronger convergence result than the convergence of the first
and the second moments. We also aim to extend the results
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Fig. 3: Errors in the first and the second moments. The parameters
used are Z(t) = 0.1 + 0.05 sin(0.1t), k1 = 0.1, k2 = 1, kd =
100, Xtot = 200, Y = 0.2, ptot = 200, y(0) = 10 and C(0) =
5.

to the infinite time interval, consider systems where the drift
coefficient is nonlinear and determine an approximation to
the fast variables of the original system.
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