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Abstract 

In this paper, we apply a principal-orthogonal decom- 
position based method to the model reduction of a hy- 
brid, nonlinear model of a power network. The results 
demonstrate that the sequence of fault events can be 
evaluated and predicted without necessarily simulating 
the whole system. 
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1 Introduction 

Power systems are among the largest and most intricate 
engineered systems in operation today. The sheer com- 
plexity of these large-scale networks makes the plan- 
ning, management and operation a difficult task. Up 
coming changes in the power industry will force compa- 
nies to adopt even more complicated software and man- 
agement techniques to satisfy increasing demands and 
cooperation requirements. Obviously, there is a strong 
need to guarantee that these changes will not have un- 
desirable consequences, such as network-wide power os- 
cillations, instabilities or major cascading failures. Ad- 
ditionally, it would be advantageous to have guidelines 
about failure dynamics, and the possible mechanisms 
for stopping a fault cascade, or even reversing it once it 
started. As is becoming increasing clear, these second- 
order effects are not easy, and sometimes not even pos- 
sible, to predict. 

In this paper we present some initial investigations on 
the possibility of applying recently developed model 
reduction tools to the study of cascading failures in 
power networks (see Fig. 1). The focus is on the con- 
struction of low-order models which closely approxi- 
mate the global behavior of the hybrid nonlinear sys- 
tem. There is a growing recognition of the strong need 
for rapid and reliable computation of the system dy- 
namics. We will demonstrate in this paper that recent 
developments in model reduction techniques can con- 
tribute to these goals. 
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The paper is organized as follows: in Section 2 we 
present the swing equation model used throughout the 
paper. Section 3 demonstrates the cascading failures 
obtained in the simulations of the system model. In 
Section 4, an overview of the model reduction pro- 
cedure introduced in [4] is presented, and the follow- 
ing section shows the promising results obtained from 
the application of this methodology to the power net- 
work model used in Section 3. Finally, the last sec- 
tion presents some conclusions and discussion of future 
work. 

2 Modeling 

2.1 Swing equations 
Our starting point will be the study of so-called 
swing dynamics, representing the coupling between real 
power flows and frequency variations across the trans- 
mission network of the power system. This is the most 
natural starting point for a study of geographically 
extensive dynamic phenomena on the power system. 
Swing dynamics, which occur on the time scale of sec- 
onds, can span the system even in a small-signal set- 
ting, whereas voltage dynamics tends to extend across 
the system only when significantly mediated by nonlin- 
ear effects. Swing dynamics are also potentially able to 
interact with particular protection and control mecha- 
nisms in a way that could plausibly lead to cascading 
events. 

A typical swing-equation model [l, 3, 61 involves a 
second-order differential equation (essentially Newton's 
law in rotational form, for the dynamics of the rotor) 
associated with each generator node or bus, and an 
algebraic equation associated with each load bus. As- 
suming that all bus voltages are well regulated, we can 
write the following equation for the ith bus: 

~ ~ 8 ,  + D,& = pmi - pgi, (i = I , .  . . , n) (1) 

where Si are the generator rotor angle deviations with 
respect to a synchronously rotating reference frame, 
Pmi is the mechanical power input, P,i is the electrical 
power output, and n is the number of generators. The 
parameters Mi and Di are the ith-generator's normal- 
ized inertia and damping coefficient, respectively. The 
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Figure 1: Sequence of failures in simulation of swing- 
equation models. The black circles represent 
working generators, and gray lines represent 
failures. 

instantaneous frequency deviation from synchronous 
frequency at bus i is given by &(t). The supplied me- 
chanical power Pmi is assumed constant in this sim- 
ple model, but more generally is adjusted by a speed- 
dependent governor. The damping coefficient D, re- 
flects electromechanical damping in the generator itself, 
as well as the effective damping introduced by other 
components such as power system stabilizers, which are 
not directly represented in the swing model. 

The remaining model equations are given by the load 
and network characteristics. The expression for the 
electrical power output is given by: 

P,, = Re[y*li] = Re[y* cY&V,] 
= -CI&llv,Ib,jsin(bi(t)-6j(t)), i = l ,  ... ,n 

j 

j 

where & = I& I eJai, and Y = G + J B  is the admittance 
matrix representing the network connections. We as- 
sume throughout that the voltage magnitudes do not 
change, and the transmission lines are lossless, i.e. Y 
is purely imaginary (G = 0). In the particular case 
presented in this paper, the loads are modeled as syn- 
chronous motors, with small inertia and small damping 
constants. 

The quantity bij is the susceptance of the line between 
buses i and j, and is therefore 0 if these two buses 
are not connected (and is also 0 for j = i); the sum- 
mation on the right side of the above equation is thus 
effectively over all buses that are connected to bus i. 
The term I&llV,lb,j sin(&(t)-bj(t)) is the (real) power 
transmitted through the line from bus i to bus j. Thus 
the maximum power that can be transfered through 
the line, in the absence of other limits, is given by 
I&llV,lbij. However, thermal dissipation constraints on 
the line (to limit thermal expansion of the line, and as- 
sociated line sag) may limit the transferred power to 
values lower than this theoretical limit. 

A key point to note is that the susceptance matrix 
B = [bi j]  = Im(Y) provides a direct representation 
of the network structure; apart from its diagonal, it is 
essentially a weighted incidence matrix for the network 

graph. If the network topology evolves, as transmission 
lines are taken out in response to failures, for example, 
then the pattern of zero and nonzero entries in B (or 
Y) evolves in a corresponding manner. 

In the limit when the motor constants are zero, we 
obtain a differential-algebraic equation (DAE) system, 
which can be interpreted as the singular perturbation 
limit of the model presented. In this case, we can write 
equations (1) in the form: 

where 7; is 1 if i is a generator bus and 0 if i is a 
load bus, PL~ is the power consumed at this bus by the 
load if i is a load bus, Mi is the normalized inertia of 
the generator if i is a generator bus. The DAE model 
is very useful from a conceptual viewpoint, since the 
loads are represented as constant power sinks. How- 
ever, it also has some analytical difficulties, such as the 
nonexistence of solutions for some parameter values. 
For these practical reasons, we only use equations (1) 
in the present work. Even though the model used in 
the paper are not necessarily the most realistic, it con- 
tains most of the features of a real power system. We 
expect the same techniques used here to be applicable 
to more complicated models. 

2.2 Failure mechanisms 
The network model employed in the simulations has 
multiple safety mechanisms, to represent real-world op- 
eration limits and security safeguards. As we will see, 
the interaction between the swing dynamics and the 
discrete topological changes induced by these overload 
protections gives rise to a succession of fault events, 
known as cascading failures. 

The first protection mechanism is related to line over- 
loading. If the sine of difference of the angles between 
two connected nodes 16, - Sjl exceeds a given threshold 
value, then the corresponding line is removed. In other 
words, we set the corresponding elements in the matrix 
Y (or B )  to zero. As seen previously, the rationale be- 
hind this kind of action is basically a power flow limit 
protection. 

The generators in our model are also susceptible to 
fault events. If the frequency deviation 6, with respect 
to the synchronous reference exceeds some preassigned 
limit, the corresponding generator is tripped. This sim- 
ulates the protective relay action present in most gen- 
erators. In the model, the consequences of this are ap- 
proximately captured by representing the tripped gen- 
erator as a load bus with P L ~  = 0. The topology of the 
network is not directly affected by generator failures, 
but only through line failures. 
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An important fact that needs to be taken into account 
is that of the loss of generating power in the event of a 
generator failure. In this case, the necessary conditions 
for existence of an equilibrium are no longer satisfied, 
since the system is consuming more power than the 
available supply. In our simulation, this is addressed 
by increasing in equal amounts the mechanical power 
input of the remaining generators. This is a somewhat 
crude representation of the actual mechanisms, which 
include governors that sense a drop in the local fre- 
quency, and correspondingly increase the mechanical 
power input to the generators. Future work will incor- 
porate governor models for this adjustment. It should 
be noted, however, that in the cases where after the fail- 
ure the network has many connected components, an 
explicit mechanism is needed to ensure that the power 
balance condition is satisfied for every connected sub- 
network. 

The complete model is a hybrid nonlinear system of 
coupled differential equations. The hybrid nature is 
given by the discrete topology changes induced by the 
relay actions. As we will see in the next section, this 
model has the potential for generating complex fault 
events, as a consequence of the complicated interaction 
between the dynamics and the overloading protection 
mechanisms. 

3 Observed cascading failures 

The specific network model used in the simulation is 
a 10 x 10 square grid, representing the transmission 
network, with four generators distributed in a regular 
pattern (see Fig. 1). The remaining nodes are occu- 
pied with loads, which in this model are synchronic 
motors, as previously discussed. The resulting model 
is a nonlinear dynamical system, with 200 state vari- 
ables, interconnected with the discrete relay compo- 
nents to form a hybrid system. The choice of network 
size was made mainly based on the prospect of reduced 
computation time for the full order model. Future im- 
plementations will include larger networks, as well as 
more complicated topologies. 

The simulation is started from an equilibrium state 
near the origin, computed using a Gauss-Newton 
method. A line failure is simulated by setting two ele- 
ments of the admittance matrix Y to zero (yZj = y 3 i  = 
0) , since this implies no direct connection between the 
nodes i and j .  The initial event is given by the open- 
ing of one branch of the network, chosen at random. 
This initial condition modifies the power flow equilib- 
rium in the network. Depending on the initial event, 
and the network load, the system might converge to 
a new equilibrium, without violating the power flow 
constraints, or go through a succession of fault events, 
taking down additional lines and/or generators in the 
process. The simulation is run until the system reaches 

a new equilibrium, or all the generators trip. 

4 Model reduction 

The models we have used so far in this paper are hybrid, 
nonlinear interconnected systems, with 200 states used 
to describe the interaction of four generators with an 
idealized load distribution. At this scale, the model is 
readily amenable to simulation. However, we would like 
to be able to simulate significantly larger systems, both 
for the purpose of obtaining reliable statistics and for 
simulating a section of the physical power grid. Larger 
models quickly become unwieldy for simulation, and so 
we would like a method of constructing reduced-order 
models. 

Critical difficulties in model reduction of this class 
of systems are presented by both their hybrid nature 
and their nonlinearity. Well-known methods, such as 
balanced-truncation, are not applicable other than to 
the linearization of the system, and do not take ac- 
count of either of these crucial global system proper- 
ties. In particular, the presence of the relays is respon- 
sible for the discrete chain of cascading failures, and 
we would like the reduced-order system to accurately 
predict these events. 

An alternative model reduction procedure makes use of 
the Karhunen-Lokve decomposition of the state space. 
This procedure was introduced for the analysis of 
turbulence by Lumley [5], and is described in detail 
in [2, 41. 

For high-dimensional systems whose state space is R", 
a directly computable problem is to find the smallest 
dimensional subspace which contains observed points 
on the trajectories of the system; the Karhunen-Lokve 
decomposition provides a method for doing this [4, 21. 
A further refinement of this method is to relax the 
constraint that the subspace contain this set, but in- 
stead require that the subspace approximately contain 
it. Once such a subspace is found, a Galerkin projec- 
tion can be applied to project the dynamics onto it, so 
that the high-dimensional system is approximated by 
a small number of nonlinear ordinary differential equa- 
tions. 

Suppose the state of the system is described by s(t) E 
Rn. In practical application, the method makes es- 
sential use of empirical data, taken either from experi- 
ments or from numerical simulation, consisting of sam- 
pled measurements {&), . . . , dN)} of z(t) .  The next 
step is to perform a principal component analysis of 
this data, to find how well it may be approximated by 
projection onto a k-dimensional subspace of the origi- 
nal n-dimensional state space. 
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The Karhunen-Lokve decomposition provides a method 
for finding this best approximating subspace. The 
method is known in the literature by several names, in- 
cluding principal component analysis, factor analysis, 
and total-least-squares estimation. The method has 
been extensively analyzed in the literature, although 
the original concept goes back to Karl Pearson [7]. 

The main idea is to compute this best subspace by do- 
ing a singular value decomposition of a covariance-like 
matrix. It can be shown [2] that this procedure re- 
sults in a optimal (in a least squares sense) projection 
matrix P. By considering the magnitude of the sin- 
gular values, and the desired approximation error, we 
can determine the dimension k of the approximating 
subspace. 

The Karhunen-Lokve method therefore projects the dy- 
namics onto the subspace containing most of the energy 
of the system. In general, we would expect that the 
more eigenvectors we keep, the better approximation 
we will obtain. 

So far, we have discussed application of the Karhunen- 
Lokve method to systems which can be described by 
autonomous differential equations. For systems which 
have a hybrid component, essentially the same a p  
proach applies, with the differential equation replaced 
by a mixed discrete/continuous system. Numerically, 
such a system is integrated in discrete timesteps, which 
can be represented as 

The Galerkin projection then leads to the discrete it- 
eration 

which can be directly implemented for nonlinear hybrid 
systems, such as the power system considered in this 
paper. 

5 Initial test of the model reduction approach 

In this section we describe an application of the above 
procedure to the 200 state swing-model. We consider 
the four-generator example described above, and initi- 
ate a failure close to the generator in the top-left corner. 

In order to try to capture this behavior with a reduced 
order model, a reasonable strategy might be to model 
reduce only part of the system. In this case, the initial 
failure spreads in the top left corner of the network, and 
so we might expect that the dynamics of the bottom 
half of the network do not play a significant role. 

The Karhunen-Lokve method can be directly applied 
to only part of the system; the states of the system 

Figure 2: First mode of the Karhunen-L&ve decomposi- 
tion 

are partitioned into (x1,z2), where x1 are the states 
to be kept and x2 are to be replaced by a lower-order 
approximation. A projection P is constructed from 
measurements of 2 2  ( t )  collected from simulation. This 
is extended to a projection P on the whole state space, 
defined by PT = [I PT], which is then used to per- 
form the Galerkin projection. 

Data was collected from the simulation of the full-order 
system, and the correlation and projection operators 
were constructed from the 100 states corresponding to 
the bottom half of the network. Fig. 4 shows the eigen- 
values of the correlation matrix, scaled so that they 
sum to one. As can be seen from the plot, most of the 
energy is concentrated in the first few modes. Fig. 2 
shows the mode shape corresponding to the first singu- 
lar value. 

The energy distribution of the first modes suggests that 
a low order model might explain adequately the dynam- 
ics of this part of the system. A ten state model was 
chosen since these ten singular values sum to 0.998, and 
hence account for more than 99% of the ‘energy’ in the 
system. 

After realizing the corresponding reduction, the re- 
duced order model is interconnected with the unre- 
duced remaining subnetwork, and a new simulation is 
performed. See Fig. 3 for a comparison of the response 
of the two different models to the same failure. 

Visually, the agreement between the simulations of the 
two models is extremely good, despite the fact that the 
reduced order part has only 10 states compared with 
the original 100 states. More importantly, the sequence 
of failures obtained is exactly the same as that of the 
full-order system. The sequence of failures obtained is 
detailed in Table 1. The initial failure occurs at time 
t = 0.25, and it causes the tripping of all the generators. 
Both the fault progression and the final equilibrium of 
the system are exactly the same for both models 

This is a promising result; the Karhunen-Lobve decom- 
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Figure 3: Original and reduced order model simulations. 

Figure 4: Normalized singular values associated with the 
reduction procedure. 

position is motivated by the desire to reproduce the 
large scale behavior of the system, and in this case we 
have obtained reliable predictions of the sequence of 
failures. Naturally, it would not  be reasonable to ex- 
pect the methodology to work in every case, and for 
arbitrarily long intervals. One reason for this is that 
the system might present chaotic behavior, and there- 
fore arbitrarily small perturbations in the dynamics or 
the initial conditions will cause an exponentially grow- 
ing divergence in the state. 

This initial test of this methodology indicates that 
a multi-resolutional approach might be successful for 
larger scale power networks, using models which are 
more detailed at parts of the network which are dy- 
namically more active. It should also allow for succes- 
sive refinement, so that the system can be modeled in 
increasing detail in those areas which are susceptible 
to failures. This type of modeling process has been 
described as hierarchical modeling; a tree-structure of 
models is used to describe the behavior of the system, 
and high resolution (in this case, a large number of 
states) is only used where needed. 

Table 1: Failure times for full and reduced order models. 

6 Conclusions 

The complexity of modern-day power networks makes 
necessary the careful evaluation and analysis of global 
events, such as cascading failures. Additional demands 
such as decentralization and the need for obtaining so- 
lutions in reasonable computation times make neces- 
sary a reevaluation of the suitability of current tech- 
niques in dealing with these new challenges. 

A possible solution is the use of reduced order models 
for analysis. The methodology presented in this paper, 
based on the Karhunen-Lokve decomposition, deals di- 
rectly with the problem of finding a subspace where 
“most” of the dynamics occur, and uses this informa- 
tion in the construction of a reduced order model. The 
results shown in Section 3 demonstrate that the se- 
quence of fault events can be evaluated and predicted 
(at least, in a reasonable horizon length) without nec- 
essarily simulating the full-order model. 

The initial investigations presented here are very 
promising, and give a hint of the potential value of 
the methodology. Future work will explore important 
related issues, such as a possible tradeoff between ap- 
proximation error and prediction horizon. 
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