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	is paper investigates the problem of H∞ model reduction for a class of discrete-time Markovian jump linear systems (MJLSs)
with de
cient mode information, which simultaneously involves the exactly known, partially unknown, and uncertain transition
probabilities. By fully utilizing the properties of the transition probability matrices, together with the convexi
cation of uncertain
domains, a newH∞ performance analysis criterion for the underlyingMJLSs is 
rst derived, and then two approaches, namely, the
convex linearisation approach and iterative approach, for the H∞ model reduction synthesis are proposed. Finally, a simulation
example is provided to illustrate the e�ectiveness of the proposed design methods.

1. Introduction

Markovian jump linear systems (MJLSs), initially proposed
by Krasovskĭı and Lidskĭı [1], have been attracting increasing
attention over the past decades. 	e appeal for the study of
this class of hybrid systems is that MJLSs are powerful to
model plants whose structures are subject to random abrupt
changes, for example, the fault-prone manufacturing systems
[2], power systems [3], economic systems [4], networked con-
trol systems (NCSs) [5–10], and so on. As a critical factor, the
transition probabilities (TPs) in the Markov chain determine
the jump rules of di�erent modes and are assumed to be
completely known in most of the existing literature [11–14].

However, it is noted that, in many practical engineering
systems, not all the mode transition information can be
obtained exactly. Recently, there have appeared some results
on the analysis and synthesis of MJLSs with uncertain TPs
[15–18] or partially unknown TPs [19–21]. To mention a few,
the authors in [15] considered the robust stochastic stability
analysis problem for a class of MJLSs with norm-bounded
uncertainties in the TPs; the author in [16] dealt with the
robust stability analysis and stabilization problems for MJLSs
with polytopic-type uncertain TPs; the authors in [17] studied
the robust stability analysis for a class of discrete-time

Markovian jumping neural networks with defective statistics
of mode transitions; the authors in [19] investigated theH∞

ltering design for MJLSs with partially unknown TPs. In
particular, it is noted that the introduction of de
cient mode
information, which simultaneously contains the exactly
known, partially unknown, and uncertain TPs, is very impor-
tant and useful in both theoretical advances and practical
applications of MJLSs.

On the other hand, in many engineering applications,
high- or even in
nite-order complex mathematical models
are frequently used to describe physical systems and pro-
cesses [22–24]. 	ese high-order models bring serious di�-
culties to analysis and synthesis of the underlying systems.
	erefore, model simpli
cation/reduction with respect to
certain criteria has received considerable attention in recent
years. Correspondingly, many important results on model
reduction have been obtained, involving various e�cient
approaches such as the Hankel norm approximation method
[25], the H2 approach [26, 27], the H∞ approach [28–30],
and the L2-L∞ approach [31]. More recently, the linear
matrix inequality (LMI) technique has been exploited to solve
the model reduction problem for di�erent classes of systems,
such as bilinear systems [27], time-delay systems [28], and
T-S fuzzy systems [32–36]. Speci
cally, the authors in [4, 20]
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considered the H∞ model reduction problem for a class of
MJLSs with completely known TPs and partially unknown
TPs, respectively. However, to the authors’ best knowledge,
few results have been reported on H∞ model reduction for
MJLSs with de
cient mode information, which simultane-
ously consists of the exactly known, partially unknown, and
uncertain TPs. 	is motivates us for the present study.

According to the issues mentioned previously, in this
paper, we will make an attempt to tackle the H∞ model
reduction problem for a class of discrete-time MJLSs with
de
cient mode information. Such de
cient mode informa-
tion simultaneously contains the exactly known, partially
unknown, and uncertain TPs, which is a more practical
scenario. By fully utilizing the properties of the transition
probability matrices, together with the convexi
cation of
uncertain domains, a new H∞ performance analysis crite-
rion forMJLSs with de
cientmode informationwill be 
rstly
derived. To solve themodel reduction problem, two distinctly
di�erent approacheswill be then proposed.	e
rst approach
is based on a linearisation procedure, which casts the model
reduction into a convex optimization problem. 	e second
one, which is based on the cone complementarity linearisa-
tion (CCL) idea [37, 38], casts the model reduction into a
sequential minimization problem subject to LMI constraints.
	e e�ectiveness and superiority of the proposed approaches
will be illustrated by a simulation example.

Notations. 	e notations used throughout the paper are stan-
dard. R� and R�×� denote, respectively, the �-dimensional
Euclidean space and the set of all � × � real matrices; N+

represents the set of positive integers; the notation � > 0
means that � is real symmetric and positive de
nite; I and 0
represent the identity matrix and a zero matrix, respectively;‖ ⋅ ‖ refers to the Euclidean vector norm; �2[0,∞) is the space
of square summable in
nite sequence and, for 	 = {	(
)} ∈�2[0,∞), its norm is given by ‖	‖2 = √∑∞�=0 ‖	(
)‖2; (S,F,
P) denotes a complete probability space, in which S is the
sample space, F is the � algebra of subsets of the sample
space, and P is the probability measure on F; E[⋅] stands
for the mathematical expectation and, for the sequence � ={�(
)} ∈ �2((S,F,P), [0,∞)), its norm is given by ‖�‖E2 =√E[∑∞�=0 ‖�(
)‖2]. Matrices, if their dimensions are not

explicitly stated, are assumed to be compatible for algebraic
operations.

2. Problem Formulation and Preliminaries

A discrete-time Markovian jump linear system (MJLS) on a
complete probability space (S,F,P) can be described as

(Σ) : � (
 + 1) = � (� (
)) � (
) + � (� (
)) � (
) ,
� (
) = � (� (
)) � (
) + � (� (
)) � (
) , (1)

where �(
) ∈ R�� is the state vector; �(
) ∈ R�� is the
control input vector which belongs to �2[0,∞); �(
) ∈ R��

is the output vector. 	e process {�(
), 
 ≥ 0} is described
by a discrete-time homogeneous Markov chain, which takes

values in a 
nite set I := {1, . . . , �} with mode transition
probabilities (TPs) Pr(�(
 + 1) = � | �(
) = �) = ���, where��� ≥ 0, for all �, � ∈ I, and ∑��=1 ��� = 1. For �(
) = �, � ∈ I,

the system matrices of the �th mode are denoted by(� �, ��, ��, ��), which are real and known. 	roughout the
paper, we assume that system (Σ) is stochastically stable,
which is a prerequisite for model reduction design.

In addition, theTPs of the jumping process are considered
to be polytopic-type uncertain and partially accessed; that
is, the transition probability matrix (TPM) Π = [���]�×� is
assumed to belong to a given polytope PΠ := {Π | Π =∑
�=1 ��Π�; �� ≥ 0,∑
�=1 �� = 1}, where verticesΠ� = [���]�×�,�, � ∈ I, � = 1, 2, . . . , are given TPMs containing unknown
elements still. For instance, for system (Σ) with four operation
modes, the TPMmay be as

[[[[
�11 �̃12 �̂13 �14�̂21 �22 �̃23 �24�31 �̂32 �33 �̂34�41 �̃42 �̂43 �̂44

]]]]
, (2)

where the elements labeled with “̂” and “̃” represent the
unknown information and polytopic uncertainties on TPs,
respectively, and the others are known TPs. For notational

clarity, for all � ∈ I, we denote I = I
(�)
K
∪ I
(�)
UC
∪ I
(�)
UK

as follows:

I
(�)
K
:= {� : ��� is known} ,

I
(�)
UC
:= {� : �̃�� is uncertain} ,

I
(�)
UK
:= {� : �̂�� is unknown} .

(3)

Moreover, ifI(�)
K
̸= 0 andI

(�)
UC
̸= 0, it is further described as

I
(�)
K
:= {K(�)1 , . . . ,K(�)�� } , ∀1 ≤ 8� ≤ � − 2,

I
(�)
UC
:= {U(�)1 , . . . ,U(�)V� } , ∀1 ≤ V� ≤ �, (4)

whereK(�)�� ∈ N+ represents the 8�th known element with the

index K
(�)
�� in the �th row of TPM and U

(�)
V�
∈ N
+ represents

the V�th uncertain element with the indexU(�)
V�
in the �th row

of TPM, respectively. Obviously, 1 ≤ 8� + V� ≤ �. Also, we
denote

�(��)
UK
:= ∑
�∈I(�)

UK

�̂�� = 1 − ∑
�∈I(�)

K

��� − ∑
�∈I(�)

UC

�̃(�)�� , (5)

where �̃(�)�� represents an uncertain TP in the �th polytope, for
all � = 1, . . . , .

To approximate the original MJLS (1), in this paper, we
are interested in designing the following mode-dependent
reduced-order model:

(Σ) : �̂ (
 + 1) = ����̂ (
) + ���� (
) ,
�̂ (
) = ����̂ (
) + ���� (
) , (6)
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where �̂(
) ∈ R�� (�� < ��), �̂(
) ∈ R�� , and ��� ∈ R��×�� ,��� ∈ R��×�� , ��� ∈ R��×�� , and ��� ∈ R��×�� are the gains of
the reduced-order models to be determined.

De
ne �(
) := [��(
) �̂�(
)]� and �(
) := �(
) − �̂(
).
	en, by augmenting (1) and (6), the model error dynamics
can be described as

(Σ) : � (
 + 1) = ��� (
) + ��� (
) ,
� (
) = ��� (
) + ��� (
) , (7)

where

�� := [� � 0
0 ���] , �� := [�����] ,

�� := [�� −���] , �� := �� − ���.
(8)

	erefore, the purpose of this paper is to design a mode-
dependent reduced-order model in the form of (6), such

that the model error system (Σ) in (7) with de
cient mode
information is stochastically stable and the induced �2-norm
of the operator from �(
) to the model error �(
) is less thanG; that is, ‖�(
)‖E2 < G‖�(
)‖2, under zero initial conditions
for any nonzero �(
) ∈ �2[0,∞).

Before ending the section, we give the following lemma
on the H∞ performance analysis of system (7) with com-
pletely knownTPs, whichwill be used in the proof of ourmain
results.

Lemma 1 (see [4]). For the MJLS (7) with completely known
TPs and a given scalar G > 0, if the coupled inequalities
[[
���P��� − �� + ��� �� ���P��� + ��� ��∗ − (G2I − ���P��� − ��� ��)]] < 0,

∀� ∈ I,
(9)

where P� := ∑��=1 �����, have a feasible solution � ={�1, �2, . . . , ��}with �� > 0, then the MJLS (7)with completely
known TPs is stochastically stable with anH∞ performance G.
3. Main Results

In this section, we will 
rst derive the H∞ performance

analysis criterion for the model error system (Σ) in (7) with
de
cient mode information. 	en, two distinctly di�erent
approaches will be proposed to solve the H∞ model reduc-
tion problem formulated in the previous section.

3.1. H∞ Performance Analysis. In the following, by exploit-
ing the properties of the transition probability matrices
(TPMs), together with the convexi
cation of uncertain
domains, anH∞ performance analysis criterion for themod-

el error system (Σ) in (7) with de
cient mode information is
presented, which will play an instrumental role in solving the
H∞ model reduction problem.

Proposition 2. 
eMJLS (7)with de�cient mode information
is stochastically stable with a guaranteed H∞ performanceG if there exist positive-de�nite symmetric matrices �� ∈
R(��+��)×(��+��), � ∈ I, such that the following matrix inequal-
ities hold:

Φ(�)��
:=[[
���P(��)� �� − ��+��� �� ���P(��)� �� + ��� ��

∗ − (G2I − ���P(��)� ��−��� ��)]]
< 0, ∀� ∈ I, � ∈ I(�)

UK
, � = 1, . . . , ,

(10)

where

P
(��)
� := ∑

�∈I(�)
K

�i��� + ∑
�∈I(�)

UC

�̃(�)�� �� + �(��)UK
��⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

�∈I(�)
UK

,
�(��)
UK
:= 1 − ∑

�∈I(�)
K

��� − ∑
�∈I(�)

UC

�̃(�)�� .
(11)

Proof. Based on Lemma 1, it is known that system (7) with
completely known transition probabilities (TPs) is stochas-
tically stable with an H∞ performance G if (9) holds. Now
due to ∑��=1 ��� = 1 and with de
cient mode information, we

rewrite the term ∑��=1 ����� as
�∑
�=1
����� = ∑

�∈I(�)
K

����� + ∑
�∈I(�)

UC

(
∑
�=1
���̃(�)�� )�� + ∑

�∈I(�)
UK

�̂����.
(12)

Considering the fact that 0 ≤ �� ≤ 1, ∑
�=1 �� = 1, and 0 ≤�̂��/�(��)UK
≤ 1, ∑�∈I(�)

UK

(�̂��/�(��)UK
) = 1, (12) can be rewritten as

�∑
�=1
�����
= 
∑
�=1
�� ∑
�∈I(�)

UK

�̂���(��)
UK

( ∑
�∈I(�)

K

����� + ∑
�∈I(�)

UC

�̃(�)�� �� + �(��)UK
��) .
(13)

	us, with de
cient mode information, the le�-hand side
(LHS) of inequality (9) can be rewritten as

LHS (9) = 
∑
�=1
�� ∑
�∈I(�)

UK

�̂���(��)
UK

Φ(�)�� , (14)

where Φ(�)�� is de
ned in (10). 	en (9) holds if and only ifΦ(�)�� < 0, which implies that, in the presence of unknown

and uncertain TPs, inequality (9) is equivalent to (10). 	is
completes the proof.
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Remark 3. By fully exploiting the properties of the TPMs,
together with the convexi
cation of uncertain domains, a suf-

cient condition for the H∞ performance analysis has been

derived for the model error system (Σ) with de
cient mode
information in Proposition 2. It is noted that there exist prod-
uct terms between the Lyapunov matrices and system matri-
ces in condition (10), which will bring some di�culties in the
solutions of model reduction problem. By applying decou-
pling techniques, in the following, two distinctly di�erent
approaches to solve the H∞ model reduction problem will
be proposed.

3.2. Model Reduction via Convex Linearisation Approach. In
this subsection, based on a linearisation procedure, themodel

reduction problem described in the previous section will
be cast into a convex optimization problem. 	e following
theorem presents a su�cient condition for the existence of
admissible reduced-order models.

�eorem 4. Consider MJLS in (1) with de�cient mode infor-
mation and reduced-order model in the form of (6). 
emodel
error system in (7) is stochastically stable with an H∞ per-
formance G if there exist positive-de�nite symmetric matrices�� = [ ��(1) ��(2)∗ ��(3) ] ∈ R(��+��)×(��+��) and matrices X�(1) ∈ R��×�� ,X�(2) ∈ R��×�� , X�(3) ∈ R��×�� , ��� ∈ R��×�� , ��� ∈ R��×�� ,��� ∈ R��×�� , and ��� ∈ R��×�� , � ∈ I, such that the following
LMIs hold:

[[[[[[[[[[[

P
(��)
�(1) − X�(1) − X��(1) P(��)�(2) − YX�(2) − X��(3) 0 X�(1)� � Y��� X�(1)�� + Y���∗ P

(��)
�(3) − X�(2) − X��(2) 0 X�(3)� � ��� X�(3)�� + ���∗ ∗ −I �� −��� �� − ���∗ ∗ ∗ −��(1) −��(2) 0∗ ∗ ∗ ∗ −��(3) 0∗ ∗ ∗ ∗ ∗ −G2I

]]]]]]]]]]]
< 0,

� ∈ I, � ∈ I(�)
UK
, � = 1, . . . , ,

(15)

where

P
(��)
�(�) := ∑

�∈I(�)
K

�����(�) + ∑
�∈I(�)

UC

�̃(�)�� ��(�) + �(��)UK
��(�)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

�∈I(�)
UK

,
� = 1, 2, 3,

�(��)
UK
:= 1 − ∑

�∈I(�)
K

��� − ∑
�∈I(�)

UC

�̃(�)�� ,
Y := [I��×�� 0��×(��−��)]�.

(16)

Moreover, if the above conditions have a set of feasible solu-

tions (��(1), ��(2), ��(3), X�(1), X�(2), X�(3), ���, ���, ���, ���), then
an admissible ��-order approximationmodel in the form of (6)
can be constructed as

��� = X−1�(2)���, ��� = X−1�(2)���,
��� = ���, ��� = ���. (17)

Proof. It follows from Proposition 2 that if we can show
(10), then the claimed results follow. By Schur complement,
inequality (10) is equivalent to

[[[[[
(P(��)� )−1 0 �� ��∗ −I �� ��∗ ∗ −�� 0∗ ∗ ∗ −G2I

]]]]]
< 0,

∀� ∈ I, � ∈ I(�)
UK
, � = 1, . . . , ,

(18)

where

P
(��)
� := ∑

�∈I(�)
K

����� + ∑
�∈I(�)

UC

�̃(�)�� �� + �(��)UK
��⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

�∈I(�)
UK

,
�(��)
UK
:= 1 − ∑

�∈I(�)
K

��� − ∑
�∈I(�)

UC

�̃(�)�� . (19)

Performa congruent transformation to (18) by diag{X�, I, I, I},
and consider the following bounding inequality:

−X�(P(��)� )−1X�� ≤P(��)� − X� − X�� . (20)

It is thus easy to see that the following inequality implies (18),

[[[[
P
(��)
� − X� − X�� 0 X��� X���∗ −I �� ��∗ ∗ −�� 0∗ ∗ ∗ −G2I

]]]]
< 0,

∀� ∈ I, � ∈ I(�)
UK
, � = 1, . . . , .

(21)

Furthermore, for model reduction synthesis purpose, we
choose the slack matrix X� as

X� := [X�(1) YX(2)X�(3) X(4) ] , (22)
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where Y := [I�� 0��×(��−��)]�, X�(1) ∈ R��×�� , X�(3) ∈ R��×�� ,X(2) ∈ R��×�� , and X(4) ∈ R��×�� . 	en, similar to [22],
performing a congruent transformation to

[X�(1) + X��(1) YX(2) + X��(3)∗ X(4) + X�(4) ] (23)

by [ I 0

0 �(2)�−1(4) ] yields
[X�(1) + X��(1) YX(2)X−�(4)X�(2) + X��(3)X−�(4)X�(2)∗ X(2)X−�(4)X�(2) + X(2)X−1(4)X�(2) ]

:= [[
X�(1) + X��(1) YX(2) + X��(3)
∗ X(2) + X�(2) ]] .

(24)

	us, instead of (22), one can directly specifymatrixX� of the
following form without loss of generality:

X� = [G�(1) YX�(2)X�(3) X�(2) ] , � ∈ I. (25)

It is noted that in this way the matrix variable X�(2) can be
absorbed by the reduced-order model gain variables ��� and��� by introducing

��� := X�(2)���, ��� := X�(2)���. (26)

	is feature enables one to make no congruent transforma-
tion to the original matrix inequality, and all the slack vari-
ables can be set as Markovian switching.

	en, substituting matrices X� given in (25) into (10),
together with the consideration of the matrices de
ned in
(26), leads to (15) exactly.

On the other hand, the conditions in (15) imply that−X�(2)−X��(2) < 0, whichmeans thatX�(2) is nonsingular.	us,
the reduced-order model gains can be constructed by (17).
	e proof is completed.

Remark 5. 	eorem 4 provides a su�cient condition for the
solvability of H∞ model reduction synthesis problem for
the MJLS (1) with de
cient mode information. A desired
reduced-order model can be determined by solving the
following convex optimization problem.

Problem MRLA (Model Reduction via Linearisation Ap-
proach). Minimize G subject to (15) for ��(1), ��(2), ��(3), X�(1),X�(2), X�(3), ���, ���, ���,���, � ∈ I.

From the proof of 	eorem 4, it is easy to see that the
matrix inequality linearisation procedure is based on the
bounding inequality in (20) with slack variables of a struc-
tural constraint in (25).	is inevitably brings some degree of
design conservatism. Another avenue to solve the nonlinear
matrix inequality problem in (10) is by utilizing the cone
complementarity linearisation (CCL) technique [37]. To this
end, we will resort to an iterative approach to solve the model
reduction problem.

3.3. Model Reduction via Iterative Approach. In this subsec-
tion, we will solve the model reduction problem by using the
CCL technique. 	e following theorem gives another su�-
cient condition for the existence of admissible reduced-order
models.

�eorem 6. Consider MJLS in (1) with de�cient mode infor-
mation and reduced-order model in the form of (6). 
e
model error system in (7) is stochastically stable with an H∞
performance G if there exist positive-de�nite symmetric matri-

ces {P�, _�} ∈ R(��+��)×(��+��) and matrices ��� ∈ R��×�� ,��� ∈ R��×�� , ��� ∈ R��×�� , and ��� ∈ R��×�� , � ∈ I, such
that

[[[[[

X
(�)
� 0 ϝ(�)� (A� + bG��c) ϝ(�)� (B� + bG��e)∗ −I C� + fG��c D� + fG��S∗ ∗ −�� 0∗ ∗ ∗ −G2I

]]]]]
< 0,

� ∈ +fG��cI, � ∈ I(�)UK
, � = 1, . . . , ,

(27)

��_� = I, � ∈ I, (28)

where

X
(�)
� := diag {_K

(�)
1
, . . . , _

K
(�)
��
, _

U
(�)
1
, . . . , _

U
(�)
V�
, _�} ,

ϝ(�)�
:= [√��K(�)1 I, . . . ,√��K(�)�� I,√�̃(�)�U(�)1 I, . . . ,√�̃(�)�U(�)V� I,√�(��)UK

I]�,
G�� := [��� ������ ���] , A� := [� � 00 0

] , B� := [��0 ] ,
C� := [�� 0] , D� := ��, b := [0 0

I 0
] ,

f := [0 −I] , c := [0 I
0 0
] , e := [0

I
] ,

�(��)
UK
:= 1 − ∑

�∈I(�)
K

��� − ∑
�∈I(�)

UC

�̃(�)�� .
(29)

Proof. From Proposition 2, we know that for � ∈ I there
exists a reduced-order model in the form of (6) such that the
model error system (7) is stochastically stable with a guar-
anteed H∞ error performance G if there exist matrices ��
satisfying (10). First, rewrite the matrices de
ned in (8) in the
following form:

�� := A� + bG��c, �� :=B� + bG��e,
�� := C� + fG��c, �� := D� + fG��e, (30)
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where

G�� := [��� ������ ���] , A� := [� � 00 0
] , B� := [��0 ] ,

C� := [�� 0] , D� := ��, b := [0 0
I 0
] ,

f := [0 −I] , c := [0 I
0 0
] , e := [0

I
] .

(31)

	en, by Schur complement to (10), and with the nota-

tions I(�)
K
:= {K(�)1 , . . . ,K(�)�� },I(�)UC

:= {U(�)1 , . . . ,U(�)V� }, we
have that (10) is equivalent to

[[[[[[[

P
(�)
� 0 ϝ(�)� (A� + bG��c) ϝ(�)� (B� + bG��e)∗ −I C� + fG��c D� + fG��e∗ ∗ −�� 0∗ ∗ ∗ −G2I

]]]]]]]
< 0,

� ∈ I, � ∈ I(�)
UK
, � = 1, . . . , ,

(32)

where

P
(�)
� := diag {�−1K(�)1 , . . . , �−1K(�)�� , �−1U(�)1 , . . . , �−1U(�)V� , �−1� } ,

ϝ(�)� :=[√��K(�)1 I, . . . ,√��K(�)�� I,√�̃(�)�U(�)1 I, . . . ,√�̃(�)�U(�)V� I,√�(��)UK
I]�.
(33)

Setting _� := �−1� and considering (33), it is easy to see that
(32) is equivalent to (27) and (28). 	is completes the proof.

Remark 7. 	eorem 6 provides another su�cient condition
for testing the solvability of ��-order H∞ model reduction
synthesis for MJLS (1) with de
cient mode information. It
is noted that the conditions in 	eorem 6 are not strict
LMI-based conditions due to the matrix equality in (28).
However, with the CCL algorithm in [37, 38], we can resolve
this nonconvex feasibility problem by formulating it into a
sequential optimization problem subject to LMI constraints.

Based on the previous discussions and using a CCL tech-
nique, the nonconvex feasibility problem given in (27) and
(28) is converted into the following nonlinear minimization
problem that involves LMI conditions.

Problem MRIA (Model Reduction via Iterative Approach).

Minimize Trace (∑��=1 ��_�) subject to (27) and
[�� I∗ _�] ≥ 0, ∀� ∈ I. (34)

	en, the suboptimal performance of G can be found by
the following algorithm.	e convergence of this algorithm is
guaranteed in terms of similar results in [37, 38].

Algorithm MRIA: Suboptimal Performance of G
Step 1. Choose a su�ciently large initial G > 0, such that there
exists a feasible solution to (27) and (34). Set G0 = G.
Step 2. Find a feasible set (�(0)� , _(0)� , �(0)�� , �(0)�� , �(0)�� , �(0)�� , for
all � ∈ I) that satis
es the conditions in (27) and (34). Setj = 0.
Step 3. Solve the following LMI problem over the variables��,_�, ���, ���, ���, and���:

Minimize Trace( �∑
�=1
(�(�)� _� + ��_(�)� )) (35)

subject to (27) and (34).

Set �(�+1)� = �� and_(�+1)� = _�.
Step 4. Substituting the gains ���, ���, ���, and ��� obtained
in Step 3 into (10) and if the LMIs in (10) are feasible with
respect to the variables ��, then set G0 = G and return to
Step 2 a�er decreasing G to some extent. If (10) are infeasible
within the maximum number of iterations allowed, then exit.
Otherwise, set j = j + 1, and go to Step 3.

Remark 8. It is noted that the H∞ model reduction prob-
lem for discrete-time MJLSs has been considered in [20].
However, there are some remarkable di�erences between our
results and those in [20]. Firstly, it is noted that in this paper
the de
cient mode information, which simultaneously con-
tains the exactly known, partially unknown, and uncertain
transition probabilities (TPs), is considered for MJLS (1),
which is more general and practical for engineering applica-
tions, whereas the TPs considered in [20] are only partially
unknown. Secondly, by fully utilizing the properties of the
TPM, including the relation ∑�∈I(�)

UK

�̂�� = 1 − ∑�∈I(�)
K

��� −∑�∈I(�)
UC

�̃(�)�� , 	eorem 4 gives a uni
ed formulation of H∞
model reduction design for MJLS (1), while in [20] the above
relation is neglected, whichmay cause possible conservatism.
In addition, two di�erent approaches, namely, the convex
linearisation approach and iterative approach, to solve the
model reduction problem are proposed, while in [20] only the
linearisation approach was presented. It will be shown in the
simulation part that the previous points are crucial to reduce
the conservatism of model reduction design for MJLS in (1).

Remark 9. It is worth mentioning that the conditions given
in 	eorem 4 are convex and thus can be readily solved with
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commercially available so�ware. 	e design conservatism of
	eorem 4 mainly comes from the bounding inequality in
(20) with the slack variable of a structural constraint in (25).
In the iterative approach, the conditions given in (27)
and (34) are equivalent to the corresponding performance
analysis results. 	is is the main advantage of 	eorem 6
over 	eorem 4. However, the numerical computation cost
involved in Algorithm MRIA is also much larger than that
involved in	eorem 4 (MRLA), especially when the number
of iterations increases.

4. An Illustrative Example

In this section, we will present an illustrative example to
demonstrate the e�ectiveness and superiority of the proposed
approaches.

Consider a Markovian jump linear system (MJLS)
described by (Σ) with parameters as follows:

[ �1 �1�1 �1 ]

= [[[[[[

0.05 −0.27 0.44 0.39 0.50.55 0.33 0.38 0.55 0.20.1 0.17 0.27 0.44 0.30.05 0.22 0.16 0.11 0.11 0.1 0.2 −0.3 0.5
]]]]]]
,

[ �2 �2�2 �2 ]

= [[[[[[

0.11 −0.17 0.27 0.44 −0.80.55 0.06 0.22 0.55 −0.20.05 0.17 0.28 0.44 −0.10.17 0.05 0.06 −0.11 −10.5 −0.8 0.3 0.5 0.5
]]]]]]
,

[ �3 �3�3 �3 ]

= [[[[[[

0.16 0.06 −0.02 0.18 0.20.04 −0.37 0.53 −0.04 −0.2−0.08 −0.32 −0.05 −0.11 −0.1−0.17 0.40 0.04 0.29 0.11.4 0.7 0.2 −0.8 0.5
]]]]]]
,

[ �4 �4�4 �4 ]

= [[[[[[

0.23 0.01 −0.55 −0.38 0.9−0.33 0.36 −0.48 −0.10 −1.1−0.20 −0.45 0.1 −0.19 −0.70.23 0.16 0.5 −0.30 −1.2−0.7 1.2 1.2 −0.6 0.5
]]]]]]
.

(36)

Four di�erent cases for the transition probability matrix
(TPM) are given in Table 1, where the transition probabilities
(TPs) labeled “̂” and “̃” represent the unknown and
uncertain elements, respectively. Speci
cally, Case 1, Case

Table 1: Four di�erent TPMs.

Case 1: completely known TPM Case 2: de
cient TPM1

[[[[[

0.3 0.2 0.1 0.40.3 0.2 0.3 0.20.1 0.5 0.3 0.10.2 0.2 0.1 0.5
]]]]]

[[[[[

0.3 0.2 0.1 0.4�̂21 �̂22 0.3 0.2�̂31 �̃32 �̂33 �̃340.2 �̂42 �̂43 �̂44
]]]]]

Case 3: de
cient TPM2
Case 4: completely unknown
TPM

[[[[[

0.3 0.2 0.1 0.4�̂21 �̂22 0.3 0.2�̂31 �̂32 �̂33 �̂340.2 �̂42 �̂43 �̂44
]]]]]

[[[[[

�̂11 �̂12 �̂13 �̂14�̂21 �̂22 �̂23 �̂24�̂31 �̂32 �̂33 �̂34�̂41 �̂42 �̂43 �̂44
]]]]]

Table 2: Comparison of minimumH∞ performance with de
cient
TPM2 in Case 3.

Methods 	ree-order Two-order One-order

	eorem 4 1.2423 1.5231 2.5952

[20] 1.3815 1.7320 2.9094

2, Case 3, and Case 4 stand for the completely known TPs,
de
cient mode information (including known, partially
unknown, and uncertain TPs), partially unknown TPs, and
completely unknown TPs, respectively.

For Case 2 shown in Table 1, the uncertain TPs comprise
two vertices Π�, � = 1, 2, where the third rows Π�(3), � = 1, 2,
are given by

Π1(3) = [�̂31 0.1 �̂33 0.3] ,
Π2(3) = [�̂31 0.3 �̂33 0.4] , (37)

and the other rows in the two vertices are de
ned with the
same elements; that is,

Π�(1) = [0.3 0.2 0.1 0.4] ,
Π�(2) = [�̂21 �̂22 0.3 0.2] ,

Π�(4) = [0.2 �̂42 �̂43 �̂44] , � = 1, 2.
(38)

	e objective is to design an ��-order model of the form
(6) to approximate the above system such that themodel error
system (7) is stochastically stable with an H∞ performance
index G. Here, we 
rst assume that the MJLS is subject to
the partially unknown TPs in Case 3, and then a detailed
comparison between theminimumH∞ performance indicesGmin obtained based on 	eorem 4 in this paper and the
results in [20] is summarized in Table 2. It is observed from
Table 2 that the design approach proposed in 	eorem 4 is
less conservative than [20].

In the following, we will further demonstrate the advan-
tage and less conservatism of 	eorem 6 over 	eorem 4
proposed in this paper. By solving the problems MRLA
and MRIA, another detailed comparison of the minimum
H∞ performance indices Gmin is listed in Table 3, where
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Table 3: Comparison of minimumH∞ performance for di�erent TPMs.

TPMs
	ree-order Two-order One-order

	eorem 4 (MRLA) 	eorem 6 (MRIA) 	eorem 4 (MRLA) 	eorem 6 (MRIA) 	eorem 4 (MRLA) 	eorem 6 (MRIA)

Case 1 0.8798 0.4 (35) 0.9595 0.8 (139) 2.0057 1.5 (38)

Case 2 1.1687 0.6 (39) 1.4829 1.2 (145) 2.4748 1.9 (40)

Case 3 1.2423 0.7 (87) 1.5231 1.3 (157) 2.5952 2 (43)

Case 4 1.7332 1 (147) 2.1914 1.6 (165) 3.3299 2.4 (137)

the bold numbers in the brackets represent the number of
iterations. By inspection of Tables 1 and 2, it is easy to see
that the results in	eorem 6 are less conservative than those
in 	eorem 4. It is also shown that the more information
on TPs is available, the better H∞ performance can be
obtained, which is e�ective to reduce the conservatism of
model reduction design. 	erefore, the introduction of the
polytopic-type uncertain TPs is signi
cant.

Speci
cally, with �� = 3, we obtain Gmin = 1.1687 by
	eorem 4 with de
cient TPM1 shown in Table 1, and the
three-order model parameters are given by

[ ��1 ��1��1 ��1 ]

= [[[[
−0.0540 0.2529 0.2176 −0.84900.3274 0.6285 0.4862 0.1883−0.1543 0.3250 0.2913 −0.8224−0.9425 0.1661 −0.0302 0.6282

]]]]
,

[ ��2 ��2��2 ��2 ]

= [[[[
0.1724 0.1095 0.3894 0.87420.3654 0.4674 0.2785 0.3566−0.0484 0.3457 0.2416 0.1962−0.6496 0.6678 −0.7150 0.6001

]]]]
,

[ ��3 ��3��3 ��3 ]

= [[[[
0.2655 0.2048 −0.1861 −0.25370.1033 −0.1618 0.2405 0.1205−0.1747 −0.3936 0.1018 0.3127−1.2638 −0.0046 −0.0662 0.4385

]]]]
,

[ ��4 ��4��4 ��4 ]

= [[[[
0.1162 −0.5423 −0.5004 −0.7796−0.3767 0.0416 −0.3589 1.18590.0724 −0.3765 0.0533 0.65050.5008 −0.9345 −1.1617 0.3712

]]]]
.
(39)

With �� = 3, we obtain G = 0.6 by solving the Algorithm
MRIA a�er 39 iterations with de
cient TPM1 shown in
Table 1, and the three-order model parameters are given by

[ ��1 ��1��1 ��1 ]

= [[[[
0.2800 0.0772 0.6328 −0.43520.5261 0.2307 0.7350 −0.15210.0462 0.2468 0.3092 −0.0833−1.5239 0.2064 0.4439 0.4937

]]]]
,

[ ��2 ��2��2 ��2 ]

= [[[[
0.3132 −0.0048 0.7263 0.55100.4900 0.0264 0.7604 −0.24550.0826 0.1022 −0.0038 0.5862−0.7215 0.8753 −0.3862 0.4679

]]]]
,

[ ��3 ��3��3 ��3 ]

= [[[[
0.1946 −0.0921 0.0870 −0.08260.1133 −0.2445 −0.5027 0.2327−0.1452 0.1980 0.3471 −0.0378−1.9205 −0.3685 0.8553 0.4941

]]]]
,

[ ��4 ��4��4 ��4 ]

= [[[[
−0.0592 −0.2981 −0.6252 −0.3605−0.5600 −0.0061 0.0120 0.51090.1490 −0.0012 −0.3114 0.83360.5634 −2.4550 −0.7422 0.4789

]]]]
.
(40)

	e feasible solutions for the other cases are omitted for
brevity.

In order to further illustrate the e�ectiveness of the
designed approximation models, simulations have been car-
ried out. Speci
cally, choose the zero initial condition and
input �(
) as

� (
) = {{{{{
t(−0.2�+1) sin (0.2
) , 10 ≤ 
 ≤ 30,0.3 cos (0.25
) , 50 ≤ 
 ≤ 90,0, otherwise. (41)

With the above obtained approximation models under Case
2 given in Table 1, and one of the possible realizations of
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Figure 1: One possible system mode evolution.
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Figure 2: Output trajectories of the original system and reduced-
order models with de
cient TPM1 based on	eorem 4 (MRLA).

the Markovian jumping mode shown in Figure 1, the output
trajectories of the original system and approximation mod-
els obtained based on 	eorem 4 (MRLA) and 	eorem 6
(MRIA) are shown in Figures 2 and 3, respectively. It can
be clearly observed from the simulation curves that, despite
the de
cient TPs, the designed reduced-order models can
approximate the original system very well.

5. Conclusions

	is paper has studied the problem of robust H∞ model
reduction for a class of discrete-time Markovian jump linear
systems (MJLSs) with de
cient mode information, which
simultaneously consists of the exactly known, partially
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Figure 3: Output trajectories of the original system and reduced-
order models with de
cient TPM1 based on	eorem 6 (MRIA).

unknown, and polytopic-type uncertain transition probabil-
ities and is thus more general and practical. By fully utilizing
the properties of the transition probability matrices, together
with the convexi
cation of uncertain domains, a new H∞
performance analysis criterion has been developed. Two dis-
tinctly di�erent approaches, namely, the convex linearisation
approach and iterative approach, have been proposed to solve
themodel reduction problem.A simulation example has been
given to illustrate the less conservatism and e�ectiveness of
the proposed approaches.
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