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Abstract

Many of the tools of dynamical systems and control theory have gone largely un-
used for fluids, because the governing equations are so dynamically complex, both
high-dimensional and nonlinear. Model reduction involves finding low-dimensional
models that approximate the full high-dimensional dynamics. This paper compares
three different methods of model reduction: proper orthogonal decomposition (POD),
balanced truncation, and a method called balanced POD. Balanced truncation pro-
duces better reduced-order models than POD, but is not computationally tractable for
very large systems. Balanced POD is a tractable method for computing approximate
balanced truncations, that has computational cost similar to POD. The method pre-
sented here is a variation of existing methods using empirical Gramians, and the main
contributions of the present paper are a version of the method of snapshots that allows
one to compute balancing transformations directly, without separate reduction of the
Gramians; and an output projection method, which allows tractable computation even
when the number of outputs is large. The output projection method requires minimal
additional computation, and has a priori error bounds that can guide the choice of
rank of the projection. Connections between POD and balanced truncation are also
illuminated: in particular, balanced truncation may be viewed as POD of a particular
dataset, using the observability Gramian as an inner product. The three methods are
illustrated on a numerical example, the linearized flow in a plane channel.
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1 Introduction

The past several decades have produced major advances in techniques for analyzing dynam-
ical systems, both analytically and numerically. However, despite continuing improvements
in computing power, many systems of interest remain out of reach of these tools, because of
their high dimension. For instance, the mechanisms by which a fluid flow transitions from
laminar to turbulent are still not fully understood: at this point, it is not even clear whether
the mechanisms are fundamentally nonlinear [Holmes et al., 1996] or linear [Farrell & Ioan-
nou, 1993; Bamieh & Daleh, 2001]. The full nonlinear partial differential equations that
describe a fluid flow are too complex to be analyzed directly, so in order to answer questions
such as these, lower-dimensional models that approximate the full system are desirable.

The problem of obtaining a lower-dimensional approximation to a high-dimensional dy-
namical system is known as model reduction. This paper reviews two well-known approaches
to model reduction, and presents a method which compares favorably with both of these.
The method of proper orthogonal decomposition (POD) and Galerkin projection is popular in
the fluids community, and in this method, one obtains a lower-dimensional approximation by
projecting the full nonlinear system onto a set of basis functions determined from empirical
data. However, the POD/Galerkin method can yield unpredictable results, and is sensitive
to details such as the empirical data used [Rathinam & Petzold, 2003], and the choice of
inner product [Colonius & Freund, 2002]. POD/Galerkin models near stable equilibrium
points can even be unstable [Smith, 2003].

A related method known as balanced truncation was developed in the control theory
community for stable, linear, input-output systems [Moore, 1981], and does not suffer the
same limitations as the POD method. Most notably, balanced truncation has error bounds
that are close to the lowest error possible from any reduced-order model. In addition, this
method has recently been extended to nonlinear systems using two distinct approaches [Lall
et al., 1999, 2002; Scherpen, 1993]. Balanced truncation has been used on some fluids
problems [Cortelezzi & Speyer, 1998], but becomes computationally intractable for systems
of very large dimension (e.g., 10,000 states or more), and so is not practical for many fluids
systems.

This paper presents a method we refer to as balanced proper orthogonal decomposition,
which combines ideas from POD and balanced truncation. The goal is to compute balanced
truncations, or approximations to these, with computational cost similar to POD. Several
previous methods have combined ideas from POD and balanced truncation, including the
original work of Moore [1981]. The method presented here relies heavily on the work of Lall
et al. [1999, 2002], who used empirical Gramians to generalize balanced truncation to non-
linear systems. Our goal is to use empirical Gramians to compute balancing transformations
for very large systems. Previous works have addressed this problem as well, notably the work
of Willcox & Peraire [2002], which used POD to compute low-rank approximations to the
Gramians, from which the balancing transformation was computed using an efficient solver
to find the eigenvectors of their product. However, this method has several drawbacks. In
particular, it becomes intractable when the number of outputs is large, as a separate adjoint
simulation is required for each output. Furthermore, in reducing the rank of the controlla-
bility and observability Gramians before the balancing is performed, one risks prematurely
truncating states that are poorly observable yet very strongly controllable, which can lead
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to less accurate models, as we shall see in the numerical example shown in Figs. 7 and 8.
The present method overcomes this latter drawback using a different method of snapshots,

described in Sec. 3.1, in which one computes the balancing transformation directly from the
snapshots, without individual reduction of the Gramians, and without a separate eigenvector
solve. Furthermore, we describe an output projection method in Sec. 3.2, which allows the
empirical observability Gramian to be computed even when the number of outputs is large,
using many fewer adjoint simulations. This output projection is optimal in an L2 sense,
involves very little extra computation, and comes with an a priori error bounds which can
guide the rank of the output projection used (Eq. (27)). Like balanced truncation, the
present method is limited to stable, linear systems. However, because our method uses
many of the same ideas as Lall et al. [1999] (in particular, empirical Gramians constructed
from impulse responses), it is likely that similar computational techniques may be applied
to nonlinear systems as well.

The paper is outlined as follows: in Sec. 2, we review the methods of POD/Galerkin
projection and balanced truncation; we present our method in Sec. 3; and in Sec. 4, we
compare the three methods on a example, the linearized flow in a plane channel.

2 Background on Model Reduction

The model reduction methods discussed in this paper fall in the category of projection
methods, in that they involve projecting the equations of motion onto a subspace of the
original phase space. The methods of POD/Galerkin and balanced truncation are briefly
reviewed here, both for comparison with balanced POD, and also because our method uses
ideas from both POD and balanced truncation. There are many other methods available for
reducing both linear and nonlinear systems, and several of these are reviewed in Antoulas
et al. [2001].

2.1 Proper orthogonal decomposition

Proper orthogonal decomposition, also known as principal component analysis, or the Karhunen-
Loève expansion, has been used for some time in developing low-dimensional models of flu-
ids [Lumley, 1970; Sirovich, 1987; Holmes et al., 1996]. The idea is, given a set of data that
lies in a vector space V , to find a subspace Vr of fixed dimension r such that the error in
the projection onto the subspace is minimized. Here, for simplicity, we will consider the case
where V = Rn. For a fluid, V will be infinite-dimensional, consisting of functions on some
spatial domain (for instance, velocity and pressure everywhere), but we will assume that
the equations have already been discretized in space, for instance by a finite-difference or
spectral method, so that V has finite dimension n (e.g., for a finite-difference simulation, n
is the number of gridpoints times the number of flow variables). For the infinite-dimensional
case, see Holmes et al. [1996]; Rowley et al. [2004].

Suppose we have a set of data given by x(t) ∈ Rn, with 0 ≤ t ≤ T . We seek a projection
Pr : Rn → Rn of fixed rank r, that minimizes the total error∫ T

0

‖x(t)− Prx(t)‖2 dt. (1)

3



To solve this problem, introduce the n× n matrix

R =

∫ T

0

x(t)x(t)∗ dt, (2)

where ∗ denotes the transpose, and find the eigenvalues and eigenvectors of R, given by

Rϕk = λkϕk, λ1 ≥ · · · ≥ λn ≥ 0. (3)

Since R is symmetric, positive-semidefinite, all the eigenvalues λk are real and nonnegative,
and the eigenvectors ϕk may be chosen to be orthonormal. The main result of POD is that
the optimal subspace of dimension r is spanned by {ϕ1, . . . , ϕr}, and the optimal projection
Pr is then given by

Pr =
r∑

k=1

ϕkϕ
∗
k.

The vectors ϕk are called POD modes.

Galerkin projection. One can then form reduced order models using Galerkin projection
onto this subspace. Suppose the dynamics of a system are described by

ẋ(t) = f(x(t)). (4)

Galerkin projection specifies dynamics of a variable xr(t) ∈ span{ϕ1, . . . , ϕr} by ẋr(t) =
Prf(xr(t)), that is, simply projecting the original vector field f onto the r-dimensional
subspace. Writing

xr(t) =
r∑

j=1

aj(t)ϕj, (5)

substituting into the equations, and multiplying by ϕ∗k, one obtains

ȧk(t) = ϕ∗kf(xr), k = 1, . . . , r, (6)

a set of r ODEs that describe the evolution of xr(t).

Method of snapshots. To compute the POD modes, one must solve an n×n eigenvalue
problem (3). For a discretization of a fluid problem, the dimension n often exceeds 106,
so direct solution of this eigenvalue problem is often not feasible. If the data is given as
“snapshots” x(tj) at discrete times t1, . . . , tm, then one can transform the n × n eigenvalue
problem (3) into an m × m eigenvalue problem [Sirovich, 1987]. In this case, the integral
in (3) becomes a sum

R =
m∑

j=1

x(tj)x(tj)
∗δj (7)
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where δj are quadrature coefficients. Assembling the data into an n×m matrix

X =
[
x(t1)

√
δ1 · · · x(tm)

√
δm

]
(8)

the sum (7) may be written R = XX∗. In the method of snapshots, one then solves the
m×m eigenvalue problem

X∗Xuk = λkuk, uk ∈ Rm, (9)

where the eigenvalues λk are the same as in (3). The eigenvectors uk may be chosen to be
orthonormal, and the POD modes are then given by ϕk = Xuk/

√
λk. In matrix form, with

Φ =
[
ϕ1 · · · ϕm

]
, and U =

[
u1 · · · um

]
, this becomes

Φ = XUΛ−1/2. (10)

The m ×m eigenvalue problem (9) is more efficient than the n × n eigenvalue problem (3)
when the number of snapshots m is smaller than the number of states n.

Remarks and limitations. A physical explanation of POD modes is that they maximize
the average energy in the projection of the data onto the subspace spanned by the modes.
This is equivalent to minimizing the error (1), since

arg min
{ϕk}

〈
‖x− Prx‖2

〉
= arg max

{ϕk}

〈
‖Prx‖2

〉
where 〈·〉 is the average over the data ensemble (this follows from the Pythagorean theorem,
since Pr is an orthogonal projection). In particular, the energy in the projection is given by∫ T

0

‖Prx(t)‖2 dt =
r∑

k=1

λk. (11)

Though POD modes are very effective (indeed optimal) at approximating a given dataset,
they are not necessarily the best modes for describing the dynamics that generate a particular
dataset, since low-energy features may be critically important to the dynamics. For instance,
in a fluid flow where acoustic resonances occur, acoustic waves play a crucial role, even
though they have much smaller energy than hydrodynamic pressure fluctuations. In practice,
one sometimes neglects some of the higher-energy POD modes in forming reduced-order
models [Smith, 2003], in favor of lower-energy modes that are more dynamically important.
In fact, adding more POD modes can even make dynamical models worse [Rowley et al.,
2004]. These are undesirable characteristics of a model reduction procedure, and part of the
motivation behind balanced POD is to improve on these limitations.

2.2 Balanced truncation

Balanced truncation is a method of model reduction for stable, linear input-output systems,
introduced by Moore [1981]. Consider a stable linear input-output system

ẋ = Ax+Bu

y = Cx
(12)
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where u(t) ∈ Rp is a vector of inputs, y(t) ∈ Rq is a vector of outputs, and x(t) ∈ Rn is the
state vector.

One begins by defining controllability and observability Gramians, which are symmetric,
positive-semidefinite matrices defined by

Wc =

∫ ∞

0

eAtBB∗eA∗t dt Wo =

∫ ∞

0

eA∗tC∗CeAt dt, (13)

usually computed by solving the Lyapunov equations

AWc +WcA
∗ +BB∗ = 0 A∗Wo +WoA+ C∗C = 0. (14)

The controllability Gramian Wc measures to what degree each state is excited by an input.
For two states x1 and x2 with ‖x1‖ = ‖x2‖, if x∗1Wcx1 > x∗2Wcx2, then state x1 is “more
controllable” than x2 (that is, it takes a smaller input to drive the system from rest to x1

than to x2). The Gramian Wc is positive-definite if and only if all states are reachable with
some input u(t).

Conversely, the observability Gramian Wo measures to what degree each state excites
future outputs. For an initial state x0, and with zero input, one has ‖y‖2

2 = x∗0Wox0, where
‖ · ‖2 denotes the L2[0,∞) norm. States which excite larger output signals are called “more
observable,” and in this sense are more dynamically important than states that are less
observable.

The Gramians depend on the coordinates, and under a change of coordinates x = Tz,
they transform as

Wc 7→ T−1Wc(T
−1)∗, Wo 7→ T ∗WoT.

Balancing refers to changing to coordinates in which the controllability and observability
properties are balanced—more precisely, the transformed Gramians are equal and diagonal:

T−1Wc(T
−1)∗ = T ∗WoT = Σ = diag(σ1, . . . , σn). (15)

The diagonal elements σ1 ≥ . . . ≥ σn ≥ 0 are called the Hankel singular values of the
system, and are independent of the coordinate system. A basic result is that a balancing
transformation T exists as long as the system is both controllable and observable (i.e.,
Wc,Wo > 0). The transformation is found by computing appropriately scaled eigenvectors
of the product WcWo (in particular, WcWoT = TΣ2). In the balanced coordinates, the
states that are least influenced by the input also have the least influence on the output.
Balanced truncation involves first changing to these coordinates, and then truncating the
least controllable/observable states, which have little effect on the input-output behavior.

Error bounds A useful property of balanced truncation is that one has a priori error
bounds that are close to the lower bound achievable by any reduced-order model. To under-
stand these error bounds, consider the transfer function

Ĝ(s) = C(sI − A)−1B,
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which relates the Laplace transform of the input to the Laplace transform of the output
(ŷ(s) = Ĝ(s)û(s)). The L2-induced operator norm of Ĝ is defined by

max
u

‖Gu‖2

‖u‖2

= ‖G‖∞ ≡ max
ω

σ1(Ĝ(iω)), (16)

where σ1(M) denotes the maximum singular value of the matrix M . The following error
bounds are standard results [Dullerud & Paganini, 1999]: first, any reduced order model Gr

with r states must satisfy

‖G−Gr‖∞ > σr+1, (17)

where σr+1 is the first neglected Hankel singular value of G. This is a fundamental limitation
for any reduced order model. Balanced truncation also guarantees an upper bound of the
error:

‖G−Gr‖∞ < 2
n∑

j=r+1

σj, (18)

which is usually close to the lower bound (17), if the Hankel singular values drop off quickly.
Balanced truncation is not optimal, in the sense that there may be other reduced-order
models with smaller error norms, but the a priori guarantees and strong heuristic justification
make it a popular and effective technique.

Empirical Gramians Instead of computing the Gramians by solving Lyapunov equa-
tions (14), one may compute them from data from numerical simulations. This was the
original approach used by Moore [1981], and was used in Lall et al. [1999, 2002] to extend
balanced truncation to nonlinear systems.

Controllability Gramian. To compute the controllability Gramian for a system with p
inputs, writing B = [b1, . . . , bp], one forms the state responses to unit impulses

x1(t) = eAtb1 = response to impulsive input u1(t) = δ(t)

...

xp(t) = eAtbp = response to impulsive input up(t) = δ(t)

Then the controllability Gramian is given by

Wc =

∫ ∞

0

(
x1(t)x1(t)

∗ + · · ·+ xp(t)xp(t)
∗) dt. (19)

Note the similarity between the expression above and the operator in (2) that arises in
POD of the dataset {x1(t), . . . , xp(t)}. In fact, the POD modes for this dataset of impulse
responses are just the largest eigenvectors of Wc, or, in other words, the most controllable
modes of the realization. Note that since the Gramian matrices depend on the coordinate
system, so do the POD modes of this dataset.
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If data from simulations is used to find the impulse responses, then it is usually given at
discrete times t1, . . . , tm, and the integral above becomes a quadrature sum, as in (7), and
we may stack the snapshots as columns of a matrix

X =
[
x1(t1)

√
δ1 · · · x1(tm)

√
δm · · · xp(t1)

√
δ1 · · · xp(tm)

√
δm

]
, (20)

where again δj are quadrature coefficients. The quadrature approximation to (19) is then

Wc = XX∗. (21)

Observability Gramian. The procedure for computing the empirical observability Gramian
proceeds analogously: we compute impulse responses of the adjoint system

ż = A∗z + C∗v.

If q is the number of outputs and C∗ = (c1, . . . , cq), then let

z1(t) = eA∗tc1 = response to impulsive input v1(t) = δ(t)

...

zq(t) = eA∗tcq = response to impulsive input vq(t) = δ(t),

from which the observability Gramian is given by

Wo =

∫ ∞

0

(
z1(t)z1(t)

∗ + · · ·+ zq(t)zq(t)
∗) dt.

One then forms the data matrix Y , as in (20), and writes the Gramian as

Wo = Y Y ∗.

Note that this method requires q integrations of the adjoint system, where q is the number
of outputs. Thus, this method is not feasible when the number of outputs is large, for
instance if the output is the full state. The empirical Gramian may also be computed from n
simulations of the primal system ẋ = Ax, where n is the number of states (as is done in Lall
et al. [2002]), but clearly this is also not feasible when the number of states is large. This
difficulty is the motivation behind the output projection method to be discussed in Sec. 3.2.

3 Balanced POD

The main idea of balanced POD is to obtain an approximation to balanced truncation that is
computationally tractable for large systems. The present method involves two components:
computing the balancing transformation directly from snapshots of empirical Gramians,
without needing to compute the Gramians themselves; and an output projection method to
enable tractable computation even when the number of outputs is large. The method has
deep connections with POD: it may be viewed as POD with respect to a particular inner
product, or as a biorthogonal decomposition, as discussed in Sec. 3.4.
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3.1 Balanced truncation using the method of snapshots

Suppose the controllability and observability Gramians may be factored as

Wc = XX∗ Wo = Y Y ∗, (22)

where Wc and Wo are n×n square matrices, but X and Y may be rectangular, with differing
dimensions. For instance, X and Y may be data matrices used to form empirical Gramians,
as described in the previous section. In the method of snapshots used here, the balancing
modes are computed by forming the singular value decomposition (SVD) of the matrix Y ∗X:

Y ∗X = UΣV ∗ =
[
U1 U2

] [
Σ1 0
0 0

] [
V ∗

1

V ∗
2

]
= U1Σ1V

∗
1 (23)

where Σ1 ∈ Rr×r is invertible, r is the rank of Y ∗X, and and U∗
1U1 = V ∗

1 V1 = Ir. Define the
matrices T1 ∈ Rn×r and S1 ∈ Rr×n by

T1 = XV1Σ
−1/2
1 , S1 = Σ

−1/2
1 U∗

1Y
∗. (24)

A proposition proved in the appendix establishes that if r = n (that is, the Gramians are full
rank), then the matrix Σ1 contains the Hankel singular values, T1 determines the balancing
transformation, and S1 is its inverse. Furthermore, if r < n, then the columns of T1 form
the first r columns of the balancing transformation, and the rows of S1 form the first r rows
of the inverse transformation.

Remarks. The major advantage of the above method for computing the balancing trans-
formation is that the Gramians themselves never need to be computed. Only one SVD is
needed, of a matrix with dimension Np × Nd, where Np is the number of primal snapshots
(columns of X), and Nd is the number of dual snapshots (columns of Y ). If the number of
snapshots is much smaller than the number of states n, as is typical for a problem in fluids,
then this represents considerable savings. In particular, the size of the SVD is independent
of n, and once the snapshots are computed, the entire method scales linearly with n. Thus,
the overall computation time is similar to POD (compare (23–24) with (9–10)), except that
here one also needs to compute adjoint snapshots, which do not arise in POD.

The method above is also similar to a well-known method for computing balancing trans-
formations from the Cholesky factorization of the Gramians [Laub et al., 1987]. The present
method differs in that the factorization (22) need not be the Cholesky factorization, and
neither of the Gramians needs to be full-rank. (In particular, the system does not need to
be controllable or observable.) The present method does share the same desirable numerical
characteristics as the method in [Laub et al., 1987], in particular that the Gramians never
need to be “squared up,” and thus the method is less sensitive to numerical round-off than
methods that involve computing the full Gramians Wc and Wo, rather than a factorization.1

1As one reviewer remarked, POD modes may also be computed by a SVD of the snapshot matrix X
from (8). This approach also has better roundoff properties than computing the eigenvalue decomposition
of X∗X as in (9), although it requires more computation.
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3.2 Output projection

Recall from Sec. 2.2 that in order to compute data for the observability Gramian, one requires
q simulations of the adjoint system, where q is the number of outputs. This procedure is
clearly not feasible if the number of outputs is large. The idea of this section is to alleviate
this problem by projecting the output onto an appropriate subspace, in such a way that the
input-output behavior is almost unchanged. Instead of the system (12), consider the related
system

ẋ = Ax+Bu

y = PrCx
(25)

where Pr is an orthogonal projection with rank r. Such a projection allows us to compute
the empirical observability Gramian using only r simulations of the adjoint system, rather
than q simulations. To see this, write the projection Pr as the product Pr = ΦrΦ

∗
r, where Φr

is a q × r matrix, with Φ∗
rΦr = Ir (this can always be done for any orthogonal projection).

The observability Gramian (13) then becomes

Wo =

∫ ∞

0

eA∗tC∗ΦrΦ
∗
rCe

At dt

and so may be computed from r simulations of the adjoint system

ż(t) = A∗z + C∗Φrv

where v ∈ Rr. When the number of outputs q is large, the reduction in computational cost
is substantial.

We would like to choose Pr such that the input-output behavior of (25) is as close as
possible to the input-output behavior of (12). We can measure this input-output behavior by
considering the impulse response matrix G(t), whose element Gij(t) is the output component
yi(t) corresponding to an impulsive input uj(t) = δ(t). The impulse response completely
determines the input-output behavior of a linear system. If G(t) is the impulse response
of (12), then the impulse response of (25) is PrG(t), and we seek a projection Pr that
minimizes the error∫ ∞

0

‖G(t)− PrG(t)‖2 dt (26)

with respect to some norm on matrices. If we use a norm induced by an inner product,
for instance the Frobenius norm ‖A‖2

F = Tr(A∗A), which is induced by the inner product
〈A,B〉 = Tr(A∗B), then the projection Pr that minimizes the error (26) is the projection
onto the first r POD modes of the dataset G(t). For instance, if Φr =

[
ϕ1 . . . ϕr

]
is a

matrix containing the first r POD modes of G(t), then Pr = ΦrΦ
∗
r is the projection that

minimizes (26).
A convenient numerical feature of this method for computing Pr is that the necessary

snapshots for computing the POD modes of G(t) have already been computed, for the
empirical controllability Gramian. To compute the snapshots for Wc, as in Sec. 2.2, we
compute impulse responses x1(t), . . . , xp(t), for each of the p inputs. The dataset required
for computing Pr is simply Cx1(t), . . . , Cxp(t), so we need only to multiply each of our
snapshots by the output matrix C.
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Error bounds One can also quantify the error for the projected system. In particular, if
λ1, . . . , λm denote the POD eigenvalues of the dataset {Cx1(t), . . . , Cxp(t)}, then

‖G− PrG‖2
2 =

m∑
j=r+1

λj, (27)

where m is the number of outputs, and the 2-norm is given by

‖G‖2
2 =

∫ ∞

0

Tr(G(t)∗G(t)) dt. (28)

The proof follows immediately from a variant of (11). This result gives us guidance in
choosing the number of modes to keep in the projection, based on the desired accuracy of
the reduced-order model, and the POD eigenvalues computed from the impulse response
data.

3.3 Summary

To summarize, the steps in the balanced POD method are as follows:

1. Integrate solutions x1(t), . . . , xp(t) of the system ẋ = Ax, with initial conditions
xk(0) = bk, where bk denotes the k-th column of the B matrix in (12).

2. Compute POD modes ϕk of the dataset {Cx1(t), . . . , Cxp(t)}, and choose a projection
rank r such that the error (27) is acceptable.

3. Integrate solutions z1(t), . . . , zr(t) of the adjoint system ż = A∗z, with initial conditions
zk(0) = C∗ϕk.

4. Form the data matrices X and Y for the primal and dual solutions, as in (20).

5. Compute the SVD of Y ∗X, and the balanced POD modes are given by (24).

If the number of outputs is small, then one may skip step 2 and in step 3 use initial conditions
zk(0) = c∗k, where ck is the k-th row of C.

Reduced-order models may then be formed by transforming to balanced coordinates and
projecting. Note that there is no need to transform all of the states: if we write

x(t) = Tz(t) =
[
T1 T2

] [
z1(t)
z2(t)

]
= T1z1(t) + T2z2(t),

where z1(t) are states to be retained and z2(t) are states to be truncated, then the transformed
equations are

ż1 = S1AT1z1 + S1AT2z2 + S1Bu

ż2 = S2AT1z1 + S2AT2z2 + S2Bu

y = CT1z1 + CT2z2,
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where S = T−1. Setting z2 = 0 gives the truncated model

ż1 = S1AT1z1 + S1Bu

y = CT1z1

Thus, to compute a reduced-order model of order r, all we need is the first r columns of T and
the first r rows of S, given by (24). Note, however, that this is not the same as orthogonal
projection onto the subspace spanned by the first r columns of T , since the columns of T
are not orthogonal.

3.4 Relation to POD

There are deep connections between the POD/Galerkin method and balanced truncation,
which are elucidated by the balanced POD procedure. For instance, balanced truncation
may be viewed as a bi-orthogonal decomposition, instead of the orthogonal decomposition
given by POD. Alternatively, balanced truncation may be viewed as a special case of POD,
using a particular dataset (impulse responses), and using the observability Gramian as an
inner product. The former point of view is useful for numerics, and the latter is useful for
analysis, as it yields a guarantee that if balanced POD is used, then Galerkin projections of
stable nonlinear systems are guaranteed to be stable as well.

3.4.1 Biorthogonal decomposition

In the POD/Galerkin procedure, one finds a sequence of orthogonal basis functions {ϕj},
for projection of the dynamics. Balanced truncation can be viewed in the same way, but
using a sequence of biorthogonal functions {ϕj}, {ψj}. Let the matrices T1 and S1 from (24)
be written

T1 =
[
ϕ1 · · · ϕr

]
, S1 =

ψ
∗
1
...
ψ∗r

 ,
with ϕj, ψj ∈ Rn. Then since S1T1 = Ir, we have ψ∗iϕj = δij, so the sequences are biorthog-
onal. Now, approximate x(t) as in (5), as

xr(t) =
r∑

j=1

aj(t)ϕj, aj(t) = ψ∗jx(t).

Substituting into the equation ẋ = f(x), multiplying by ψ∗k and using biorthogonality now
gives

ȧk = ψ∗kf(x),

which is identical to (6), but using the adjoint modes ψk for the projection. Of course, one
needs a linear system to define Gramians or adjoint equations, but the idea is that even for
a nonlinear system, one may compute balancing modes {ϕj}, {ψj} using a linearization, or a
method similar to that in Lall et al. [2002], and then project the nonlinear system ẋ = f(x)
without having to transform the entire state before truncating.

12



3.4.2 Observability Gramian as an inner product

One of the difficulties with the POD/Galerkin method is that the inner product used for
computing POD modes and projecting the dynamics is arbitrary. Sometimes, an appropriate
inner product is obvious, as for incompressible flow [Holmes et al., 1996], but other times,
as for compressible flow, a suitable inner product is not obvious [Rowley et al., 2004], and
different choices can give dramatically different results [Colonius & Freund, 2002]. Perhaps
the deepest connection between POD/Galerkin and balanced truncation is that for a stable
linear system, balanced truncation may be viewed as a special case of POD, using impulse
responses for a dataset (i.e., the matrix X in (20)), and using the observability Gramian as
an inner product.

To see this, first define an inner product on Rn by

〈a, b〉Wo
= a∗Wob (29)

where Wo is the observability Gramian (which is positive definite as long as the system is
observable). As mentioned in Sec. 2.2, Wo measures states of large “dynamical importance,”
so this inner product weights dynamically important states more heavily. The POD modes of
the dataset X with respect to this inner product are eigenvectors of R = XX∗Wo (see [Row-
ley et al., 2004] for an explanation of POD with respect to an arbitrary inner product).
These eigenvectors will be orthogonal with respect to the inner product (29), though not
with respect to the standard inner product.

POD modes are normalized balancing modes. Since the dataset X was produced
such that XX∗ = Wc, the POD modes are just the eigenvectors of R = WcWo: in other
words, they are the balancing modes, normalized differently. Furthermore, the eigenvalues
of R are the squares of the Hankel singular values. If we compute the POD modes using the
method of snapshots as in (9), we form the SVD X∗WoX = V1Σ

2
1V

∗
1 , and the POD modes

are columns of

Φ =
[
ϕ̃1 · · · ϕ̃r

]
= XV1Σ

−1.

Note that these modes are the same as columns of T1 in (24), with a different scaling. If we
define “adjoint modes” ψ̃j = Woϕ̃j, then

〈ϕ̃i, ϕ̃j〉Wo
= ϕ̃∗iWoϕ̃j = ψ̃∗i ϕ̃j = δij

so these adjoint modes may be viewed as a biorthogonal decomposition with respect to the
standard inner product 〈ψ, ϕ〉 = ψ∗ϕ, as in the previous section. These adjoint modes are
also rescaled versions of the rows of S1 in (24), since one easily checks that, with Wo = Y Y ∗,
and X∗Y = U1Σ1V

∗
1 ,

S̃1 :=

ψ̃
∗
1
...

ψ̃∗r

 = Φ∗Wo = Σ−1
1 V ∗

1 X
∗Y Y ∗ = U∗

1Y
∗,

a rescaling of S1 in (24).

13
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Figure 1: Schematic of channel flow example.

3.4.3 Guaranteed stability

A useful consequence of using the observability Gramian as an inner product for Galerkin
projection is that in this case, the reduced-order model preserves the stability of an equilib-
rium point at the origin, even if the full model is nonlinear. It is well-known that balanced
truncations of stable linear systems are stable, but POD/Galerkin models of nonlinear sys-
tems may be unstable even if the nonlinear system is linearly stable at the origin [Smith,
2003].

The stability result follows from a result in [Rowley et al., 2004]: if the norm induced by
an inner product is a Lyapunov function for a nonlinear system with a stable equilibrium
point at the origin, then orthogonal projection of the dynamics onto any subspace will also
be stable at the origin. One sees from (14) that V (x) = 〈x, x〉Wo

is a Lyapunov function of

the linearized system ẋ = Ax, with V̇ (x) = −C∗C ≤ 0. If the nonlinear system ẋ = f(x)
has a linearly stable equilibrium point at the origin, with Df(0) = A, then V (x) is also a
Lyapunov function for the nonlinear system, and so Galerkin projections using 〈·, ·〉Wo

will
also be stable.

4 Example: Linearized Channel Flow

In order to compare the effectiveness of the three model reduction methods considered in
this paper, we consider the problem of fluid flow in a plane channel. In particular, we use lin-
earized equations with a coarse enough discretization that conventional balanced truncation
is still computationally tractable. Since balanced POD is meant to approximate balanced
truncation, we may evaluate how close the approximation is, and compare the resulting
models to those formed with the standard POD/Galerkin method. Focusing on linearized
equations allows us to use operator norms to objectively compare the errors in the reduced
order models.

4.1 Equations of motion

Consider the problem of a fluid flowing in a plane channel, as depicted in Fig. 1. We focus on
the linearized case, considering small perturbations about a steady, laminar flow. The flow
is assumed periodic in the x and z directions, with no-slip boundary conditions at the walls
y = ±1. We force the flow with a body force given by B(y, z)f(t), acting in the wall-normal
direction (here B(y, z) specifies the spatial distribution of the force, and f(t) is regarded as
an input). We restrict ourselves to streamwise-constant perturbations (no variations in the

14
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Figure 2: Hankel singular values σj for linearized channel flow: balanced truncation (×),
balanced POD with 5-mode output projection (◦), 10-mode output projection (�); and POD
eigenvalues λj (4).

x-direction), and for this case the equations are given by

∂v

∂t
=

1

R
∇2v +Bf

∂η

∂t
=

1

R
∇2η − U ′∂v

∂z

where v is the wall-normal velocity and η = uz − wx is the perturbation in wall-normal
vorticity. Numerical investigations indicate that the laminar velocity profile u = (U(y), 0, 0),
with U(y) = 1−y2, is linearly stable for Reynolds numbers R < 5772 [Drazin & Reid, 1981],
so the infinite-time Gramians will be well defined.

For the numerical examples considered here, we consider R = 100, on the domain z ∈
[0, 2π], and discretize the problem using 16 Chebyshev modes in the y-direction, and 16
Fourier modes in the z-direction. The forcing B(y, z) is zero everywhere except in a small
region at the center of the domain (y = 0, z = π). We take the output to be the entire state,
that is, the values of (v, η) everywhere in space. The total number of states is 2 ·16 ·15 = 480,
which is small enough that we may compute the full Gramians exactly, for comparison with
our approximate methods.

4.2 Results

Hankel singular values. We begin by comparing the Hankel singular values σj, shown
in Fig. 2. Here, the exact values for balanced truncation are compared to the approximate
values for balanced POD, for both 5-mode and 10-mode output projections Pr. Also shown
are the POD eigenvalues λj, computed from (9), and observe that the eigenvalues fall off
quite rapidly. The first 5 POD modes capture 95.6% of the energy, while the first 10 modes
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Figure 3: Mode 1 for channel flow.

capture 99.8% of the energy. Thus, one expects that 5-mode and 10-mode output projections
should closely match the full input-output system.

In Fig. 2, the exact Hankel singular values are computed using the algorithm in [Laub
et al., 1987], while the approximate versions are computed from (23). Both the primal and
dual solutions were computed using 1000 snapshots equally spaced within time 0 ≤ t ≤ 200,
by which time transients have decayed to a maximum value of 0.0002, from a maximum
value of 1 at the initial time.

For the 5-mode output projection, the first 5 singular values match closely, while for the
10-mode output projection, the first 10 singular values match. Though there is no guarantee
that for an output projection of rank r, the first r singular values will be approximated well,
empirically this seems to be the case, at least for the channel flow problem.

Modes. The first three modes are plotted in Figs. 3–5, which compare modes from exact
balanced truncation, balanced POD with a 5-mode output projection, and conventional
POD. As explained in Sec. 3.4, for exact balanced truncation and balanced POD, the k-th
mode is the k-th column of the transformation T , from (15) and (24), respectively. The
POD modes are the eigenvectors from (3), also columns of the matrix Φ from (10).

The modes from balanced POD are nearly identical to those from exact balanced trunca-
tion, even for the 5-mode output projection. For the 10-mode output projection, the modes
also look visually identical, so these are not shown. The conventional POD modes look
similar in general structure, especially mode 1, but there are distinct differences in modes 2
and 3. Of course, we would not expect the POD modes to be the same as the balancing
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Figure 4: Mode 2 for channel flow.

modes, unless the observability Gramian Y is the identity, so it is interesting that the POD
modes look so similar.

Adjoint modes. The corresponding adjoint modes for balanced POD are shown in Fig. 6.
These look visually identical to the adjoint modes from balanced truncation (i.e., the first 3
rows of S1 in (24)), so these are not shown. Recall that the POD modes are orthogonal, not
bi-orthogonal, so the “adjoint modes” for POD are the same as the primal modes shown in
Figs. 3–5. The adjoint modes in Fig. 6 look quite different from the primal modes or the
POD modes, so it is reasonable to say that, for this problem, the main difference between
balanced POD and conventional POD is the choice of inner product used for the projection.

Error norms. The main reason for using a linear system to compare these model reduc-
tion procedures is to have an objective measure of how effective the various reduced-order
models are at approximating the full-order system. For linear systems, we have norms which
enable such an objective comparison. Perhaps the most intuitive norm is the H2 norm,
defined by (28). Since we have a single input, the impulse response matrix G(t) is a column
vector g(t), and so

‖G‖2
2 =

∫ ∞

0

‖g(t)‖2 dt,

just the regular L2[0,∞) norm of the impulse response vector. We can think of the error
norm ‖G − Gr‖2 as being the RMS error between a simulation of the reduced-order model
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Figure 7: Error ‖G−Gr‖2/‖G‖2, for balanced truncation (×), balanced POD with 5-mode
and 10-mode output projection (◦ and �), POD (4), and approximate balanced truncation
with separate reduction of Gramians to rank 30 (O).

Gr and a simulation of the full model G, where the simulation begins with v(x, z, 0) =
η(x, z, 0) = 0, and the forcing is f(t) = δ(t). This error is shown in Fig. 7, as the order r
varies from 1 to 10. Notice that the error norms for balanced POD with both 5-mode and
10-mode output projections are virtually the same as for balanced truncation, while POD
is significantly worse for models of dimension 6 or smaller. For models of dimension greater
than 6, the error norms become smaller and all methods perform about the same.

Also shown is the error from an approximate balanced truncation in which the exact
Gramians are computed, and then separately approximated by low-rank projections (to
rank 30) using SVD. This separate reduction of Gramians is performed in the method of
snapshots used in Willcox & Peraire [2002], although here their method of snapshots was
not literally used, since it would require 480 adjoint simulations (the exact Gramians were
computed by solving (14) instead). The balancing transformations are then found from the
low-rank Gramians, and the L2 errors of the resulting models are plotted in Fig. 7. One sees
that the errors are significantly increased. It is interesting that if only the controllability
Gramian is reduced to rank 30, while the exact observability Gramian is retained, then the
results are similar to full balanced truncation or balanced POD (though these results are
not shown in the figure). Thus, in truncating the observability Gramian, one is removing
states that are almost unobservable, but apparently strongly controllable, and this causes
increased errors in the resulting models. This illustrates one of the advantages of our method
of snapshots (Sec. 3.1), which does not require separate reduction of the Gramians.

The differences between balanced truncation and POD become even more apparent when
one considers the H∞ norm ‖G − Gr‖∞, defined by (16). This norm is perhaps the most
useful, because it is an induced norm, and measures the maximum error over all possible
inputs, not just an impulsive input. Fig. 8 shows the error ‖G − Gr‖∞ for the various
reduced-order models Gr. Again, the norms for balanced POD are almost identical to the

19



r (order of reduced model)

‖G − Gr‖∞
‖G‖∞

0 2 4 6 8 1010−4

10−3

10−2

10−1

100

101

102

Figure 8: Error ‖G−Gr‖∞/‖G‖∞, for balanced truncation (×), balanced POD with 5-mode
and 10-mode output projection (◦ and �), POD (4), approximate balanced truncation with
separate reduction of Gramians to rank 30 (O), and lower bound for any model reduction
scheme (—).

norms for exact balanced truncation, for both 5-mode and 10-mode output projections.
Here, the norms for POD are about an order of magnitude higher, for all models considered.
The error from an approximate balanced truncation using a rank-30 reduction of the exact
Gramians is also shown, and again results in larger errors for the more accurate models.
Also shown on this figure is the lower bound (17) achievable by any reduced-order model of
dimension r, and the balanced POD norms are indeed very close to this lower bound.

5 Conclusions

The balanced POD method described here is not the first to use empirical Gramians to
compute approximate balanced truncations using simulation data. These empirical Grami-
ans were used by Moore [1981] in his original development of balancing, and by others in
extending balancing to nonlinear systems [Lall et al., 1999, 2002] and computing balancing
transformations for large systems [Willcox & Peraire, 2002].

This work addresses computing balancing transformations (or approximations of them)
for very large systems with, e.g., millions of states, as arise in discretizations of problems in
fluids. Standard methods for computing balanced truncations involve singular value decom-
positions of the empirical Gramians, which are full n × n matrices (where n is the number
of states), which is not feasible when n is large. Previous computational methods for large
systems [Willcox & Peraire, 2002] involve separate reduction of the Gramians, which can
lead to less accurate models, as we have seen (Figs. 7 and 8). The method of snapshots
described in Sec. 3.1 allows computing balanced truncations from SVDs of much smaller
matrices, with dimension Np ×Nd, where Np and Nd are numbers of snapshots in a dataset
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of primal and dual solutions, respectively, without separate reduction of the Gramians.
Furthermore, previous methods as in Lall et al. [1999] and Willcox & Peraire [2002] are

not tractable for systems with large numbers of outputs, as one must integrate an adjoint
solution for each output. Sec. 3.2 describes an output projection method that approximates
full balanced truncation with guaranteed error bounds, and dramatically reduces the number
of adjoint solutions necessary. In the example shown, integration of 5 adjoint solutions
produced models that were virtually indistinguishable in the H∞ norm from full balanced
truncations, which would have required 480 adjoint simulations using previous methods.

The formulation of balanced POD also clarifies some connections between balanced trun-
cation and POD, most importantly that for a linear system, balanced truncation is a special
case of POD. In particular, one uses a dataset consisting of responses to unit impulses (one
for each input), and uses the observability Gramian for the inner product. This inner prod-
uct weights states of large “dynamical importance,” as opposed to POD, which retains only
the most energetic modes. This suggests that even for a nonlinear system, the observability
Gramian from a linearization might be a good choice of inner product for POD, if reduced-
order models are desired. The balanced POD procedure not only removes subjectivity in the
choice of inner product for POD, but also guarantees that a Galerkin projection of a nonlin-
ear system with a stable equilibrium point at the origin will also have a stable equilibrium
point at the origin.

Although many of the developments in this paper are restricted to stable, linear systems,
Sec. 3.4 suggests how many of these ideas might be extended to large-scale nonlinear systems
as well, following the approaches in Lall et al. [2002].
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A Theorems on computing balancing transformations

Here, we consider empirical Gramians defined by (22), with balancing transformations T1

and S1 defined by (23–24). The following theorem establishes that if one takes enough
snapshots that the empirical Gramians Wc and Wo have full rank n (clearly, at least n
snapshots are required, and the system must be both controllable and observable), then Σ1

contains the Hankel singular values (square roots of the eigenvalues of the product WcWo),
and T1 is the balancing transformation that simultaneously diagonalizes Wc and Wo.

Proposition 1. Let Wc and Wo be empirical Gramians defined by (22), and suppose Y ∗X
has rank r = n. Then the matrix T1 is square and invertible, with inverse S1, and

S1WcS
∗
1 = T ∗

1WoT1 = Σ1.
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Proof. To show S1 = T−1
1 , we have

S1T1 = Σ
−1/2
1 U∗

1Y
∗XV1Σ

−1/2
1 = Σ

−1/2
1 Σ1Σ

−1/2
1 = In.

Also,

S1WcS
∗
1 = Σ

−1/2
1 U∗

1Y
∗XX∗Y U1Σ

−1/2

= Σ
−1/2
1 (Σ1V

∗
1 )(V1Σ1)Σ

−1/2
1 = Σ1,

and a similar calculation shows T ∗
1WoT1 = Σ1.

Of course, our main interest is in large systems for which the number of snapshots, and
hence the rank of Wc, Wo is much smaller than n. The following theorem establishes that
in this case, Σ1 also contains all nonzero Hankel singular values, and T1 contains the first r
columns of the balancing transformation.

Proposition 2. Suppose Y ∗X has rank r < n. Then there exist matrices S2, T2 ∈ Rn×(n−r)

such that for

T =
[
T1 T2

]
, S =

[
S1

S2

]
,

T is invertible with T−1 = S, and

SWcWoT =

[
Σ2

1 0
0 0

]
, (30)

and furthermore,

SWcS
∗ =

[
Σ1 0
0 M1

]
, T ∗WoT =

[
Σ1 0
0 M2

]
, (31)

where M1 and M2 are matrices in R(n−r)×(n−r).

Proof. As in the proof of Theorem 1, S1T1 = Ir. Choose T2 such that its columns form a
basis for the nullspace of S1 (an (n − r)-dimensional subspace of Rn). Then S1T2 = 0, and
T is invertible, since its columns are linearly independent. Define S2 as the last n− r rows
of T−1, and it follows that S2T1 = 0.

First, we show

T ∗WoT =

[
T ∗

1WoT1 T ∗
1WoT2

T ∗
2WoT1 T ∗

2WoT2

]
=

[
Σ1 0
0 M2

]
.

As in the proof of Theorem 1, T ∗
1WoT1 = Σ1. Next,

T ∗
1WoT2 = Σ

−1/2
1 V ∗

1 X
∗Y Y ∗T2

= Σ
−1/2
1 (Σ1U

∗
1 )Y ∗T2 = Σ1S1T2 = 0r×(n−r),

and thus T ∗
2WoT1 = (T ∗

1WoT2)
∗ = 0(n−r)×r. The results for SWcS

∗ and SWcWoT follow
similarly, using that S2T1 = 0.
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Lall, S., Marsden, J. E., & Glavaški, S. [1999] Empirical model reduction of controlled
nonlinear systems. In Proceedings of the IFAC World Congress , vol. F, pp. 473–478.
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