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Model Reduction for Nonlinear Systems
by Incremental Balanced Truncation

Bart Besselink, Nathan van de Wouw, Member, IEEE, Jacquelien M. A. Scherpen, Senior Member, IEEE, and
Henk Nijmeijer, Fellow, IEEE

Abstract—In this paper, the method of incremental balanced
truncation is introduced as a tool for model reduction of nonlinear
systems. Incremental balanced truncation provides an extension
of balanced truncation for linear systems towards the nonlinear
case and differs from existing nonlinear balancing techniques in
the definition of two novel energy functions. These incremental
observability and incremental controllability functions form the
basis for a model reduction procedure in which the preservation
of stability properties is guaranteed. In particular, the property
of incremental stability, which provides a notion of stability for
systems with nonzero inputs, is preserved. Moreover, a computable
error bound is given. Next, an extension towards so-called general-
ized incremental balanced truncation is proposed, which provides
a reduction technique with increased computational feasibility
at the cost of a (potentially) larger error bound. The proposed
reduction technique is illustrated by means of application to an
example of an electronic circuit with nonlinear elements.

Index Terms— Incremental balanced truncation.

I. INTRODUCTION

BALANCED truncation, as introduced in [21], is a well-
known method for model reduction of (asymptotically

stable) linear systems and relies on the definition of two energy
functions: the observability function and controllability func-
tion (see, e.g., [2], [14]). A reduction procedure on the basis
of these energy functions features the desirable properties of
the preservation of stability (see [24]) and the availability of a
computable bound on the reduction error [10], [14].

An extension of balanced truncation towards nonlinear sys-
tems, hereby using the same energy functions, is introduced
in [29] and further developed in [12], [13]. As in the linear
case, a balanced realization defined according to these energy
functions is directly related to the Hankel operator of the
system. However, for a reduced-order system obtained by non-
linear balanced truncation, only local stability properties of the
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equilibrium point for zero input are guaranteed. Results on the
stability of trajectories for nonzero inputs are not available and,
as a result, no error bound exists. Other approaches aiming at
the extension of balanced truncation towards nonlinear systems
such as [31], [32], which is based on linearization around tra-
jectories, or [15], [20], based on the numerical approximation
of the observability and controllability function, also do not
provide a guarantee on stability properties of the reduced-order
system and do not guarantee a computable error bound. Here,
it is remarked that other methods for the reduction of nonlinear
systems (i.e., methods not based on balanced truncation such as
moment matching for nonlinear systems [3] or proper orthogo-
nal decomposition [30]) do generally not satisfy the properties
of stability preservation and an error bound either. However,
some exceptions are given by [6], [7], [25], in which systems
with low-order nonlinearities are considered and reduction is
applied to the linear part of the system only.

In this paper, a novel approach is taken in the extension of
balanced truncation towards nonlinear systems that are affine
in the input. In particular, the method of incremental balanced
truncation is introduced, hereby addressing the properties of
stability preservation (including the nonzero input case) and the
computation of an error bound.

Incremental balanced truncation is based on the introduction
of two novel energy functions, which replace the observability
and controllability function as a basis for model reduction.
These so-called incremental observability and incremental con-
trollability functions measure input and output energy on the
basis of the comparison of two system trajectories, rather than
on the energy associated to a single trajectory as in their non-
incremental counterparts. For linear systems, the incremental
energy functions will be shown to be characterized by the
observability and controllability Gramian. Thus, for linear sys-
tems, the model reduction procedure based on the incremen-
tal energy functions is equivalent to conventional balanced
truncation.

For nonlinear systems, the introduction of the incremental
observability and incremental controllability functions has sev-
eral advantages. First, the incremental observability function is
directly related to the full notion of observability for nonlinear
systems, rather than zero-state observability as in [29]. In addi-
tion, it provides a link to incremental stability properties. Here,
it is noted that incremental stability is a stability property for
systems with nonzero input which, in addition, implies internal
stability (i.e., stability of the equilibrium point for zero input).
As a result, a second advantage is that incremental stability
properties are preserved in a balanced truncation procedure
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based on these incremental energy functions. Third, balancing
the incremental observability and incremental controllability
function allows for the computation of an error bound in
terms of the L2 signal norm. Incremental balanced truncation
thus provides a model reduction technique that guarantees the
preservation of relevant stability properties and the availability
of an error bound.

Next, an extension of incremental balanced truncation to-
wards so-called generalized incremental balanced truncation
is presented for a subclass of nonlinear systems. General-
ized incremental balanced truncation is based on the compu-
tation of bounds on the incremental energy functions rather
than the energy functions themselves. As the bounds are
chosen as quadratic functions, generalized incremental bal-
anced truncation gives an increased computational feasibility
of the reduction method while the preservation of stability
properties remains guaranteed and a computable error bound
remains available. This extension relies heavily on the develop-
ment of the theory of (non-generalized) incremental balanced
truncation.

The remainder of this paper is organized as follows. First,
a detailed problem setting and preliminaries are discussed in
Section II, after which the incremental observability and incre-
mental controllability functions are introduced in Section III.
In Section IV, the reduction method of incremental balanced
truncation is discussed, which includes the preservation of
stability properties and the derivation of an error bound. Next,
generalized incremental balanced truncation is presented in
Section V, whereas this procedure is illustrated by means of
an example in Section VI. Finally, conclusions are stated in
Section VII.

Notation: The field of real numbers is denoted by R. For a
vector x ∈ Rn, the Euclidian norm is given as |x| =

√
xTx.

Next, a function x : T → Rn, with T ⊆ R, is said to be in
Ln
2 (T ) if

∫
T |x(t)|2dt < ∞. Finally, a function α : [0, a) →

[0,∞) is said to be of class K if it strictly increasing and
satisfies α(0) = 0.

II. PROBLEM SETTING AND PRELIMINARIES

Nonlinear systems of the form

Σ :

{
ẋ = f(x) + g(x)u,
y = h(x)

(1)

are considered, with x ∈ Rn, u ∈ Rm and y ∈ Rp. It is as-
sumed that f : Rn → Rn is locally Lipschitz continuous and
satisfies f(0) = 0, such that the origin is an equilibrium point of
Σ for u = 0. Additionally, the functions g : Rn → Rn×m and
h : Rn → Rp are continuous, where h(0) = 0. Input functions
u(·) are chosen from the class Lm

2 .
The problem discussed in this paper can be stated as follows.
Problem 1: Develop a model reduction procedure for non-

linear systems Σ as in (1), hereby guaranteeing the preservation
of relevant stability properties and the availability of an a priori
error bound.

This problem will be addressed by the development of
the method of incremental balanced truncation, which can

be considered as an extension of balanced truncation for
linear systems towards the nonlinear case. However, even
though incremental balanced truncation provides a solution to
Problem 1, the associated computational complexity is high.
Thereto, an extension of incremental balanced truncation will
be developed for systems of the form

ΣBC :

{
ẋ = f(x) +Bu,
y = Cx

(2)

which provides a subclass of (1). Here, the choice g(x) = B
and h(x) = Cx can lead to more computationally feasible
algorithms. Thus, this extension targets the following problem.

Problem 2: Develop an extension of the approach towards
Problem 1, herein considering systems ΣBC as in (2) and
aiming at improved computational feasibility while maintaining
the properties of stability preservation and the availability of an
error bound.

The approach towards Problem 2 will be called generalized
incremental balanced truncation, as it will be based on gener-
alizing the tools for reduction as developed towards Problem 1
(albeit for a subclass of systems). It is noted that the approach
towards Problem 2 relies heavily on the theoretical foundations
developed in the incremental balanced truncation approach
towards Problem 1, whereas incremental balanced truncation
also provides a clear interpretation of its extension towards
generalized incremental balanced truncation.

The model reduction procedure for nonlinear systems as
developed in this paper is based on a characterization of ob-
servability and controllability properties of nonlinear systems.
Thereto, the notions of indistinguishability and observability
are recalled (see [16], [22]).

Definition 1: Let y(·) and ȳ(·) be the outputs of (1) for
some input function u(·) and initial conditions x(0) = x0 and
x(0) = x̄0, respectively. Then, the states x0 and x̄0 are said to
be indistinguishable (with respect to Σ) if, for all u(·), y(·) =
ȳ(·) on their common domain of definition. Indistinguishability
of x0 and x̄0 is denoted by x0Ix̄0.

Definition 2: A system Σ as in (1) is said to be observable
if, for all x0, x̄0 ∈ Rn, x0Ix̄0 implies x0 = x̄0.

Furthermore, the following definition of reachability (see,
e.g., [29], [33]) will be exploited in the characterization of
controllability properties.

Definition 3: A system (1) is said to be reachable from x∗

if for each x0 ∈ Rn there exist a time T ≥ 0 and an input
function u(·) ∈ Lm

2 ([−T, 0]) such that u(·) steers the system
from x(−T ) = x∗ to x(0) = x0.

Finally, the preservation of stability properties is of interest.
In particular, the notion of incremental stability is exploited.

Definition 4: The system (1) is said to be incrementally
stable for the class of inputs U if there exist a function α of
class K and a constant c > 0 such that, for any two solutions
x(·) and x̄(·) corresponding to any input function u(·) ∈ U and
initial conditions x(t0) and x̄(t0), respectively, the inequality

|x(t)− x̄(t)| ≤ α (|x(t0)− x̄(t0)|) (3)

holds for all t ≥ t0 and for all |x(t0)− x̄(t0)| < c.
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The definition of incremental stability corresponds to that of
[1], where it is remarked that incremental asymptotic stability
can be defined by replacing the class K function α in (3)
by a suitable function β(|x(t0)− x̄(t0)|, t− t0) of class KL
(see [19] for a definition). Also, it is stressed that incremental
stability provides a stability property for all solutions of (1).
Consequently, both the stability properties of trajectories for
nonzero input and the stability of the equilibrium point for zero
input are captured with this stability notion.

III. INCREMENTAL OBSERVABILITY

AND CONTROLLABILITY

The model reduction procedure introduced in this paper
is based on the introduction of two novel energy functions,
namely the incremental observability function and the incre-
mental controllability function. The first is defined as follows.

Definition 5: Consider the function E′
o : Rn ×Rn → R de-

fined as

E ′
o(x0, x̄0) = sup

u(·)∈Lm
2 ([0,∞))

∞∫
0

|y(t)− ȳ(t)|2 dt (4)

where y(·) and ȳ(·) denote the outputs of (1) for input function
u(·) and initial conditions x(0) = x0 and x(0) = x̄0, respec-
tively. If E′

o is bounded for all bounded (x0, x̄0), then Eo := E ′
o

is said to be the incremental observability function of Σ.
The incremental observability function thus characterizes the

maximum energy associated with the difference in two output
trajectories. The incremental controllability function is defined
as follows.

Definition 6: Consider the function E ′
c : R

n ×Rn → R de-
fined as

E′
c(x0, x̄0) = inf

u(·),ū(·)∈Lm
2 ((−∞,0])

0∫
−∞

|u(t) + ū(t)|2 dt (5)

whenever there exists input functions u(·) and ū(·) such that
u(·) steers the system (1) from x(−∞) = 0 to x(0) = x0 and
ū(·) steers (1) from x̄(−∞) = 0 to x̄(0) = x̄0. If such input
functions do not exist, then E′

c(x0, x̄0) := ∞. If E ′
c is bounded

for all bounded (x0, x̄0), then Ec := E ′
c is said to be the

incremental controllability function of Σ.
The incremental controllability function thus gives the min-

imum energy in the sum of two input functions that steer Σ to
the states x0 and x̄0, respectively. Even though this definition
might not seem natural at first sight, it will be shown that the
incremental controllability function as in (5) is useful in the
development of a model reduction procedure for which a bound
on the reduction error can be guaranteed.

It is clear that neither the function E ′
o in (4) nor the func-

tion E ′
c in (5) is guaranteed to be bounded for all bounded

(x0, x̄0). In particular, when the nonlinear system Σ exhibits
multiple steady-state solutions, the integral in (4) is likely to
be unbounded. Moreover, the existence of an input function
steering to an arbitrary state is not guaranteed a priori, in which
case E ′

c is, by definition, infinite. However, it is noted that

these functions only define the incremental observability and
incremental controllability function when they are bounded for
all bounded (x0, x̄0), in which case the incremental observabil-
ity and incremental controllability functions are said to exist.
Moreover, the following assumption is made.

Aassumption 1: The incremental observability function and
incremental controllability function, when they exist (i.e., when
the functions in (4) and (5) are bounded for all bounded
(x0, x̄0)), are differentiable functions.

Remark 1: The incremental energy functions in Definitions
5 and 6 are based on the energy associated with the comparison
of two trajectories and thus differ from the energy functions
as exploited in nonlinear balanced truncation (see [29]), where
the energy associated to a single trajectory is exploited. A fur-
ther comparison between these energy functions can be found
in [5]. �

The incremental observability function can be characterized
in a similar way as the observability function in nonlinear
balanced truncation in [29]. Thereto, the theory of dissipative
systems (see [8], [33]) is exploited and the auxiliary system

Σo :

⎧⎪⎪⎨
⎪⎪⎩

ẋ = f(x) + g(x)u,

˙̄x = f(x̄) + g(x̄)u,

Δy =h(x)− h(x̄)

(6)

is introduced. Then, it can be observed that the incremental
observability function Eo as in (4) represents the available
storage for Σo with supply rate

s(u,Δy) = −|Δy|2 = −|y − ȳ|2 (7)

such that the following result can be obtained by exploiting the
nonlinear Kalman-Yakubovich-Popov lemma.

Theorem 1: Let Assumption 1 hold. Then, the incremental
observability function Eo as in Definition 5 exists if and only if
there exist functions Ẽo : Rn ×Rn → R and lo : Rn ×Rn →
Rq (for some integer q) with Ẽo differentiable, Ẽo(0, 0) = 0
and Ẽo(x, x̄) ≥ 0 such that

∂Ẽo

∂x
(x, x̄)f(x) +

∂Ẽo

∂x̄
(x, x̄)f(x̄) = − |h(x)− h(x̄)|2

− |lo(x, x̄)|2 , (8)

∂Ẽo

∂x
(x, x̄)g(x) +

∂Ẽo

∂x̄
(x, x̄)g(x̄) = 0 (9)

for all x, x̄ ∈ Rn. If such functions Ẽo and lo exist, then the
incremental observability function Eo is the smallest solution
satisfying (8), (9), i.e., Eo satisfies Eo(x, x̄) ≤ Ẽo(x, x̄) for all
x, x̄ ∈ Rn and all Ẽo satisfying (8), (9).

Proof: The first statement of Theorem 1 results from [18,
Theorem 8] (see also [17, Theorem 1] and [8, Lemma 4.87]),
i.e., dissipativity is equivalent to the existence of functions
satisfying (8), (9). Moreover, it is well known that the available
storage Eo is the smallest solution (in the sense that Eo(x, x̄) ≤
Ẽo(x, x̄) for all x, x̄ ∈ Rn and all storage functions Ẽo) satis-
fying the Kalman-Yakubovich-Popov conditions, see, e.g., [17],
[33], which proves the theorem. �
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A characterization of the incremental controllability function
can be obtained by using a similar perspective of dissipative
systems. Namely, the incremental controllability function in
(5) can be considered as the required supply for the auxiliary
system

Σc :

{
ẋ = f(x) + g(x)u,
˙̄x = f(x̄) + g(x̄)ū

(10)

with supply rate

s(u, ū) = |u+ ū|2 =

[
u
ū

]T [
I I
I I

] [
u
ū

]
(11)

such that the following result can be obtained.
Theorem 2: Let the system Σ as in (1) be reachable from

0. Then, the incremental controllability function Ec exists.
If, in addition, Assumption 1 holds, then there exist func-
tions Ẽc : R

n ×Rn → R, lc : Rn ×Rn → Rq and W : Rn ×
Rn → Rq×2m (for some integer q) with Ẽc differentiable,
Ẽc(0, 0) = 0 and Ẽc(x, x̄) ≥ 0 such that

∂Ẽc

∂x
(x, x̄)f(x) +

∂Ẽc

∂x̄
(x, x̄)f(x̄) = − lTc (x, x̄)lc(x, x̄),

(12)[
∂Ẽc

∂x
(x, x̄) g(x)

∂Ẽc

∂x̄
(x, x̄)g(x̄)

]
= − 2lTc (x, x̄)W (x, x̄),

(13)[
I I
I I

]
=WT(x, x̄)W (x, x̄)

(14)

for all x, x̄ ∈ Rn. Moreover, the incremental controllability
function Ec is the largest solution satisfying (12)–(14), i.e., Ec

satisfies Ec(x, x̄) ≥ Ẽc(x, x̄) for all x, x̄ ∈ Rn and for all Ẽc

satisfying (12)–(14).
Proof: By [33, Theorem 2], a necessary and sufficient condi-

tion for dissipativity of Σc as in (10) is that the required supply
is bounded from below. As the supply rate (11) is nonnegative,
the required supply is nonnegative and the auxiliary system Σc

is dissipative with respect to the supply rate in (11). By [18,
Theorem 8] (see also [17] and [8]), the dissipativity of Σc with
respect to the supply rate (11) is equivalent to the existence of
functions Ẽc satisfying (12)–(14). Since the auxiliary system
Σc as in (10) is reachable from the origin, which is implied
by reachability from the origin for the original system Σ,
boundedness of Ec is guaranteed. Then, by dissipativity theory,
the required supply is the largest storage function for a given
supply rate, which proves Theorem 2. �

Remark 2: In the proof of Theorem 2, differentiability of the
incremental controllability function is not required to show its
existence, Assumption 1 is only needed to guarantee that Ec is
a solution of (12)–(14). �

Remark 3: For asymptotically stable linear systems (i.e.,
where f(x) = Ax in (2)), it can be shown (see [5]) that the
incremental observability function Eo and incremental control-
lability function Ec are given as

Eo(x0, x̄0) = (x0 − x̄0)
TQ(x0 − x̄0), (15)

Ec(x0, x̄0) = (x0 + x̄0)
TP−1(x0 + x̄0) (16)

with Q = QT and P = PT the observability and controllability
Gramian, respectively. �

From Definitions 5 and 6 it is clear that both the incremental
observability function and incremental controllability function
are nonnegative. For the incremental observability function, the
relation with observability as in Definition 2 leads to a stronger
result on its positivity, as stated in the following proposition.

Proposition 3: Assume that the incremental observability
function Eo as in Definition 5 exists. Then, the system Σ
as in (1) is observable if and only if Eo(x0, x̄0) > 0 for all
x0, x̄0 ∈ Rn, x0 �= x̄0.

Proof: This follows directly from Definitions 2 and 5. For
details, see [5]. �

Moreover, for nonlinear systems with an odd vector field,
positivity of the incremental controllability function is related
to asymptotic stability. This is formalized in the following
result.

Proposition 4: Let the system Σ as in (1) with f(x) =
−f(−x) and g(x) = g(−x) be reachable from 0 and let 0 be an
asymptotically stable equilibrium point of Σ for u = 0. Then,
the incremental controllability function Ec satisfies

Ec(x0, x0) > 0 (17)

for all x0 ∈ Rn, x0 �= 0.
Proof: It is recalled that, by definition, Ec(x0, x0) ≥ 0.

Now, let Ec(x0, x0) = 0. By nonnegativity of |u+ ū|2 in
Definition 6, this implies u(t) = −ū(t) for all t ∈ (−∞, 0].
However, if u steers Σ from the origin to x(0) = x0, then
ū(t) = −u(t), t ∈ (−∞, 0] steers the system to x(0) = −x0,
as follows from the properties f(x) = −f(−x) and g(x) =
g(−x). Thus, Ec(x0, x0) can only be zero for u(t) = ū(t) = 0,
for all t ∈ (−∞, 0]. However, by asymptotic stability of the
origin, it is impossible to have x(−∞) = 0 and x(0) �= 0 for
zero input. Thus, Ec(x0, x0) > 0 for all x0 ∈ Rn, x0 �= 0. �

IV. INCREMENTAL BALANCED TRUNCATION

In Section III, the incremental observability and incremental
controllability functions have been defined. Loosely speaking,
the incremental observability and incremental controllability
function describe the energy transfer from state to output and
input to state, respectively, and can thus be used as the basis for
a model reduction procedure that aims at the accurate approxi-
mation of the input-output behavior. Besides this intuition, the
following aspects further motivate this idea. Firstly, for linear
systems, the incremental energy functions are directly related
to the observability and controllability Gramians (see Remark
3), where the latter are known to give good results when used
as the basis for model reduction (in the method of balanced
truncation introduced in [21]). Secondly, it will be shown that a
reduction procedure based on the incremental energy functions
ensures certain stability properties of the reduced-order system
and allows for the computation of an error bound.

A one-step reduction (in which the state-space dimension is
reduced from n to n− 1) is considered, herein exploiting the
following definition.
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Definition 7: A realization (1) of the nonlinear system Σ is
said to be an incrementally balanced realization if the incremen-
tal observability function Eo and incremental controllability
function Ec exist and satisfy Assumption 1 as well as the
following conditions. First, they can be partitioned as

Eo(x, x̄) =E1
o(x1, x̄1) + E2

o(x2, x̄2), (18)

Ec(x, x̄) =E1
c (x1, x̄1) + E2

c (x2, x̄2) (19)

where xT = [xT
1 x2] and x̄T = [x̄T

1 x̄2] with x1, x̄1 ∈ Rn−1

and x2, x̄2 ∈ R. In addition, there exists a constant ρ > 0 such
that E2

o and E2
c satisfy

∂E2
o

∂x̄2
(x2, 0) = −ρ2

∂E2
c

∂x̄2
(x2, 0) (20)

for all x2 ∈ R.
It will be shown that the properties (18), (19) enable the

preservation of stability properties during model reduction,
whereas (20) is crucial in the derivation of an error bound. In
particular, (20) gives a relation between the parts of the incre-
mental energy functions that are affected by model reduction.
The reduced-order model will be obtained by truncation, ex-
plaining the substitution x̄2 = 0 in (20). In addition, it is noted
that the properties in Definition 7 are automatically satisfied for
linear systems in a balanced realization (i.e., a realization in
which the Gramians P and Q as in (15) and (16) are equal and
diagonal), providing a motivation for this definition.

Remark 4: An arbitrary realization of a nonlinear system
will generally not be an incrementally balanced realization
as in Definition 7. Instead, given a realization as in (1), the
objective is to find a coordinate transformation ϕ : Rn → Rn

(i.e., a diffeomorphism), such that the conditions (18), (19), and
(20) hold in the new coordinates z = ϕ−1(x). Whether such a
transformation exists or whether conditions guaranteeing this
existence can be found is unknown in general. �

In the remainder of this section, it is assumed that the
realization (1) of Σ is an incrementally balanced realization
as in Definition 7. After partitioning the state as xT = [xT

1 x2]
with x1 ∈ Rn−1 and x2 ∈ R, the functions f , g and h in (1) can
be split accordingly as

f(x) =

[
f1(x1, x2)

f2(x1, x2)

]
, g(x) =

[
g1(x1, x2)

g2(x1, x2)

]
, (21)

h(x) =h(x1, x2). (22)

Using this partitioning, a reduced-order approximation of Σ is
obtained by truncation. Substitution of x2 = 0 in the partitioned
incrementally balanced realization and discarding the dynamics
concerning x2 results in the one-step reduced-order system

Σ̂n−1 :

{
ξ̇ = f1(ξ, 0) + g1(ξ, 0)u,
ŷ = h(ξ, 0)

(23)

with ξ ∈ Rn−1 the reduced-order state, which approximates
x1. This reduction procedure will be referred to as incremental
balanced truncation.

In the analysis of properties of Σ̂n−1 as in (23), results
on the (boundedness and characterization of the) incremental

observability and incremental controllability function for the
reduced-order system are exploited. First, the following state-
ment regarding the incremental observability function of the
reduced-order nonlinear system Σ̂n−1 holds.

Lemma 5: Let (1) be an incrementally balanced realization
of the system Σ and let Σ̂n−1 as in (23) be a one-step reduced-
order system obtained by incremental balanced truncation.
Then, the incremental observability function Êo of Σ̂n−1 exists
and is upper bounded as

Êo(ξ, ξ̄) ≤ E1
o(ξ, ξ̄) (24)

for all ξ, ξ̄ ∈ Rn−1, where E1
o is defined in (18).

Proof: The proof is stated in Appendix A. �
Hence, even though E1

o satisfies the conditions of Theorem 1
(as shown in the proof of Lemma 5), E1

o does not necessarily
represent the incremental observability function Êo. Namely,
E1

o is not necessarily the minimal solution of (57), (58) in the
Appendix when the function lo can be chosen arbitrarily as in
the statement of Theorem 1.

A similar result can be obtained for the incremental control-
lability function for the reduced-order system, even though its
existence cannot be guaranteed a priori. This is formalized in
the following lemma.

Lemma 6: Let (1) be an incrementally balanced realization
of the system Σ and let Σ̂n−1 as in (23) be a one-step reduced-
order system obtained by incremental balanced truncation.
Then, when the incremental controllability function Êc of
Σ̂n−1 exists, it is lower bounded as

Êc(ξ, ξ̄) ≥ E1
c (ξ, ξ̄) (25)

for all ξ, ξ̄ ∈ Rn−1, where E1
c is defined in (19).

Proof: The proof can be found in Appendix B. �
The properties of the incremental observability and incre-

mental controllability functions of the reduced-order system as
in Lemmas 5 and 6 can be used to derive stability properties of
Σ̂n−1. In particular, boundedness of solutions and incremental
stability as in Definition 4 can be guaranteed, as formalized in
the following theorem.

Theorem 7: Let (1) be an incrementally balanced realization
as in Definition 7 of the system Σ and let the incremental
observability and incremental controllability function satisy
Eo(x, x̄) > 0 for all x, x̄ ∈ Rn, x �= x̄ and Ec(x, x) > 0 for all
x ∈ Rn, x �= 0, respectively. In addition, let Σ̂n−1 as in (23)
be the one-step reduced-order system obtained by incremental
balanced truncation. Then, the following statements hold:

1) There exists a set of initial conditions X̂ ⊆ Rn−1 with
X̂ � 0 and a class of input functions U ⊆ Lm

2 ([0,∞))
such that any state trajectory ξ(·) of the reduced-order
system (23) corresponding to ξ(0) = ξ0 ∈ X̂ and u(·) ∈
U is bounded for all t ≥ 0. If Ec(x, x) → ∞ as |x| → ∞,
then X̂ = Rn−1 and U = Lm

2 ([0,∞));
2) The reduced-order nonlinear system Σ̂n−1 is incremen-

tally stable for the class of inputs Lm
2 ([0,∞));

3) For any bounded input function u(·) ∈ Lm
2 ([0,∞)) and

initial conditions ξ(0) = ξ0, ξ̄(0) = ξ̄0 such that the state
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trajectories ξ(·) and ξ̄(·) of (23) are bounded for all t ≥ 0,
the corresponding outputs converge, i.e.

lim
t→∞

∣∣h (ξ(t), 0)− h
(
ξ̄(t), 0

)∣∣ = 0. (26)

Proof: The proof can be found in Appendix C. �
It is noted that, in the proof of Theorem 7, the availability

of the incremental observability and incremental controllability
function of the reduced-order system is not required. Instead,
the bounds as derived in Lemmas 5 and 6 are used. As a result,
the stability conditions in Theorem 7 can be evaluated a priori.

Moreover, it is remarked that the stability results of Theorem 7
also hold for the original high-order system Σ as in (1). This can
be shown by exploiting the incremental energy functions Eo

and Ec rather than the partitioned counterparts E1
o and E1

c in
the proof of Theorem 7 (see also [5]). As a result, boundedness
of solutions, incremental stability and converging outputs are
necessary conditions on the high-order system for the incre-
mental observability and incremental controllability function
to exist and to have the desirable properties Eo(x, x̄) > 0 for
all x, x̄ ∈ Rn, x �= x̄ and Ec(x, x) > 0 for all x ∈ Rn, x �= 0.
Consequently, the results of Theorem 7 can be interpreted as a
guarantee on stability preservation.

Remark 5: The proof of the (incremental) stability properties
in Theorem 7 relies on the incrementally balanced realization as
in Definition 7. However, only the partitioning of the incremen-
tal observability and incremental controllability as in (18) and
(19) is used, whereas the condition (20) is not required to guar-
antee incremental stability of the reduced-order system. In fact,
the results in Lemmas 5 and 6 and Theorem 7 hold for reduced-
order systems of arbitrary order k (k < n) as long as the par-
titioning (18), (19) holds for x1, x̄1 ∈ Rk and x2, x̄2∈Rn−k. �

Besides the results on stability of the reduced-order system
Σ̂n−1 as stated in Theorem 7, it can be shown that an error
bound in terms of the L2 signal norm holds. This is formalized
in the following theorem.

Theorem 8: Let (1) be an incrementally balanced realization
as in Definition 7 of the system Σ and let Σ̂n−1 as in (23)
be the one-step reduced-order system obtained by incremental
balanced truncation. For trajectories x(·) of Σ and ξ(·) of Σ̂n−1

corresponding to a common input function u(·) ∈ Lm
2 ([0,∞))

and initial conditions x(0) = 0 and ξ(0) = 0, respectively, the
outputs y(·) and ŷ(·) satisfy the error bound

‖y − ŷ‖2 ≤ 2ρ‖u‖2 (27)

with ρ as in (20).
Proof: The proof can be found in Appendix D. �

The error bound in Theorem 8 is only dependent on the
properties of the incrementally balanced realization of the high-
order system and can thus be evaluated a priori.

Remark 6: The error bound in Theorem 8 is only valid for a
one-step reduction. However, repeated application of Theorem
8 and the triangle inequality leads to an error bound for reduced-
order systems of arbitrary state dimension, as long as each
reduced-order subsystem obtained after a one-step reduction
satisfies a property similar to (20). �

The results in Theorems 7 and 8 show that the desired
properties of the preservation of relevant stability properties and

the availability of a computable error bound are a direct conse-
quence of the introduction of the incremental energy functions
in Definitions 5 and 6. These fundamental properties are thus
inherent to the approach of incremental balanced truncation.

V. GENERALIZED INCREMENTAL BALANCED TRUNCATION

In Section IV, the model reduction technique of incremen-
tal balanced truncation has been introduced. This reduction
procedure for nonlinear systems guarantees certain stability
properties of the reduced-order system as well as an error
bound. This method is based on the incremental observability
and incremental controllability functions and heavily relies on
properties of the so-called incrementally balanced realization
(see Definition 7), whose existence is difficult to check. An
extension to incremental balanced truncation that is compu-
tationally more attractive and easier to apply is given in the
current section, hereby circumventing this problem. The devel-
opments on incremental balanced truncation of Section IV are
instrumental for this extension.

The extension will be referred to as generalized incremental
balanced truncation and largely follows the ideas of incremental
balanced truncation as in Section IV. However, rather than
using the incremental observability and incremental control-
lability functions, generalized incremental balancing is based
on energy functions that provide bounds on these incremental
observability and incremental controllability functions. This
is beneficial from two perspectives. Firstly, these bounds are
generally easier to obtain than the incremental energy functions
themselves, which increases the computational feasibility of
generalized incremental balanced truncation over incremental
balanced truncation. Secondly, the usage of bounds on the
energy functions gives the added flexibility of freely choosing
the structure of these energy functions. Here, the choice of
quadratic functions allows for the computation of a realization
that satisfies the properties of the incrementally balanced real-
ization and thus satisfies the potentially limiting assumption of
its existence.

A. Generalized Incremental Energy Functions

In order to replace the incremental observability function
in an alternative model reduction procedure, the following
definition is used.

Definition 8: The function

Ẽo(x, x̄) = (x− x̄)TQ̃(x− x̄) (28)

with Q̃ = Q̃T � 0 is said to be a generalized incremental
observability function of system (1) if it is a storage function
of the auxiliary system Σo as in (6) with the supply rate (7).

Since Ẽo is defined as a storage function for Σo with supply
rate (7), the proof of Theorem 1 directly shows that Ẽo is
equivalently defined as a solution (of the form (28)) satisfy-
ing the conditions (8), (9). Moreover, it is recalled that the
incremental observability function Eo is given as the available
storage, which, by dissipativity theory (see [33]), is the smallest
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storage function (see Theorem 1). Consequently, the following
corollary holds.

Corollary 9: Let the generalized incremental observability
function Ẽo as in (28) exist. Then, the incremental controllabil-
ity function Eo as in (4) exists and is bounded as Eo(x, x̄) ≤
Ẽo(x, x̄) for all x, x̄ ∈ Rn.

Similarly, the following definition will be used to generalize
the incremental controllability function.

Definition 9: The function

Ẽc(x, x̄) = (x+ x̄)TR̃(x+ x̄) (29)

with R̃ = R̃T � 0 is said to be a generalized incremental
controllability function of system (1) if it is a storage function
of the auxiliary system Σc as in (10) with the supply rate (11).

The following corollary is immediate from Theorem 2.
Corollary 10: Let the generalized incremental controllabil-

ity function Ẽc as in (29) exist. In addition, assume that the
incremental controllability function Ec as in (5) exists. Then,
Ec(x, x̄) ≥ Ẽc(x, x̄) for all x, x̄ ∈ Rn.

Even though the generalized incremental energy functions as
in Definitions 8 and 9 can be defined for nonlinear systems
of the form (1), they can be more conveniently characterized
when nonlinear systems ΣBC as in (2) are considered. For such
systems, the generalized incremental observability function can
be characterized as follows.

Theorem 11: Consider the system ΣBC as in (2). Then, the
function Ẽo as in (28) is a generalized incremental observability
function if and only if the matrix Q̃ satisfies

(x−x̄)TQ̃ (f(x)−f(x̄))≤− 1
2 (x−x̄)TCTC(x−x̄) (30)

for all x, x̄ ∈ Rn.
Proof: First, assume that Ẽo as in (28) is a generalized

incremental observability function. Then, it is a solution of the
conditions (8), (9) in Theorem 1 for some function lo. Here, the
structure of Ẽo and g(x) = B ensure that (9) is automatically
satisfied. Hence, the condition (9) can be discarded. Moreover,
substitution of (28) in (8) directly leads to (30). Herein, the
term lo(x, x̄) in (8) is removed, such that the equality in (8)
is replaced by the inequality in (30).

The converse follows directly by reversing the reasoning
above. �

It is noted that, even though Theorem 11 provides a necessary
and sufficient condition of the existence of Ẽo as in Definition
8, (30) only provides a sufficient condition for dissipativity of
the auxiliary system corresponding to ΣBC. The converse does
not hold since it is in general not guaranteed that a quadratic
storage function exists.

Similar to the characterization of the generalized incremental
observability function in Theorem 11, the following result is ob-
tained for the generalized incremental controllability function.

Theorem 12: Consider the system ΣBC as in (2). Then, the
function Ẽc as in (29) is a generalized incremental controllabil-
ity function if the matrix R̃ satisfies

(x+ x̄)TR̃ (f(x) + f(x̄))

≤ − 1
2 (x+ x̄)TR̃BBTR̃(x+ x̄) (31)

for all x, x̄ ∈ Rn.

Proof: To prove the theorem, it will be shown that (31) im-
plies that the conditions in the characterization of the incremen-
tal controllability function in Theorem 2 are satisfied. Namely,
when the functions lc and W in (12)–(14) are chosen as

lc(x, x̄)=−
[
BTR̃(x+ x̄)

l̃c(x, x̄)

]
, W (x, x̄)=

[
I I
0 0

]
(32)

with l̃c an arbitrary function, it is easily seen that the function
Ẽc as in (29) satisfies (13) and (14) for the dynamics (2).
Substitution of lc as in (32) in (12) yields

(x+ x̄)TR̃ (f(x) + f(x̄)) = − 1
2 (x+ x̄)TR̃BBTR̃(x+ x̄)

− 1
2 l̃

T
c (x, x̄)l̃c(x, x̄) (33)

thus leading to the condition (31). Hence, (31) implies that the
conditions of Theorem 2 are satisfied, such that Ẽc as in (29) is
a storage function for the supply rate s(u, ū) = |u+ ū|2 as in
the proof of Theorem 2. This completes the proof. �

For linear systems, the inequalities (30) and (31) boil down to
Lyapunov inequalities describing the generalized observability
and controllability Gramian (see [9]), which find application in,
e.g., model reduction for uncertain systems [4] or linear time-
varying systems [27]. This further motivates the names for the
functions in Definitions 8 and 9.

Remark 7: From the inequalities (30) and (31) it is clear
that the generalized incremental observability function and
generalized incremental controllability function are not unique.
For example, when Q̃ and R̃ satisfy (30) and (31), then αQ̃
and α−1R̃, with α > 1, are solutions as well. It is expected
that the best reduced-order approximation is obtained when
the bounds on the incremental observability and incremental
controllability function as provided by Ẽo and Ẽc are as tight as
possible. Thus, since the quadratic form of the bounds is used,
the smallest solution Q̃ to (30) and the largest solution R̃ to (31)
should be sought. Later, it will be shown that the bound on the
reduction error can indeed be reduced by seeking tight bounds.�

Remark 8: The choice of the quadratic generalized incre-
mental controllability function in (29) implies that a solution to
(31) can only be found when the vector field satisfies f(x) =
−f(−x) for all x ∈ Rn. More details on the relation between
an odd vector field f and the (generalized) incremental control-
lability function (see also Proposition 4) can be found in [5]. �

As the reduction procedure developed in this section is based
on generalized incremental energy functions in Definitions 8
and 9, it can be applied to all nonlinear systems of the form (2)
for which solutions to (30) and (31) exist. This class of systems
can be further characterized by the following proposition.

Proposition 13: Consider the system ΣBC as in (2) and
assume that ΣBC is quadratically incrementally stable, i.e.,
there exist matrices M = MT � 0 and N = NT � 0 such that

(x− x̄)TM (f(x)− f(x̄)) ≤ − 1
2 (x− x̄)TN(x− x̄) (34)

for all x, x̄ ∈ Rn. Then, a solution Q̃ to (30) exists. If, in
addition, f as in (2) satisfies f(x) = −f(−x), then a solution
R̃ to (31) exists as well.
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Proof: Since N is positive definite, there exists a parame-
ter α > 0 such that αCTC � N . Then, it follows immediately
that (30) is satisfied for Q̃ = α−1M . The existence of a solution
R̃ to (31) can be proven similarly when the property f(x) =
−f(−x) is exploited. �

Thus, the generalized incremental observability and gener-
alized incremental controllability function can be computed for
systems that satisfy the quadratic incremental stability property.
Results for such systems are available in, e.g., [11]. Results
on so-called quadratic convergence, which implies quadratic
incremental stability, are discussed in [23], which also includes
computational approaches, e.g., on the basis of linear matrix
inequalities or the circle criterion.

B. Model Reduction

Based on the generalized incremental energy functions in-
troduced in Section V-A, a generalized incrementally balanced
realization can be defined as follows.

Definition 10: A realization (2) of the system ΣBC is said
to be a generalized incrementally balanced realization if there
exists a diagonal matrix Σ as

Σ =

⎡
⎢⎢⎢⎢⎣
σ1Im1

0 · · · 0

0 σ2Im2

. . .
...

...
. . .

. . . 0
0 · · · 0 σqImq

⎤
⎥⎥⎥⎥⎦ (35)

where the parameters σi satisfy σ1 > σ2 > · · · > σq > 0 and
have multiplicity mi with

∑q
i=1 mi = n, such that (30) and

(31) hold with Q̃ = Σ and R̃ = Σ−1.
Then, the following result is immediate.
Theorem 14: Let the system ΣBC as in (2) be such that there

exist positive definite symmetric matrices Q̃ and R̃ satisfying
(30) and (31), respectively, thus characterizing the generalized
incremental observability function as in (28) and generalized
incremental controllability function as in (29). Then, there
exists a coordinate transformation x = Tz such that the system
ΣBC is a generalized incrementally balanced realization in the
new coordinates z. Moreover, the parameters σ2

i in (35) equal
the eigenvalues of the product Q̃R̃−1.

Proof: This is essentially the same coordinate transforma-
tion as used in balanced truncation for linear systems, such that
the results from [21] (see also [2]) hold. �

In the remainder of this section, it is assumed that the
realization (2) of ΣBC is a generalized incrementally balanced
realization. For this realization, the generalized incremental ob-
servability and generalized incremental controllability function
can be partitioned as

Ẽo(x, x̄) = Ẽ1
o(x1, x̄1) + Ẽ2

o(x2, x̄2), (36)

Ẽc(x, x̄) = Ẽ1
c (x1, x̄1) + Ẽ2

c (x2, x̄2) (37)

with

Ẽi
o(xi, x̄i) := (xi − x̄i)

TΣi(xi − x̄i), (38)

Ẽi
c(xi, x̄i) := (xi + x̄i)

TΣ−1
i (xi + x̄i) (39)

and i ∈ {1, 2}, which is a direct consequence of (35). Here,
xT = [xT

1 xT
2 ] and x̄T = [x̄T

1 x̄T
2 ] with x1, x̄1 ∈ Rk and

x2, x̄2 ∈ Rn−k. The partitioning (36), (37) holds for any k <
n, but it is assumed that k is chosen such that (35) is split
according to the multiplicities of the parameters σi, i.e., there
exists r such that k =

∑r
i=1 mi. Then, Σ1 and Σ2 in (36), (37)

are given as

Σ1=blkdiag {σ1Im1
, σ2Im2

, . . . , σrImr
} , (40)

Σ2=blkdiag
{
σr+1Imr+1

, σr+2Imr+2
, . . . , σqImq

}
. (41)

It is noted that the generalized incrementally balanced real-
ization as given by Definition 10 and resulting in (36), (37) sat-
isfies the conditions of Definition 7. As discussed in Section IV,
it is unknown whether an incrementally balanced realization
as in Definition 7 can be found in general. Thus, since a gen-
eralized incrementally balanced realization is easily obtained
(see Theorem 14), it can serve as an alternative realization on
which model reduction can be based. Moreover, the diagonal
structure in Σ as in (35) will turn out to be instrumental in
the computation of an error bound for reduced-order models
of arbitrary order.

In order to find a reduced-order approximation by truncation,
the function f and matrices B and C as in (2) are partitioned
according to (36) and (37), such that

f(x) =

[
f1(x1, x2)

f2(x1, x2)

]
, B =

[
B1

B2

]
, C = [C1 C2]. (42)

Then, the reduced-order system Σ̂BC,k is given as

Σ̂BC,k :

{
ξ̇ = f1(ξ, 0) +B1u,
ŷ = C1ξ

(43)

with ξ ∈ Rk an approximation for x1. Motivated by earlier
definitions, this reduction procedure will be referred to as
generalized incremental balanced truncation.

C. Stability Preservation and Error Bound

Properties of the reduced-order model Σ̂BC,k as in (43)
obtained by generalized incremental balanced truncation are
analyzed in the current section. The following statement holds
for the generalized incremental observability function.

Lemma 15: Let (2) be a generalized incrementally balanced
realization of the system ΣBC and let Σ̂BC,k as in (43) be
a reduced-order system obtained by generalized incremental
balanced truncation. Then, the function Ẽ1

o as in (36) is a gener-
alized incremental observability function for Σ̂BC,k. Moreover,
the incremental observability function Êo of Σ̂BC,k exists.

Proof: Evaluation of (30) in generalized incrementally
balanced coordinates and substitution of x1 = ξ, x̄1 = ξ̄ and
x2 = x̄2 = 0 gives

(ξ − ξ̄)TΣ1

(
f1(ξ, 0)− f1(ξ̄, 0)

)
≤ − 1

2 (ξ − ξ̄)CT
1 C1(ξ − ξ̄) (44)

for all ξ, ξ̄ ∈ Rk. Thus, the reduced-order system Σ̂BC,k satis-
fies (44), such that the result follows directly from Theorem 11
and Corollary 9. �
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A similar result can be obtained for the generalized incre-
mental controllability function for the reduced-order system.

Lemma 16: Let (2) be a generalized incrementally balanced
realization of the system ΣBC and let Σ̂BC,k as in (43) be
a reduced-order system obtained by generalized incremental
balanced truncation. Then, the function Ẽ1

c as in (37) is a
generalized incremental controllability function for Σ̂BC,k.

Proof: The proof follows the ideas as in the proof of
Lemma 15, hereby exploiting Theorem 12. �

The results in Lemmas 15 and 16 can be considered as coun-
terparts of Lemmas 5 and 6, that deal with the energy functions
for the reduced-order system obtained by incremental balanced
truncation. Similarly, stability properties of the reduced-order
model Σ̂BC,k as obtained by generalized incremental balanced
truncation can be obtained by exploiting the line of reasoning
of Theorem 7, leading to the following result.

Theorem 17: Let (2) be a generalized incrementally bal-
anced realization of the system ΣBC and let Σ̂BC,k as in (43)
be a reduced-order system obtained by generalized incremental
balanced truncation. Then, the following statements hold:

1) Any state trajectory ξ(·) of the reduced-order system (43)
with initial condition ξ(0) = ξ0 ∈ Rk and input function
u(·) ∈ Lm

2 ([0,∞)) is bounded for all t ≥ 0;
2) The reduced-order nonlinear system Σ̂BC,k is incremen-

tally stable for the class of inputs Lm
2 ([0,∞));

3) For any bounded input function u(·) ∈ Lm
2 ([0,∞)) and

initial conditions ξ(0) = ξ0, ξ̄(0) = ξ̄0, the outputs cor-
responding to the state trajectories ξ(·) and ξ̄(·) converge
to each other, i.e.

lim
t→∞

∣∣C1ξ(t)− C1ξ̄(t)
∣∣ = 0. (45)

Proof: The statements are proven separately.
1. Boundedness. When the inequality (31) describing the

generalized incremental controllability function is considered
in balanced coordinates, substitution of x1 = ξ, x̄1 = ξ̄ and
x2 = x̄2 = 0 yields

(ξ + ξ̄)TΣ−1
1

(
f1(ξ, 0) + f1(ξ̄, 0)

)
≤ − 1

2 (ξ + ξ̄)TΣ−1
1 B1B

T
1 Σ

−1
1 (ξ + ξ̄) (46)

which characterizes the generalized incremental controllability
function Ẽ1

c (see (37)) for the reduced-order system Σ̂BC,k.
Then, the time-derivative of Ẽ1

c yields

˙̃E1

c(ξ, ξ̄) = 2(ξ + ξ̄)TΣ−1
1

(
f1(ξ, 0)+B1u+f1(ξ̄, 0)+B1ū

)
,

≤ − (ξ + ξ̄)TΣ−1
1 B1B

T
1 Σ

−1
1 (ξ + ξ̄)

+ 2(ξ + ξ̄)TΣ−1
1 B1(u+ ū), (47)

= |u+ ū|2 −
∣∣(u+ ū)−BT

1 Σ
−1
1 (ξ + ξ̄)

∣∣2 (48)

where ξ(·) is the solution of (43) corresponding to initial
condition ξ(0) = ξ0 and input function u(·). Similarly, ξ̄(·)
represents the solution of (43) corresponding to initial condition
ξ̄(0) = ξ̄0 and input function ū(·). In (47), the inequality (46)
is used. Integration of (48) yields

Ẽ1
c

(
ξ(t), ξ̄(t)

)
− Ẽ1

c (ξ0, ξ̄0) ≤
t∫

0

|u(τ) + ū(τ)|2 dτ (49)

which is of the same form as (61) in Theorem 7. As a result, the
remainder of the proof follows that of the first item of Theorem 7,
where it is noted that, due to the quadratic form of the general-
ized incremental controllability function, the function V in the
proof of Theorem 7 is radially unbounded.

2. Incremental stability and 3. Output convergence. The
proof follows the same line of reasoning of the second and third
item of Theorem 7. �

As for model reduction using incremental balanced trunca-
tion, an error bound can be found for the reduced-order model
obtained by generalized incremental balanced truncation. Here,
due to the structure in the generalized energy function as (35),
this error bound is not limited to a one-step reduction. This is
formalized in the following theorem.

Theorem 18: Let (2) be a generalized incrementally bal-
anced realization of the system ΣBC. In addition, let Σ̂BC,k

as in (43) be a reduced-order system obtained by generalized
incremental balanced truncation such that the order k satisfies∑r

i=1 mi = k for some r. Then, for trajectories x(·) and ξ(·)
of ΣBC and Σ̂BC,k, respectively, for a common input function
u(·) ∈ Lm

2 ([0,∞)) and initial conditions x(0) = 0 and ξ(0) =
0, respectively, the corresponding outputs y(·) and ŷ(·) satisfy
the error bound

‖y − ŷ‖2 ≤
(
2

q∑
i=r+1

σi

)
‖u‖2 (50)

with σi as in Definition 10.
Proof: The proof is similar to that of Theorem 8. How-

ever, the generalized energy functions Ẽo and Ẽc are used
rather than the incremental observability and incremental con-
trollability functions. Then, the error bound can be obtained
by repeated one-step reductions, hereby removing the state
components corresponding to a single parameter σi as in (35).
Here, since the multiplicity mi of the discarded parameter σi

might be larger than one, multiple state components might be
removed in a single step. In fact, the quadratic form of the
generalized incremental observability and generalized incre-
mental controllability functions as in (36), (37), as well as the
fact that they are characterized by the same matrix Σ, ensures
that the condition (20) in Definition 7 is satisfied, even when
multiplicities are considered.

Thus, when reducing ΣBC to Σ̂BC,n−mq
, the result (27) in

Theorem 7 holds with ρ = σq . Since the remaining parts of the
generalized energy function Ẽ1

o and Ẽ1
c are again generalized

energy functions for the reduced-order system (see Lemmas
15 and 16), this procedure can be repeated to remove more
state components, eventually leading to the reduced-order sys-
tem Σ̂BC,k. Then, the triangle inequality leads to the error
bound (50). �

Due to the quadratic form of the generalized incremental ob-
servability and generalized incremental controllability function,
the error bound (50) is of the same form as the error bound for
linear systems as derived in [10] and [14] (see also [2]).

Remark 9: The error bound (50) is dependent on (the sum of)
the discarded parameters σi, i ∈ {r + 1, . . . , q}. Thus, given
the matrices Q̃ and R̃ describing the generalized incremental
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Fig. 1. Electronic circuit with nonlinear resistors η.

observability and generalized incremental controllability func-
tion, the ordering of the parameters as in Definition 10 gives
the tightest error bound. However, since the generalized energy
functions are not unique (see Remark 7), solutions to (30) and
(31) might be sought for which the eigenvalues of Q̃R̃−1 are
minimized. Here, a tractable approach might be obtained when
the generalized energy functions are considered individually,
hereby minimizing the eigenvalues of Q̃ and maximizing the
eigenvalues of R̃. It is noted that this observation corresponds
to the intuition discussed in Remark 7. �

Remark 10: As stressed before, the generalized incremental
observability and generalized incremental controllability func-
tion represent storage functions for the auxiliary systems Σo

and Σc and corresponding supply rates (see Theorems 1 and 2).
In addition, they are chosen to be of quadratic form in order to
guarantee the existence of a (linear) coordinate transformation
putting the system in a (generalized) incrementally balanced
form, which satisfies the statements in Definition 7.

However, the ideas presented in this section may be extended
to a larger class of storage functions. In particular, any (nonlin-
ear) functions Ẽo and Ẽc for which a coordinate transformation
can be found such that the transformed system satisfies the
conditions in Definition 7 can be exploited. By increasing
the class of generalized incremental energy functions beyond
that of quadratic functions, tighter bounds on the incremental
observability and incremental controllability function may be
obtained, potentially leading to a more accurate reduced-order
model and tighter error bounds. �

VI. EXAMPLE

The reduction method of generalized incremental balanced
truncation is illustrated by means of application to an example
of a nonlinear electronic circuit. This example is taken from
[26] and depicted in Fig. 1. Here, it is noted that no conditions
for the preservation of stability and no error bound are given in
[26]. In the electronic circuit, the resistors and capacitors have
unit resistance and capacitance, respectively, whereas the input
u ∈ R represents the source current. Next, the output y ∈ R is
taken as the voltage at node 1.

The nonlinearity is due to the presence of nonlinear resistors,
which are modeled by the relation i = η(v) with v the voltage
across the resistor and i the resistor current. The function η(v)
is assumed to be nondecreasing and satisfies η(0) = 0 and the
symmetry condition η(v) = −η(−v). This leads to a model
ΣBC of the form (2), where the vector field f is given as

f(x) = Ax+ ϕ(x) (51)

Fig. 2. Parameters σi characterizing the generalized incrementally balanced
realization (left) and a zoomed version (right).

with

A =

⎡
⎢⎢⎢⎣
−2 1 0

1 −2
. . .

. . .
. . . 1

0 1 −2

⎤
⎥⎥⎥⎦ , ϕ(x) = −

⎡
⎢⎢⎢⎣
η
(
x(1)

)
...
...

η
(
x(n)

)

⎤
⎥⎥⎥⎦ .

(52)

Here, x(i), i ∈ {1, 2, . . . , n}, denote the components of the state
x ∈ Rn (with n = 100), which represent the voltages at the
nodes indicated with ©1 to ©n in Fig. 1. Next, the input and
output matrices in (2) read BT = C = [1 0 · · · 0].

In order to find a reduced-order approximation of ΣBC,
solutions Q̃ to (30) and R̃ to (31) are sought, characterizing the
generalized incremental observability function Ẽo and gener-
alized incremental controllability function Ẽc, respectively. By
choosing Q̃ in (30) as a diagonal matrix Q̃ = diag{q̃1, . . . , q̃n}
(with q̃i > 0), the structure of the nonlinearity ϕ in (51) as well
as the fact that η is nondecreasing guarantee that

(x− x̄)TQ̃ (ϕ(x)− ϕ(x̄)) ≤ 0 (53)

for all x, x̄ ∈ Rn. Then, (30) reduces to the linear matrix
inequality

ATQ̃+ Q̃A � −CTC (54)

for which efficient solvers exist. The same ideas can be ex-
ploited for the generalized incremental controllability function,
such that R̃ = diag{r̃1, . . . , r̃n}. In fact, as the matrices in
(51) satisfy A = AT and B = CT, it follows that R̃ can be
chosen as R̃−1 = Q̃. Solving (54), while minimizing the trace
of Q̃ to obtain a tight error bound (see Remark 9), leads to
Q̃ = R̃−1 = Σ, where the entries σi of the diagonal matrix
Σ = diag{σ1, . . . , σn} satisfy σi ≥ σi+1, i ∈ {1, . . . , n− 1},
and are depicted in Fig. 2.

Then, Theorems 11 and 12 give the generalized incremental
energy functions. Moreover, Definition 10 implies that ΣBC as
in (2) with f as in (51) is a generalized incrementally balanced
realization in the original coordinates x. Consequently, the
importance of the state components can be interpreted in terms
of the nodes in Fig. 1, such that truncation corresponds to
the removal of the rightmost nodes in Fig. 1. Based on the
parameters σi in Fig. 2, the reduction order is chosen as k = 4,
leading to a reduced-order system Σ̂BC,4 as in (43).

By Theorem 17, this reduced-order system has bounded
trajectories and is incrementally stable for all input functions
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Fig. 3. Comparison of the high-order system ΣBC and the reduced-order
approximation Σ̂BC,4 for nonlinearity η(v) = sign(v)v2 and external input
u(t) = (5/2)(1− cos(2π(1/5)t)) (left) and u(t) = (1/2)(sign(sin(2π(1/
20)t)) + 1) (right).

TABLE I
ERROR BOUND ε, INPUT SIGNAL NORM ‖u‖2, AND ABSOLUTE AND

RELATIVE OUTPUT ERRORS ‖y − ŷ‖ AND ‖y − ŷ‖2/‖u‖2
FOR THE SIMULATIONS IN FIGS. 3 AND 4

in the class L1
2([0,∞)). In addition, Theorem 18 provides an

error bound with ε = 2
∑100

i=5 σi = 3.402.
To evaluate the quality of the reduced-order model obtained

by generalized incremental balanced truncation, the results of
time simulations are depicted in Fig. 3. Here, the nonlinearity
η is chosen as in [26], such that η(v) = sign(v)v2. From
Fig. 3, it is clear that the reduced-order system provides a
good approximation of the original high-order system. This
can also be concluded from Table I, which shows the error
bound ε, the norm on the input signal ‖u‖2 and the output
error ‖y − ŷ‖2 in its first three columns. The fourth column
gives the ratio between the output error and norm on the input
signal, specifying the actual relative error. By comparing this
relative error to the error bound, it can be seen that the error
bound is conservative for the input functions in Fig. 3. Here, it
is remarked that the input functions u are set to satisfy u(t) = 0
for all t ≥ 100. As a result, both u and the corresponding output
error y − ŷ are in L1

2([0,∞)) and the error bound applies.
The conservatism in the error bound for the simulations in

Fig. 3 has several causes. First, it is recalled that the error
bound holds for all input functions (in Lm

2 ([0,∞)) such that the
quality of the error bound is dependent on the particular input
function. This is illustrated by the simulation depicted in the left
graph of Fig. 4 and the corresponding error in Table I. Here, the
signal norms are obtained by truncating the input function at
t = 1200. For this input function, a larger error is obtained (i.e.,
closer to the error bound) than in earlier simulations in Fig. 3.
Nonetheless, the error bound remains conservative, as can be
seen by comparing the first and fourth column in Table I.

The remaining conservatism is largely due to properties of
the reduced-order model rather than the choice of the partic-
ular input function. First, the method of generalized balanced
approximation is based on the computation of quadratic bounds
on the incremental observability and incremental controllability
functions rather than on these incremental energy functions

Fig. 4. Comparison of the high-order system ΣBC of order n and the
reduced-order approximation Σ̂BC,4 for nonlinearity η̃(v) = sign(v)v2

and external input u(t) = (10−2/2)(sign(sin(2π(1/300)t)) + 1): n = 100
(left) and n = 10 (right).

themselves, which generally leads to a larger error bound (see
also Remark 7). Moreover, in this particular example, the ma-
trices Q̃ and R̃ characterizing the generalized incremental ob-
servability and generalized incremental controllability function,
respectively, are chosen diagonal (in order to guarantee that
the required inequalities hold for the nonlinearity ϕ, see (53)),
which limits the flexibility in the optimization of these bounds.
Next, it is noted that the proof of the error bound in Theorem
18 is based on the successive application of one-step reductions
and the triangle inequality, where the latter is conservative.

To illustrate these aspects, the electronic circuit model in
Fig. 1 is considered for order n = 10, hereby reducing the
conservatism introduced by choosing the diagonal form for Q̃
and R̃. Next, the relatively small reduction from n = 10 to
k = 4 reduces the number of successive applications of the tri-
angle inequality. The results for this case are depicted in the
right graph of Fig. 4, whereas the error bound is given in the
fourth row in Table I. As expected, the conservatism in the error
bound obtained by Theorem 18 is significantly reduced in this
case. Finally, it is noted that a tighter error bound can be ob-
tained by recomputing the diagonal matrices Q̃ and R̃ after the
states of the reduced-order model have been selected, hereby
minimizing the trace of only the discarded part of the matrices.

VII. CONCLUSION

The model reduction method of incremental balanced trun-
cation is introduced in this paper. It differs from existing exten-
sions of balanced truncation for linear systems to the nonlinear
case in the definition of two novel incremental energy functions.
These incremental observability and incremental controllabil-
ity function replace the (non-incremental) observability and
controllability function as the basis for a model reduction
procedure, yielding the following advantages. First, the incre-
mental observability function is directly related to the notion
of observability for nonlinear systems. Second, the reduction
procedure of incremental balanced truncation guarantees the
preservation of stability properties for both zero and nonzero
input functions. Third, an a priori error bound can be provided
for the reduced-order model.

Moreover, an extension towards generalized incremental bal-
anced truncation is introduced, which is based on the computa-
tion of bounds on the incremental energy functions rather than
the incremental energy functions themselves. This increases
the computational feasibility of the reduction at the cost of a
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(potentially) increased error bound and potentially less accurate
reduced-order model. This method is illustrated by means of
application to an example of an electronic circuit.

APPENDIX A

A. Proof of Lemma 5

By the definition of an incrementally balanced realization
(see Definition 7), the incremental observability function Eo

exists and can be decomposed as in (18). By Theorem 1, Eo in
partitioned coordinates is characterized by

∂E1
o

∂x1
(x1, x̄1)f1(x1, x2) +

∂E2
o

∂x2
(x2, x̄2)f2(x1, x2)

+
∂E1

o

∂x1
(x1, x̄1)f1(x̄1, x̄2) +

∂E2
o

∂x̄2
(x2, x̄2)f2(x̄1, x̄2)

= − |Δh(x1, x2, x̄1, x̄2)|2 − |lo(x1, x2, x̄1, x̄2)|2 , (55)
∂E1

o

∂x1
(x1, x̄1)g1(x1, x2) +

∂E2
o

∂x2
(x2, x̄2)g2(x1, x2)

+
∂E1

o

∂x̄1
(x1, x̄1)g1(x̄1, x̄2) +

∂E2
o

∂x̄2
(x2, x̄2)g2(x̄1, x̄2) = 0

(56)

with Δh(x1, x2, x̄1, x̄2) = h(x1, x2)− h(x̄1, x̄2) and for some
function lo. The partitioning (18) implies that the partial deriva-
tives in (55), (56) with respect to xi and x̄i are independent
of xj and x̄j , with i, j ∈ {1, 2}, i �= j. Substitution of x1 = ξ,
x̄1 = ξ̄ and x2 = x̄2 = 0 in (55), (56) gives

∂E1
o

∂ξ
(ξ, ξ̄)f1(ξ, 0) +

∂E1
o

∂ξ̄
(ξ, ξ̄)f1(ξ̄, 0)

= −
∣∣h(ξ, 0)− h(ξ̄, 0)

∣∣2 − ∣∣lo(ξ, 0, ξ̄, 0)∣∣2 , (57)
∂E1

o

∂ξ
(ξ, ξ̄)g1(ξ, 0) +

∂E1
o

∂ξ̄
(ξ, ξ̄)g1(ξ̄, 0) = 0. (58)

Here, the property (∂E2
o/∂x2)(0, 0) = (∂E2

o/∂x̄2)(0, 0) = 0
is used, which follows from the fact that x2 = x̄2 is a minimum
for E2

o . The partial differential (57), (58) are of the same form
as (8), (9), such that Theorem 1 guarantees existence of the
incremental observability function Êo for the reduced-order
system Σ̂n−1. It directly follows that (24) holds, since Êo is the
minimal solution E1

o satisfying (57), (58) for some function lo.

B. Proof of Lemma 6

The statement can be proven along the lines of the proof of
Lemma 5, hereby exploiting the partitioned form of (12) and
(13) as

∂E1
c

∂x1
(x1, x̄1)f1(x1, x2) +

∂E2
c

∂x2
(x2, x̄2)f2(x1, x2)

+
∂E1

c

∂x̄1
(x1, x̄1)f1(x̄1, x̄2) +

∂E2
c

∂x̄2
(x2, x̄2)f2(x̄1, x̄2)

= −lTc (x1, x2, x̄1, x̄2)lc(x1, x2, x̄1, x̄2), (59)[
∂E1

c

∂x1
(x1, x̄1)g1(x1, x2) +

∂E2
c

∂x2
(x2, x̄2)g2(x1, x2)

∂E1
c

∂x̄1
(x1, x̄1)g1(x̄1, x̄2) +

∂E2
c

∂x̄2
(x2, x̄2)g2(x̄1, x̄2)

]
= −2lTc (x1, x2, x̄1, x̄2)W (x1, x2, x̄1, x̄2) (60)

with W satisfying (14). Substitution of x1 = ξ, x̄1 = ξ̄1 and
x2 = x̄2 = 0 leads to a characterization of a storage function
for the reduced-order auxiliary system Σ̂

c

n−1 and supply rate
|u+ ū|2, from which the result follows. Here, Σ̂

c

n−1 is defined
similar to (10), i.e., it consists out of two copies of the one-step
reduced-order system Σ̂n−1.

The incremental controllability function Êc is not guaranteed
to exist a priori as Σ̂n−1 might not be reachable from the
origin (see also Theorem 2). When it exists, the inequality (25)
directly follows from dissipativity theory.

C. Proof of Theorem 7

The items will be proven separately.
1. Boundedness. Even though E1

c is not necessarily the
controllability function for the reduced-order system Σ̂n−1, it
follows from Lemma 6 that it is a storage function for the
auxiliary system Σ̂

c

n−1 and supply rate |u+ ū|2. Here, Σ̂
c

n−1

consists of two copies of the reduced-order system Σ̂n−1,
similar to the definition in (10). Then, the characterization of E1

c

in terms of the partitioned counterparts of (12)–(14) guarantee
that E1

c satisfies

E1
c

(
ξ(t), ξ̄(t)

)
− E1

c (ξ0, ξ̄0) =

t∫
0

|u(τ) + ū(τ)|2 dτ

−
t∫

0

∣∣∣∣W (ξ, 0, ξ̄, 0)

[
u(τ)

ū(τ)

]
+ lc(ξ, 0, ξ̄, 0)

∣∣∣∣
2

dτ (61)

along trajectories of Σ̂
c

n−1. Here, ξ0 and ξ̄0 denote the initial
conditions. Denote V (ξ) = E1

c (ξ, ξ). Then, given the fact that
Ec(x, x) > 0 for all x �= 0 and the partitioning in (19), V
is positive definite, implying the existence of two class K
functions ν1, ν2 such that

ν1 (|ξ|) ≤ V (ξ) ≤ ν2 (|ξ|) (62)

see, e.g., [19]. Furthermore, let a be a positive number such that
a < limr→∞ ν1(r). Next, classes of initial conditions and input
functions are defined as

Xr :=
{
ξ ∈ Rn−1 | ν2 (|ξ|) ≤ r

}
, (63)

Us :=

⎧⎨
⎩u ∈ Lm

2 ([0,∞)) |
∞∫
0

|u(t)|2 dt ≤ s

4

⎫⎬
⎭ . (64)

Evaluation of trajectories of the auxiliary system Σ̂
c

for ξ0 =
ξ̄0 ∈ Xr and u(·) = ū(·) ∈ Us gives the inequality

V (ξ(t)) ≤ V (ξ0) + 4

t∫
0

|u(τ)|2 dτ ≤ r + s (65)

for all t ≥ 0, as follows from (61). Then, by choosing r + s <
a, it is clear from (62) that the state trajectory is bounded as
|ξ(t)| ≤ ν−1

1 (r + s) for all t ≥ 0, where the condition r + s <
a ensures that the inverse of ν1 indeed exists. If Ec(x, x) →
∞ as |x| → ∞, V is radially unbounded and boundedness of
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state trajectories holds for all initial conditions and all input
functions in the class Lm

2 ([0,∞)).
2. Incremental stability. In this proof, the function E1

o as in
(18) will be used as a Lyapunov function for incremental stabil-
ity. Since Eo(x, x̄) > 0 for all x, x̄ ∈ Rn, x �= x, it follows that
there exists functions α1 and α2 of class K such that

α1

(
|ξ − ξ̄|

)
≤ E1

o(ξ, ξ̄) ≤ α2

(
|ξ − ξ̄|

)
. (66)

Then, let c∗ be a positive constant such that c∗ < limr→∞ α1(r)
and define c := α−1

2 (c∗), where the inverse is guaranteed to
exist due to the choice of c∗. The time-derivative of E1

o along
trajectories of the reduced-order auxiliary system Σ̂

o

n−1, which
is defined as the parallel interconnection of two copies of Σ̂n−1

similar to (6), is given by

Ė1
o(ξ, ξ̄) = −

∣∣h(ξ, 0)− h(ξ̄, 0)
∣∣2 − ∣∣lo(ξ, 0, ξ̄, 0)∣∣2 ≤ 0.

(67)

This follows from (57) and (58), where the latter also shows that
the equality (67) holds for any input function. When choosing
the initial conditions ξ0, ξ̄0 ∈ Rn−1 such that c0 := |ξ0 − ξ̄0| <
c, it follows from (66) that E1

o(ξ0, ξ̄0) < α2(c0). Since, by (67),
Eo is nonincreasing along trajectories of the auxiliary system
Σ̂

o

n−1, it follows that E1
o(ξ(t), ξ̄(t)) < α2(c0). Then, (66) gives∣∣ξ(t)− ξ̄(t)
∣∣ ≤α−1

1

(
E1

o

(
ξ(t), ξ̄(t)

))
, (68)

≤α−1
1 ◦ α2

(
|ξ0 − ξ̄0|

)
(69)

for all |ξ0 − ξ̄0| < c and where invertibility of α1 is guaranteed
since c0 < c, such that α2(c0) < c∗. Consequently, the function
α in Definition 4 is given as α = α−1

1 ◦ α2 and Σ̂n−1 is
incrementally stable.

3. Output convergence. The property (26) will be proven
using Barbalat’s lemma (see, e.g., [19]). Integration of (67),
hereby using the fact that Eo(x, x̄) is nonnegative, leads to

∞∫
0

∣∣h (ξ(t), 0)− h
(
ξ̄(t), 0

)∣∣2 dt ≤ E1
o(ξ0, ξ̄0) < ∞ (70)

which holds for any input function in Lm
2 ([0,∞)) and all

initial conditions ξ0, ξ̄0. Here, it is noted that boundedness
of E1

o follows from boundedness of Eo in Definition 7. By
assumption, the state trajectories ξ(·) and ξ̄(·) are bounded and
there exists a compact set B � 0 such that ξ(t) ∈ B, ξ̄(t) ∈ B
for all t ≥ 0. By continuity of f and g as in (1) and boundedness
of u, the function f1(ξ, 0) + g1(ξ, 0)u as in (23) is bounded for
all (bounded) ξ. Consequently, the time derivatives of ξ(·) and
ξ̄(·) are bounded and ξ(·) and ξ̄(·) are uniformly continuous.
By continuity of the output equation h, the function |h(ξ, 0)−
h(ξ̄, 0)|2 is uniformly continuous in (ξ, ξ̄) on the compact set
B × B. Thus, |h(ξ(t), 0)− h(ξ̄(t), 0)|2 is uniformly continuous
in t, allowing for the application of Barbalat’s lemma. This
directly proves the desired result.

D. Proof of Theorem 8

The theorem will be proven by showing that the error system
Σ− Σ̂n−1 is dissipative with respect to the supply rate

s(u, y, ŷ) = (2ρ)2|u|2 − |y − ŷ|2. (71)

Herein, the candidate storage function V is introduced as

V (x1,x2,ξ)=E1
o(x1,ξ) + E2

o(x2,0)

+ ρ2
(
E1

c (x1, ξ) + E2
c (x2,0)

)
(72)

where Ei
o, i ∈ {1, 2}, represent the partitioned incremental

observability function as in (18). Similarly, Ei
c, i ∈ {1, 2}, are

the components of the partitioned incremental controllability
function as in (18). By nonnegativity of the incremental energy
functions Eo and Ec (see Definitions 5 and 6), it is easily
observed that V (x1, x2, ξ) ≥ 0 for all x1, ξ ∈ Rn−1, x2 ∈ R.
Then, differentiation of (72) along trajectories of Σ as in (1)
and Σ̂n−1 as in (23) yields

V̇ (x1, x2, ξ) =
∂E1

o

∂x1
(x1, ξ) (f1(x1, x2) + g1(x1, x2)u)

+
∂E1

o

∂x̄1
(x1, ξ) (f1(ξ, 0) + g1(ξ, 0)u)

+
∂E2

o

∂x2
(x2, 0) (f2(x1, x2) + g2(x1, x2)u)

+ ρ2
∂E1

c

∂x1
(x1, ξ) (f1(x1, x2) + g1(x1, x2)u)

+ ρ2
∂E1

c

∂x̄1
(x1, ξ) (f1(ξ, 0) + g1(ξ, 0)u)

+ ρ2
∂E2

c

∂x2
(x2, 0) (f2(x1, x2)+g2(x1, x2)u). (73)

In order to rewrite the result in (73), the characterization of
the incremental observability and incremental controllability
function in partitioned coordinates (55), (56) and (59), (60)
will be used. However, they cannot be applied to the form
(73), since the partial derivatives with respect to the coordinate
x̄2 do not appear in (73). Thereto, the condition (20) is used,
which follows from the assumption that Σ is an incrementally
balanced realization according to Definition 7. In particular,
(20) implies

∂E2
o

∂x̄2
(x2, 0) (f2(ξ, 0) + g2(ξ, 0)u)+

ρ2
∂E2

c

∂x̄2
(x2, 0) (f2(ξ, 0) + g2(ξ, 0)u) = 0 (74)

such that the left-hand side of (74) can be added to (73). This
allows for the application of (55), (56) and (59), (60), hereby
using x̄1 = ξ and x̄2 = 0. This leads to

V̇ (x1, x2, ξ) ≤ − |h(x1, x2)− h(ξ, 0)|2

− ρ2lTc (x1, x2, ξ, 0)lc(x1, x2, ξ, 0)

+ ρ2
[
∂E1

c

∂x1
(x1, ξ)g1(x1, x2)+

∂E2
c

∂x2
(x2, 0)g2(x1, x2)

∂E1
c

∂x̄1
(x1, ξ)g1(ξ, 0)+

∂E2
c

∂x̄2
(x2, 0)g2(ξ, 0)

][
u

u

]
(75)



2752 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 10, OCTOBER 2014

where the inequality follows from discarding the term rep-
resented by the function lo in the characterization of the
incremental observability function in (55). Moreover, the input-
dependent terms are written as a matrix multiplication. This
allows for the application of (60) with x̄1 = ξ and x̄2 = 0, such
that (75) can be rewritten as

V̇ (x1, x2, ξ) ≤− |h(x1, x2)− h(ξ, 0)|2

− ρ2lTc (x1, x2, ξ, 0)lc(x1, x2, ξ, 0)

−2ρ2lTc (x1,x2,ξ,0)W (x1,x2,ξ,0)

[
u

u

]
. (76)

Completion of the squares results in

V̇ (x1, x2, ξ) ≤ − |h(x1, x2)− h(ξ, 0)|2

+ ρ2
[
u

u

]
WT(x1, x2, ξ, 0)W (x1, x2, ξ, 0)

[
u

u

]

− ρ2
∣∣∣∣W (x1, x2, ξ, 0)

[
u

u

]
+ lc(x1, x2, ξ, 0)

∣∣∣∣
2

. (77)

Finally, the application of (14) (with W (x, x̄) = W (x1, x2, x̄1,
x̄2) as before) gives

V̇ (x1, x2, ξ) ≤ − |h(x1, x2)− h(ξ, 0)|2 + ρ2|2u|2

− ρ2
∣∣∣∣W (x1, x2, ξ, 0)

[
u

u

]
+ lc(x1, x2, ξ, 0)

∣∣∣∣
2

,

≤ (2ρ)2|u|2 − |y − ŷ|2. (78)

Hence, the function V as in (72) is indeed a storage function for
the supply rate (71), which proves the bounded L2 gain (see,
e.g., [28]) of the output error.
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