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Abstract

We present a new passive model reduction algorithm based
on the Laguerre expansion of the time response of inter-
connect networks. We derive expressions for the Laguerre
coefficient matrices that minimize a weighted square of the
approximation error, and show how these matrices can be
computed efficiently using Krylov subspace methods. We
discuss the connections between our method and other meth-
ods such as PRIMA [4]. Numerical simulations show that
our method can better approximate the original model as
compared to PRIMA.

1 Introduction

With the increasing complexity of VLSI circuits, the mod-
els of interconnect networks have become so large that their
analysis using brute-force techniques has become imprac-
tical. A popular approach to solve this problem is model
reduction, where an approximate small-scale model is used
in place of the original large-scale system.

A number of model-reduction methods are available in
the literature. Moment matching techniques [1, 9, 4] can
be used to generate passive reduced order models for in-
terconnects. More sophisticated methods such as balance-
and-truncate model reduction have also been proposed for
interconnect modeling [5, 3, 6]. Krylov methods such as
the Arnoldi and Lanczos iterations apply naturally in the
numerical implementation of these techniques. All of these
methods focus on approximating the frequency response of
the original system and are hence referred to as frequency-
domain methods.

A natural counterpart to frequency-domain methods are
time-domain methods where the focus is on directly approx-
imating the time response of the systemi (it can be argued
that this is a more natural approach , as typically it is the
time response that is of interest). Krylov methods have been
applied in this context as well; see [2], where the derivatives
of the circuit response are preserved to a given order for the
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reduced-order model. Another approach towards approxi-
mating time responses uses orthogonal polynomials. The
basic idea is to project the time response of the original sys-
tem onto a smaller dimensional subspace spanned by an or-
thogonal basis. A natural optimality criterion in this setting
is the (possibly weighted) square of the approximation er-
ror. An example of such an approach can be found in [8],
where Chebyshev polynomials are used to approximate the
impulse response.

The algorithm that we present in this paper are closest
in spirit to the approach in [8]. Motivated by a number of
reasons, we propose the use of Laguerre polynomials for
the orthogonal basis. Unlike with Chebyshev polynomials
that are defined over the interval[�1;1], Laguerre polyno-
mials are defined over[0;∞], making them a more natural
candidate for approximating continuous-time responses. In
addition, we will show that a closed-form expression for the
optimal coefficients can be derived very simply. These coef-
ficients can benumerically computedvery efficiently using
Krylov methods. And the amount of computation required
by our methods is the same as that required by PRIMA.
We will also show that our algorithm can handle more gen-
eral inputs, and can accommodate differing time-horizons
for the approximation.

2 Background

2.1 Problem Description

Consider an single-input, single-output1 RLC network,
described by the state equations:

M
dx
dt

+Nx(t) = bu(t); y(t) =Cx(t) (1)

wherex(t) 2 Rn, u(t) andy(t) are the state, input, and out-
put respectively.M andN are square matrices of sizen, and
b2 Rn. These matrices arise from modified nodal analysis
(MNA). Typically n is very large.

1We consider single-input, single-output systems only for simplicity
of exposition; the results presented herein can be extended to multi-input
multi-output systems without much difficulty.



With A= M�1N andB= M�1b, the impulse response of
system (1), given byx(t) = e�AtB, can be shown to satisfy

x(t)+A
Z t

0
x(τ)dτ = B: (2)

2.2 The Laguerre Polynomial Expansion

Consider the sequence of polynomialsLi : [0;∞) ! R
i = 0;1; : : :, given by

Li(t) = et di

dti
(t ie�t): (3)

These are theLaguerrepolynomials [7]. The Laguerre ex-
pansion suggests a natural method for approximating the
function f : The kth orderLaguerre approximantof f is
simply

f̂k(t) = ĉ0L1(t)+ ĉ1L1(t)+ � � �+ ĉkLk(t): (4)

It is easy to establish that this approximation isoptimal in
the following sense: WithFk defined as

Fk =

�
f

���� f (t) = c0L1(t)+ � � �+ckLk(t)
ci 2 R; i = 0;1; : : : ;k

�
;

we have

f̂k = argminfk2Fk

Z ∞

0
e�t( f (t)� fk(t))

2 dt:

In other words,f̂k(t) given by (4) is theoptimalprojection
of f (t) into thek-dimensional subspaceFk, with the error
weighted bye�t .

The time weighting in the Laguerre expansion has a nat-
ural engineering interpretation: Errors in the approxima-
tion of the response that are closer in time to the impul-
sive excitation are considered more “costly” than later er-
rors. As the transition of a signal (from logic high to logic
low or vice versa) in any useful VLSI circuitry typically oc-
curs shortly after the input excitation, such a time weight-
ing function enables the Laguerre approximation to cap-
ture signal transition accurately. Therefore, our argument
is that for VLSI applications, the Laguerre approximation
provides better approximations of signal delay and transi-
tion times.

3 Laguerre model reduction

3.1 Approximating the impulse response

Our objective is to approximate the impulse response
x(t) = e�AtB of system (1) as

x(t)� xk(t) =
k

∑
i=0

ĉiLi(t) (5)

Using (2), and the fact that the Laguerre polynomials satisfy
the recursion

Z t

0
Li(t)dτ =�

1
i +1

Li+1(t)+Li(t); (6)

it is easy to show that we have

L
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where
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Thus, we have the following recursions to obtain the coef-
ficientsĉi :

ĉ0 = (I +A)�1B;

ĉi =
1
i (I +A)�1Aĉi�1; 1� i � k:

(9)

3.2 Model reduction

We now present a model order reduction scheme that
builds on the observation thatxk(t), thekth order Laguerre
polynomial, serves as an optimalkth order approximant to
x(t). Note that withB̃ = (I +A)�1B andÃ = (I +A)�1A,
we may write

xk(t) = Pk

2
6664

1
0! L0(t)
1
1! L1(t)

...
1
k! Lk(t)

3
7775 ;

where
Pk =

�
B̃ ÃB̃ � � � ÃkB̃

�
: (10)

Thus, xk(t) lies in the span of the columns of the matrix
Pk for all t. This suggests the model reduction scheme of
projecting the state-space on to the span of the columns
of Pk. More precisely, letPk = QkRk be a QR factoriza-
tion, that is,Qk 2Rn�(k+1) with orthonormal columns,Rk 2

R(k+1)�(k+1) is lower triangular. Then, a reduced-ordermodel
is given by

M̂
dx̂
dt

+ N̂x̂(t) = b̂u(t); ŷ(t) = Ĉx̂(t) (11)

wherex(t) = Qkx̂(t), M̂ = QT
k MQk, N̂ = QT

k MQk, b̂= QT
k b

andĈ =CQk.
Obviously the reduced-order model described in (11) is

passive. This follows from the observation that the columns



of Qk are orthogonal. The proof is in [4].

3.3 Efficient computation

As the columns ofPk span a Krylov subspace, its QR
factorization can be efficiently computed as follows:

1. Compute an LU factorizationM + N. Use this to
computeB̃= (I +A)�1B= (M +N)�1b.

2. Compute the QR factorization ofPk using the Arnoldi
method, without explicitly forming̃A.

The overall computation required is essentially the same as
that required by PRIMA [4].

4 Extensions

4.1 Accounting for the time horizon

Recall that with the standard Laguerre approximation,
the error was weighted bye�t ; this introduces implicitly a
time horizon of interest. This time horizon can be increased
or decreased with a simple time-weighting technique, by re-
placingt by t=T. (Loosely speaking, increasingT “spreads
out” the quality of approximation over larger and larger time
horizons.) This corresponds to replacingA by AT andB by
BT in the development thus far, that is, with

B̃T =

�
1
T

I +A

�
�1

B andÃT =

�
1
T

I +A

�
�1

A;

thekth order Laguerre approximant lies in the span of�
B̃T ÃTB̃T � � � Ãk

TB̃T
�
:

When T is very large compared to the magnitude of the
eigenvalues ofA, we have

B̃T � A�1B; ÃT �

�
I �

1
T

A�1
�

;

so that thekth order Laguerre approximant lies in

span
�

A�1B A�2B � � � A�K+1B A�KB
�
;

which coincides with the matrix used by PRIMA to perform
the model reduction.

In our experience, we have found that a value ofT that
is one-fifth of the reciprocal of the smallest real part of the
eigenvalues ofA is a good heuristic for trading off the qual-
ity of approximation of the time response and the time hori-
zon.

4.2 Response to general inputs

Unlike with existing approximation methods such as those
based on Chebyshev polynomials, we show how our ap-
proach can directly handle inputs other than impulses. Sup-
pose the inputu is a polynomial of orderk� 1. Then, we

may write
Z t

0
u(τ)dτ = a0L0(t)+ � � �+akLk(t);

that is, we first compute the Laguerre expansion of the inte-
gral of u(t). (Note that the expansion is exact.) Then, it is
readily verified that the optimalkth order Laguerre approx-
imant of the statex is given byx(t) � xk(t) = ∑k

i=0 ĉiLi(t),
where

L
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with L being defined in (8). In other words, the optimal
Laguerre approximant is obtained by simply changing the
right-hand side of the linear equation (7). One consequence
of this observation is that the reduced-order model derived
in x3.2 is independent of the input when it is a polynomial
of order smaller than that of the reduced-order model.

5 Numerical Results

We present a few representative circuit examples that
demonstrate the performance of the Laguerre model reduc-
tion algorithm proposed in this paper. We consider three
circuit examples that are either adapted or taken directly
from [4, 8].
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Figure 1. Circuit Example 1 [8].

Example 1: The circuit, which is shown in Figure 1, con-
sists of three RLC lines with capacitive and inductive cou-
pling between adjacent lines [8]. There are 20 RLC sec-
tions in each line. The circuit parameters for each section
are: R= 1Ω, L = 1nH,C = 1pF, the coupling capacitance
CC= 1pF, and the inductance coupling coefficient between
adjacent sections isk = 0:2. The middle line is the aggres-
sor net with a step input. Figure 2 plots the exact response
of the far-end node of the upper victim line. In the same
plot, we also show the approximation responses of the La-
guerre and PRIMA reduced order models, both of which are



of order 13. For a more direct comparison between the La-
guerre model reduction method and the PRIMA method, we
also plot the absolute differences (errors) between the exact
response and the responses of the two reduced order mod-
els in Figure 3. The peak errors of the Laguerre model and
the PRIMA model, denoted respectively by EpLand EpP, are
0:1104V and 0:1113V. The integrals of the errors for the La-
guerre model and PRIMA model over the span of the time
responses in Figure 2, denoted respectively by EiL and EiP,
are 1:36e�10V-s (Volt-second) and 1:71e�10V-s. It is evi-
dent that the response of the the Laguerre model tracks the
exact response more closely as compared to PRIMA.
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Figure 2. Time responses of Example 1 and
its reduced models.
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Figure 3. Approximation errors of the reduced
models for Example 1.

We perform similar comparisons of the Laguerre model
reduction method and the PRIMA method for the remain-
ing two examples. For each circuit, we compare the exact
response with the responses of the reduced order models
generated by the Laguerre model reduction method and the
PRIMA method. The peak errors and the integral errors in-
curred by the two methods are summarized in Table 1. The
Laguerre model reduction method has smaller peak and in-
tegral errors as compared to PRIMA. The details of the re-
maining two examples are as follows:
Example 2: The circuit, which is adapted from [8], is shown
in Figure 4. Each line is segmented into 40 sections with pa-
rametersR= 1Ω, L = 0:01nH,C = 10fF,G= 0:0010, and
the coupling capacitanceCC = 1fF. The order of the two

Table 1. Peak errors and integral errors of La-
guerre and PRIMA models.

Example 1 2 3
EiL�1010 (V-s) 1.36 0.0316 0.132
EiP�1010 (V-s) 1.71 0.0404 0.159

EiL /EiP 0.792 0.782 0.832
EpL(V) 0.1104 0.508 0.0160
EpP(V) 0.1113 0.700 0.0171
EpL/EpP 0.992 0.726 0.936

reduced models is 15. The input is a current source. The
responses of the output node of the upper line are shown in
Figure 5, and the approximation errors of the Laguerre and
PRIMA models are shown in Figure 6.
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Figure 4. Circuit Example 2 [8].
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Figure 5. Time responses of Example 2 and
its reduced models.

Example 3: This example is borrowed from [4]. The cir-
cuit is a 2-bit bus driven by CMOS inverters as shown in
Figure 7. One of the drivers is switching while the other is
quiet. The two wires, consisting of 40 coupled RLC sec-
tions each, are modeled as a four-ports system. Each wire
has a resistance, inductance, and capacitance (to ground) of
10Ω, 5nH, and 15pF, respectively. The total coupling ca-
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Figure 6. Approximation errors of the reduced
models for Example 2.
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Figure 7. Circuit Example 3 [4].

pacitance between the two lines is 7:5pF. The order of the
reduced models is 10. The input to the upper wire is a ramp
input with a rise time of 1ns. The waveforms of the output
of the lower wire are shown in Figure 8 and the approxima-
tion errors are shown in Figure 9.

6 Conclusion

We have presented a new passive model reduction al-
gorithm for large-scale systems based on the Laguerre ex-
pansion of the time response. Three distinguishing features
of our method are: (i) We use Laguerre expansion to ap-
proximate the continuous-time response of the original state
equation over[0;∞). (ii) The Laguerre approximation mini-
mizes a weighted square of the approximation error. (iii) We
derive a closed-form expression for the optimal Laguerre
coefficient matrices, whose orthonormal bases can be nu-
merically computed very efficiently via Krylov methods.
Moreover, we introduce a time-weighting technique to fur-
ther reduce the error over a time horizon of interest. We
also explore the connection between the proposed Laguerre
approximation and the PRIMA method. Numerical simula-
tions show that our approach can obtain better results than
the PRIMA method.
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