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Abstract

Network systems consist of subsystems and their interconnections and pro-

vide a powerful framework for the analysis, modeling, and control of com-

plex systems. However, subsystems may have high-dimensional dynamics

and a large number of complex interconnections, and it is therefore rel-

evant to study reduction methods for network systems. Here, we provide

an overview of reduction methods for both the topological (interconnec-

tion) structure of a network and the dynamics of the nodes while preserving

structural properties of the network.We �rst review topological complexity

reduction methods based on graph clustering and aggregation, producing a

reduced-order network model.Next, we consider reduction of the nodal dy-

namics using extensions of classical methods while preserving the stability

and synchronization properties. Finally, we present a structure-preserving

generalized balancing method for simultaneously simplifying the topologi-

cal structure and the order of the nodal dynamics.
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1. INTRODUCTION

The backbone of many modern technological systems is a network system (a system of systems),

which bonds diverse multiphysics components together. Many large-scale systems can be mod-

eled as network systems that are composed of multiple subsystems interacting with each other via

certain coupling protocols. Such systems are becoming increasingly prevalent in various domains;

chemical reaction chains, cellular and metabolic networks, social networks, multirobot coordina-

tion, and large-scale power grids are only a few examples (1–8).

However, with the increasing complexity of network scales and subsystem dynamics, the

models describing the behavior of network systems can be of extremely high dimension. This

will lead to serious scalability issues in simulation, optimization, transient analysis, and control

synthesis due to limited computational capability and storage capacity. These issues spur the

development of methodologies on complexity reduction for large-scale network systems, aiming

to acquire pertinent information on the systems in a computationally manageable fashion.

In the past few decades, a variety of theories and techniques for model reduction have been

developed for generic dynamical systems, including Krylov subspace methods (also known as

moment matching), balanced truncation, and Hankel norm approximation (see 9–14 and the

references therein). These conventional methodologies can generate reduced-order models

that well approximate the input–output mapping of a high-dimensional system. However, when

addressing the model reduction problem of large-scale network system, we must rethink how

to implement those methods in a structure-preserving manner, because the analysis, control,

and monitoring of complex networks rely heavily on their interconnection structure (15–18).

Actually, preserving essential network con�gurations in the approximation of network systems

presents the most challenging problem. Early work on controller reduction can be viewed

as a predecessor of structure-preserving reduction of interconnected systems, which takes

into account the coupling structure between plants and controllers (19, 20). However, recent

developments in large-scale networked systems have gone far beyond the simple closed-loop

structure.

In this article, we provide an overview of recent advances in dimension reduction of com-

plex network systems. The complexity we consider consists of two aspects—large-scale topology

and high-dimensional subsystems (nodal dynamics)—which lead to two types of model reduction

problems in the context of network systems.

The �rst of these problems is focused on how to simplify a complicated network structure

by reducing the number of nodes. Inspired by the classi�cation and pattern recognition in data

science and computer graphics (21, 22), reduction methods based on clustering and aggregation

are mainstream for reducing topological complexity.We cover most of the relevant work (23–31)

in this article and brie�y review other topological methods, including the well-known singular

perturbation approximation.

The second problem considers how to reduce the dimension of individual subsystems in a

network. The relevant approximation approaches for interconnected systems or coupled systems

based on subsystem structuring have been of interest for a long time (32–34). More recent

works by Monshizadeh et al. (35) and Cheng et al. (36) further discuss diffusively coupled

linear/nonlinear systems, where the reduction is performed on each subsystem in a way that

retains certain properties of the entire network, such as synchronization and stability. Further-

more, techniques developed by Ishizaki et al. (37) and Cheng et al. (38) combine the complexity

reduction of network structures and subsystem dynamics while also providing an attractive way

to simplify the complexity of entire network systems.
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2. FROM GRAPHS TO NETWORK SYSTEMS

In this section, we cover some preliminaries regarding algebraic graph theory along with key con-

cepts formodeling, analyzing, and designing network systems, and then introduce the graph-based

modeling of network systems. Bullo (39) and Wu (40) provide further details on these subjects.

2.1. Algebraic Graph Theory

The language of graphs is essential in themodeling and control of networked systems and provides

a natural tool for characterizing the interconnection structure of a network. Any �nite graph G

can be featured by a �nite and nonempty node set V := {1, 2, . . . , n} and an edge set E ⊆ V × V .

Depending onwhether the edges have speci�c orientations,we have two basic categories of graphs:

directed and undirected.

2.1.1. Directed graphs. Directed graph (digraph) structures are found in various applications,

including biochemical reactions and social networks (see, e.g., 5, 6), where the transmission of

information or energy among network nodes is directional. This directionality can be encoded

in the edges, which are ordered pairs of elements of V , and we say that there is an edge directed

from node i to node j if (i, j) ∈ E . A digraph G is called simple if it does not contain self-loops

[i.e., E does not contain edges of the form (i, i), �i] and there exists exactly one edge directed

from i to j if (i, j) ∈ E . In a simple digraph G, a node in is reachable from another node i0 if there

is a directed path from i0 to in. Here, this path is de�ned as a sequence of edges of the form

(ik − 1, ik), k = 1, . . . , n, which joins a sequence of distinct nodes i0, i1, . . . , in.

Next, we present the connectivity notions for a digraph G: (a) G is strongly connected if

any two nodes are reachable from each other, (b) G is quasi-strongly connected if all the nodes

are reachable from a common node, and (c) G is weakly connected if its undirected version

Gu := (V , Eu ) is strongly connected, where the set Eu ⊇ E includes both (i, j) and ( j, i) if there is an

edge (i, j) ∈ E . Note that any simple digraph G can be decomposed into a unique set of maximal

strongly connected components (SCCs), which are the largest strongly connected subgraphs of G.

If an SCChas out�ows only to other SCCs, it is called a root SCC (RSCC).A weakly connected di-

graphmay containmultiple RSCCs,while a quasi-strongly connected digraph has only oneRSCC.

Three matrices are commonly used to characterize the topology of a digraph. The incidence

matrix B ∈ R
n×|E | of G is de�ned such that [B]i j = 1 if edge (i, j) ∈ E , [B]i j = −1 if edge ( j, i) ∈ E ,

and [B]i j = 0 otherwise, where each column indicates a directed edge.When this edge is assigned

a positive value (weight)—that is, G is weighted—we de�ne a weighted adjacency matrixA, where

[A]i j is equal to the weight of the edge ( j, i) if ( j, i) ∈ E , and [A]i j = 0 otherwise. Moreover,

the weighted out-degree and in-degree matrices of G are the diagonal matrices de�ned by

Dout := Diag(A1) and Din := Diag(1⊤A), respectively. A strongly connected digraph is called

balanced if Dout = Din. The Laplacian matrix of a digraph G is de�ned as L := Dout − A, and the

elements of L are given by

[L]i j =

{∑n
j=1, j �=i Ai j , i = j,

−Ai j , otherwise.
1.

Laplacian matrices are instrumental in modeling various diffusion processes (e.g., 4, 41, 42). A

Laplacian matrix enjoys two fundamental properties: (a) L1 = 0 and (b) [L]ii ≥ 0, ∀i ∈ V , and

[L]ij ≤ 0, ∀i �= j. Conversely, a real square matrix satisfying the two properties can also be

interpreted as a Laplacian matrix that represents a weighted simple digraph. Note that Laplacian

matrices are singular. If a weakly connected digraph has m RSCCs, then its Laplacian matrix also
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has semisimple zero eigenvalues with multiplicitym, while all the other nonzero eigenvalues have

positive real parts.

2.1.2. Undirected graphs. Undirected graphs are commonly used to characterize the intercon-

nection structure of physical systems, such as power grids, RC circuits, and mass-damper systems

(23, 28, 43, 44). An undirected graph can be viewed as a special digraph whose weighted adjacency

matrixA (or Laplacian matrix L) is symmetric. In this case, we can de�ne a Laplacian matrix using

an alternative formula:

L = BWBT, 2.

where B is the incidence matrix obtained by assigning an arbitrary orientation to each edge

of G, and W := Diag(w1,w2, . . . ,w|E | ), with wk the weight associated to the edge k for each

k = 1, 2, . . . , |E |. If G is an undirected connected graph, then the Laplacian matrix L has the

properties (a) L� = L and kerL = span{1} and (b) [L]ij ≤ 0 if i �= j and [L]ii > 0.

2.2. Modeling of Network Systems

In the �eld of network science, the evolution of network topology over time is often speci�ed as

the dynamics of networks (45). For control systems, by contrast, the dynamics over networks is of

interest; here, nodes represent individual dynamical systems that are coupled through edges (46).

We use the latter notion when referring to a network system.Network systems have a clear inter-

connection structure, either physically or virtually; examples include chemical reaction networks,

power grids, and robotic networks. Additionally, network modeling is applicable to spatially dis-

cretized systems that are originally described by partial differential equations, such as simple beam

models or �uid dynamical systems.

2.2.1. Networks of single integrators. The simplest network systems consider all the nodes

to be single integrators—that is, ẋi(t ) = vi(t ), where xi(t ), vi(t ) ∈ R are the state and input of node

i, respectively. A digraph G then captures the interconnection topology of n single integrators,

where the coupling rule is

vi(t ) = −dixi(t ) +
n

∑

j=1, j �=i

[A]i jx j (t ). 3.

In Equation 3, di ∈ R represents the state feedback gain, and A is the weighted adjacency matrix

of G, whose entry [A]i j indicates the strength of the coupling between nodes i and j. Taking into

account the external control signals u(t ) ∈ R
p and measurements y(t ) ∈ R

q of the network, we

derive a compact form for the network system as

ẋ(t ) = Ŵx(t ) + Fu(t ), y(t ) = Hx(t ), 4.

where Ŵ := A −D, with D = Diag(d1, . . . , dn), and F ∈ R
n×p and H ∈ R

q×n are the input and

output matrices, respectively.

Equation 4 is regarded as a rather general representation for single-integrator networks, whose

stability depends on the values in D and A. If D ≥ 0, then Ŵ becomes a Metzler matrix, leading to

the concept of monotone systems or positive systems (47–49). In particular, if we chooseD>Dout

orD>Din, then the Metzler matrix Ŵ is strictly row or column diagonally dominant, respectively.

Following the Gershgorin circle theorem (50), Ŵ is a Hurwitz matrix, leading to the asymptotic

stability of the network system. IfD=Din—or, equivalently,Ŵ = −L�, with L the Laplacianmatrix
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u y u ŷ

Model reduction

Figure 1

Model reduction with preservation of network structure.

of G—then we have a network �ow model (5, 42). Furthermore, if D = Dout—that is , Ŵ = −L—
then Equation 4 becomes a consensus network, or a continuous-time averaging system (39). The

coupling rule in Equation 3 becomes

vi(t ) = −
n

∑

j=1, j �=i

[A]i j
[

xi(t ) − x j (t )
]

, 5.

which is known as the diffusive coupling rule. For both Ŵ = −L� and Ŵ = −L, the system in

Equation 4 is semistable (or semiconvergent)—that is, limt → ∞e
Ŵt exists for any initial condition

x(0). Speci�cally, when G is strongly connected, limt → ∞e−Lt is equal to 1ω⊤, with ω, satisfying

1
⊤ω = 1, the left eigenvector of L for eigenvalue 0.

De�nition 1. A network system ẋ(t ) = Ŵx(t ) achieves synchronization if

lim
t→∞

[

xi(t ) − x j (t )
]

= 0, ∀i, j ∈ V , 6.

holds for all initial conditions x(0).

The approximation of the network system represented by Equation 4 aims for a reduced net-

work consisting of a smaller number of nodes that captures essential properties of the original

network. Speci�cally, a model reduction problem (Figure 1) is formulated to �nd a reduced-order

model

˙̂x(t ) = Ŵ̂x̂(t ) + F̂u(t ), ŷ(t ) = Ĥx̂(t ), 7.

where x̂ ∈ R
r (r < n), ŷ ∈ R

q, such that (a) Ŵ̂ ∈ R
r×r is interpretable as a reduced graph and

(b) the approximation error is minimized between the original and the reduced-order models.

The approximation error is usually evaluated by the H∞ or H2 norms of η(s) − η̂(s),

η(s) := H (sIn − Ŵ)−1F , η̂(s) := Ĥ (sIr − Ŵ̂)−1F̂ . 8.

2.2.2. Networked linear systems. The network model in Equation 4 can be extended beyond

single integrators to consider each node as a high-order linear subsystem:

ẋi(t ) = Aixi(t ) + Bivi(t ), yi(t ) = Cixi(t ), 9.

where xi ∈ R
ℓi , vi ∈ R

mi , and yi ∈ R
µi are internal states, inputs, and outputs, respectively. Sup-

pose that n subsystems are interconnected through the relations vi(t ) =
∑n

j=1 Ki jy j (t ) + Fiu(t ),

y(t ) =
∑n

i=1Hiyi(t ), with Ki j ∈ R
mi×µ j the coupling coef�cient between nodes i and j, where

Kij = 0 if and only if there are no signals passing from j to i. The vectors u(t) and y(t) are denoted as
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∑2

∑4

∑6

∑7

∑5∑1

G

u(t) y(t)

∑3

Figure 2

An example of networked linear systems.

external inputs and outputs. Combining this with Equation 9, we obtain a compact representation

of the overall network system (32, 34):

ẋ(t ) = (An + BnŴCn ) x(t ) + BnFu(t ), y(t ) = HCnx(t ), 10.

where An := blkdiag(A1, . . . , An), Bn := blkdiag(B1, . . . , Bn), Cn := blkdiag(C1, . . . , Cn), and

Ŵ =

⎡

⎢
⎢
⎣

K11 · · · K1n

...
...

...

Kn1 · · · Knn

⎤

⎥
⎥
⎦
, F =

⎡

⎢
⎢
⎣

F1
...

Fn

⎤

⎥
⎥
⎦
, H =

[

H1 · · · Hn

]

.

An example of a networked linear system containing six subsystems is shown in Figure 2. Net-

worked linear systems of the form shown in Equation 10 are also known as interconnected or

coupled systems (32, 34). The subsystems in Equation 9 could have different dynamics, in which

case the network is called heterogeneous.

Homogeneous networks are de�ned when each node has the same dynamics:

ẋi(t ) = Axi(t ) + Bvi(t ), yi(t ) = Cxi(t ), 11.

where xi ∈ R
ℓ, vi ∈ R

m, and yi ∈ R
m are the internal state, input, and output of node i, respectively.

Under a simple static output feedback interconnection similar to Equation 3, the dynamics of

networked homogeneous linear systems is presented in compact form as

� :

{

ẋ(t ) = (I ⊗ A+ Ŵ ⊗ BC) x(t ) + (F ⊗ B)u(t ),

y(t ) = (H ⊗C) x(t ),
12.

with joint state vector x(t ) ∈ R
nℓ, external control inputs u(t ) ∈ R

pm, and external outputs y ∈ R
qm.

The matrix Ŵ ∈ R
n×n indicates how the subsystems are interconnected.

One commonly studied type of network system in the form of Equation 12 is diffusively cou-

pled linear systems, where Ŵ = −L is the Laplacian matrix of the underlying graph. Thus, the

coupling rule among the nodes becomes vi(t ) = −
∑n

j=1, j �=i[A]i j
[

yi(t ) − y j (t )
]

. In this setting, the

synchronization problem of the system � has been intensively studied (see, e.g., 3, 39, 40, 51, 52).

Theorem 1. Consider a network of diffusively coupled homogeneous linear systems de-

scribed by Equation 12 with the symmetric Laplacian L. Let 0 = λ1 < λ2 ≤ · · · ≤ λn denote

the eigenvalues of L. Then, the network system represented by Equation 12 achieves syn-

chronization if and only if A − λiBC is a Hurwitz matrix for all i � {2, 3, . . . , n}.

A suf�cient condition for synchronization is provided by assuming that the subsystem

(A, B, C) is passive—that is, there exists a symmetric positive de�nite matrix K > 0 that veri�es

A⊤K + KA ≤ 0, and C⊤ = BK. 13.

430 Cheng • Scherpen

A
n
n
u
. 
R

ev
. 
C

o
n
tr

o
l 

R
o
b
o
t.

 A
u
to

n
. 
S

y
st

. 
2
0
2
1
.4

:4
2
5
-4

5
3
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 U

n
iv

er
si

ty
 o

f 
G

ro
n
in

g
en

 o
n
 0

7
/1

9
/2

1
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



Passivity is a natural property of physical systems, including mechanical systems, electrical net-

works, and thermodynamical systems (53). With passivity, we obtain a synchronization condition

that is independent from the spectrum of the graph Laplacian (51, 54, 55).

Theorem 2. Let Ŵ = −L represent any connected undirected graph or any strongly con-

nected digraph. If the subsystem (A,B,C) in Equation 11 is passive and observable, then the

network system represented by Equation 12 achieves synchronization.

The model complexity of networked linear systems comes from two aspects: the dimension

of the subsystems and the topological scale of the network. The �rst reduction problem is thus

to reduce each subsystem (or a subset of them) by taking into account the coupling structure in

order to approximate the entire network system. For the reduction of the heterogeneous network

system represented by Equation 10, the objective is to construct a network model composed

of reduced-order subsystems (Âi, B̂i, Ĉi ), yielding an approximation of the entire system with

the same form as Equation 10, where Ân := blkdiag(Â1, . . . , Ân ), B̂n := blkdiag(B̂1, . . . , B̂n ), and

Ĉn := blkdiag(Ĉ1, . . . , Ĉn ). The matrices Ŵ,H, and F remain the same as the original ones. Homo-

geneous network systems can be reduced in a similar manner such that each original subsystem

(A, B, C) is replaced by a lower-order approximation (Â, B̂, Ĉ):

{

˙̂x(t ) =
(

In ⊗ Â− Ŵ ⊗ B̂Ĉ
)

x̂(t ) + (F ⊗ B̂)u(t ),

ŷ(t ) = (H ⊗ Ĉ)x̂(t ).
14.

The second reduction problem is focused on a simpli�cation of the graph structure, as illus-

trated in Figure 1. A resulting reduced-order model for networked homogeneous linear systems

is in the form
{

ż(t ) =
(

Ir ⊗ A− Ŵ̂ ⊗ BC
)

z(t ) + (F̂ ⊗ B)u(t ),

ŷ(t ) = (Ĥ ⊗C)z(t ),
15.

where Ŵ̂ ∈ R
r×r represents a reduced graph consisting of r nodes. LetG(s) and Ĝ(s) be the transfer

matrices of the models represented by Equations 12 and 15, respectively. The objective now is to

minimize the reduction error G(s) − Ĝ(s) with respect to certain norms.

3. REDUCTION OF TOPOLOGICAL STRUCTURES

One powerful paradigm for simplifying a large-scale network is graph clustering—a process that

divides a set of nodes into nonempty and disjoint subsets, where nodes in each subset are consid-

ered related by some similarity measure. Different names are used in different �elds, including

community detection in the context of social networks and classi�cation in the context of data

science. Graph detection is closely related to unsupervised learning in pattern recognition sys-

tems (21, 22). Generally, well-established clustering algorithms (such as hierarchical clustering,

spectral clustering, and K-means clustering) were developed for static graphs or measured data.

In this section, we present a series of clustering-based model reduction techniques for dynamic

networks.

3.1. Clustering-Based Projection

Consider a linear time-invariant system with triplet (A, B, C). The Petrov–Galerkin framework

(9) projects the state space onto a lower-dimensional subspace, resulting in a reduced-order model

(V †AV, V †B, CV), where V is full-column rank representing the basis of the subspace, and V † is
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a left inverse of V (i.e., V †V = I). Clearly, the choice of V is essential for obtaining the reduced-

order model. For structure-preserving model reduction of network systems,V can be constructed

by considering an aggregation of node states.

De�nition 2. Consider a graph G with node set |V| = n. Graph clustering of G is a process

that divides V into r nonempty and disjoint subsets, denoted by C1, C2, . . . , Cr , where Ci is

called a cluster (or a cell of G). The characteristic matrix of the clustering {C1, C2, . . . , Cr} is
a binary matrix � ∈ R

n×r with

[�]i j :=

{

1, if node i ∈ C j ,

0, otherwise.
16.

Note that each row of� has exactly one nonzero element, indicating that each node is assigned

to a unique cluster. The number of nonzero elements in each column is the cardinality of the

corresponding cluster. Speci�cally,�1r is equal to 1n, and 1⊤
n � is equal to [|C1|, |C2|, . . . , |Cr|] . For

any given undirected graph Laplacian L, the matrix ��L� is a Laplacian matrix representing an

undirected graph of smaller size. This important property allows for structure-preserving model

reduction of network systems using� for the Petrov–Galerkin projection.To construct a reduced-

order network system with r nodes, as in Equation 4 or Equation 12, we must �rst �nd a clustering

that partitions the nodes of a network into r clusters.

Consider the network system represented by Equation 4, which is assumed to be semistable

(see the sidebar titled Linear Semistable Systems and Pseudo-Gramians). The projection matrix

is then de�ned as VV † ∈ R
n×n,

V = N� ∈ R
n×r , V † := (�⊤MN�)−1�⊤M ∈ R

r×n, 17.

where M and N are nonsingular diagonal weighting matrices (58). A reduced-order model is

thereby obtained in the form of Equation 7, where Ŵ̂ = V †ŴV , F̂ = V †F , and Ĥ = HV .

LINEAR SEMISTABLE SYSTEMS AND PSEUDO-GRAMIANS

Semistability is a more general concept than asymptotic stability, as it allows for multiple poles that are zero. The

systems’ trajectories thus may converge to a nonzero Lyapunov stable equilibrium (56, 57). Speci�cally, a linear

system ẋ(t ) = Ax(t ) is semistable if limt→∞ eAt is nonzero and exists for all initial states x(0), or, equivalently, the

zero eigenvalues of A are semisimple and all the other eigenvalues have negative real parts.

It is well known that the standard controllability and observability Gramians (9) are not well de�ned for a

semistable system, and Cheng & Scherpen (58) therefore presented the de�nition of pseudo-Gramians. Consider

a linear semistable system (A, B, C). The pseudo-controllability and observability Gramians are de�ned as

P =
∫ ∞

0

(eAt − J )BB⊤(eA
⊤t − J ⊤ )dt and Q =

∫ ∞

0

(eA
⊤t − J ⊤ )C⊤C(eAt − J )dt, 18.

respectively, where J := limt→∞ eAt is a constant matrix. The pseudo-Gramians P and Q in Equation 18 are well

de�ned for semistable systems. The pseudo-Gramians can be computed as P = P̃ − J P̃J ⊤ andQ = Q̃ − J ⊤Q̃J ,

where P̃ and Q̃ are arbitrary symmetric solutions of the Lyapunov equations

AP̃ + P̃A⊤ + (I − J )BB⊤(I − J ⊤ ) = 0 and A⊤Q̃ + Q̃A+ (I − J ⊤ )C⊤C(I − J ) = 0, 19.

respectively. The pseudo-Gramians are useful for computing the H2 norm of a semistable system. The transfer

matrixG(s) is an element inH2 if and only ifCJ B = 0. Furthermore, ‖G(s)‖2H2
is equal to Tr(CPC⊤ ) and Tr(B⊤QB).
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Theorem 3 (from Reference 58). Let η(s) and η̂(s) be the transfer matrices of the original

and reduced-order models in Equations 4 and 7. A bounded H2 reduction error is then

guaranteed [i.e., η(s) − η̂(s) ∈ H2] if there exist diagonal and positive de�nite matrices M

and N such that

(ei − e j )
⊤N−1J = 0 and JM−1(ei − e j ) = 0 20.

hold for each pair i, j ∈ Ck, with any k � {1, 2, . . . , r}.

If Ŵ is a Hurwitz matrix, or Ŵ = −L, with L the Laplacian of a connected undirected graph, we

simply chooseM=N= In, which always guarantees η(s) − η̂(s) ∈ H2. A Hurwitz Ŵ implies J = 0,

while a connected undirected graph yieldsJ = 1
n
1n1

⊤
n . Ishizaki et al. (49),Cheng&Scherpen (59),

and Cheng et al. (60) treated dynamic networks with a strongly connected topology—that is, those

where Ŵ is irreducible and has only one zero eigenvalue, with corresponding left and right eigen-

vectors µl and µr the so-called Frobenius eigenvectors with all real and positive entries (61). In

this case,M= Diag(µl) andN= Diag(µr) satisfy Equation 20 for any clustering. Furthermore, we

have η(s) − η̂(s) ∈ H2 and NŴ�M + MŴN ≤ 0. Following Cheng & Scherpen (58), we can obtain

an a posteriori bound on the reduction error as ‖η(s) − η̂(s)‖H2
≤ γs

√

Tr(I −VV † )P (I −VV † )⊤,

where P is the pseudo-controllability Gramian of the system represented by Equation 4, and

γs ∈ R>0 satis�es
⎡

⎢
⎣

NŴ⊤M +MŴN MŴ (I − J ⊤ )H⊤

Ŵ⊤M −γsI H⊤

H (I − J ) H −γsI

⎤

⎥
⎦ ≤ 0. 21.

There is a balanced graph representation of the digraph system represented by Equation 4 as

follows:

MN ξ̇ (t ) = Lbξ (t ) +MFu(t ), y(t ) = HNξ (t ), 22.

whereLb:=MŴN is the Laplacianmatrix of the balanced digraph, and the resulting reduced-order

model in Equation 7 becomes

�⊤MN�
˙̂
ξ (t ) = �⊤Lb�ξ̂ (t ) + �⊤MFu(t ), ŷ(t ) = HN�ξ̂ (t ),

with ��Lb� representing a reduced balanced digraph. Cheng & Scherpen (62) de�ned a gener-

alized balanced digraph as a weakly connected digraph in which each RSCC is balanced and all

non-RSCC nodes are removed, resulting in a generalized balanced graph representation similar

to Equation 22. For networks with a weakly connected topology, the error system η(s) − η̂(s) is

generally not in the H2 space. Clusterability is then de�ned between two nodes i, j if they satisfy

Equation 20. The clusterability of all nodes in each cluster then guarantees the stability of the

error η(s) − η̂(s) (62).

Example 1. Consider the mass-damper system in Figure 3a, where the masses are inter-

connected via linear dampers. u1(t) and u2(t) represent external forces, and y1(t) and y2(t) are

measured velocities. Suppose that all the masses are identical. The network system in the

form of Equation 4 is obtained as
⎡

⎢
⎢
⎢
⎢
⎢
⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

6 −3 0 −2 −1

−3 4 −1 0 0

0 −1 6 −2 −3

−2 0 −2 5 −1

−1 0 −3 −1 5

⎤

⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Ŵ

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
x3
x4
x5

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0

0 0

0 0

0 1

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

F

[

u1
u2

]

,

[

y1
y2

]

=

[

0 1 0 0 0

0 0 1 0 0

]

︸ ︷︷ ︸

H

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
x3
x4
x5

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

www.annualreviews.org • Model Reduction Methods for Network Systems 433

A
n
n
u
. 
R

ev
. 
C

o
n
tr

o
l 

R
o
b
o
t.

 A
u
to

n
. 
S

y
st

. 
2
0
2
1
.4

:4
2
5
-4

5
3
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 U

n
iv

er
si

ty
 o

f 
G

ro
n
in

g
en

 o
n
 0

7
/1

9
/2

1
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



2
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2

1 3

2

1

1

u1

u2

y2

y1

2'

1' 3'

3

2

2

u1

u2

ŷ2

ŷ1

Π

a b

Figure 3

An illustrative example of clustering-based model reduction of a mass-damper network system. (a) The original network, divided into
three clusters. (b) The network representation of the reduced-order model.

where −Ŵ is an undirected graph Laplacian, and the off-diagonal entry [Ŵ]ij represents the

damping coef�cient of the edge (i, j). Consider {C1, C2, C3} = {{1, 2}, {3, 5}, {4}} to be the

clustering of the graph, which leads to the following characteristic matrix:

� =

⎡

⎢
⎣

1 1 0 0 0

0 0 1 0 1

0 0 0 1 0

⎤

⎥
⎦

⊤

.

Therefore, a reduced-order network model is obtained as
⎡

⎢
⎣

2 0 0

0 2 0

0 0 1

⎤

⎥
⎦

︸ ︷︷ ︸

�⊤�

⎡

⎢
⎣

ż1
ż2
ż3

⎤

⎥
⎦ = −

⎡

⎢
⎣

4 −2 −2

−2 5 −3

−2 −3 5

⎤

⎥
⎦

︸ ︷︷ ︸

�⊤Ŵ�

⎡

⎢
⎣

z1
z2
z3

⎤

⎥
⎦ +

⎡

⎢
⎣

1 0

0 1

0 1

⎤

⎥
⎦

︸ ︷︷ ︸

�⊤F

[

u1
u2

]

,

[

ŷ1
ŷ2

]

=

[

1 0 0

0 0 1

]

︸ ︷︷ ︸

H�

⎡

⎢
⎣

z1
z2
z3

⎤

⎥
⎦,

where −��Ŵ� is again an undirected graph Laplacian. To bring it into the form of

Equation 7, we can de�ne Ŵ̂ := (�⊤�)−1�⊤Ŵ�, F̂ := (�⊤�)−1�⊤F , and Ĥ := H�. How-

ever, from −��Ŵ�, it follows that this model allows for a physical interpretation, as shown

in Figure 3b: The nodes in each cluster are aggregated into a single node in the reduced

network, while all edges connecting nodes from two distinct clusters are merged to a single

edge that links the corresponding nodes in the reduced network.

Analogously, and beyond the single-integrator case, a reduced-order model of networked ho-

mogeneous linear systems in Equation 12 can be formed using the Petrov–Galerkin projection

framework of Equation 17, which gives a reduced-order model in the form of Equation 15,

where Ŵ̂ := �⊤L�, F̂ = �⊤F , and Ĥ = H� are the same as in Equation 7. The new state vector

z⊤(t ) :=
[

z⊤
1 (t ) z

⊤
2 (t ) . . . z⊤

r (t )
]

∈ R
rℓ, zi(t ) ∈ R

ℓ, i = 1, . . .r, represents an estimate of the state

vector of the dynamics of all the nodes in the ith cluster. Note that the extension of clustering-

based approaches toward networks of heterogeneous subsystems in Equation 10 remains an open

problem. A major challenge lies in the representation of a cluster of nonidentical subsystems.

Denote G(s) and Ĝ(s) as the transfer matrices of the models represented by Equations 12 and

15, respectively. The analysis of the reduction error G(s) − Ĝ(s) is more complicated here than it
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is in the single-integrator case, and for general subsystems, the reduction error G(s) − Ĝ(s) may

not be stable.However, there is a theoretical guarantee if the subsystem (A,B,C) in Equation 11 is

observable and passive.With Theorem 2,we can verify that if the original network is undirected or

strongly connected, the reduced-order network system in Equation 15 achieves synchronization,

and G(s) − Ĝ(s) ∈ H2, for any clustering � (27, 29).

In the framework of clustering-based projection, the approximation error ‖G(s) − Ĝ(s)‖H2
de-

pends only on the choice of graph clustering. Thus, the most crucial problem in this framework

is how to determine clusters of nodes to minimize the approximation error. In the following, we

review several speci�c cluster selection approaches.

3.1.1. Almost equitable partitions. Almost equitable partitions provide a graph clustering

where nodes in the same cluster are connected to other clusters in a similar fashion.

De�nition 3. Consider a weighted undirected graph G with adjacency matrix A. A

clustering {C1, C2, . . . , Cr} is called an almost equitable partition if for any indexes µ, ν �

{1, 2, . . . , r} with µ �= ν, it holds that
∑

k∈Cν
wik =

∑

k∈Cν
w jk, ∀i, j ∈ Cµ, where wi j := [A]i j .

Figure 4 shows an example of the almost equitable partition of an undirected graph (25). The

nodes in a cluster have the same total edge weight for their connection to another cluster. An

almost equitable partition of an undirected graph has the key property that Im(�) is L invariant—

that is, L Im(�) � Im(�), where L = L� is the Laplacian of an undirected graph (see, e.g., 25, 63).

Furthermore, we have L� = �L̂ with L̂ := (�⊤�)−1�⊤L�. Aguilar & Gharesifard (64) consid-

ered a generalization of almost equitable partitions to digraphs, where nodes in the same cluster

should have identical weighted out-degrees. Im(�) is then still L invariant. Now consider the

following error system:

�(s) = η(s) − η̂(s) =
[

H −H�

]
[

sIn + L 0

0 sIr + �†L�

]−1[

F

�†F

]

, 23.

where �† = (���)−1�� and η(s), η̂(s) are the transfer matrices of Equation 8. From the L invari-

ance, it is veri�ed that η̂(−s)⊤�(s) = 0, and thus ‖�(s)‖H2
is equal to ‖η(s)‖H2

− ‖η̂(s)‖H2
.

Furthermore, for a special output of the system represented by Equation 4,Monshizadeh et al.

(25) and Jongsma et al. (30) provided explicit expressions for the reduction error ‖�(s)‖H2
and

3
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1 10

1

7
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1
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Figure 4

Example of the almost equitable partition of a 10-node graph.
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3

1 2

64 5

21

1

3

1

Figure 5

A tree with six nodes.

‖�(s)‖H∞ ; Jongsma et al. (30) also further discussed model reduction of networked symmetric

linear systems based on almost equitable partitions. Although an almost equitable partition as a

particular clustering offers us analytical expression for the reduction error, it does not necessary

lead to a small error. In fact, the methods described by Mlinarić et al. (65) and Cheng et al. (66)

provide signi�cantly lower errors via alternative choices of clustering for some examples. More-

over, how to �nd all almost equitable partitions for a large-scale graph is generally a rather dif�cult

and computationally expensive problem (25).

3.1.2. Tree networks. Next, we focus on a particular class of undirected networks with a tree

topology. In graph theory, a tree is a connected undirected graph in which there is only one path

between any two nodes. An example of an undirected tree is shown in Figure 5.

Clearly, a tree T with n nodes has exactly n − 1 edges. Let B ∈ R
n×(n−1) be the incidence ma-

trix of T . Relevant to the expression of the graph Laplacian L in Equation 2, we de�ne an edge

Laplacian as Le = B⊤BW ∈ R
(n−1)×(n−1), where W is the diagonal edge weight matrix. Observe

that Le is full rank and has all eigenvalues real and positive. The eigenvalues of Le coincide with

the nonzero eigenvalues of L, the Laplacian matrix of T .

Consider the Laplacian dynamics in Equation 4, where Ŵ = −L is an undirected graph Lapla-

cian in Equation 2. Applying the transformation xe = B⊤x then leads to the so-called edge agree-

ment protocol (1, 67): ẋe(t ) = −Lexe(t ) + B⊤Fu(t ), which is asymptotically stable and minimal.

Network reduction approaches can be developed based on edge operations. For example, Leiter

&Zelazo (68) provided a greedy algorithm for edge-based contraction to simplify the graph topol-

ogy. A more general form of the edge agreement protocol is derived when subsystems are taken

into account. Besselink et al. (27) de�ned the edge system of a network system with Ŵ = −L rep-

resenting an undirected tree graph as

�e :

{

ẋe(t ) = (In−1 ⊗ A− Le ⊗ BC)xe(t ) + (B⊤F ⊗ B)u(t ),

ye(t ) = (HBW ⊗C)xe(t ),
24.

where xe = (B⊤ ⊗ I )x ∈ R
(n−1)ℓ. Assuming that the subsystem (A, B, C) in Equation 11 is passive

and minimal, we have the synchronization property of the network system � from Theorem 2. It

then follows that the edge system �e is asymptotically stable. Furthermore, we can de�ne a pair

of generalized controllability and observability Gramians of the edge system �e as follows (27):

Pe := X�K−1, Qe := Y�K, where K > 0 satis�es Equation 13 for the passive subsystem and

X > 0 and Y > 0 are solutions of the inequalities

−LeX − XL⊤
e + B⊤FF⊤B ≤ 0, −L⊤

e Y −Y Le +WB⊤H⊤HBW ≤ 0.

The matrices X and Y admit a diagonal structure: X = Diag(ξ 1, ξ 2, . . . , ξ n − 1), Y =
Diag(η1, η2, . . . , ηn − 1), where the ordering ξ iηi ≥ ξ i + 1ηi + 1 is imposed. The value of ξ iηi

can be roughly viewed as an indication of the importance of the ith edge, since, similar to
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balanced realization theory, ξ i and ηi are related to controllability and observability properties of

the edges. Reduction by truncation methods is then equivalent to aggregating nodes connected

by the truncated edges; moreover, Besselink et al. (27) provided an a priori upper bound for the

approximation error in terms of the H∞ norm ‖G(s) − Ĝ(s)‖H∞ ≤ 2(
∑n−1

i=r [L
−1
e ]ii

√
ξiηi ), where r

is the number of nodes in the reduced network.

For an extension beyond tree graphs, a major challenge lies in the characterization of the edge

system (27).

3.1.3. Dissimilarity-based clustering. For generic network systems, we may resort to a

dissimilarity-based clustering approach presented in, e.g., References 28, 29, 62, and 69. In line

with data classi�cation or pattern recognition in the other domains, dissimilarity-based clustering

for dynamic networks starts with a proper metric that quanti�es the difference between any pair of

nodes (subsystems) in a network. For static graphs, dissimilarity (or distance) between two nodes

or data points can be computed in a vector space using some sort of metric (21, 22). Considering

dynamic networks with external inputs, the dissimilarity metric is then featured in a function space

(28, 29, 62).

De�nition 4. Consider the network system of Equation 12. The dissimilarity between

nodes i and j is de�ned as

Di j = D ji := ‖ηi(s) − η j (s)‖H2
, 25.

where ηi(s) := (e⊤
i ⊗C)(sInℓ − In ⊗ A+ Ŵ ⊗ BC)−1(F ⊗ B). Now consider a single-

integrator network in Equation 4. Node dissimilarity can be de�ned simply as

Di j = ‖(ei − e j )
⊤(sIn − Ŵ)−1F‖H2

. 26.

The transfer matrix ηi(s) maps the external control signal u ∈ R
p to the measured output of the

ith node yi ∈ R
m. Thus, ηi(s) can be interpreted as the behavior of the ith node with respect to the

external inputs, while the dissimilarity measure in Equation 25 indicates how different two nodes

behave. The locations of inputs and the network topology determine the value of dissimilarity.

Dissimilarity can also be de�ned in terms of other function norms, such as theH∞ norm.However,

to compute the dissimilarity between every pair of nodes in a large-scale network, theH2 norm of

a stable linear time-invariant system can be characterized by its Gramians (9), whereas for other

norms there is no such characterization, making them computationally less feasible.

Note that the dissimilarity in Equation 25 or Equation 26 is well de�ned only when ηi(s) −
η j (s) ∈ H2. This condition is guaranteed for network systems that are asymptotically stable

or achieve synchronization (29). For instance, if Ŵ in Equation 4 is a Hurwitz matrix, then

Equation 26 immediately becomes Di j =
√

(ei − e j )⊤P(ei − e j ), where P is the controllability

Gramian of the network system represented by Equations 4, and P is computed as the unique so-

lution of the Lyapunov equation ŴP + PŴ� + FF � = 0. If the system represented by Equation 4

is semistable, we resort to pseudo-Gramians de�ned by Equation 18 for the computation of the

H2 norm.

For example, consider a single-integrator network in Equation 4 with Ŵ = −L as the Laplacian

matrix of an undirected graph. Following Cheng & Scherpen (58, 70), the pseudo-controllability

Gramian of the system is computed as P = J P̃J ⊤, where P̃ is a solution of

− LP̃ − P̃L+ (I − J )FF⊤(I − J ) = 0, J :=
1

n
11

⊤. 27.

The dissimilarity in Equation 26 is thereby obtained as

Di j =
√

(ei − e j )⊤P (ei − e j ). 28.
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Further consider the network system represented by Equation 12 withŴ = −L a symmetric Lapla-

cian matrix. Assume that the network achieves synchronization. In this case, Cheng et al. (29)

provided the expression for Equation 25 as

Di j =
√

Tr(�i jP̄�⊤
i j ), 29.

where � ij is de�ned with the help of the output matrix C, and P̄ ∈ R
(n−1)ℓ×(n−1)ℓ is the unique

solution of a Lyapunov equation with matrices built from the system matrices.

The dissimilarity inDe�nition 4 is a pairwise measure that shows how close the behavior of two

subsystems is, thus taking dynamics into account. This is signi�cantly different from conventional

node dissimilarity in data science or computer graphics (21, 22). Nevertheless, we can still follow

similar clustering procedures or algorithms for data sets or static graphs.

Formally, given a network, the goal of clustering is to divide the nodes into clusters such that the

elements assigned to a particular cluster are similar in a prede�ned metric. However, clustering

with respect to a distance metric is generally an NP-hard combinatorial optimization problem,

which is commonly solved by approximation algorithms. Here, we review two such algorithms

and their adaptation to the clustering of network systems.

Agglomerative hierarchical clustering is a method that produces multilevel clusters. The key

to this method is to de�ne the proximity between two clusters Ci and C j . There are several alter-

natives to such a de�nition, such as considering the minimum, maximum, or average dissimilarity

between any node in Ci and any node in C j . The proximity of two clusters allows us to identify

a pair of clusters with the smallest proximity and merge them into a single cluster. This opera-

tion is executed iteratively to generate clusters in a hierarchy structure, which is visualized as a

dendrogram—a tree-like diagram that records the sequences of cluster merges, such as the one

shown in Figure 6. A graph clustering is obtained by cutting the dendrogram at the desired level,

after which each connected component forms a cluster. Applications of hierarchical clustering to

the model reduction of network systems can be found in, e.g., References 28, 59, 71, and 72.

Example 2. Consider the networked mass-damper system in Example 1. The dissimilarity

matrix can be computed as in Equation 28, which yields

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0.2494 0.3154 0.3919 0.4142

0.2494 0 0.2119 0.3688 0.3842

0.3154 0.2119 0 0.2410 0.2394

0.3919 0.3688 0.2410 0 0.0396

0.4142 0.3842 0.2394 0.0396 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

4 5 2 31

Vertices

0.1

0.2

0.3

D
is

si
m

il
a

ri
ty

Figure 6

Dendrogram illustrating the hierarchical clustering of a networked mass-damper system. The horizontal axis
is labeled by node numberings, and the vertical axis represents the proximity of clusters. The level at which
branches merge indicates the proximity between two clusters.
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We use the average link to de�ne the cluster proximity, and a dendrogram is generated as

depicted in Figure 6, showing how clusters are merged hierarchically. The dashed line cuts

the dendrogram at a chosen level such that three clusters are formed: {1}, {2, 3}, and {4, 5}.

K-means clustering is a typical centroid-based partitioningmethod (21, 73) in which a cluster is

constructed such that all the nodes within the cluster aremore similar to the centroid of this cluster

than to the centroids of any other clusters. For a network system of Equation 12, the centroid of

a cluster Ck can be de�ned as

µ(Ck ) =
1

|Ck|
∑

i∈Ck

ηi(s), 30.

with ηi(s) de�ned in Equation 25. Given a network of n nodes, K-means clustering aims

to partition the nodes into r subsets so as to minimize the following objective function:

argmin
∑r

k=1

∑

i∈Ck ‖ηi(s) − µ(Ck )‖2H2
, in which ηi(s) − µ(Ck ) ∈ H2 holds for synchronized net-

works. This problem can be solved using a simple iterative algorithm. First, take an initial group

of r clusters of a given network and specify the centroid for each cluster as in Equation 30. Then,

compute the dissimilarity between every node i and the r centroids, and assign node i to the cluster

whose centroid is the closest to i. Finally, update the cluster centroids accordingly and repeat the

steps until convergence.

Note that the formation of clusters in hierarchical clustering orK-means clustering relies solely

on the dissimilarity measures and thus does not take into account the connectedness of nodes

within the same cluster. It is worth noting that both methods can be modi�ed to produce clusters

of a graph, where each cluster forms a connected subgraph (29, 62, 74).

Generally, an upper bound on the reduction error G(s) − Ĝ(s), with G(s) and Ĝ(s) the transfer

matrices of systems represented byEquations 12 and 15, is not easy to obtain.We thus impose extra

assumptions on the network system represented by Equation 12: Ŵ = −L represents a connected

undirected graph, and A in Equation 11 satis�es A + A� < 0. The a posteriori error bound is

then given as ‖G(s) − Ĝ(s)‖H2
< γ

∑r
k=1 |Ck| · maxi, j∈Ck Di j , where γ ∈ R>0 depends only on the

original system represented by Equation 12 and satis�es a linear matrix inequality (29, 37).

The most crucial part in dissimilarity-based clustering is to properly de�ne the dissimilarity of

nodes and clusters. For linear time-invariant network systems, dissimilarity can be de�ned using

transfer matrices, which is applicable to different types of dynamical networks (for more gener-

alizations to second-order networks, directed networks, and controlled power networks, see, e.g.,

28, 62, 71).However, how to extend the dissimilarity-based clustering to network systems contain-

ing nonlinearities still needs further exploration. One potential solution resorts to the DC gain of

monotone systems, introduced by Kawano et al. (72), where the DC gain can be regarded as an

indicator of the node importance.

3.2. Clustering Meets Optimization

In the previous section, we reviewed how to select clusters and construct a reduced-order net-

work model using clustering-based projection. In this section, we formulate the model reduction

problem from the perspective of optimization, constructing a lower-order network model that

minimizes a certain reduction error.

3.2.1. Reducibility and anH2 error bound. The pioneering work by Ishizaki et al. (24, 49) on

clustering-based model reduction of dynamic networks introduced the notion of cluster reducibil-

ity, which is relevant to the classic notions of exact aggregation and approximate aggregation from

the control and model reduction literature (75, 76).
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Consider the network system in Equation 4 with Ŵ a Hurwitz, Metzler, and symmetric matrix

and F ∈ R
n. A cluster Ck is said to be reducible if there exist a scalar rational function g�(s) and

a vector pk ∈ R
|Ck| such that I(Ck )g(s) = pkg⋆(s), where g(s) := (sI − Ŵ)−1F and I(Ck ) denotes the

matrix composed of the column vectors of In compatible with the set Ck. Reducibility re�ects

the uncontrollability of node states in a cluster and can be further characterized in an algebraic

manner. Ishizaki et al. (24) showed that the pair (Ŵ, F ) can be converted into a positive tridiagonal

realization by a unitary matrix T. De�ne � := −TŴ−1F ∈ R
n×n. A cluster Ck is then reducible if

and only if there exists a vector φk ∈ R
|Ck| such that I(Ck )� = pkφ

⊤
k , where pk := −I(Ck )Ŵ−1F .With

the vector pk, an aggregation matrix can be de�ned as

�̄ :=
[

I(C1 ) · · · I(Cr )
]

blkdiag

(
p1

‖p1‖
, . . . ,

pr
‖pr‖

)

, 31.

which can be viewed as a weighted characteristic matrix � in De�nition 2. Note that �̄⊤�̄ = Ir ,

and the reduced-order network model then becomes ĝ(s) = �̄(sIr − �̄⊤Ŵ�̄)−1�̄⊤F .

If all the clusters are reducible, then the obtained reduced-order network model in Equation 7

has exactly the same input–output behavior as the original network, and thus ‖g(s) − ĝ(s)‖H2
= 0.

To further reduce the network model, the so-called θ reducibility is de�ned for a cluster Ck as

‖I(Ck )� − pkφ
⊤
k ‖F ≤ θ for vectors pk,φk ∈ R

|Ck|. If all the clusters are θ reducible, an a posteriori

upper bound on the reduction error can be formed:

‖g(s) − ĝ(s)‖H2
≤ γ

√
√
√
√

r
∑

k=1

|Ck|(|Ck| − 1)θ , 32.

where γ is an upper bound of ‖�̄(sIr − �̄⊤Ŵ�̄)−1�̄⊤Ŵ + In‖H∞ and characterized by a Riccati

inequality.

Ishizaki et al. (49) provided a generalization of the above method that considers semistable

directed networks. In this case, the Frobenius eigenvector of Ŵ is used to construct the aggregation

matrix in Equation 31 in order to preserve both semistability and positivity in the reduced-order

network model. A so-called projected controllability Gramian, which can be viewed as a special

pseudo-controllability Gramian, is used for the characterization. The a posteriori error bound

in Equation 32 is also extended to directed networks. However, this extension turns out to be

questionable, since the relevant Riccati inequality in general does not have a solution for semistable

systems. Cheng & Scherpen (58) provided a correct formulation in terms of the H∞ norm of a

semistable system, which has the form of Equation 21.

The notion of reducibility and the error bound are essential for the clustering procedure de-

scribed by Ishizaki et al. (24, 49). The core step in the clustering algorithm is to produce a set of

θ-reducible clusters, where the value of θ is adjusted in relation to the approximation error bound.

Ishizaki & Imura (77) and Ishizaki et al. (37) extended this approach to reduce stable second-order

network systems and to reduce networked dissipative systems in the form of Equation 12.

3.2.2. H2 suboptimal methods. Model reduction of a network system can be formulated as a

nonconvex optimization problem in which the objective function is the H2 reduction error. The

characteristic matrix � is the optimization variable and is subject to the constraint

� ∈ C :=
{

�1r = 1n, and [�]i j = {0, 1}, ∀i = 1, . . . , n, j = 1, . . . , r
}

. 33.

The optimization problem itself is nonconvex due to the nonlinear objective function in terms of

the H2 norm and the binary variable �. To solve such a nonconvex problem, a relaxation of the

binary constraints can be taken, leading to suboptimal approaches.
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When we drop the constraint � ∈ C, we obtain an H2 optimal model reduction problem for

a generic linear time-invariant system that can be solved by using the so-called iterative rational

Krylov algorithm to seek a (locally) optimal solution (65). The algorithm gives a subspace of di-

mension r with the basis Vr ∈ R
n×r . In contrast to the V de�ned in Equation 17, this Vr is not a

feasible solution, since it does not preserve the network structure. Therefore, the idea is to �nd

a � matrix in the feasible set C such that the image of � is approximately equal to the image of

Vr, that is, Im(�) ≈ Im(Vr). To this end, Mlinarić et al. (65) adopted an approach based on a QR

decomposition with column pivoting, which was originated by Zha et al. (73) for solving K-means

clustering problems.

An alternative method further studies this nonconvex optimization problem and speci�es the

objective function using the controllability and observability Gramians (78). Consider the single-

integrator network in Equation 4 with Ŵ = −L representing a connected undirected graph. We

aim for the following optimization problem:

min
�∈Rn×r

J(�) := Tr(B⊤
e PeBe ) subject to Equation 33 and A⊤

e Pe + PeAe +C⊤
e Ce = 0, 34.

where Pe is the observability Gramian of the stable system (Ae, Be, Ce), de�ned as

Ae = −

[

S†
nLSn 0

0 S†
r �

⊤L�Sr

]

, Be =

[

S†
nF

S†
r �

⊤F

]

, Ce =
[

HSn − r
n
H�Sr

]

.

The matrices Sn and Sr are given by Sk = [Ik−1 1k−1]⊤ for k = r, n. The latter matrices are used to

�lter out the subspace corresponding to the zero eigenvalues, so that Ae is a Hurwitz matrix. From

the objective function J(�), we can derive an explicit expression for its gradient �J(�) so that

gradient-based algorithms—including projected gradient descent, Frank–Wolfe optimization, and

conditional gradient methods—can be applied to solve the optimization problem in Equation 34

(for more details, see 78, 79, and the references therein).

3.2.3. Edge weighting. Instead of seeking a way to do the graph clustering, theH2 optimization

scheme can also be applied to construct a “good” reduced-order model from a given clustering.

To achieve this, we must go beyond the framework of Petrov–Galerkin projection.Given a certain

clustering, the topology of a reduced-order network is known, while the coupling strengths (edge

weights) are considered free parameters to be determined (60, 66).

Consider a network system in Equation 4 with a connected undirected graph G. Let

{C1, C2, . . . , Cr} be a given graph clustering of G. A quotient graph Ĝ is then an r-node digraph

obtained by aggregating all the nodes in each cluster as a single node while retaining connec-

tions between clusters and ignoring the edges within each cluster. The incidence matrix B̂ of the

quotient graph Ĝ can be obtained by removing all the zero columns of �⊤B, where B is the in-

cidence matrix of G and � is the characteristic matrix of the clustering. Denote Ŵ = Diag(ŵ),

with ŵ = [ŵ1 ŵ2 . . . ŵκ ]⊤, as the edge-weighting matrix of Ĝ, with ŵk ∈ R>0 and κ the number

of edges in Ĝ. The parameterized model of a reduced-order network is then obtained as

(�⊤�)ż(t ) = −B̂Ŵ B̂⊤z(t ) + �⊤Fu(t ), ŷ(t ) = H�z(t ), 35.

which has as a transfer matrix η̂p(s,Ŵ ) = H�(s�⊤� + B̂Ŵ B̂⊤ )−1�−1F . In the reduced-order

model, the edge weight matrix Ŵ is the only unknown and can be determined via an optimization

procedure.

Example 3. Consider an undirected graph composed of six nodes, as shown in Figure 7a.

Given a clustering with C1 = {1, 2}, C2 = {3}, C3 = {4}, and C4 = {5, 6}, the quotient graph
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Figure 7

(a) An undirected network consisting of six nodes, in which node 3 is the leader and node 4 is measured. Four clusters are indicated by
different colors. (b) A quotient graph obtained by clustering.

is obtained in Figure 7b with edge weight matrix Ŵ = Diag(ŵ1, ŵ2, ŵ3, ŵ4 ). The parame-

terized model of the reduced network is then constructed as
⎡

⎢
⎢
⎢
⎣

2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

�⊤�

⎡

⎢
⎢
⎢
⎣

ż1
ż2
ż3
ż4

⎤

⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎣

ŵ1 + ŵ2 −ŵ1 −ŵ2 0

−ŵ1 ŵ1 + ŵ4 0 −ŵ4

−ŵ2 0 ŵ2 + ŵ3 −ŵ3

0 −ŵ4 −ŵ3 ŵ3 + ŵ4

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

B̂Ŵ B̂⊤

⎡

⎢
⎢
⎢
⎣

z1
z2
z3
z4

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

0

1

0

0

⎤

⎥
⎥
⎥
⎦

︸︷︷︸

�⊤F

u,

and y= z3. In this model, the diagonal elements of Ŵ are the parameters to be determined.

Similar to the process in Section 3.2.2, an optimization problem can be formulated tominimize

the reduction error between the original and reduced-order network systems by tuning the edge

weights. Speci�cally, the objective function is ‖η(s) − η̂p(s,Ŵ )‖H2
, in which a diagonal and positive

de�nite Ŵ is the optimization variable.

There are multiple algorithms for solving such a problem. Cheng et al. (66) characterized the

upper bound of the reduction error—that is, the expression ‖η(s) − η̂p(s,Ŵ )‖H2
< γ—by a set

of linear matrix inequalities and applied a cross-iteration algorithm such that the upper bound

γ decreases via iterations. An alternative approach uses convex–concave decomposition (60); this

approach was inspired by the work of Dinh et al. (80) and is based on linearization of the optimiza-

tion problem at a given point, so that the problem becomes convex and can be solved ef�ciently.

The overall problem can then be solved in an iterative fashion, and in each iteration a convex

optimization problem needs to be solved.

It is worth noting that the edge-weighting approach can be implemented as a subsequent pro-

cedure after the clustering-based methods described earlier—that is, we can �rst apply one of the

above-mentioned algorithms to �nd a graph clustering, and then use the edge weights of that clus-

tering to initialize Ŵ in the edge-weighting approach. Then, through iterations, we can generate

a more accurate reduced-order network model.

3.3. Other Topological Reduction Methods

There is a vast amount of literature about the problem of topological reduction. In this section,

we brie�y summarize several other representative methods.

3.3.1. Singular perturbation approximation and Kron reduction. Along with graph cluster-

ing, the other mainstream methodology for simplifying the topological complexity of a network
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is based on timescale separation analysis, particularly singular perturbation approximation (81).

This method has been extensively investigated in the applications of biochemical reaction systems

(4, 82, 83) and electric power networks (8, 84–86). A key feature of those systems is that there is

usually an explicit or nonexplicit separation of timescales in the states of networks. For example,

slow coherency theory implies that power networks are naturally decomposed into areas, where

power generators within each area synchronize on a faster timescale, while network-wide interac-

tions between the areas are captured by slower motions. Singular perturbation methods then help

to separate these dynamics so that they can be analyzed separately. This produces a reduced-order

network model that retains, for example, the low-frequency behavior of a large-scale network.

Identifying and separating fast and slow states are crucial steps in this method, and its use is

highly dependent on the speci�c application.

A relevant concept is Kron reduction of graphs, which is a term commonly used in classic cir-

cuit theory and related �elds (such as electrical impedance tomography) and in transient stability

assessment in power networks (see, e.g., 8, 87, 88).This ideamay also be used for exact reduction—

for example, to go from a differential algebraic description of a network system to a differential

description with structure preservation.

3.3.2. Kullback–Leibler aggregation. Networked dynamical systems derived from the dis-

cretization of thermodynamics and �uid dynamics are usually modeled as regular discrete-time

Markov chains without control inputs. For this type of system, the notion of Kullback–Leibler

divergence rate can be adopted to measure the difference between two Markov chains de�ned on

the same state space.Deng et al. (89) further extended this notion tomeasure the Kullback–Leibler

divergence rate between the original and reduced-order models de�ned on different state spaces.

With the new Kullback–Leibler divergence rate, an optimization problem is formulated that aims

to �nd an optimal partition of the states, which are aggregated to form a reduced-order model.

An application of this method has been explored in reducing complex building thermal systems

(26).

3.3.3. Network reduction toward scale-free structure. Graph clustering and aggregation

have also been studied to retain more relevant properties, such as connectivity and scale freeness

(31, 90). The scale-free networks typically contain a few nodes with a large degree (the so-called

hubs) and a large number of nodes with a small degree, and the distribution of the node degree

follows a certain power law (31).

The model reduction problem of networks preserving the scale-free property can be formu-

lated as an optimization problem that �nds a clustering of a given large-scale network such that

the aggregated network has a degree distribution closest to a desired scale-free distribution. The

preservation of the scale-free structure is particularly important for applications of �ow networks,

such as traf�c networks, power networks, and packet �ow networks.

3.3.4. Indirect network reduction methods. In contrast to the mechanisms of clustering and

aggregation that directly produce a reduced network, indirect methods seek a structure-preserving

reduced-order model using a two-step procedure: reduction and transformation (38, 91–93). In

the reduction step, a lower-dimensional model of a given large-scale network system is constructed

by using conventional model reduction methods, such as generalized balanced truncation (38, 91)

or moment matching (92). Generally, the reduced-order model generated in this step does not

allow for a network interpretation. The transformation step is then implemented, which converts

the reduced-order model obtained in the previous step into a network model. This method is also

relevant for the combined nodal and topological reduction procedure in Section 4.2.
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Cheng & Scherpen (91) and Cheng et al. (38) presented a key part of the transformation: A

matrix is similar to a Laplacian matrix of a connected undirected graph if and only if it is diag-

onalizable and has exactly one zero eigenvalue, while all the other eigenvalues are real positive.

This result guides the reduction step, in which a certain spectral constraint must be imposed. The

second step then turns out to be an eigenvalue matching problem.

Similarly, an eigenvalue assignment approach (93) directly selects a subset of the Laplacian

spectrum of the original network to be the eigenvalues of the Laplacian matrix for the reduced

network. This method allows certain properties of the original network, such as stability and syn-

chronization, to be preserved through the reduction process.

4. REDUCTION OF THE FULL SYSTEM DYNAMICS

In the previous section, we considered the reduction of the topological structure using clustering

methods. The input–output structure is considered when looking at, for example, the H2 norm,

but for control systems it is undoubtedly important that the model preserves certain input–output

or control structures beyond considering only theH2 norm.Variousmethods have been developed

for general linear and nonlinear systems (e.g., 9, 94, 95; for a brief introduction, see the sidebar

titledModel Reduction for Linear Systems).Here,we �rst consider reduction of the nodal dynam-

ics while preserving certain graph properties, and then present a combined nodal and topological

method.

4.1. Reduction of the Nodal Dynamics

For the nodal dynamics, it is useful to consider reduction methods for interconnected systems. In

the corresponding literature, the network perspective is not the primary focus, but the methods

are nevertheless relevant for network systems and treated in this subsection. In addition,we discuss

reductionmethods for nodal dynamics that do explicitly take the network perspective and preserve

properties such as synchronization.

4.1.1. Reduction methods for interconnected linear systems. Perhaps one of the �rst

relevant papers to consider reduction methods for interconnected systems was by Sandberg

& Murray (34), who considered linear fractional transformations (see Figure 8). The paper

presented two methods for reduction, both based on balanced truncation principles. The �rst

method considers only the diagonal blocks of the observability and controllability Gramians, with

each block corresponding to a subsystem, hence neglecting the off-diagonal blocks. This method

can provide an expression for the a posteriori error bound, but unfortunately, it cannot obtain an a

priori error bound. The second method uses generalized Gramians; that is, instead of considering

the observability and controllability Gramians that are the unique solutions to corresponding

Lyapunov equations, it considers the (nonunique) solutions to Lyapunov inequalities. The free-

dom in choosing solutions to these Lyapunov inequalities makes it possible to pick block-diagonal

solutions and consequently results in an a priori error bound. Ishizaki et al. (97) provided an

extension toward a singular perturbation perspective, and Jaoude & Farhood (98) provided bal-

anced truncation based on generalized Gramians in the discrete-time setting for interconnected

systems. More generally, Reis & Stykel (32) and Vandendorpe & Van Dooren (33) presented

an overview of the various methods until 2008 and reduction methods for coupled systems,

respectively.

A more recent result deals with interconnected systems in a graph setting (e.g., 99). In par-

ticular, the subsystems are of the form ẋi =
∑

j∈Ni
Ai jx j + Biu, where Ni is the index set of the

connections of the ith subsystem with other subsystems. With the help of generalized Gramians,
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MODEL REDUCTION FOR LINEAR SYSTEMS

It is generally accepted that model reduction approaches for linear control systems can be roughly divided into two

types of approaches: those based on singular values and those based on moment matching (e.g., 9). A very brief

review follows. Let (A, B, C) be a state space realization of � with dimension n, input u ∈ R
m, state x ∈ R

n, and

output y ∈ R
p. We assume that the system is asymptotically stable and minimal (i.e., controllable and observable).

The corresponding transfer matrix is given by G(s) = C(sI − A)−1B.

Balanced Realizations

Theorem 4 (from Reference 12). Consider the system �. Take P as the controllability Gramian and Q

as the observability Gramian. The eigenvalues of QP are similarity invariants—that is, they do not depend

on the choice of the state space coordinates. Furthermore, there exists a state space representation where

� :=Q= P= Diag{σ 1, . . . , σ n}, with σ 1 ≥ σ 2 ≥ · · · ≥ σ n > 0 the square roots of the eigenvalues ofQP. Such

representations are called balanced, and the system is in balanced form. Furthermore, the σ i’s, i = 1, . . . , n,

equal the Hankel singular values (i.e., the singular values of the Hankel operator).

The Hankel singular values form a measure for the contribution to the minimality of a state component, which

provides the basis for model reductionmethods based on balanced realizations.Model reduction based on balancing

is possible with a priori error bounds in various norms, such as the H∞ and Hankel norms. In particular, it can be

shown that balanced truncation results in an error bound corresponding to the sum of the truncatedHankel singular

values—that is,‖G(s) −Gr (s)‖∞ ≤ 2
∑n

k=r σk,whereGr(s) represents the transfermatrix of the reduced-order system

(13). Antoulas (9) and Scherpen (95) provided a more detailed overview.

Moment Matching

The principle of moment matching for a linear system is based on the series representation of the transfer ma-

trix of the system (for more detailed expositions, see, e.g., 9, 96). Without loss of generality, it is assumed that

m = p = 1.

De�nition 5. The zeromoment at s1 ∈ C of� is the complex number η0(s1)=C(s1I−A)−1B. The kmoment

at s1 is given by the complex number

ηk(s1 ) =
(−1)k

k!

dk
{

C(sI − A)−1B
}

dsk
∣
∣s = s1

, k = 1, 2, 3, . . . .

The point s1 ∈ C is called an interpolation point. The approximation problem for system (A, B, C) at s1 ∈ C

is to �nd a system (Â, B̂, Ĉ) of order ν < n, with transfer function Ĝ(s) = Ĉ(sI − Â)−1B̂, such that ηk(s1 ) = η̂k(s1 ),

with η̂k(s1 ) the moments of Ĝ(s), k = 1 , . . . , ν. Various types of moment-matching methods have been developed.

Generally, it is not possible to provide an a priori error bound. These methods are, however, computationally very

interesting if one handles systems with millions of states.

optimalH2 moment matching–based model reduction is performed while preserving the network

structure. This is done in a convex optimization setting, and a projected gradient method is addi-

tionally applied for the nonconvex case.

4.1.2. Nodal reduction while preserving synchronization properties. The above methods

consider interconnected systems but do not yet take into account the preservation of properties

that are typically relevant for (controlled) network systems, such as consensus or synchroniza-

tion properties, which requires additional steps. To the best of our knowledge, the �rst work to

consider the preservation of synchronization properties in network systems was by Monshizadeh
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Figure 8

An interconnected system with subsystems to be reduced,G1(s), . . . , Gn(s), stored in a block-diagonal
transfer matrix G(s) and connected to a transfer matrix N(s) that models the interconnection topology and
excitation and measurement dynamics (34).

et al. (35). Consider a diffusively coupled linear network system as in Equation 12 with a symmet-

ric Laplacian Ŵ = −L. A bounded real balancing method can then be used to preserve the stability

of the network. In addition, synchronization can be preserved by considering the positive de�nite

solution K of the following Riccati equation:

(A− λBC)TK + K (A− λBC) +CTC + δ2KBBTK = 0,

where δ is a scalar that must ful�ll some additional conditions, and λ is an eigenvalue of the

Laplacian L for which A − λBC is a Hurwitz matrix. The maximum and minimum solutions

of the equation can now be balanced (i.e., simultaneously diagonalized), as is done for standard

balancing. Truncating the system based on these diagonal values results in reduced-order dynam-

ics of the agents and a network system that is still synchronized. Furthermore, an a priori error

bound is provided based on the truncated diagonal values, δ, and the largest eigenvalue of the

Laplacian.

The above balancing method based on the minimum and maximum solution of a Riccati equa-

tion can be generalized to �nding a solution to the inequality, and as such, it can be related to

solutions of linear matrix inequalities. Also, so far, only the linear dynamics in the nodes have been

considered, but in practice nonlinearities also play an important role. Because the error dynamics

is more dif�cult to handle in the case of nonlinear systems, it is useful to consider nodal dynamics

represented byLur’e systems, that is, systemswith a static nonlinearity in the feedback loop.Cheng

et al. (36) and Cheng & Scherpen (100) considered robust synchronization-preserving reduction

methods for nodal Lur’e systems. In this context, consider the following nodal dynamics:

�i :

⎧

⎪
⎨

⎪
⎩

ẋi(t ) = Axi(t ) + Bui(t ) + Ezi(t ),

yi(t ) = Cxi(t ),

zi(t ) = −φ(yi(t )),

, 36.

where xi ∈ R
n; ui, yi, zi ∈ R

m; and φ : Rm → R
m, ful�lling some sector bound condition. Without

loss of generality, we take m = 1 (100). For a diffusively coupled network that is robustly syn-

chronized and has nodal dynamics as in Equation 36, we now take the minimum and maximum
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solutions Kmin and Kmax of the following linear matrix inequality:
⎡

⎢
⎣

ATK + KA+CTC λnKB KE −CT

λnBTK −I 0

ETK −C 0 0

⎤

⎥
⎦ � 0,

with λn the largest eigenvalue of the Laplacian.Kmin andKmax can be balanced, and reduction based

on them results in a robustly synchronized network of Lur’e systems with a priori determined

error bounds. Variations on this method can obtain even better error bounds, and Cheng et al.

(36) provided an extension to the multi-input, multi-output case.

4.2. Combined Topological and Nodal Reduction

As shown by the previous sections, the techniques for topological simpli�cation and subsystem re-

duction in network systems derive from rather different perspectives. The methods for reducing

subsystem dynamics are commonly adapted from classic model reduction techniques, such as bal-

anced truncation or Krylov subsystem methods, while in the structure-preserving simpli�cation

of network structures, clustering-based approaches have demonstrated superior performance. In

this section, we discuss the combination of the two approximation problems in a uni�ed frame-

work. This is particularly needed when dealing with a network with both a complex topology and

high-order subsystems.

However, performing a simultaneous reduction of topological complexity and subsystem dy-

namics is not straightforward.Naively, we may apply the methods of Sections 3 and 4.1 separately

to achieve the two approximation goals one by one.Nevertheless, which reduction sequence gives

a better approximation is still unclear, and moreover, there is hardly a guarantee on the approxi-

mation error. Relevant results in the literature on combined topological and nodal reduction are

rare. The existing ones are developed generally for networked homogeneous linear systems, as

in Equation 12 under speci�c assumptions (37, 38). For example, Ishizaki et al. (37) imposed the

regularity and dissipativity of the entire system matrix I � A + Ŵ � BC, which admits a block-

diagonal Lyapunov function. This is essential to preserve the stability of the reduced-order model

and to derive an upper bound on the approximation error caused by the reduction of both network

structure and subsystems, where the topological reduction is done by graph clustering.

Cheng et al. (38) considered a network system that is synchronized but not necessarily stable.

The synchronization property is based on the assumption that each subsystem (A, B, C) is min-

imal and passive. By extending the results for networked single integrators of Section 3.3.4, we

can reduce the topological complexity in an indirect manner. A generalized balanced truncation

method then results in a uni�ed framework to simplify the network structure and subsystem dy-

namics simultaneously. The reduction scheme is illustrated in Figure 9, which contains two core

steps.

The �rst step is to decompose the considered network system into two parts, which correspond

to the average of all subsystems and the discrepancy among the subsystem states, respectively.

Due to the synchronization property, the latter part, which captures the main dynamics of the

entire network, is represented by an asymptotically stable system �s with a Hurwitz systemmatrix

(In−1 ⊗ A− �̄ ⊗ BC), where �̄ ∈ R
(n−1)×(n−1) shares all the nonzero eigenvalues with the Laplacian

matrix L ∈ R
n×n of the original network.A pair of generalizedGramians with a Kronecker product

structure is then selected, which is key to decouple the balanced truncation procedures of the

network structure and subsystem dynamics. In the second step, the simpli�ed stable system and

average system are integrated, resulting in a reduced-order model of the original �. However,

such a reduced-order model provides only an approximation of the input–output mapping of �,
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Figure 9

The model reduction procedure for a networked passive system, which contains two key techniques: ( 1©) balanced truncation based on
generalized Gramians and ( 2©) a coordinate transformation that reconstructs a network.

rather than the network structure. To restore the network interpretation in that reduced-order

model, a coordinate transformation is required to recover a reduced Laplacian matrix. Cheng &

Scherpen (91) presented the following theoretical foundation for such transformation.

Theorem 5. A real square matrix N is similar to the Laplacian matrix L associated with a

weighted undirected connected graph if and only if N is diagonalizable and has an eigen-

value at 0 with multiplicity 1 while all the other eigenvalues are real and positive.

Cheng et al. (38) provided a detailed proof of the above theorem and a method for recon-

structing an undirected network from given eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λn. Forrow et al.

(101) presented an alternative graph reconstruction approach. The reconstructed graphs are usu-

ally complete—that is, there is an edge between any pair of nodes. A subsequent procedure can be

used to sparsify the interconnection structure (see, e.g., 101, 102).

SUMMARY POINTS

1. Graph-theoretical analysis plays a paramount role in reduced-order modeling of com-

plex network systems.

2. Clustering methods provide a structure-preserving way to reduce the topology of net-

work systems. Dissimilarity-based clustering provides a rather general framework for

simplifying the topological complexity of a network system, where the key is to properly

de�ne a metric to characterize the dissimilarity between nodes or clusters.
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3. Network systems that achieve synchronization are naturally semistable. Novel pseudo-

Gramian notions are introduced for semistable systems as an extension of Gramian ma-

trices for asymptotically stable systems, providing a useful tool to characterize dissimi-

larity and compute the reduction error.

4. Generalized balanced truncation allows more freedom in constructing a reduced-order

model with some desired structures or properties. Thus, it is widely used in the approx-

imation of network systems, particularly in dealing with subsystem reduction.

5. Graph reconstruction can realize a network representation from a reduced-order model

satisfying certain spectral constraints. This makes it possible to apply more classi-

cal model order reduction methods from the control systems literature to structure-

preserving reduction of network systems.

FUTURE ISSUES

1. The approximation of complex network systems with nonlinear couplings and nonlinear

subsystems is still challenging and requires further investigation.

2. How to reduce the topological complexity of dynamic networks composed of heteroge-

neous subsystems is not yet clear.

3. The application of reduced-order network models for designing controllers and ob-

servers for large-scale networks is appealing, and obtaining provable guarantees on the

functionality of the controllers or observers based on reduced-order models should be

further explored.
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