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Abstract In the recent paper (Monshizadeh et al. in IEEE Trans Control Netw Syst

1(2):145–154, 2014. https://doi.org/10.1109/TCNS.2014.2311883), model reduction

of leader–follower multi-agent networks by clustering was studied. For such multi-

agent networks, a reduced order network is obtained by partitioning the set of nodes in

the graph into disjoint sets, called clusters, and associating with each cluster a single,

new, node in a reduced network graph. In Monshizadeh et al. (2014), this method

was studied for the special case that the agents have single integrator dynamics. For a

special class of graph partitions, called almost equitable partitions, an explicit formula

was derived for the H2 model reduction error. In the present paper, we will extend

and generalize the results from Monshizadeh et al. (2014) in a number of directions.
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Firstly, we will establish an a priori upper bound for the H2 model reduction error in

case that the agent dynamics is an arbitrary multivariable input–state–output system.

Secondly, for the single integrator case, we will derive an explicit formula for the H∞
model reduction error. Thirdly, we will prove an a priori upper bound for the H∞
model reduction error in case that the agent dynamics is a symmetric multivariable

input–state–output system. Finally, we will consider the problem of obtaining a priori

upper bounds if we cluster using arbitrary, possibly non almost equitable, partitions.

Keywords Model reduction · Clustering · Multi-agent system · Consensus · Graph

partitions

1 Introduction

In the last few decades, the world has become increasingly connected. This has brought

a significant interest to complex networks, smart-grids, distributed systems, trans-

portation networks, biological networks, and networked multi-agent systems, see,

e.g., [2,10,28]. Widely studied topics in networked systems have been the problems

of consensus and synchronization, see [19,20,27,30]. Other important subjects in the

theory of networked systems are flocking, formation control, sensor placement, and

controllability of networks, see, e.g., [8,9,11,12,24,29,34].

Analysis and controller design for large-scale complex networks can become very

expensive from a computational point of view, especially for problems where the

complexity of the network scales as a power of the number of nodes it contains. In

order to tackle this problem, there is a need for methods and procedures to approximate

the original networks by smaller, less complex ones.

Direct application of established model reduction techniques, such as balanced

truncation, Hankel-norm approximation, and Krylov subspace methods, see, e.g., [1,

3], to the dynamical models of networked systems generally leads to a collapse of

the network structure, as well as the loss of important properties such as consensus or

synchrony.

Model reduction techniques specifically for networked multi-agent systems with

first-order agents have been proposed in [6,15,16,22]. Extensions to second-order

agents have been considered in [7,14] and to more general higher-order agents in [4,

17,23,25]. Some of these methods are based on clustering nodes in the network. With

clustering, the idea is to partition the set of nodes in the network graph into disjoint sets

called clusters, and to associate with each cluster a single, new, node in the reduced

network, thus reducing the number of nodes and connections and the complexity of

the network topology. For a review on clustering in data mining see, e.g., [18].

In [26], model reduction by clustering was put in the context of model order reduc-

tion by Petrov–Galerkin projection. The results in [26] provide explicit expressions for

the H2 model reduction error if a leader–follower network with single integrator agent

dynamics is clustered using an almost equitable partition of the graph. In the present

paper, our aim is to generalize and extend the results in [26] to networks where the

agent dynamics is given by an arbitrary multivariable input–state–output system. We

also aim at finding explicit formulas and a priori upper bounds for the model reduction
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error measured in the H∞-norm. Finally, we will consider the problem of clustering

a network according to arbitrary, not necessarily almost equitable, graph partitions.

The main contributions of this paper are the following:

1. We derive an a priori upper bound for the H2 model reduction error for the case

that the agents are represented by an arbitrary input–state–output system.

2. We extend the results in [26] for single integrator dynamics by giving an explicit

expression for the H∞ model reduction error in terms of properties of the given

graph partition.

3. We establish an a priori upper bound for the H∞ model reduction error for the case

that the agents are represented by an arbitrary but symmetric input–state–output

system.

4. We establish some preliminary results on the model reduction error in case of

clustering using an arbitrary, possibly non almost equitable, partition.

The outline of this paper is as follows. In Sect. 2, we introduce some notation

and discuss some elementary facts about computing the H2- and H∞-norm of stable

transfer functions needed later on in this paper. In Sect. 3, we formulate our prob-

lem of model reduction of leader–follower multi-agent networks. Section 4 reviews

some theory on graph partitions and model reduction by clustering and relates this

method to Petrov–Galerkin projection of the original network. Also preservation of

synchronization is discussed here. In Sect. 5, we provide a priori error bounds on the

H2 model reduction error for networks with arbitrary agent dynamics, clustered using

almost equitable partitions. In Sect. 6, we complement these results by providing upper

bounds on the H∞ model reduction error. In Sect. 7, the problem of clustering net-

works according to general partitions is considered and the first steps toward a priori

error bounds on both the H2 and H∞ model reduction errors are made. Numerical

examples for which we compare the actual errors with the a priori bounds established

in this paper are presented in Sect. 8. Finally, Sect. 9 provides some conclusions. To

enhance readability, some of the more technical proofs in this paper have been put to

“Appendix.”

2 Preliminaries

In this section we briefly introduce some notation and discuss some basic facts on

finite-dimensional linear systems. The trace of a square matrix A is denoted by

tr(A). The largest singular value of a matrix A is denoted by σ1(A). For given

real numbers α1, α2, . . . , αk , we denote by diag(α1, α2, . . . , αk) the k × k diago-

nal matrix with the αi ’s on the diagonal. For square matrices A1, A2, . . . , Ak , we use

diag(A1, A2, . . . , Ak) to denote the block diagonal matrix with the Ai ’s as diagonal

blocks. For a given matrix A, let A+ denote its Moore–Penrose pseudoinverse.

Consider the input–state–output system

ẋ = Ax + Bu,

y = Cx,
(1)
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with x ∈ R
n , u ∈ R

m , y ∈ R
p, and transfer function S(s) = C(s I − A)−1 B. If S has

all its poles in the open left half complex plane, then its H2-norm is defined by

‖S‖2
H2

:= 1

2π

∫ +∞

−∞
tr
(

S(−iω)T S(iω)

)
dω.

If A is Hurwitz, then the H2-norm can be computed as

‖S‖2
H2

= tr
(

BT X B
)
,

where X is the unique positive semi-definite solution of the Lyapunov equation

AT X + X A + CT C = 0. (2)

For the purposes of this paper, we also need to deal with the situation when A is not

Hurwitz. Let X+(A) denote the unstable subspace of A, i.e., the direct sum of the

generalized eigenspaces of A corresponding to its eigenvalues in the closed right half

plane. We state the following proposition:

Proposition 1 Assume that X+(A) ⊂ ker C. Then, the Lyapunov equation (2) has at

least one positive semi-definite solution. Among all positive semi-definite solutions,

there is exactly one solution, say X, with the property X+(A) ⊂ ker X. For this

particular solution X, we have ‖S‖2
H2

= tr
(
BT X B

)
.

A proof of this result can be found in “Appendix A”.

If S has all its poles in the open left half plane, then its H∞-norm is defined by

‖S‖H∞ := sup
ω∈R

σ1(S(iω)).

We will now deal with computing the H∞-norm. The result is a generalization of

Lemma 4 in [16]. For a proof, we refer to “Appendix B.”

Lemma 1 Consider the system (1). Assume that its transfer function S has all its

poles in the open left half plane. If there exists X ∈ R
p×p such that X = X T and

C A = XC, then ‖S‖H∞ = σ1(S(0)).

Continuing our effort to compute the H∞-norm, we now formulate a lemma that

will be instrumental in evaluating a transfer function at the origin. Recall that for a

given matrix A, its Moore–Penrose inverse is denoted by A+.

Lemma 2 Consider the system (1). If A is symmetric and ker A ⊂ ker C, then 0 is

not a pole of the transfer function S and we have S(0) = −C A+ B.

This result is proven in “Appendix C.”

To conclude this section, we briefly review the model reduction technique known

as Petrov–Galerkin projection (see also [1]).
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Definition 1 Consider the system (1). Let W, V ∈ R
n×r , with r < n, such that

W T V = I . The matrix V W T is then a projector, called a Petrov–Galerkin projector.

The reduced order system

˙̂x = W T AV x̂ + W T Bu,

ŷ = CV x̂,

with x̂ ∈ R
r is called the Petrov–Galerkin projection of the original system (1).

3 Problem formulation

We consider networks of diffusively coupled linear subsystems. These subsystems,

called agents, have identical dynamics; however, a selected subset of the agents, called

the leaders, also receives an input from outside the network. The remaining agents

are called followers. The network consists of N agents, indexed by i , so i ∈ V :=
{1, 2, . . . , N }. The subset VL ⊂ V is the index set of the leaders, more explicitly

VL = {v1, v2, . . . , vm}. The followers are indexed by VF := V\VL. More specifically,

the leaders are represented by the finite-dimensional linear system

ẋi = Axi + B

N∑

j=1

ai j (x j − xi ) + Euℓ, i ∈ VL, i = vℓ,

whereas the followers have dynamics

ẋi = Axi + B

N∑

j=1

ai j (x j − xi ), i ∈ VF.

The weights ai j ≥ 0 represent the coupling strengths of the diffusive coupling between

the agents. In this paper, we assume that ai j = a j i for all i, j ∈ V . Also, ai i = 0 for all

i ∈ V . Furthermore, xi ∈ R
n is the state of agent i , and uℓ ∈ R

r is the external input

to the leader vℓ. Finally, A ∈ R
n×n , B ∈ R

n×n , and E ∈ R
n×r are real matrices. It is

customary to represent the interaction between the agents by the graph G with node

set V = {1, 2, . . . , N } and adjacency matrix A = (ai j ). In the setup of this paper,

this graph is undirected, reflecting the assumption that A is symmetric. The Laplacian

matrix L ∈ R
N×N of the graph G is defined as

L i j =
{

di if i = j,

−ai j if i �= j,

with di =
∑N

j=1 ai j .

Recall that the set of leader nodes is VL = {v1, v2, . . . , vm}, and define the matrix

M ∈ R
N×m as

Miℓ =
{

1 if i = vℓ,

0 otherwise.
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Denote x = col(x1, x2, . . . , xN ) and u = col(u1, u2, . . . , um). The total network is

then represented by

ẋ = (IN ⊗ A − L ⊗ B)x + (M ⊗ E)u. (3)

The goal of this paper is to find a reduced order networked system, whose dynamics

is a good approximation of the networked system (3). Following [26], the idea to

obtain such an approximation is to cluster groups of agents in the network, and to

treat each of the resulting clusters as a node in a new, reduced order, network. The

reduced order network will again be a leader–follower network, and by the clustering

procedure, essential interconnection features of the network will be preserved. We

will also require that the synchronization properties of the network are preserved after

reduction. We assume that the original network is synchronized, meaning that if the

external inputs satisfy uℓ = 0 for ℓ = 1, 2, . . . , m, then for all i, j ∈ V , we have

xi (t) − x j (t) → 0

as t → ∞. We impose that the reduction procedure preserves this property. In this

paper, a standing assumption will be that the graph G of the original network is con-

nected. This is equivalent to the condition that 0 is a simple eigenvalue of the Laplacian

L , see [21, Theorem 2.8]. In this case, the network reaches synchronization if and only

if (L ⊗ In)x(t) → 0 as t → ∞.

In order to be able to compare the original network (3) with its reduced order

approximation and to make statements about the approximation error, we need a notion

of distance between the networks. One way to obtain such notion is to introduce an

output associated with the network (3). By doing this, both the original network and its

approximation become input–output systems, and we can compare them by looking

at the difference of their transfer functions. Being a measure for the disagreement

between the states of the agents in (3), we choose y = (L ⊗ In)x as the output

of the original network. Indeed, this output y can be considered a measure of the

disagreement in the network, in the sense that y(t) is small if and only if the network

is close to being synchronized. Thus, with the original system (3) we now identify the

input–state–output system:

ẋ = (IN ⊗ A − L ⊗ B)x + (M ⊗ E)u,

y = (L ⊗ In)x .
(4)

The state space dimension of (4) is equal to nN , its number of inputs equals to mr ,

and the number of outputs is nN .

In this paper, we will use clustering to obtain a reduced order network, i.e., a network

with a reduced number of agents, as an approximation of the original network (4).

4 Graph partitions and reduction by clustering

We consider networks whose interaction topologies are represented by weighted

graphs G with node set V . The graph of the original network (3) is undirected; how-
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ever, our reduction procedure will lead to networks on directed graphs. As before, the

adjacency matrix of the graph G is the matrix A = (ai j ), where ai j ≥ 0 is the weight

of the arc from node j to node i . As noted before, the graph is undirected if and only

if A is symmetric.

A nonempty subset C ⊂ V is called a cell or cluster of V . A partition of a graph is

defined as follows.

Definition 2 Let G be an undirected graph. A partition π = {C1, C2, . . . , Ck} of V

is a collection of cells such that V =
⋃k

i=1 Ci and Ci ∩ C j = ∅ whenever i �= j .

When we say that π is a partition of G, we mean that π is a partition of the vertex set

V of G. Nodes i and j are called cellmates in π if they belong to the same cell of π .

The characteristic vector of a cell C ⊂ V is the N -dimensional column vector p(C)

defined as

pi (C) =
{

1 if i ∈ C,

0 otherwise,

where pi (C) is the i th entry of p(C). The characteristic matrix of the partition π =
{C1, C2, . . . , Ck} is defined as the N × k matrix

P(π) =
(

p(C1) p(C2) · · · p(Ck)
)
.

For a given partition π = {C1, C2, . . . , Ck}, consider the cells C p and Cq with p �= q.

For any given node j ∈ Cq , we define its degree with respect to C p as the sum of the

weights of all arcs from j to i ∈ C p, i.e., the number

dpq( j) :=
∑

i∈C p

ai j .

Next, we will construct a reduced order approximation of (4) by clustering the agents

in the network using a partition of G. Let π be a partition of G, and let P := P(π)

be its characteristic matrix. Extending the main idea in [26], we take as reduced order

system the Petrov–Galerkin projection of the original system (4), with the following

choice for the matrices V and W :

W = P
(
PT P

)−1 ⊗ In ∈ R
nN×nk, V = P ⊗ In ∈ R

nN×nk .

The dynamics of the resulting reduced order model is then given by

˙̂x = (Ik ⊗ A − L̂ ⊗ B)x̂ + (M̂ ⊗ E)u,

ŷ = (L P ⊗ In)x̂,
(5)

where

L̂ =
(
PT P

)−1
PT L P ∈ R

k×k,

M̂ =
(
PT P

)−1
PT M ∈ R

k×m .
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It can be seen by inspection that the matrix L̂ is the Laplacian of a weighted directed

graph with node set {1, 2, . . . , k}, with k equal to the number of clusters in the partition

π , and adjacency matrix Â = (âpq), with

âpq = 1

|C p|
∑

j∈Cq

dpq( j),

where dpq( j) is the degree of j ∈ Cq with respect to C p, and |C p| the cardinality of

C p. In other words: in the reduced graph, the edge from node q to node p is obtained

by summing over all j ∈ Cq the weights of all edges to i ∈ C p and dividing this sum

by the cardinality of C p. The row sums of L̂ are indeed equal to zero since L̂1k = 0.

The matrix M̂ ∈ R
k×m satisfies

M̂pj =
{

1
|C p | if v j ∈ C p,

0 otherwise,

where v1, v2, . . . , vm are the leader nodes, p = 1, 2, . . . , k, and j = 1, 2, . . . , m.

Clearly, the state space dimension of the reduced order network (5) is equal to nk,

whereas the dimensions mr and nN of the input and output have remained unchanged.

Thus, we can investigate the error between the original and reduced order network by

looking at the difference of their transfer functions. In the sequel, we will investigate

both the H2-norm as well as the H∞-norm of this difference.

Before doing this, we will now first study the question whether our reduction pro-

cedure preserves synchronization. It is important to note that since, by assumption,

the original undirected graph is connected, it has a directed spanning tree. It is easily

verified that this property is preserved by our clustering procedure. Then, since the

property of having a directed spanning tree is equivalent with 0 being a simple eigen-

value of the Laplacian (see [21, Proposition 3.8]), the reduced order Laplacian L̂ has

again 0 as a simple eigenvalue.

Now assume that the original network (4) is synchronized. It is well known, see,

e.g., [33], that this is equivalent with the condition that for each nonzero eigenvalue λ

of the Laplacian L the matrix A − λB is Hurwitz. Thus, synchronization is preserved

if and only if for each nonzero eigenvalue λ̂ of the reduced order Laplacian L̂ the

matrix A − λ̂B is Hurwitz.

Unfortunately, in general A−λB Hurwitz for all nonzero λ ∈ σ(L) does not imply

that A− λ̂B Hurwitz for all nonzero λ ∈ σ(L̂). An exception is the “single integrator”

case A = 0 and B = 1, where this condition is trivially satisfied, so in this special

case synchronization is preserved. Also if we restrict ourselves to a special type of

graph partitions, namely almost equitable partitions, then synchronization turns out

to be preserved. We will review this type of partition now.

Again, let G be a weighted, undirected graph, and let π = {C1, C2, . . . , Ck} be a

partition of G. Given two clusters C p and Cq with p �= q, and a given node j ∈ Cq ,

recall that dpq( j) denotes its degree with respect to C p. We call the partition π an

almost equitable partition (in short: an AEP) if for each p, q with p �= q, the degree
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Fig. 1 A graph from [26] for

which the partition

{{1, 2, 3, 4}, {5, 6}, {7}, {8}, {9, 10}}
is almost equitable

1
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6 7
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1
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33 6 7

dpq( j) is independent of j ∈ Cq , i.e., dpq( j1) = dpq( j2) for all j1, j2 ∈ Cq . We refer

to Fig. 1 for an example of a graph with an AEP.

It is a well-known fact (see [5]) that π is an AEP if and only if the image of its

characteristic matrix is invariant under the Laplacian.

Lemma 3 Consider the weighed undirected graph G with Laplacian matrix L. Let π

be a partition of G with characteristic matrix P := P(π). Then, π is an AEP if and

only if L im P ⊂ im P.

As an immediate consequence, the reduced Laplacian L̂ resulting from an AEP satisfies

L P = P L̂ . Indeed, since im P is L-invariant we have L P = P X for some matrix X .

Obviously, we must then have X =
(
PT P

)−1
PT L P = L̂ . From this, it follows that

σ(L̂) ⊂ σ(L). It then readily follows that synchronization is preserved if we cluster

according to an AEP:

Theorem 1 Assume that the network (4) is synchronized. Let π be an AEP. Then, the

reduced order network (5) obtained by clustering according to π is synchronized.

To the best of our knowledge, there is no known polynomial-time algorithm for

finding nontrivial AEPs of a given graph, where by “trivial AEPs” we mean the coarsest

and the finest partitions ({V} and {{i} : i ∈ V}). There is a polynomial-time algorithm

for finding the coarsest AEP which is finer than a given partition (see [35]), but there

is no guarantee that it will find a nontrivial AEP. Furthermore, it is not clear whether a

given graph has any nontrivial AEPs at all. On the other hand, a graph can have many

AEPs, e.g., every partition of a complete unweighted graph is an AEP. Because of this,

in Sect. 7 we consider extensions of our results in Sects. 5 and 6, which are based on

AEPs, to arbitrary partitions.

5 H2-error bounds

In this section, we will formulate the first main theorem of this paper. The theorem

gives an a priori upper bound for the H2-norm of the approximation error in the case

that we cluster according to an AEP. After formulating the theorem, in the remainder

of this section we will establish a proof. The proof will use a sequence of separate

lemmas, whose proofs can be found in “Appendix.”
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Before stating the theorem, we will now first discuss some important ingredients. Let

S and Ŝ denote the transfer functions of the original (4) and reduced order network (5),

respectively. We will measure the approximation error by the H2-norm
∥∥S − Ŝ

∥∥
H2

of these transfer functions. An important role will be played by the N − 1 auxiliary

input–state–output systems

ẋ = (A − λB)x + Ed,

z = λx,
(6)

where λ ranges over the N − 1 nonzero eigenvalues of the Laplacian L . Let Sλ(s) =
λ(s I − A + λB)−1 E be the transfer matrices of these systems. We assume that the

original network (4) is synchronized, so that all of the A−λB are Hurwitz. Let ‖Sλ‖H2

denote the H2-norm of Sλ. Recall that the set of leader nodes is VL = {v1, v2, . . . , vm}.
Node vi will be called leader i . This leader is an element of cluster Cki

for some

ki ∈ {1, 2, . . . , k}. We now have the following theorem:

Theorem 2 Assume that the network (4) is synchronized. Let π be an AEP of the

graph G. The absolute approximation error when clustering G according to π then

satisfies

∥∥S − Ŝ
∥∥2

H2
≤ (Smax,H2

)2
m∑

i=1

(
1 − 1

|Cki
|

)
,

where Cki
is the set of cellmates of leader i , and

Smax,H2
:= max

λ∈σ(L)\σ(L̂)

‖Sλ‖H2
.

Furthermore, the relative approximation error satisfies

∥∥S − Ŝ
∥∥2

H2

‖S‖2
H2

≤
(

Smax,H2

Smin,H2

)2
∑m

i=1

(
1 − 1

|Cki
|

)

m
(
1 − 1

N

) ,

where

Smin,H2
:= min

λ∈σ(L)\{0}
‖Sλ‖H2

.

Remark 1 We see that, with fixed number of agents and fixed number of leaders, the

approximation error is equal to 0 if in each cluster that contains a leader, the leader

is the only node in that cluster. In general, the upper bound increases if the numbers

of cellmates of the leaders increase. The upper bound also depends multiplicatively

on the maximal H2-norm of the auxiliary systems (6) over all Laplacian eigenvalues

in the complement of the spectrum of the reduced Laplacian L̂ . The relative error

in addition depends on the minimal H2-norm of the auxiliary systems (6) over all

nonzero eigenvalues of the Laplacian L .

123



Math. Control Signals Syst. (2018) 30:6 Page 11 of 38 6

Remark 2 For the special case that the agents are single integrators (so n = 1, A = 0,

B = 1, and E = 1) it is easily seen that Smax,H2
= 1

2
max{λ | λ ∈ σ(L)\σ(L̂)}

and Smin,H2
= 1

2
min{λ | λ ∈ σ(L), λ �= 0}. Thus, in the single integrator case the

corresponding a priori upper bounds explicitly involve the Laplacian eigenvalues. As

already noted in Sect. 1, the single integrator case was also studied in [26] for the

slightly different setup that the output equation in the original network (4) is taken as

y = (W
1
2 RT ⊗ In)x instead of y = (L ⊗ In)x . Here, R is the incidence matrix of

the graph and W the diagonal matrix with the edge weights on the diagonal (in other

words, L = RW RT ). It was shown in [26] that in that case the absolute and relative

approximation errors even admit the explicit formulas

‖S − Ŝ‖2
H2

= 1

2

m∑

i=1

(
1 − 1

|Cki
|

)
,

and

‖S − Ŝ‖2
H2

‖S‖2
H2

=
∑m

i=1

(
1 − 1

|Cki
|

)

m
(
1 − 1

N

) .

In the remainder of this section, we will establish a proof of Theorem 2. Being

rather technical, most of the proofs will the deferred to “Appendix.” As a first step,

we establish the following lemma (see also [26], where only the single integrator case

was treated):

Lemma 4 Let π be an AEP of the graph G. The approximation error when clustering

G according to π then satisfies

∥∥S − Ŝ
∥∥2

H2
= ‖S‖2

H2
−

∥∥Ŝ
∥∥2

H2
.

Proof See “Appendix D.” ⊓⊔

Recall that, since π is an AEP, we have σ(L̂) ⊂ σ(L). Label the eigenvalues of

L as 0, λ2, λ3, . . . , λN in such a way that 0, λ2, λ3, . . . , λk are the eigenvalues of L̂ .

Also, without loss of generality, we assume that π is regularly formed, i.e., all ones

in each of the columns of P(π) are consecutive. One can always relabel the agents in

the graph in such a way that this is achieved. For simplicity, we again denote P(π) by

P . Consider now the symmetric matrix

L̄ :=
(
PT P

) 1
2 L̂

(
PT P

)− 1
2 =

(
PT P

)− 1
2 PT L P

(
PT P

)− 1
2 . (7)

Note that the eigenvalues of L̄ and L̂ coincide. Let Û be an orthogonal matrix that

diagonalizes L̄ . We then have

Û T L̄Û = diag(0, λ2, . . . , λk) =: Λ̂. (8)
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Next, take U1 = P
(
PT P

)− 1
2 Û . The columns of U1 form an orthonormal set:

U T
1 U1 = Û T

(
PT P

)− 1
2 PT P

(
PT P

)− 1
2 Û = Û T Û = I.

Furthermore, we have that

U T
1 LU1 = Û T L̄Û = Λ̂.

Now choose U2 such that U =
(
U1 U2

)
is an orthogonal matrix and

Λ := U T LU =
(

Λ̂ 0

0 Λ̄

)
, (9)

where Λ̄ = diag(λk+1, . . . , λN ). It is easily verified that the first column of U1, and

thus the first column of U , is given by 1√
N
1N , where 1N is the N -vector of 1’s, a fact

that we will use in the remainder of this paper.

Using the above, we will now first establish explicit formulas for the H2-norms

of S and Ŝ separately. The following lemma gives a formula for the H2-norm of the

original transfer function S:

Lemma 5 Let U be as in (9). For i = 2, . . . , N, let X i be the observability Gramian of

the auxiliary system (A−λi B, E, λi I ) in (6), i.e., the unique solution of the Lyapunov

equation (A − λi B)T X i + X i (A − λi B) + λ2
i I = 0. Then, the H2-norm of S is given

by:

‖S‖2
H2

= tr
((

U T M MT U ⊗ I
)

diag(0, ET X2 E, . . . , ET X N E)

)
. (10)

Proof See “Appendix E.” ⊓⊔

We proceed with finding a formula for the H2-norm for the reduced system. This

will be dealt with in the following lemma:

Lemma 6 Let Û be as in (8) above. For i = 2, . . . , k, let X i be the observability

Gramian of the auxiliary system (A − λi B, E, λi I ) in (6), i.e., the unique solution of

the Lyapunov equation (A −λi B)T X i + X i (A −λi B)+λ2
i I = 0. Then, the H2-norm

of Ŝ is given by:

‖Ŝ‖2
H2

= tr

((
Û T

(
PT P

) 1
2 M̂ M̂T

(
PT P

) 1
2 Û ⊗ I

)

× diag
(

0, ET X2 E, . . . , ET Xk E
))

. (11)

Proof See “Appendix F.” ⊓⊔

We will now combine the previous lemmas and give a proof of Theorem 2.
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Proof of Theorem 2 Using Lemma 4, and formulas (10) and (11), we compute

∥∥S − Ŝ
∥∥2

H2
= tr

((
U T M MT U ⊗ I

)
diag

(
0, ET X2 E, . . . , ET X N E

))

− tr

((
Û T

(
PT P

) 1
2 M̂ M̂T

(
PT P

) 1
2 Û ⊗ I

)

× diag
(

0, ET X2 E, . . . , ET Xk E
))

= tr

(((
U T

1 M MT U1 U T
1 M MT U2

U T
2 M MT U1 U T

2 M MT U2

)
⊗ I

)

× diag
(

0, ET X2 E, . . . , ET X N E
))

− tr
((

U T
1 M MT U1 ⊗ I

)
diag

(
0, ET X2 E, . . . , ET Xk E

))

= tr
((

U T
2 M MT U2 ⊗ I

)
diag

(
ET Xk+1 E, . . . , ET X N E

))
, (12)

where the second equality follows from the fact that

M̂T
(
PT P

) 1
2 Û = MT P

(
PT P

)−1(
PT P

) 1
2 Û

= MT P
(
PT P

)− 1
2 Û

= MT U1.

Next, observe that (12) can be rewritten as

∥∥S − Ŝ
∥∥2

H2
= tr

((
U T

2 M MT U2 ⊗ I
)

diag
(

ET Xk+1 E, . . . , ET X N E
))

= tr
((

U T
2 M MT U2

)
diag

(
tr
(

ET Xk+1 E
)
, . . . , tr

(
ET X N E

)))

= tr
((

U T
2 M MT U2

)
diag

(
‖Sλk+1

‖2
H2

, . . . , ‖SλN
‖2
H2

))
,

where Sλ j
for j = k + 1, . . . , N is the transfer function of the auxiliary system (6).

An upper bound for this expression is given by

tr
((

U T
2 M MT U2

)
diag

(
‖Sλk+1

‖2
H2

, . . . , ‖SλN
‖2
H2

))

≤ (Smax,H2
)2 tr

(
U T

2 M MT U2

)
,

where Smax,H2
= maxk+1≤ j≤N ‖Sλ j

‖H2
. Furthermore, we have

tr
(

U T
2 M MT U2

)
= tr

(
U T M MT U

)
− tr

(
U T

1 M MT U1

)

= m − tr
(

P
(
PT P

)−1
PT M MT

)
.
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Since, by assumption, the partition π is regularly formed, P
(
PT P

)−1
PT is a block

diagonal matrix of the form

P
(
PT P

)−1
PT = diag(P1, P2, . . . , Pk).

It is easily verified that each Pi is a |Ci | × |Ci | matrix whose elements are all equal

to 1
|Ci | . The matrix M MT is a diagonal matrix whose diagonal entries are either 0 or

1. We then have that the i th column of P
(
PT P

)−1
PT M MT is either equal to the i th

column of P
(
PT P

)−1
PT if agent i is a leader, or zero otherwise. It then follows that

the diagonal elements of P
(
PT P

)−1
PT M MT are either zero or 1

|Cki
| if i is part of

the leader set, where Cki
is the cell containing agent i . Hence, we have

tr
(

U T
1 M MT U1

)
=

m∑

i=1

1

|Cki
| ,

and consequently,

tr
(

U T
2 M MT U2

)
= m −

m∑

i=1

1

|Cki
| .

In conclusion, we have

∥∥S − Ŝ
∥∥2

H2
≤ (Smax,H2

)2
m∑

i=1

(
1 − 1

|Cki
|

)
,

which completes the proof of the first part of the theorem.

We now prove the statement about the relative error. For this, we will establish a

lower bound for ‖S‖2
H2

. By (10), we have

‖S‖2
H2

= tr
((

U T M MT U ⊗ I
)

diag
(

0, ET X2 E, . . . , ET X N E
))

= tr
((

U T M MT U
)

diag
(

0, tr
(

ET X2 E
)
, . . . , tr

(
ET X N E

)))
. (13)

The first column of U spans the eigenspace corresponding to the eigenvalue 0 of L

and hence must be equal to u1 = 1√
N
1N . Let Ū be such that U =

(
u1 Ū

)
. It is then

easily verified using (13) that

‖S‖2
H2

= tr
((

Ū T M MT Ū
)

diag
(

tr
(

ET X2 E
)
, . . . , tr

(
ET X N E

)))

= tr
((

Ū T M MT Ū
)

diag
(
‖Sλ2‖2

H2
, . . . , ‖SλN

‖2
H2

))
.

Finally, since

tr
(

Ū T M MT Ū
)

= tr
(

MT ŪŪ T M
)

= tr
(

MT
(

UU T − u1uT
1

)
M

)
= m − m

N
,
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we obtain that ‖S‖2
H2

≥ m
(
1 − 1

N

)
(Smin,H2

)2. This then yields the upper bound for

the relative error as claimed. ⊓⊔

Remark 3 Note that by our labeling of the eigenvalues of L , in the formulation of

Theorem 2, we have that σ(L)\σ(L̂) is equal to {λk+1, . . . , λN } used in the proof. We

stress that this should not be confused with the notation often used in the literature,

where the λi s are labeled in increasing order.

6 H∞-error bounds

Whereas in the previous section we studied a priori upper bounds for the approximation

error in terms of the H2-norm, the present section aims at expressing the approximation

error in terms of the H∞-norm. This section consists of two subsections. In the first

subsection, we consider the special case that the agent dynamics is a single integrator

system. Here, we obtain an explicit formula for the H∞-norm of the error. In the

second subsection, we find an upper bound for the H∞-error for symmetric systems.

6.1 The single integrator case

Here, we consider the special case that the agent dynamics is a single integrator system.

In this case, we have A = 0, B = 1, and E = 1 and the original system (4) reduces to

ẋ = −Lx + Mu,

y = Lx .
(14)

The state space dimension of (14) is then simply N , the number of agents. For a given

partition π = {C1, C2, . . . , Ck}, the reduced system (5) is now given by

˙̂x = −L̂ x̂ + M̂u,

ŷ = L Px̂,

where P = P(π) is again the characteristic matrix of π and x̂ ∈ R
k . The transfer

functions S and Ŝ, of the original and reduced system, respectively, are given by

S(s) = L(s IN + L)−1 M,

Ŝ(s) = L P
(
s Ik + L̂

)−1
M̂ .

The first main result of this section is the following explicit formula for the H∞-model

reduction error. It complements the formula for the H2-error obtained in [26] (see also

Remark 2):

Theorem 3 Let π be an AEP of the graph G. If the network with single integrator

agent dynamics is clustered according to π , then the H∞-error is given by
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∥∥S − Ŝ
∥∥2

H∞
=

⎧
⎨
⎩

max
1≤i≤m

(
1 − 1

|Cki
|

)
if the leaders are in different cells,

1 otherwise,

where, for some ki ∈ {1, 2, . . . , k}, Cki
is the set of cellmates of leader i . Furthermore,

‖S‖H∞ = 1, hence the relative and absolute H∞-errors coincide.

Remark 4 We see that the H∞-error lies in the interval [0, 1]. The error is maximal

(= 1) if and only if two or more leader nodes occupy one and the same cell. The error

is minimal (= 0) if and only if each leader node occupies a different cell, and is the

only node in this cell. In general, the error increases if the number of cellmates of the

leaders increases.

Proof of Theorem 3 To simplify notation, denote Δ(s) = S(s)− Ŝ(s). Note that both

S and Ŝ have all poles in the open left half plane. We now first show that, since π is

an AEP, we have

‖Δ‖H∞ = σ1(Δ(0)). (15)

First note that Ŝ(s) = L P
(
PT P

)− 1
2 (s Ik + L̄)

−1(
PT P

) 1
2 M̂ , where the symmetric

matrix L̄ is given by (7). Thus, a state space representation for the error system is

given by

ẋe =
(

−L 0

0 −L̄

)
xe +

(
M

(
PT P

) 1
2 M̂

)
u,

e =
(

L −L P
(
PT P

)− 1
2

)
xe.

(16)

Next, we show that (15) holds by applying Lemma 1 to system (16). Indeed, with

X = −L , we have

(
L −L P

(
PT P

)− 1
2

) (
−L 0

0 −L̄

)

=
(
−L2 L P

(
PT P

)− 1
2 L̄

)

=
(
−L2 L P L̂

(
PT P

)− 1
2

)

=
(
−L2 L2 P

(
PT P

)− 1
2

)
= X

(
L −L P

(
PT P

)− 1
2

)
,

and from Lemma 1 it then immediately follows that ‖Δ‖H∞ = σ1(Δ(0)). To compute

σ1(Δ(0)), we apply Lemma 2 to system (16). First, it is easily verified that

ker

(
−L 0

0 −L̄

)
⊂ ker

(
L −L P

(
PT P

)− 1
2

)
.

By applying Lemma 2 we then obtain

Δ(0) =
(

L −L P
(
PT P

)− 1
2

) (
L 0

0 L̄

)+ (
M

(
PT P

) 1
2 M̂

)
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= L

(
L+ − P

(
PT P

)− 1
2 L̄+(

PT P
)− 1

2 PT

)
M. (17)

Recall that Û in (8) is an orthogonal matrix that diagonalizes L̄ and that U1 =
P

(
PT P

)− 1
2 Û . Then, L̄+ = ÛΛ̂+Û T . Thus, we have

P
(
PT P

)− 1
2 L̄+(

PT P
)− 1

2 PT = U1Λ̂
+U T

1 .

Next, we compute

L L+ = UΛU T UΛ+U T

= UΛΛ+U T

= IN − 1

N
1N1

T
N ,

(18)

where the last equality follows from the fact that the first column of U is 1√
N
1N . Now

observe that
LU1Λ̂

+U T
1 = UΛU T U1Λ̂

+U T
1

= U1Λ̂Λ̂+U T
1

= U1U T
1 − 1

N
1N1

T
N

= P
(
PT P

)−1
PT − 1

N
1N1

T
N .

(19)

Combining (18) and (19) with (17), we obtain

Δ(0) =
(

IN − P
(
PT P

)−1
PT

)
M.

From (15) then, we have that the H∞-error is given by

∥∥S − Ŝ
∥∥2

H∞
= λmax

(
Δ(0)T Δ(0)

)

= λmax

(
MT

(
IN − P

(
PT P

)−1
PT

)2
M

)

= λmax

(
Im − MT P

(
PT P

)−1
PT M

)

= 1 − λmin

(
MT P

(
PT P

)−1
PT M

)
.

(20)

All that is left is to compute the minimal eigenvalue of MT P
(
PT P

)−1
PT M . Again,

let {v1, v2, . . . , vm} be the set of leaders and note that M satisfies

M =
(
ev1 ev2 · · · evm

)
.

Again, without loss of generality, assume that π is regularly formed. Then, the matrix

P
(
PT P

)−1
PT is block diagonal where each diagonal block Pi is a |Ci |× |Ci | matrix
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whose entries are all 1
|Ci | . Let ki ∈ {1, 2, . . . , k} be such that vi ∈ Cki

. If all the leaders

are in different cells, then

MT P
(
PT P

)−1
PT M = diag

(
1

|Ck1 |
,

1

|Ck2 |
, . . . ,

1

|Ckm |

)
,

and so

λmin

(
MT P

(
PT P

)−1
PT M

)
= min

1≤i≤m

1

|Cki
| . (21)

Now suppose that two leaders vi and v j are cellmates. Then, we have

MT P
(
PT P

)−1
PT M(ei − e j ) = MT P

(
PT P

)−1
PT (evi

− ev j
) = 0.

which together with MT P
(
PT P

)−1
PT M ≥ 0 implies

λmin

(
MT P

(
PT P

)−1
PT M

)
= 0. (22)

From (20), (21), and (22), we find the absolute H∞-error. To find the relative H∞-

error, we compute ‖S‖H∞ by applying Lemmas 1 and 2 to the original system (14).

Combined with (18), this results in the H∞-norm of the original system:

‖S‖2
H∞ = λmax

(
S(0)T S(0)

)
= λmax

(
MT

(
IN − 1

N
1N1

T
N

)
M

)
= 1.

This completes the proof. ⊓⊔

6.2 The general case with symmetric agent dynamics

In this subsection, we return to the general case that the agent dynamics is given by

an arbitrary multivariable input–state–output system. Thus, the original and reduced

networks are again given by (4) and (5), respectively. As in the proof of Theorem 3,

we will rely heavily on Lemma 2 to compute the H∞-error. Since Lemma 2 relies

on a symmetry argument, we will need to assume that the matrices A and B are both

symmetric, which will be a standing assumption in the remainder of this section.

We will now establish an a priori upper bound for the H∞-norm of the approx-

imation error in the case that we cluster according to an AEP. Again, an important

role is played by the N − 1 auxiliary systems (6) with λ ranging over the nonzero

eigenvalues of the Laplacian L . Again, let Sλ(s) = λ(s I − A + λB)−1 E be their

transfer functions. We assume that the original network (4) is synchronized, so that all

of the A − λB are Hurwitz. We again use S, Ŝ, and Δ to denote the relevant transfer

functions.

The following is the second main theorem of this section:
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Theorem 4 Assume the network (4) is synchronized and that A and B are symmetric

matrices. Let π be an AEP of the graph G. The H∞-error when clustering G according

to π then satisfies

∥∥S − Ŝ
∥∥2

H∞
≤

⎧
⎨
⎩

(Smax,H∞)2 max
1≤i≤m

(
1 − 1

|Cki
|

)
if the leaders are in different cells,

(Smax,H∞)2 otherwise,

and

∥∥S− Ŝ
∥∥2

H∞

‖S‖2
H∞

≤

⎧
⎪⎨
⎪⎩

(
Smax,H∞
Smin,H∞

)2
max

1≤i≤m

(
1 − 1

|Cki
|

)
if the leaders are in different cells,

(
Smax,H∞
Smin,H∞

)2
otherwise,

where

Smax,H∞ := max
λ∈σ(L)\σ(L̂)

‖Sλ‖H∞ , (23)

and

Smin,H∞ := min
λ∈σ(L)\{0}

σmin(Sλ(0)), (24)

with Sλ the transfer functions of the auxiliary systems (6).

Remark 5 The absolute H∞-error thus lies in the interval [0, Smax,H∞ ] with Smax,H∞
the maximum over the H∞-norms of the transfer functions Sλ with λ ∈ σ(L)\σ(L̂).

The error is minimal (= 0) if each leader node occupies a different cell, and is the only

node in this cell. In general, the upper bound increases if the number of cellmates of

the leaders increases.

Proof of Theorem 4 First note that the transfer function Ŝ of the reduced network (5)

is equal to

Ŝ(s) =
(

L P
(
PT P

)− 1
2 ⊗ In

)(
s I − Ik ⊗ A + L̄ ⊗ B

)−1
((

PT P
) 1

2 M̂ ⊗ E

)
,

(25)

with the symmetric matrix L̄ given by (7). Analogous to the proof of Theorem 3, we

first apply Lemma 1 to the error system

ẋe =
(

IN ⊗ A − L ⊗ B 0

0 Ik ⊗ A − L̄ ⊗ B

)
xe +

(
M ⊗ E

(
PT P

) 1
2 M̂ ⊗ E

)
u,

e =
(

L ⊗ In −L P
(
PT P

)− 1
2 ⊗ In

)
xe,

with transfer function Δ. Take X = IN ⊗ A − L ⊗ B. We then have

(
L ⊗ In −L P

(
PT P

)− 1
2 ⊗ In

) (
IN ⊗ A − L ⊗ B 0

0 Ik ⊗ A − L̄ ⊗ B

)
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= X
(

L ⊗ In −L P
(
PT P

)− 1
2 ⊗ In

)
.

From Lemma 1, we thus obtain that

‖Δ‖H∞ = σ1(Δ(0)) = λmax

(
Δ(0)T Δ(0)

) 1
2
.

In the proof of Lemma 4, it was shown that

Ŝ(−s)T Δ(s) = Ŝ(−s)T (S(s) − Ŝ(s)) = 0.

Since all transfer functions involved are stable, in particular this holds for s = 0. We

then have that Ŝ(0)T (S(0)− Ŝ(0)) = 0, i.e., Ŝ(0)T S(0) = Ŝ(0)T Ŝ(0). By transposing,

we also have S(0)T Ŝ(0) = Ŝ(0)T Ŝ(0). Therefore,

Δ(0)T Δ(0) =
(
S(0) − Ŝ(0)

)T
(S(0) − Ŝ(0))

= S(0)T S(0) − S(0)T Ŝ(0) − Ŝ(0)T S(0) + Ŝ(0)T Ŝ(0)

= S(0)T S(0) − Ŝ(0)T Ŝ(0).

By applying Lemma 2 to system (4), we obtain

S(0)T S(0) =
(

MT ⊗ ET
)
(IN ⊗ A − L ⊗ B)+

(
L2 ⊗ In

)

× (IN ⊗ A − L ⊗ B)+(M ⊗ E)

=
(

MT ⊗ ET
)
(U ⊗ In)(IN ⊗ A − Λ ⊗ B)+

(
Λ2 ⊗ In

)

× (IN ⊗ A − Λ ⊗ B)+
(

U T ⊗ In

)
(M ⊗ E)

=
(

MT U ⊗ ET
)

diag
(

0, λ2
2(A − λ2 B)−2, . . . , λ2

N (A − λN B)−2
)

× (U T M ⊗ E)

=
(

MT U ⊗ Ir

)
diag

(
0, Sλ2(0)T Sλ2(0), . . . , SλN

(0)T SλN
(0)

)

×
(

U T M ⊗ Ir

)
,

(26)

where Sλ is again given by (6). Recall that M̂ =
(
PT P

)−1
PT M and U1 =

P
(
PT P

)− 1
2 Û . Now apply Lemma 2 to the transfer function (25) of the system (5):
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Ŝ(0)T Ŝ(0) =
(

MT P
(
PT P

)− 1
2 ⊗ ET

)(
IN ⊗ A − L̄ ⊗ B

)+

×
((

PT P
)− 1

2 PT L2 P
(
PT P

)− 1
2 ⊗ In

)

×
(
IN ⊗ A − L̄ ⊗ B

)+
((

PT P
)− 1

2 PT M ⊗ E

)

=
(

MT P
(
PT P

)− 1
2 ⊗ ET

)(
Û ⊗ In

)(
IN ⊗ A − Λ̂ ⊗ B

)+

×
(
Λ̂2 ⊗ In

)(
IN ⊗ A − Λ̂ ⊗ B

)+

×
(
Û T ⊗ In

)((
PT P

)− 1
2 PT M ⊗ E

)

=
(

MT U1 ⊗ ET
)

× diag
(

0, λ2
2(A − λ2 B)−2, . . . , λ2

k(A − λk B)−2
)(

U T
1 M ⊗ E

)

=
(

MT U1 ⊗ Ir

)

× diag
(

0, Sλ2(0)T Sλ2(0), . . . , Sλk
(0)T Sλk

(0)

)(
U T

1 M ⊗ Ir

)
.

Combining the two expressions above, it immediately follows that

Δ(0)T Δ(0) = S(0)T S(0) − Ŝ(0)T Ŝ(0)

=
(

MT U2 ⊗ Ir

)

× diag
(

Sλk+1
(0)T Sλk+1

(0), . . . , SλN
(0)T SλN

(0)

)

×
(

U T
2 M ⊗ Ir

)
.

By taking Smax,H∞ as defined by (23) it then follows that

Δ(0)T Δ(0) ≤
(

MT U2 ⊗ Ir

)
diag((Smax,H∞)2 Ir , . . . , (Smax,H∞)2 Ir )

×
(

U T
2 M ⊗ Ir

)

= (Smax,H∞)2
(

MT U2U T
2 M ⊗ Ir

)

= (Smax,H∞)2
(

MT (IN − U1U T
1 )M ⊗ Ir

)

= (Smax,H∞)2
((

Im − MT P
(
PT P

)−1
PT M

)
⊗ Ir

)
.

Continuing as in the proof of Theorem 3, we find an upper bound for the H∞-error:

‖Δ‖2
H∞ ≤ (Smax,H∞)2λmax

(
Im − MT P

(
PT P

)−1
PT M

)
.
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To compute an upper bound for the relative H∞-error, we bound the H∞-norm of

system (4) from below. Again, let Ū be such that U =
(
u1 Ū

)
and let Smin,H∞ be as

defined by (24). From (26) it now follows that

S(0)T S(0) =
(

MT Ū ⊗ Ir

)
diag

(
Sλ2(0)T Sλ2(0), . . . , SλN

(0)T SλN
(0)

)

×
(

Ū T M ⊗ Ir

)

≥
(

MT Ū ⊗ Ir

)
diag

(
(Smin,H∞)2 Ir , . . . , (Smin,H∞)2 Ir

)

×
(

Ū T M ⊗ Ir

)

= (Smin,H∞)2
(

MT ŪŪ T M ⊗ Ir

)

= (Smin,H∞)2

(
MT

(
IN − 1

N
1N1

T
N

)
M ⊗ Ir

)
.

Again using Lemma 2, we find a lower bound to the H∞-norm of S:

‖S‖2
H∞ = λmax

(
S(0)T S(0)

)
≥ (Smin,H∞)2,

which concludes the proof of the theorem. ⊓⊔

7 Toward a priori error bounds for general graph partitions

Up to now, we have only dealt with establishing error bounds for network reduction

by clustering using almost equitable partitions of the network graph. Of course, we

would also like to obtain error bounds for arbitrary, possibly non almost equitable,

partitions. In this section, we present some ideas to address this more general problem.

We will first study the single integrator case. Subsequently, we will look at the general

case.

7.1 The single integrator case

Consider the multi-agent network

ẋ = −Lx + Mu,

y = Lx .
(27)

As before, assume that the underlying graph G is connected. The network is then

synchronized. Let π = {C1, C2, . . . , Ck} be a graph partition, not necessarily an AEP,

and let P = P(π) ∈ R
N×k be its characteristic matrix. As before, the reduced order

network is taken to be the Petrov–Galerkin projection of (27) and is represented by
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˙̂x = −L̂ x̂ + M̂u,

ŷ = L Px̂,
(28)

Again, let S and Ŝ be the transfer functions of (27) and (28), respectively. We will

address the problem of obtaining a priori upper bounds for
∥∥S − Ŝ

∥∥
H2

and
∥∥S −

Ŝ
∥∥

H∞
. We will pursue the following idea: as a first step we will approximate the

original Laplacian matrix L (of the original network graph G) by a new Laplacian

matrix, denoted by LAEP (corresponding to a “nearby” graph GAEP) such that the

given partition π is an AEP for this new graph GAEP. This new graph GAEP defines a

new multi-agent system with transfer function SAEP(s) = LAEP(s IN + LAEP)−1 M .

The reduced order network of SAEP (using the AEP π ) has transfer function ŜAEP(s) =
LAEP P

(
s Ik + L̂AEP

)−1
M̂ . Then, using the triangle inequality, both for p = 2 and

p = ∞, we have

∥∥S − Ŝ
∥∥

Hp
=

∥∥S − SAEP + SAEP − ŜAEP + ŜAEP − Ŝ
∥∥

Hp

≤ ‖S − SAEP‖Hp
+

∥∥SAEP − ŜAEP

∥∥
Hp

+
∥∥ŜAEP − Ŝ

∥∥
Hp

.
(29)

The idea is to obtain a priori upper bounds for all three terms in (29). We first propose

an approximating Laplacian matrix LAEP, and subsequently study the problems of

establishing upper bounds for the three terms in (29) separately.

For a given matrix M , let ‖M‖F := tr
(
MT M

) 1
2 denote its Frobenius norm. In

the following, denote P := P
(
PT P

)−1
PT . Note that P is the orthogonal projector

onto im P . As approximation for L , we compute the unique solution to the convex

optimization problem

minimize
LAEP

‖L − LAEP‖2
F ,

subject to (IN − P)LAEP P = 0,

LAEP = LT
AEP,

LAEP ≥ 0,

LAEP1N = 0.

(30)

In other words, we want to compute a positive semi-definite matrix LAEP with row

sums equal to zero, and with the property that im P is invariant under LAEP (equiv-

alently, the given partition π is an AEP for the new graph). We will show that such

an LAEP may correspond to an undirected graph with negative weights. However, it

is constrained to be positive semi-definite, so the results of Sects. 4, 5, and 6 in this

paper will remain valid.

Theorem 5 The matrix LAEP := PLP + (IN − P)L(IN − P) is the unique solution

to the convex optimization problem (30). If L corresponds to a connected graph, then,

in fact, ker LAEP = im 1N .

Proof Clearly, LAEP is symmetric and positive semi-definite since L is. Also,

(IN −P)LAEP P = 0 since (IN −P)P = 0. It is also obvious that LAEP1N = 0 since
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P1N = 1N . We now show that LAEP uniquely minimizes the distance to L . Let X

satisfy the constraints and define Δ = LAEP − X . Then, we have

‖L − X‖2
F = ‖L − LAEP‖2

F + ‖Δ‖2
F + 2 tr((L − LAEP)Δ).

It can be verified that L − LAEP = (IN − P)LP + PL(IN − P). Thus,

tr((L − LAEP)Δ) = tr((IN − P)LPΔ) + tr(PL(IN − P)Δ).

Now, since both X and LAEP satisfy the first constraint, we have (IN − P)ΔP = 0.

Using this we have

tr((IN − P)LPΔ) = tr(PΔ(IN − P)L) = tr(L(IN − P)ΔP) = 0.

Also,

tr(PL(IN − P)Δ) = tr(L(IN − P)ΔP) = 0.

Thus, we obtain

‖L − X‖2
F = ‖L − LAEP‖2

F + ‖Δ‖2
F ,

from which it follows that ‖L − X‖F is minimal if and only if Δ = 0, equivalently,

X = LAEP.

To prove the second statement, let x ∈ ker LAEP, so xT LAEPx = 0. Then, both

xT PLPx = 0 and xT (IN − P)L(IN − P)x = 0. This clearly implies LPx = 0

and L(IN − P)x = 0. Since L corresponds to a connected graph, we must have

Px ∈ im 1N and (IN − P)x ∈ im 1N . We conclude that x ∈ im 1N , as desired. ⊓⊔

As announced above, LAEP may have positive off-diagonal elements, corresponding

to a graph with some of its edge weights being negative. For example, for

L =

⎛
⎜⎜⎜⎜⎝

1 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1

⎞
⎟⎟⎟⎟⎠

, P =

⎛
⎜⎜⎜⎜⎝

1 0

1 0

1 0

0 1

0 1

⎞
⎟⎟⎟⎟⎠

,

we have

LAEP =

⎛
⎜⎜⎜⎜⎝

11
9

− 7
9

− 1
9

0 − 1
3

− 7
9

20
9

− 10
9

0 − 1
3

− 1
9

− 10
9

14
9

− 1
2

1
6

0 0 − 1
2

3
2

−1

− 1
3

− 1
3

1
6

−1 3
2

⎞
⎟⎟⎟⎟⎠

,

so the edge between nodes 3 and 5 has a negative weight. Figure 2 shows the graphs

corresponding to L and LAEP. Although LAEP is not necessarily a Laplacian matrix
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45
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6

1
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Fig. 2 A path graph on 5 vertices and its closest graph such that the partition {{1, 2, 3}, {4, 5}} is almost

equitable

with only nonpositive off-diagonal elements, it has all the properties we associate

with a Laplacian matrix. Specifically, it can be checked that all results in this paper

remain valid, since they only depend on the symmetric positive semi-definiteness of

the Laplacian matrix.

Using the approximating Laplacian LAEP = PLP +(IN −P)L(IN −P) as above,

we will now deal with establishing upper bounds for the three terms in (29). We start

off with the middle term
∥∥SAEP − ŜAEP

∥∥
Hp

in (29).

According to Remark 2, for p = 2 this term has an upper bound depending on the

maximal λ ∈ σ(LAEP)\σ(L̂AEP), and on the number of cellmates of the leaders with

respect to the partitioning π . For p = ∞, in Theorem 3 this term was expressed in

terms of the maximal number of cellmates with respect to the partitioning π (noting

that it is equal to 1 in case two or more leaders share the same cell).

Next, we will take a look at the first and third term in (29), i.e., ‖S − SAEP‖Hp
and∥∥Ŝ − ŜAEP

∥∥
Hp

. Let us denote ΔL = L − LAEP. We find

S(s) − SAEP(s) = L(s IN + L)−1 M − LAEP(s IN + LAEP)−1 M

= L(s IN + L)−1 M

− LAEP

[
(s IN + L)−1 + (s IN + LAEP)−1ΔL(s IN + L)−1

]
M

= L(s IN + L)−1 M − LAEP(s IN + L)−1 M

− LAEP(s IN + LAEP)−1ΔL(s IN + L)−1 M

= ΔL(s IN + L)−1 M − LAEP(s IN + LAEP)−1ΔL(s IN + L)−1 M

=
[

IN − LAEP(s IN + LAEP)−1
]
ΔL(s IN + L)−1 M.

Thus, both for p = 2 and p = ∞, we have

‖S − SAEP‖Hp
≤

∥∥∥IN − LAEP(s IN + LAEP)−1
∥∥∥

H∞

∥∥∥ΔL(s IN + L)−1 M

∥∥∥
Hp

≤ 2

∥∥∥ΔL(s IN + L)−1 M

∥∥∥
Hp

. (31)
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It is also easily seen that L̂AEP =
(
PT P

)−1
PT LAEP P =

(
PT P

)−1
PT L P = L̂ and

LAEP P = P
(
PT P

)−1
PT L P = P L̂ . Therefore,

Ŝ(s) − ŜAEP(s) = L P
(
s IN + L̂

)−1
M̂ − LAEP P

(
s IN + L̂AEP

)−1
M̂

= L P
(
s IN + L̂

)−1
M̂ − P L̂

(
s IN + L̂

)−1
M̂

=
(
L P − P L̂

)(
s IN + L̂

)−1
M̂ .

Since, finally, (L P − P L̂)
T
(L P − P L̂) = PT (ΔL)2 P , for p = 2 and p = ∞, we

obtain ∥∥Ŝ − ŜAEP

∥∥
Hp

=
∥∥∥ΔL P(s IN + L̂)

−1
M̂

∥∥∥
Hp

. (32)

Thus, both in (31) and (32) the upper bound involves the difference ΔL = L − LAEP

between the original Laplacian and its optimal approximation in the set of Laplacian

matrices for which the given partition π is an AEP. In a sense, the difference ΔL

measures how far π is away from being an AEP for the original graph G. Obviously,

ΔL = 0 if and only if π is an AEP for G. In that case only the middle term in (29) is

present.

7.2 The general case

In this final subsection, we will put forward some ideas to deal with the case that

the agent dynamics is a general linear input–state–output system and the given graph

partition π , with characteristic matrix P , is not almost equitable. In this case, the

original network is given by (4) and the reduced network by (5). Their transfer functions

are S and Ŝ, respectively. Let LAEP and L̂AEP as in the previous subsection and let

SAEP(s) = (LAEP ⊗ In)(s I − IN ⊗ A + LAEP ⊗ B)−1(M ⊗ E)

and

ŜAEP(s) = (LAEP P ⊗ In)
(
s I − Ik ⊗ A + L̂AEP ⊗ B

)−1
(M̂ ⊗ E).

As before, we assume that (4) is synchronized, so S is stable. However, since the

partition π is no longer assumed to be an AEP, the reduced transfer function Ŝ need

not be stable anymore. Also, SAEP and ŜAEP need not be stable. We will now first

study under what conditions these are stable. First note that Ŝ is stable if and only if

A − λ̂B is Hurwitz for all nonzero eigenvalues λ̂ of L̂ . Moreover, SAEP and ŜAEP are

stable if and only if A − λB is Hurwitz for all nonzero eigenvalues λ of LAEP. In the

following, let λmin(L) and λmax(L) denote the smallest nonzero and largest eigenvalue

of L , respectively. We have the following lemma about the location of the nonzero

eigenvalues of L̂ and LAEP:

Lemma 7 All nonzero eigenvalues of L̂ and of LAEP lie in the closed interval

[λmin(L), λmax(L)].
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Proof The claim about the eigenvalues of L̂ follows from the interlacing property (see,

e.g., [13]). Next, note that P = Q1 QT
1 , with Q1 = P(PT P)

− 1
2 . Since the columns

of Q1 are orthonormal, there exists a matrix Q2 ∈ R
N×(N−r) such that

(
Q1 Q2

)
is

an orthogonal matrix. Then, we have IN − P = Q2 QT
2 and we find

LAEP = PLP + (IN − P)L(IN − P)

= Q1 QT
1 L Q1 QT

1 + Q2 QT
2 L Q2 QT

2

=
(
Q1 Q2

) (
QT

1 L Q1 0

0 QT
2 L Q2

) (
QT

1

QT
2

)
.

It follows that σ(LAEP) = σ(QT
1 L Q1)∪ σ(QT

2 L Q2). By the interlacing property,

both the eigenvalues of QT
1 L Q1 and QT

2 L Q2 are interlaced with the eigenvalues of

L , so in particular we have that all eigenvalues λ of LAEP satisfy λ ≤ λmax(L). In

order to prove the lower bound, note that QT
1 L Q1 is similar to L̂ , for which we know

that its nonzero eigenvalues are between the nonzero eigenvalues of L . As for the

eigenvalues of QT
2 L Q2, note that 1T Q2 = 0 and ‖Q2x‖2 = ‖x‖2 for all x . Thus, we

find

min
‖x‖2=1

xT QT
2 L Q2x ≥ min

1
T y=0

‖y‖2=1

yT Ly.

Therefore, the smallest eigenvalue of QT
2 L Q2 is larger than the smallest positive

eigenvalue of L . We conclude that indeed λ ≥ λmin(L) for all nonzero eigenvalues λ

of LAEP. ⊓⊔

Using this lemma, we see that a sufficient condition for Ŝ, SAEP, and ŜAEP to be stable

is that for each λ ∈ [λmin(L), λmax(L)], the strict Lyapunov inequality

(A − λB)X + X(A − λB)T < 0

has a positive definite solution X . This sufficient condition can be checked by verifying

solvability of a single linear matrix inequality, whose size does not depend on the

number of agents, see [31]. After having checked this, it would then remain to establish

upper bounds for the first and third term in (29). This can be done in an analogous

way as in the previous subsection. Specifically, it can be shown that for p = 2 and

p = ∞ we have

‖S − SAEP‖Hp
≤

(
1 +

∥∥(LAEP ⊗ In)(s I − IN ⊗ A + LAEP ⊗ B)−1(IN ⊗ B)
∥∥

H∞

)

×
∥∥(ΔL ⊗ In)(s I − IN ⊗ A + L ⊗ B)−1(M ⊗ E)

∥∥
Hp

and

∥∥Ŝ − ŜAEP

∥∥
Hp

=
∥∥∥(ΔL P ⊗ In)

(
s I − Ik ⊗ A + L̂ ⊗ B

)−1
(M̂ ⊗ E)

∥∥∥
Hp

.
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Fig. 3 Ratios of H2 (left) and H∞ (right) upper bounds and corresponding true errors, for a fixed almost

equitable partition and all possible sets of leaders. In both figures, the sets of leaders are sorted such that

the ratio is increasing (in particular, the ordering of the sets of leaders is not the same)

8 Numerical examples

To illustrate the error bounds we have established in this paper, consider the graph

with 10 nodes taken from [26], as shown in Fig. 1. Its Laplacian matrix is

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

5 0 0 0 0 −5 0 0 0 0
0 5 0 0 −3 −2 0 0 0 0
0 0 6 −1 −2 −3 0 0 0 0
0 0 −1 6 −5 0 0 0 0 0
0 −3 −2 −5 25 −2 −6 −7 0 0

−5 −2 −3 0 −2 25 −6 −7 0 0
0 0 0 0 −6 −6 15 −1 −1 −1
0 0 0 0 −7 −7 −1 15 0 0
0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 −1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

with spectrum (rounded to three significant digits)

σ(L) ≈ {0, 1, 1.08, 4.14, 5, 6.7, 8.36, 16.1, 28.2, 33.5}.

First, we illustrate the H2 and H∞ error bounds from Theorems 2 and 4. We take

π = {{1, 2, 3, 4}, {5, 6}, {7}, {8}, {9, 10}} and

A =
(

0.5 0
0 0.5

)
, B = E =

(
1 0
0 1

)
.

Note that, indeed, π is an AEP. Also, in order to satisfy the assumptions of Theorem 4,

we have taken A and B symmetric. Note that A−λB is Hurwitz for all nonzero eigen-

values λ of the Laplacian matrix L . Therefore, the multi-agent system is synchronized.

It remains to choose the set of leaders VL. For demonstration, we compute the H2 and

H∞ upper bounds and the true errors for all possible choices of VL. Since the sets of

leaders are nonempty subsets of V , it follows that there are 210 − 1 = 1023 possible

sets of leaders. Figure 3 shows all the ratios of upper bounds and corresponding true

errors, where we define 0
0

:= 1. We see that in this example, all true errors and upper

bounds are within one order of magnitude, and that in most cases the ratio is below 2.

Next, we compare the true errors with the triangle inequality-based error bounds

from (29) for a fixed set of leaders and all possible partitions consisting of five cells.
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Fig. 4 True H2 (left) and H∞ (right) errors and upper bounds, for a fixed set of leaders and all partitions

with five cells. In each figure, partitions were sorted such that the true errors are increasing

Fig. 5 First 1000 true errors and upper bounds from Fig. 4

For the set of leaders, we take VL = {6, 7}, as was also used in [26]. With this choice

of leaders, the systems norms are ‖S‖H2
≈ 6.4 and ‖S‖H∞ ≈ 1.03 (rounded to three

significant digits). Figure 4 shows true errors and upper bounds for all partitions of V

with five cells (there are 42,525 such partitions). We observe that the upper bounds

vary significantly as the true error increases, but the ratio is still less than one order of

magnitude. Additionally, we notice that partitions giving small H2 errors give smaller

upper bounds, as seen more clearly in the left subfigure of Fig. 5. Furthermore, we

observe a jump after the 966th partition. In fact, the 966 partitions giving the smallest

H2 error are all those partitions where the leaders are the only members in their cell.

For the H∞ error this is not the case, i.e., there are partitions with leaders sharing a

cell with more agents that give a smaller H∞ error then a partition with leaders not

sharing a cell. On the other hand, partitions with the smallest H2 or H∞ upper bound

are close to the optimal true error.

In the following, we also compute the errors ‖L−LAEP‖F for all partitions with five

cells. Figure 6 shows the relative approximation errors
‖L−LAEP‖F

‖L‖F
. We see that only a

few (six, to be precise) partitions give a relative error less than 0.1. Irrespective of this,

a small triangle inequality-based error bound (29) seems to indicate good partitions.

Finally, we compare the bound (29) with those from Ishizaki et al. [15–17]. There

are also error bounds developed in [4,6], but they depend on the proposed model

reduction methods and cannot be evaluated for an arbitrary partition. The H2 and H∞
error bounds from Ishizaki et al. are based on the decomposition (see equation (31)

in [16], (20) in [14], or (17) in [17])
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Fig. 6 Relative error of L by

LAEP in Frobenius norm for all

partitions with five cells. The

partitions are ordered such that

the errors are increasing

S(s) − Ŝ(s) = Ξ(s)Q QT X (s),

where

X (s) =
(

s I − IN ⊗ A + PT L P ⊗ B
)−1

(M ⊗ E),

Ξ(s) = (L P ⊗ In)

(
s I − IN ⊗ A + PT L P ⊗ B

)−1(
PT ⊗ A − PT L ⊗ B

)

+ L ⊗ In,

P = P(π)
(
P(π)T P(π)

)−1
, and Q is such that

(
P Q

)
is orthogonal. The error

bounds are then

‖S − Ŝ‖Hp
≤ ‖Ξ‖H∞

∥∥∥Q QT X

∥∥∥
Hp

= ‖Ξ‖H∞

∥∥∥QT X

∥∥∥
Hp

,

for p = 2 and p = ∞. Figure 7 shows the comparison between these bounds, the

triangle inequality-based bound (29), and the true errors. In this example, our bounds

are, for most partitions, lower than those from Ishizaki et al. Yet, they do share some

qualitative properties: both vary significantly as the true error increases and those

partitions with the small bounds are close to the optimal.

9 Conclusions

In this paper, we have extended results on model reduction of leader–follower networks

with single integrator agent dynamics from [26] to leader–follower networks with

arbitrary linear multivariable agent dynamics. We have also extended these results to

the case that the approximation error is measured in theH∞-norm. The proposed model

reduction technique reduces the complexity of the network topology by clustering the

agents. We have shown that clustering amounts to applying a specific Petrov–Galerkin

projection associated with the graph partition. The resulting reduced order model can

be interpreted as a networked multi-agent system with a weighted, directed network

graph. If the original network is clustered using an almost equitable graph partition,

then its consensus properties are preserved. We have provided a priori upper bounds

on the H2 and H∞ model reduction errors in this case. These error bounds depend on
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Fig. 7 Comparison with error bounds from Ishizaki et al. [15–17]. The first column shows the H2 errors

and bounds, the second column the H∞ errors and bounds. The first row contains values for all partitions

with five cells, the second row only the first 1000 best ones

an auxiliary system related to the agent dynamics, the eigenvalues of the Laplacian

matrices of the original and the reduced network, and on the number of cellmates of

the leaders in the network. Finally, we have provided some insight into the general

case of clustering according to arbitrary, not necessarily almost equitable, partitions.

Here, direct computation of a priori upper bounds on the error is not as straightforward

as in the case of almost equitable partitions. We have shown that in this more general

case, one can bound the model reduction errors by first optimally approximating the

original network by a new network for which the chosen partition is almost equitable,

and then bounding the H2 and H∞ errors using the triangle inequality.
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Appendix A Proof of Proposition 1

Proof Without loss of generality, assume that

A =
(

A− 0

0 A+

)
, B =

(
B−
B+

)
, C =

(
C− 0

)
,
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where A− is Hurwitz, and A+ has all its eigenvalues in the closed right half plane. Let

X− be the unique solution to the reduced Lyapunov equation

AT
− X− + X− A− + CT

−C− = 0. (33)

Then X− =
∫ ∞

0 eAT
−t CT

−C−eA−t dt ≥ 0. Obviously then, X = diag(X−, 0) is a

positive semi-definite solution of (2). Now let X be a positive semi-definite solution

to (2) with the property that X+(A) ⊂ ker X . Then, X must be of the form X =
diag(X1, 0), and X1 must satisfy the reduced Lyapunov equation (33). Thus, X =
diag(X−, 0). Finally, S is stable since X+(A) ⊂ ker C . Moreover,

‖S‖2
H2

= tr

(
BT

∫ ∞

0

eAT t CT CeAt dt B

)

= tr

(
BT

−

∫ ∞

0

eAT
−t CT

−C−eA−t dt B−

)

= tr
(

BT
− X− B−

)

= tr
(

BT X B
)
.

⊓⊔

Appendix B Proof of Lemma 1

Proof For the first part of the proof, let us assume that (A, B, C) is minimal. Then, in

particular, A is Hurwitz and (A, B) is controllable.

Clearly, the inequality ‖S‖H∞ ≥ σ1(S(0)) is always satisfied. We will prove that

‖S‖H∞ ≤ σ1(S(0)) using the bounded real lemma [32], which states that ‖S‖H∞ ≤ γ

if and only if there exists P ∈ R
n×n such that P = PT and

AT P + P A + CT C + 1

γ 2
P B BT P ≤ 0.

Let us take γ = σ1(S(0)) = σ1(C A−1 B). This implies that

C A−1 B BT A−T CT ≤ γ 2 Ip. (34)

Defining P := −A−T CT XC A−1 and using (34) yields

AT P + P A + CT C + 1

γ 2
P B BT P

= −CT XC A−1 − A−T CT XC + CT C

+ 1

γ 2
A−T CT XC A−1 B BT A−T CT XC A−1
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≤ −CT XC A−1 − A−T CT XC + CT C + A−T CT X XC A−1

= (XC A−1 − C)T (XC A−1 − C)

= 0.

From the bounded real lemma, we conclude that ‖S‖H∞ ≤ σ1(S(0)).

For a non-minimal representation (A, B, C), applying the Kalman decomposition,

let T be a nonsingular matrix such that

T −1 AT =

⎛
⎜⎜⎝

A1 0 A6 0

A2 A3 A4 A5

0 0 A7 0

0 0 A8 A9

⎞
⎟⎟⎠ , T −1 B =

⎛
⎜⎜⎝

B1

B2

0

0

⎞
⎟⎟⎠ , CT =

(
C1 0 C2 0

)
,

where (A1, B1, C1) is a minimal representation of (A, B, C) with A1 Hurwitz. From,

(CT )(T −1 AT ) = C AT = XCT = X (CT ),

(CT )(T −1 AT ) =
(
C1 0 C2 0

)
⎛
⎜⎜⎝

A1 0 A6 0

A2 A3 A4 A5

0 0 A7 0

0 0 A8 A9

⎞
⎟⎟⎠

=
(
C1 A1 0 C1 A6 + C2 A7 0

)
,

X (CT ) = X
(
C1 0 C2 0

)
=

(
XC1 0 XC2 0

)
,

we find that C1 A1 = XC1. Therefore, the minimal representation satisfies the suffi-

cient condition and using the result obtained above the proof is completed. ⊓⊔

Appendix C Proof of Lemma 2

Proof If A is nonsingular, then the conclusion follows immediately. Otherwise, let A =
UΛU T be an eigenvalue decomposition with orthogonal U and Λ = diag(0,Λ2),

where Λ2 ∈ R
r×r and r is the rank of A. We denote U =

(
U1 U2

)
, with U2 ∈ R

n×r .

Then,

A+ = UΛ+U T =
(
U1 U2

) (
0 0

0 Λ−1
2

) (
U T

1

U T
2

)
= U2Λ

−1
2 U T

2 .

Note that CU1 = 0. We have

S(s) = CU (s I − Λ)−1U T B

= C
(
U1 U2

) (
s−1 I 0

0 (s I − Λ2)
−1

) (
U T

1

U T
2

)
B

= CU2(s I − Λ2)
−1U T

2 B.
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Hence, S(s) is defined at s = 0 and S(0) = −CU2Λ
−1
2 U T

2 B = −C A+ B. ⊓⊔

Appendix D Proof of Lemma 4

Proof First, note that the columns of P(π) are orthogonal. We construct a matrix

T =
(
P Q

)
, where P := P(π), and where the N × (N − k) matrix Q is chosen

such that the columns of T form an orthogonal basis for R
N . In this case, we have

PT Q = 0. Next, we apply the state space transformation x = T x̃ to system (4). We

obtain ( ˙̃x1

˙̃x2

)
= Ae

(
x̃1

x̃2

)
+ Beu,

y = Ce

(
x̃1

x̃2

)
,

(35)

where the matrices Ae, Be, and Ce are given by

Ae =
(

Ik ⊗ A −
(
PT P

)−1
PT L P ⊗ B −

(
PT P

)−1
PT L Q ⊗ B

−
(
QT Q

)−1
QT L P ⊗ B IN−k ⊗ A −

(
QT Q

)−1
QT L Q ⊗ B

)
,

Be =
((

PT P
)−1

PT M ⊗ E(
QT Q

)−1
QT M ⊗ E

)
, Ce =

(
L P ⊗ In L Q ⊗ In

)
.

Obviously, in (35) the transfer function from u to y is equal to S. Furthermore, if the

state component x̃2 is truncated from (35), what we are left with is the reduced order

model (5). Since π is an AEP of G, by Lemma 3, im P is invariant under L . From this,

it follows that not only QT P = 0, but also

QT L P = 0 and QT L2 P = 0. (36)

It is easily checked that

S(s) = Ŝ(s) + Δ(s),

where Δ(s) is given by

Δ(s) = (L Q ⊗ In)

(
s I −

(
IN−k ⊗ A −

(
QT Q

)−1
QT L Q ⊗ B

))−1

×
((

QT Q
)−1

QT M ⊗ E
)
.

(37)

From (36) and (37), we have Ŝ(−s)T Δ(s) = 0. Thus, we find that

‖S‖2
H2

=
∥∥Ŝ

∥∥2

H2
+ ‖Δ‖2

H2
,

which concludes the proof. ⊓⊔
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Appendix E Proof of Lemma 5

Proof It can be verified, using the fact that A − λi B is Hurwitz for i = 2, 3, . . . , N ,

that

X+(I ⊗ A − L ⊗ B) = 1N ⊗ X+(A).

This immediately implies that X+(I ⊗ A − L ⊗ B) ⊂ ker(L ⊗ I ). As a consequence

of Proposition 1, we have

‖S‖2
H2

= tr
((

MT ⊗ ET
)

X (M ⊗ E)

)
,

where X is the unique positive semi-definite solution to the Lyapunov equation

(
I ⊗ AT − L ⊗ BT

)
X + X (I ⊗ A − L ⊗ B) + L2 ⊗ I = 0 (38)

with the property that X+(I ⊗ A − L ⊗ B) ⊂ ker X . In order to compute this solution

X , premultiply (38) by U T ⊗ I and postmultiply by U ⊗ I , and substitute Z =
(U T ⊗ I )X (U ⊗ I ) to obtain

(
I ⊗ AT − Λ ⊗ BT

)
Z + Z(I ⊗ A − Λ ⊗ B) + Λ2 ⊗ I = 0. (39)

Solving (39), we take Z as

Z = diag(0, X2, . . . , X N ),

where X i , for i = 2, . . . , N , is the observability Gramian of the auxiliary system

(A − λi B, E, λi I ) in (6). Next, X := (U ⊗ I )Z(U T ⊗ I ) is a solution of the original

Lyapunov equation, and it is easily verified that indeed X+(I ⊗ A − L ⊗ B) ⊂ ker X .

Thus, we obtain the following expression for the H2-norm of S:

‖S‖2
H2

= tr
((

MT U ⊗ ET
)

diag(0, X2, . . . , X N )

(
U T M ⊗ E

))

= tr
((

U T M MT U ⊗ I
)

diag(0, ET X2 E, . . . , ET X N E)

)
.

⊓⊔

Appendix F Proof of Lemma 6

Proof Firstly, it can be verified that

X+(I ⊗ A − L̂ ⊗ B) = 1k ⊗ X+(A).
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This implies that X+(I ⊗ A − L̂ ⊗ B) ⊂ ker(L P ⊗ I ). By Proposition 1, we then

have ∥∥Ŝ
∥∥2

H2
= tr

((
M̂T ⊗ ET

)
X̂

(
M̂ ⊗ E

))
,

where X̂ is the unique positive semi-definite solution to the Lyapunov equation

(
I ⊗ AT − L̂T ⊗ BT

)
X̂ + X̂(I ⊗ A − L̂ ⊗ B) + PT L2 P ⊗ I = 0 (40)

satisfying the property that X+(I ⊗ A − L̂ ⊗ B) ⊂ ker X̂ . In order to compute this

solution, pre- and postmultiply (40) by
(
PT P

)− 1
2 ⊗ I and substitute

Ŷ =
((

PT P
)− 1

2 ⊗ I

)
X̂

((
PT P

)− 1
2 ⊗ I

)

to obtain (
I ⊗ AT − L̄ ⊗ BT

)
Ŷ + Ŷ

(
I ⊗ A − L̄ ⊗ B

)

+
(
PT P

)− 1
2 PT L2 P

(
PT P

)− 1
2 ⊗ I = 0.

(41)

Recall from Sect. 4 that L P = P L̂ . From this it follows that

(
PT P

)− 1
2 PT L2 P(PT P)

− 1
2 = L̄2.

Consequently, we can diagonalize the corresponding term in (41) by premultiplying

by Û T ⊗ I and postmultiplying by Û ⊗ I , where Û is as in (8). Next, we denote

Ẑ = (Û T ⊗ I )Ŷ (Û ⊗ I ) so that (41) reduces to

(
I ⊗ AT − Λ̂ ⊗ BT

)
Ẑ + Ẑ

(
I ⊗ A − Λ̂ ⊗ B

)
+ Λ̂2 ⊗ I = 0,

which can be solved by taking

Ẑ = diag(0, X2, . . . , Xk),

where again X i , for i = 2, . . . , k, is the observability Gramian of the auxiliary system

(A − λi B, E, λi I ) in (6). Next,

X̂ =
((

PT P
) 1

2 Û ⊗ I

)
Ẑ

(
Û T

(
PT P

) 1
2 ⊗ I

)
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then satisfies (40), and it can be verified that X+(I ⊗ A − L̂ ⊗ B) ⊂ ker X̂ . Thus, the

H2-norm of Ŝ is given by:

∥∥Ŝ
∥∥2

H2
= tr

((
M̂T

(
PT P

) 1
2 Û ⊗ ET

)
diag(0, X2, . . . , Xk)

×
(

Û T
(
PT P

) 1
2 M̂ ⊗ E

))

= tr

((
Û T

(
PT P

) 1
2 M̂ M̂T

(
PT P

) 1
2 Û ⊗ I

)

× diag(0, ET X2 E, . . . , ET Xk E)

)
.

⊓⊔
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