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Abstract 

We present model reduction methods with guaranteed error bounds for systems rep- 
resented by a Linear Fractional Transformation (LFT) on a repeated scalar uncertainty 
structure. These reduction methods can be interpreted either as doing state order reduc- 
tion for multi-dimensionalsystems, or as uncertainty simplification in the case of uncertain 
systems, and are based on finding solutions to a pair of Linear Matrix Inequalities (LMIs). 
A related necessary and sufficient condition for the exact reducibility of stable uncertain 
systems is also presented. 

1 Introduction 

The process of modelling systems and designing controllers using modern robust control meth- 
ods often results in models which are high order and have large and complicated uncertainty 
descriptions. As a result, these models may be expensive to  implement and difficult to  an- 
alyze, in particular when incorporated into larger feedback systems. In response t o  this, we 
provide a systematic method for reducing both the state dimension and uncertainty descrip- 
tions with little or no resulting error, and without affecting system stability. This reduction 
method relies on the solution of two linear matrix inequalities (LMIs). 

For system models which do not incorporate uncertainty descriptions, there exist well- 
known model reduction methods and associated error bounds, examples of which include the 
balanced model reduction method and its additive H ,  norm error bound ([16], [9], [lo], [Il l) ;  
the optimal Hankel norm model reduction method and its Hankel norm error bound ([lo]); 
and the balanced stochastic truncation model reduction method and its relative IT, norm 
error bound ([7], [22]). The balanced truncation model reduction method was extended to  
multi-dimensional (MD) and uncertain systems in [21]. We review this reduction method 
and the related error bounds, providing simplified proofs, and state new results for model 
reduction of uncertain systems which provide tighter bounds by a factor of two. These new 
results, which were first noted in [4], are based on machinery presented in [18]. A necessary 
and sufficient condition for exact reducibility of such systems is also stated. 
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In this paper we are mainly concerned with uncertain systems which are modelled by 
a linear fractional transformation (LFT) on a repeated scalar uncertainty structure. In the 
most general setting, we consider uncertainty represented by arbitrary time-varying scalar 
operators on 12. In a less general setting, we can view the repeated scalar uncertainty as 
different transform variables in a MD system, or, alternatively, as real or complex-valued 
parametric uncertainty. In referring to  uncertain systems we will typically mean the most 
general case; exceptions will be noted. 

Basic background material is presented in Section 2, including our notation and a review of 
LFT representations of uncertain systems. In Section 3, we review balanced realizations, min- 
imality and the error bounds associated with model reduction for the 1D case. In Section 4, 
uncertain systems are considered: balanced realizations, stability and norms are discussed, 
and error bounds for balanced truncation of uncertain systems are given. A notion of re- 
ducibility is presented in Section 5 for MD and uncertain systems which is analogous to  that 
for the 1D case. A necessary and sufficient condition for this reducibility is given. 

2 Preliminaries 

The notation we use is as follows: L2 denotes the Lebesgue space of functions square integrable 
on the unit circle, and l2 the space of sequences which are square summable. L(L2) and 
L(12) represent the space of all linear time-varying operators on L2 and 12, respectively. For 
notational convenience, dimensions will not be given unless pertinent to the discussion. We 
represent the complex and real fields of matrices by CnXm and RnXm, and the integers by 
Z. The forward shift operator on l2 is denoted by z-I,  and the identity matrix by I. The 
maximum singular value of A E CnXm is denoted by i7(A), and A* denotes the complex 
conjugate transpose. The dimensions of a matrix A are denoted dim(A). 

2.1 Linear Fractional Transformations 

The main focus of robust control has been to  evaluate the effects of uncertainty when analyzing 
and designing controllers for linear systems. The source of such uncertainty might be non- 
linearities in the physical system being modelled, unmodelled dynamics, disturbances, para- 
metric uncertainties or any combination of the aforementioned. We use the LFT paradigm, 
represented pictorially in Figure 1 and described below, as a mathematical representation for 
uncertainty in system models. 

We assume M = [ a ] is a given system realization matrix, that is, a constant matrix 

that describes what is known about the system, and A represents the system uncertainty, 
namely, what is unknown or poorly understood about the system. We assume A lies in some 
prescribed set, in particular, the uncertainty set A we consider in this paper is 



Figure 1: MD/Uncertain System 

For analysis purposes, we will often consider A which lie in a norm-bounded subset of A ,  
that is, 

B A  = {a t A : IlAll,,+l, 5 1) , (2.2) 

where 11-111,,1, denotes the induced norm. The input/output mapping for this system is 
determined by the LFT 

y = ( A * M ) u ,  A E A  

where the Redheffer star product of the system components is 

whenever the inverse is well-defined. We will refer to  such system models by the pair (A,  M). 
One way to  interpret such system models is to  view the Si as different transform variables 

in a MD system ([12]). In this case, model reduction means state order reduction, and a 
system model which may be reduced without error is reducible or non-minimal as in the 1-D 
case. We would like to  find reduced order models which match the full order model well a t  
all values of the Si on the polydisc ISi/ = 1, V i .  The results in this paper are directly relevant 
to  this interpretation as we can guarantee error bounds of the form [21] 

and, in fact, will show that under special interpretations of the Si we can achieve a tighter 
bound than (2.3) by a factor of two (see also [13] for the 1D continuous time case). Addi- 
tionally, we present a necessary and sufficient condition under which reduced order models, 
(A,, Mr), can be found such that the difference between the full and reduced order models 
is zero in some norm. Although the exact meaning of the notation in (2.3) has not been 
developed at this point, we note that in the 1D case (2.3) reduces to the standard bound for 
balanced truncation ([9], [lo], [ l l ] )  with the error measured in the H ,  norm. 

Alternatively, we may view one of the Si, say 61 as the frequency variable (S1 = l l x )  in an 
uncertain discrete-time system. The remaining Si are then viewed as norm-bounded pertur- 
bations. Model reduction in this context is aimed at simplifying the uncertainty description 



as well as reducing the state dimension and is a more subtle issue. We will henceforth refer 
to  systems with uncertainty structures given by (2.1) as uncertain systems, with the implicit 
understanding that this includes both 1D systems with uncertainty incorporated into the 
model, and MD systems. 

3 11) Systems 

In order to  more readily discuss model reduction of uncertain systems, we review Lyapunov 
equations, balanced realizations, minimality, and balanced truncation model reduction for 1D 
systems. We state the well-known upper bound for balanced truncation model reduction error 
originally proven by Glover [lo] and by Enns [9] for continuous time systems. We provide 
a proof of this bound for discrete time systems which generalizes immediately t o  uncertain 
system representations. The proof was first outlined in [21], and appears here in a more 
precise and simple version. 

We consider finite dimensional, linear time-invariant systems of the form 

A B  
thus M = [ ] is the system reaization and A = z 1  I. For the 111 case, we denote the 

system transfer function by G(z) = A * M = D + C(z I  - A)-'B, and the system operator by 
G. We begin by discussing contractive matrices and associated results which are of general 
use for both 1D and uncertain systems. 

3.1 Contractive Realizations 

Throughout this text we use the notion of contractive matrices, which are defined as follows. 

Definition 1. A constant matrixX is said t o  be contractive or a contraction i f  IlXll = T ( X )  5 
1, and strictly contractive i f  IlXll < 1. 

If the matrix X is a realization matrix, the following lemma gives a well-known result ([5], 
[8]) on the relationship between the 7-1, norm of a transfer matrix and realizations of the 
transfer matrix. 

Lemma 1. Suppose G E R7-1, represents a discrete time transfer matrix, then llGll, < I(< - - 
1)  i f  and only i f  there is a realization for G, denoted by M = [ 1, such that Y is 

contractive (strictly contractive). 

A generalized version of this lemma for uncertain systems is given in Section 4. Lemma 
1 and the following lemma, which relates the contractiveness of a matrix to  that of related 
submatrices, provide the main steps in the proof of the error bounds for balanced truncation 
model reduction. 



Lemma 2. Suppose U = [ ] and v = [ ] are contractive (strictly con- 
u 2 2  v 2 1  v 2 2  

tractive). Then 
0 j i U n  

M := 2 jiuzz 
1 

v 2 1  7 9 2 2  C2 0 I 
is also contractive (strictly contractive). 

Proof. The result is easily proved by dilating M to the following matrix, 

and noting that M i M d  < I 

3.2 Balanced Realizations and Reducibility 

Suppose M is a 1D system realization with A stable, and Y and X are the controllability 
and observability gramians, respectively. That is, Y = Y* > 0 and X = X* > 0 satisfy the 
Lyapunov equations 

A Y A * - Y + B B * = O  (3.1) 

From standard Lyapunov theory, we know that the pair (A, B) is controllable if and only if 
Y > 0, and (C, A) is observable if and only if X > 0, in which case we say the realization is 
minimal, or irreducible. 

Suppose the system realization, M, is transformed by the nonsingular matrix T which 
gives the eigenvector decomposition 

Since Y 2 0 and X > 0, i t  can be shown that Y X  has a real diagonal Jordan form and that 
A 2 0. If M is a minimal realization T can always be chosen such that 

? = TYT* = C and f) = (T- l )*pTdl  = x, 



where C = diag(al,a2,. . .,a,) > 0 and C2 = A. The transformed realization, &.! = 

I TAT-I TB 
CT-I D 1 , with controllability and observability gramians Y = x = C, is referred 

to as a balanced realization. Recall that G(z) = A * M = A * M, VA E A. 
More generally, if the realization of a 1D system is not minimal, then there exists a 

transformation such that the controllability and observability gramians are diagonal, and the 
controllable and observable subsystem is balanced. The following theorem is standard, so the 
proof is omitted. 

Theorem 1. For any stable system realization M = 1 there exists T such that 
L A 

has controllability and observability gramians given by 

respectively, with El,  C2, C3 diagonal and positive definite. 

Since the uncontrollable and unobservable modes of any system realization are not present 
in the corresponding system transfer function, G(z), we can truncate the associated states, 
corresponding to the zeros in Y and X above, and obtain a minimal realization which has 
both gramians equal to C1. Such a system is reducible in that there exists a lower order 
realization 1M, with associated GT, such that IIG - G,II, = 0, which gives us the following 
corollary to Theorem 1. 

Corollary 1. Every stable 1D system G(z) has a minimal realization which is balanced. 

3.3 Discrete Balanced ID Model Reduction 

Consider a stable discrete time system G(z) with the following realization 

All A12 B1 
M = A21 A22 

[ c l  c; 21. 
Suppose Y and X are two positive semi-definite symmetric matrices satisfying the following 
Lyapunov inequalities 

A Y A * - Y + B B * _ < O  (3.3) 

A * X A - X + C * C < O .  (3.4) 



We have replaced the equalities in (3.1) and (3.2) with inequalities in (3.3) and (3.4) in order 
to generalize the I D  system results to uncertain systems. The significance of these inequalities 
in the 1D case is that while the zero-valued eigenvalues of Y or X  still have corresponding 
uncontrollable andlor unobservable states, the converse need not be true. We can truncate 
states as suggested by Corollary 1 and balance X and Y exactly as before, but the resulting 
system may not be minimal. Subsequently, when we refer to balanced system realizations it 
will be in this looser sense, that is with Y > 0 and X > 0 satisfying the Lyapunov inequalities 
above and 

with 

where si denotes the multiplicity of ai. Note that the ai are not necessarily ordered. In 
particular, given a balanced system realization with C2 = I, we can prove tlle following 
lemma. 

Lemma 3. Given a balanced realization of the transfer matrix G with Y = X = 

0, satisfying the Lyapunov inequalities, then 

are contractive. 

Proof. Rewriting equations (3.3) and (3.4) gives 

and 

Premultiplying and postmultiplying (3.7) by Y -  f and (3.8) by X - 4  shows that the matrices 

X ~ A X - $  
A Y and [ cX-i I 



are contractive. Substituting [ 10 ] for Y and X in (3.9) , and permuting the resulting 

matrices gives the desired result. CI 

The balanced truncation model reduction results, first given for 1D discrete time systems 
in [ l l ] ,  and for MD or uncertain systems in [21], are now stated. The results are separated 
into a lemma stating that the truncation of a stable, balanced realization is also stable and 
balanced, and a theorem stating the upper error bound results. The proof for the lemma 
can be found in [Ill. Although the following theorem is not new, a proof is included for 
completeness which is simpler and more precise than that given in [21]. This proof generalizes 
immediately to  system representations which include uncertainty, and will be discussed later. 

All  A12 B1 

Lemma 4. Suppose M = is a balanced, stable realization. Then the 

truncated system realization given by 

is also balanced and stable. 

Theorem 2. Suppose M = 1 AZl AZ2 A12 B2 B1 1 is a balanced, stable realization for G with 

1 Cl C2 D J 
X = Y = [ '" O ] > 0, as defined in (3.5) Let A& = [ 2: $ ] denote the balanced, 

0 C2 

stable, truncated system realization for G,. Then 

Proof. The proof of Theorem 2 relies heavily on the preceeding lemmas. We first assume 
that C2 = I. In this case, we must show that 

The final result follows from scaling and applying this recursively. 
By Lemma 1, it suffices to show that there exists a realization for i ( G  - G,) which is 

contractive. One realization for i ( G  - G,) is given by 

All 0 

.=[ : All A21 A22 A12 jiB2 $1 

1 
1 k c 1  ;ic2 O +B1 0 1 



Motivated by the results of Lemmas 2 and 3, we consider the following similarity transforma- 
tion, 

giving 

Note that 

T M T - ~  = 

where 

- 
c ~ A ~ ~ c ; *  h ~ i ~ ~ ~  - 

0 0 
1 - - 

37421C1 ' A22 'AZ1Ci 'B2 
Jzl Jzl 

0 & c ; ~ A ~ ~  c ; ~ A ~ ~ c ~  c ; ~ B ~  

C~C;; 5 c2 o o - 

Let 

To prove the main result, we will show that T M T - I  is contractive, and hence M is contractive. 

Note that U = [ ] and V = [ ] are contractive by  emm ma 3. ~ p p l y i n g  
u 2 2  v21 v 2 2  

- - 

Lemma 2 shows that Ak is contractive, and therefore M is contractive. Thus JIG - G,I(, _< 1 
by Lemma 1. 

For 1D system realizations with no uncertainty the role of the system Lyapunov equa- 
tions and the associated controllability and observability gramians in balanced truncation 
model reduction and in terms of quantifying system minimality is well-defined. In the next 
section, we consider an extension of these concepts to  system realizations which incorporate 
uncertainty descriptions into the model definitions. 



4 System Representations with Uncertainty 

We now present a generalization of the notion of reducible realizations and the balanced 
model reduction technique given for 1D systems to  uncertain systems. We will focus on the 
case where the uncertainty structure is defined as in (2.1), that is, we consider A with Si in 
the class of arbitrary linear time-varying operators on 12. 

4.1 Balanced System Realizations 

Consider the system in Figure 1 with A and M defined as previously discussed, and A, B 
and C partitioned compatibly with the block structure A as 

L As1 . . . Ass J 

Such a system is stable when the I /O map (A * M )  is well-posed for every A E B A ,  that 
is, when ( I  - AA) is invertible as an operator on l2 for every A E B A .  For time-varying 
operators in B A  C C(12), an equivalent LMI stability condition is given in [19], and is 
cited below. This result is an extension of the robust stability condition proven in [15] and 
concurrently in [20], and is proven via methods similar to  those in [15]. Details can be found 
in [19]. The uncertainty structure A referred to  in Theorem 3 is more general than that 
defined by A in (2.1) in that full blocks are also allowed, that is, 

A = {diag[Ad, A,, . . .AF] : A, E A ,  Aj E C(lTi)} . (4.1) 

We define the commutative matrix set for a given uncertainty set A as 7 = {T E C N x N  : 
T A  = AT, VA E A). For A as defined above, T E I if T = diag[Tl, . . . , Ts, tlIm,, . . . , tFImF], 
where each Ti E Cnbxn%nd t j  E 43. 

Theorem 3. Given an uncertainty set, A c C(12), and a constant matrix A, then there exists 
a matrix Y > 0, Y E I such that 

A*YA-Y < O  

i f  and only i f  
( I  - AA) is invertible in C(lz), VA E BA 

This result is used directly to develop the following notion of stability, and is related to  
the structured induced 2-norm for uncertain systems discussed in the following section. 

Definition 2. The uncertain system ( A ,  M )  is stable i f  there exists a non-singular matrix 
T E 7 such that 

 TAT-l) < 1 



As in Theorem 3, stability may be expressed in LMI form by defining positive definite 
matrices Y and X by Y = (TT*)-I and X = T*T. Then the following are equivalent: 

By scaling Y and X one can immediately deduce the following lemma. 

Lemma 5. ( A ,  M )  is stable if and only if there exist Y > 0 and X > 0, both in 7 which 
satisfy 

AYA* - Y $ BB* < 0 and A*XA - X + C * C  < 0. (4.3) 

As in the 1D case, we can use non-strict inequalities in (4.3). Then stability of ( A ,  M )  implies 
there exist Y 2 0 and X 2 0 both in 7 such that 

AYA* - Y  + BB* 5 0 and A * X A - X +  C * C  5 0. (4-4? 

We refer to  any matrices Y and X which satisfy (4.4) as generalized gramians. We can show 
that if there exist singular generalized gramians, then the uncertain system realization is 
reducible (see Section 5, [I], and [2]). As a result, in deriving the model reduction error 
bound, we need only consider the case of strict inequalities. 

To define a notion of balanced realizations for uncertain systems, we proceed as in the ID 
case by defining a similarity transformation as an invertible matrix, T, which transforms the 
system states, such that the realization M is transformed to &l as in section 3.2. We consider 
similarity transformations in 7 for which it can readily be shown that 

Note that when T E 7, $' = TYT* and x = (T-l)*XT-' are commutative solutions to  the 
Lyapunov inequalites for &l. Thus we can define balanced realizations for uncertain systems 
as follows. 

Definition 3. An uncertain system realization, M ,  is balanced if there exist Y and X which 
satisfy the inequalities in (4.3) and 

where Ci = diag[ailIs,i, - , ~i t , I , , , ~ ]  > 0; ail 2, . 2, aitz and dim(&) = dirn(Aii) is denoted 
by ni = c;;, sij. 

For stable uncertain systems, the existence of balanced realizations is guaranteed by 
Lemma 5 and (4.5). Neither the balanced Y and X nor the resulting realization is unique. 

Note that permutations do not affect stability or sign-definiteness of the Lyapunov inequal- 
ities. That is, let II be any matrix such that II IIT = I, and suppose we have a commutative 
solution P to (4.3). Denote A = IITAII, B = IITBII and P = IITPII. Then, 

APA* - P + BB* = I I~(APA* - P + BB*)II < 0. 



4.2 Error Bounds: Balanced Truncation Model Reduction 

In order to  quantify the error resulting from reducing uncertain systems, we use the structured 
induced 2-norm, (SI2-norm), which is defined as follows 

Definition 4. The SI2-norm of a stable system ( A ,  M )  is given by 

Note that for 1D systems, the S12-norm is the same as the H ,  norm. 
The difference in the S12-norm between two realizations, (A l ,  MI) and ( A z ,  M2), is eval- 

uated by forming the difference realization of, denoted by ( A ,  f i )  = (A1, MI) - (A,, M2), 
where 

A1 0 B1 & = I o  A2 B2 ] and * = [ t1 1, ] (4.8) 
C1 -C2 Dl - D2 

and computing 11(6, k) 1IsI2 .  
The uncertainty structure A as defined as in (2.1) may contain time-varying or time- 

invariant operators on 12, thus the Si may represent system uncertainty or transform vari- 
ables. If we consider uncertainty structures where all 6, are time-varying operators on 12, 
then an equivalent formulation for the SI2-norm of a system, which more readily allows for 
computation via recent algorithms developed for solving LMI's [6], is given in the following 
lemma. 

Lemma 6. The ,912-norm of an stable system ( A ,  M) is given by 

[ [ ( A ,  M)11,,, = inf y : 3T such that 3 Y 

Y 
(4.9) 

where T E 7 .  

A +B 
Proof. Let AF E L(1;) and MY = [ ' ] . Then for a stable system ( A ,  M) ,  

TAT- 4 T B  ] ) < 
y : there exists T such that a Y = - - 

Y 

y I there exists Y > 0 :  MY (4.10) 

for Y and T both in 7 and y > 0. Applying Theorem 3 and the stability assumption on 
( A ,  M) ,  we see that (4.10) is equivalent to 

inf { y 1 ( I - MY [ 



I - - + B A ~  
in' {r : [ ; c ? ( ~  - An)-1 I 

"Y 2 I invertible in ,C(lz)VAF E B A F  = 
Y 2 O ]  0  I - ( : A * M ) ~ ~  1 

From Lemma 6, the following generalization of Lemma 1 is now obvious for the case of 
time-varying uncertainty. 

Lemma 7. Suppose ( A ,  M) represents a stable uncertain system, then [ / (A,  M)lls12 5 1 if 
and only if there is a realization M, where (A * M )  = (A * 1\71) for all A E A ,  such that M 
is contractive. 

Note that if the uncertainty structure contains time-invariant operators, or transform vari- 
ables, then the expression on the right in (4.9) is an upper bound for the S12-norm. Therefore, 
the existence of a contractive realization is a sufficient condition for Il(A, M)llsIz 5 1 when 
the Si of A are time-invariant. This sufficiency is all that is needed for the balanced truncation 
model reduction bounds to  hold for both MD and uncertain systems. 

In order to  derive the model reduction error bounds for balanced uncertain systems, we 
partition the system matrices A, B,  C and C in order to separate the subblocks which will 
be truncated. Let each block of C be partitioned as 

for i = 1, . . . , S, where 

and 
C2i = d iag [~ i (k i+ l ) I s~ (~ ,+~  ' ' ' gitiISit,]. 

Truncate both CZi and the corresponding parameter matrices, for example, truncate 

All = [ ' ] , I), = [ 2z ] and [el c ~ ]  
Allz1 Allz2 

to  All ,  B1 and el for each Aij, Bj and Ci, i ,  j = 1,. . ., S .  The resulting truncated system is 



with uncertainty structure A = diag[SlLl, - . . , SsIfiS] where hi = x : ~ ~  sij . 
As in the 1D case, the truncation of a balanced stable uncertain system is still balanced 

and stable. We now state the model reduction error bound theorem, originally given in [21]. 

Theorem 4. Suppose (A, ~) is the reduced model obtained from the balanced stable system 
(A, M ) .  Then 

S t ,  

Proof. The proof for Theorem- 4, for which we provide an outline, follows from a strict 
generalization of the proof given for the 1D case. 

By repeated permutations, scalings and truncations, we can apply the methods of Theorem 
2 along with the sufficiency direction of Lemma 7 to  obtain the stated bound. That is, we 
assume the system realization is reduced from 

to k = [ : ] , with E = diag[g7 I]. The corresponding uncertainty structure is re- 

duced from A = diag[blInl,. . ., SsIns] to A = diag[SIInl,. . . , SS-lIns-l, SSIhs], where hs = ~jzl) ssj < ns, that is, only the representation submatrices corresponding to  the last un- 
certainty variable Ss in A and the last singular value asts in Cs are reduced. As in the 1D 
case, we assume osts = 1 and subsequently show that i (A,  M )  - (A, ~ ) l l  < 1. II S12  

Let 

and A = d i a g [ ~ ,  A], with corresponding commutative matrix set 7.  Using a similarity 
transformation T E I like that in the proof of Theorem 2 gives 



where 

Now defining U and V as in Theorem 2 and using Lemma 3 and the fact that the Lyapunov 
inequalities are satisfied by assumption, gives us that U and V are contractive. Applying 
Lemma 2 then implies that MI is contractive, and hence M is contractive. Finally, from 
Lemma 7 we have that i 11(6, M) 1IsI2  < 1. 

4.3 Improved Error Bounds: LMI Model Reduction 

Using machinery developed by Packard [18], we can achieve a tighter model reduction bound 
then that given in Theorem 4, by a factor of two, for systems with uncertainty structures A 
where all Si E 1(12) are assumed to  be time-varying. This bound provides a direct connection 
to  exact reducibility conditions for uncertain systems, that is, conditions under which model 
reduction can be completed with no resulting error. The tighter error bound is derived from 
Lemma 6, and from the following lemma. We first define some notation. 

Throughout this section we refer to the following uncertainty structures: 

and 

with commutative matrix sets denoted by 7,  I, and $. Note that the commutative matrix 
set, ?, for A includes matrices with the following block structure: 

where dim(T,") = ni x ni, dim(Tpr) = ni x r;, dim(T,'") = ri x ni and dim(T,') = ri x r; 
for all i = 1, ..., S .  We denote the difference system ( A ,  M )  - (A,, M,) by ( A ,  &!) which is 
formed as in (4.8). Now, using the notation of [18], we define 

A O B  
R =  [ 0 0 0  1 ,  u = [ ;  ; I ,  v = [ :  ; ;] 

C O D  



Note that M, = Q and M = R + UQV. Furthermore, Ul = [I 0 0IT and VL = [I 0 01, thus 
0 = [U:,, U:,,IT = [I 0IT and v = [Vl,l = [I 01. Directly applying Lemma 5.2 and 
Theorem 6.3 from [18] gives the following lemma. 

Lernrna 8. Suppose the realization (A ,  M )  is given, with A E A ,  and R, U, V ,  U1 and 
VL defined as above. Then there exist a realization M,., an uncertainty structure A,, and a 
matrix Z E I, Z > 0 satisfying 

i f  and only i f  there exist X: > 0, Y," > 0 for i = 1, .  . . , S satisfying 

( [ O ] M [  diag((Y,.) O v T < o  
(b) M T  0 I 0 I I )  

I Y," 

where the dimensions o f  A, and M, may be computed by ri = ranl<(X: - Y,"-l) for each 
i = 1, ..., S. 

See [18] for a proof of Lemma 8. Using Lemma 8 we can prove that for any E > 0 
a lower order realization (A,, Mr) exists such that the S12-norm of the difference system 
(A, fi) = ( A ,  M )  - (A,, M,) is bounded above by E if and only if solutions, X ,  and Y,, to  
the Lyapunov inequalities (4.3) exist satisfying a rank constraint. For convenience, we denote 
the €-scaled difference system realization by 

Theorem 5. Given a system realization M = 1 with uncertainty structure A, then 
L J 

there exist M, = [ 2 2 ] and A, such that ~ ~ ( ~ , i @ ) ~ ~ s 1 2  5 E i f  and only i f  there exists 

X ,  > 0 and Y, > 0, both in I, satisfying 



(i) AY,A* -Y, + BB* < 0 

(ii) A*X,A - X, + C * C  < 0 

(iii) Xmi,(X,Y,) = t2, with multiplicity x i ( n i  - ri) 

where E > 0. 

Proof. By Lemma 6, 

]](A, i@)lls12 5 t if and only if there exists T E I such that 

Now we need only apply Lemma 8 to  M~ and multiply out the matrices in ( a )  and (b). Then 
]l(A, i@)lls12 5 E if and only if there exist X = diag(X:) > 0, and Y = d i a g ( v )  > 0 for 
i = 1, . . . , S satisfying 

and 

Multiplying the matrix inequalities in (4.14) by t, and denoting X, = EX and Y, = EY gives 
(i) and (ii). Additionally we have 

[ ] 2 0, with rank(X: - (Yc)-l) = ri. 

Condition (iii) is obtained by premultiplying and postmultiplying (4.15) by [$I - (Y:)-l] 

and [ $( -, 1,  respectively, giving 
-(Ki 1 

thus XPY," , , > t21. Applying the rank condition implies rank(XEYc - t21) = ri, thus 
Xmi, (XZY;) = t2 with multiplicity ri, for all i = 1, . . . , S.  Since X ,  and Y, are block di- 
agonal compositions of Xg and Yc the result follows. By applying Theorem 5 recursively, 

we may then show that the error bounds of Theorem 4 can be reduced by a factor of two. 
When the uncertainty structure, A, contains time-invariant operators Si, as in the case of 

MD system representations, the existence of X, and Y, are sufficient to  ensure (A, a) I I  Ilsy2 
t. For 1D continuous time systems with no uncertainty, similar results have been obtained 



by Kavranoglu and Bettayeb [13], via an alternate method which requires simultaneously 
computing a pair of matrices Bo and Co augmenting the system realization matrices B and 
C ,  and solutions X and Y to the augmented Lyapunov equations, such that 

Xmi,(XY) = y2 with multiplicity n - r .  (4.16) 

5 Exact Reducibility 

When applying the balanced model reduction method to  both 1D and uncertain systems, the 
system realizations which are truncated are assumed to  be minimal in some sense. In the 1D 
case it is well understood what is meant by saying a realization is minimal, or equivalently 
controllable and observable, or irreducible. For the uncertain case, in order for the proof of 
the model reduction error bound to hold, it is assumed there exist non-singular commutative 
solutions, Y and X ,  to  the Lyapunov inequalities, in which case a non-zero error bound 
results. Clearly, we would prefer to  reduce the system realization with no error if possible, 
and we would like to know if we can still apply the error bounds of Theorem 4 if we have 
singular solutions for the Lyapunov inequalities. To obtain exact reducibility conditions which 
correlate to  the notion of reducibility in the 1D case, we have proven the following E = 0 case. 
See [I], [2], and [3] for details. 

Theorem 6. Suppose the stable system realization M = 1 ] and uncertainty structure 
L J 

A as defined in (2.1) are given. There exists a reduced realization MT = 2 1 and 
L ' A 

uncertainty structure A, such that (A*M) - (&*My) = 0, i f  and only if there exists singular 
X > 0 or Y 2 0, both in  I, satisfying 

(i) AYA* - Y  + BB* < 0 

or 

(ii) A*XA - X + C*C 5 0 

Theorem 6 reveals that, given an uncertain (or MD) system representation, if structured 
singular solutions to  either of a pair of LMIs can be found, then an equivalent lower order 
realization exists. Furthermore, if the uncertainty can be properly described by time-varying 
operators, then the existence of lower order realizations requires such singular LMI solutions. 
The development of computational methods for solving such LMI problems is a rapidly grow- 
ing research area in the control community, and, in fact, many efficient convex optimization 
algorithms already exist. The fact that we would like to  find singular solutions to  these LMIs 
complicates the computational requirements, however, we can attempt to  optimize over these 
LMI solutions to  obtain the lowest amount of error possible in either balanced truncation or 
LMI model reduction methods. 



References 

[l] Beck, C., 1994, Minimality for Uncertain Systems and IQCs, Proceedings 33rd CDC, 
Florida 

[2] Beck, C., Model Reduction and Minimalityfor Uncertain Systems, Ph.D. Thesis in prepa- 
ration 

[3] Beck, C., Doyle, J., 1994, Minimality Conditions for Uncertain Systems, report in prepa- 
ration 

[4] Beck, C., and Doyle, J., 1993 Model Reduction of Behavioural Systems, Proceedings 32nd 
CDC, Texas 

[5] Boyd, S. and Yang, Q., 1988, Simultaneous Quadratic L yapunov Functions, Stanford 
Research Report. 

[6] Boyd, S. and El Ghaoui, L., Method of Centers for Minimizing Generalized Eigenvalues, 
Linear Algebra and it's Applications, 1993 

[7] Desai, U.B. and Pal, D., 1984, A transformation approach to  stochastic model reduction, 
IEEE Trans. AC-29:1097-1100. 

[8] Doyle, J., Packard, A., and Zhou, K., 1991, LFTs, LMIs, and p, Proceedings 30th CDC, 
Brighton, UK. 

[9] Enns, D.F., 1984, Model Reduction for Control System Design, Ph.D. Dissertation, Stan- 
ford University. 

1101 Glover, K., 1984, All optimal Hankel-norm approximations of linear multivariable sys- 
tems and their I;"-error bounds, Int. J. Control., Vo1.39:1115-1193. 

[ll] Hinrichsen, D, and Pritchard, A.J., 1990, An improved error estimate for reduced-order 
models of discrete-time system, IEEE Trans., AC-35:317-320. 

[12] IEEE Proceeding, 1977, Special issue on multidimensional systems. 

[13] Kavranoglu, D., and Bettayeb, M, 1993, Characterization of the Solution to  the Optimal 
H,  Model Reduction Problem, Sys. and Cont. Lett, Vol. 20, 99-107 

[14] Lu, W., Zhou, K., and Doyle, J.C., 1993, Stabilization of Linear Systems with Structured 
Perturbations, Technical Memorandum No. CIT-CDS 93-014, Calif. Inst. of Tech. 

[15] Megretskii, A., Necessary and Sufficient Conditions of Stability: A Multiloop General- 
ization of the Circle Criterion, IEEE Trans., AC-38, No. 5, 1993 

[16] B.C. Moore, 1981, Principal component analysis inear systems: Controllability, observ- 
ability and model reduction, IEEE Trans., AC- 26:17-32. 



[17] Packard, A., and Doyle, J., The Complex Structured Singular Value, Autornatica, Vo1.29, 
No. 1, 1993 

[18] Packard, A., 1994, Gain Schedulingvia Linear Fraction Transformations, Sys. and Cont. 
Let., Vol 22:79-92 

[19] Paganini, F., and Doyle, J., 1994, "Necessary Conditions for Analysis of Uncertain Be- 
haviors", Proceedings 33rd CDC, Florida 

[20] Shamma, J., 1994, Robust Stability with Time-Varying Structured Uncertainty, IEEE 
Trans. AC-39:714-724 

[21] Wang, W., Doyle, J., Beck, C., and Glover, K.,1991, Model Reduction of LFT Systems, 
Proceedings 30th CDC, Brighton, England 

[22] Wang, W. and Safonov, M.G., 1990, A relative error bound for discrete-time balanced 
stochastic truncation, Proc. American Control Conf., (San Diego, CA, May 23-25, 1990); 
also expended version to  be appeared in Int. J. of Control. 


