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Model Reduction of Networked Multiagent
Systems by Cycle Removal

Hidde-Jan Jongsma , Harry L. Trentelman , Fellow, IEEE, and Kanat M. Camlibel , Member, IEEE

Abstract—In this paper, we consider the problem of
model reduction of consensus networks. We propose a
new method of model reduction based on removing edges
that close cycles in the network graph. The agent dy-
namics of the consensus network is given by a symmet-
ric multivariable input-state-output system. In the network,
the agents exchange relative output information with their
neighbors. We assume that the network graph is connected,
unweighted, and undirected. The network used to approx-
imate the original system is defined on the same number
of nodes as the original graph, but its edge set is a strict
subset of the original edge set. Explicit expressions and up-
per bounds for the approximation errors are formulated in
terms of the signed path vectors of the removed edges and
the eigenvalues of the Laplacian matrices of the original and
reduced network graphs.

Index Terms—Multi-Agent systems, eigenvalues and
eigenfunctions, network theory, reduced order systems,
symmetric matrices, control systems.

I. INTRODUCTION

COMPLEX networks, smart grids, distributed systems, and
networked multiagent systems are subjects that have seen

substantial amounts of attention in the past years. In the case of
networked multiagent systems, the network consists of a group
of dynamical input–output systems called agents. These agents
are interconnected through a certain communication topology
and exchange relative state or output information with their
neighbors in the network. The interaction topology of the net-
work is represented by a graph called the network graph. The
nodes of the network graph represent the agents of the network
and the edges encode the neighbors of each agent. Depending
on the specific problem under investigation, the network graph
might be weighted or unweighted, and directed or undirected.
In this paper, we will only consider unweighted, undirected net-
work graphs. A crucial object in the theory of networked systems
is the Laplacian matrix of the network graph. Various proper-
ties of the network graph are expressed in terms of the spectrum
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of the Laplacian matrix, see [1] and [2]. Closely related to the
Laplacian matrix is the edge Laplacian matrix, which plays an
important role in this paper.

In the context of networks, the consensus problem is one of
the most widely studied problems, see [3]–[6]. Results on the
consensus problem have had applications in for instance opti-
mization problems, distributed control and estimation. Similarly
to consensus, some other well-studied directions are flocking,
sensor placement, controllability analysis, and formation con-
trol. An overview of the state of the art can be found in, for
instance, [7].

Even with the almost exponential increase in computing
power that has been achieved in the past years and is predicted
for the future, the analysis of the behavior of large-scale net-
worked systems still remains a complicated task. This holds
in particular for problems that scale in complexity as a power
of the number of nodes or the number of edges in a graph. A
helpful approach is to use simplified models to approximate
the behavior of networked systems. This can ease some of the
difficulties arising in analysis and controller design for these
complex networked systems.

Applying existing well-known model reduction techniques,
such as balanced truncation, Hankel-norm approximation, and
Krylov projection, to the dynamical models of networked sys-
tems will in general result in the loss of the spatial structure of
the network and other important properties. In order to circum-
vent this problem, in the past, clustering-based algorithms have
been introduced in [8]–[10]. These clustering-based techniques
cluster certain groups of agents and edges in the network graph,
thus reducing the dimension of the network state, while retain-
ing some of the original network structure. In [11], clustering
techniques based on a specific class of graph partitions, called
almost equitable partitions, were introduced.

In this paper, we will study an alternative method for model
reduction of networks based on removing edges that close cy-
cles in the network graph. This approach is inspired by results
from [12] and [13] on the H2-performance of consensus net-
works when adding and removing cycles in the network graph.

By the removal of certain edges from the network graph,
the complexity of the interconnection topology of the network
is reduced. Thus, removing edges can indeed be considered
as a method of model reduction or, more accurately, model
simplification for networked multiagent systems.

The idea of removing edges from the graph in order to re-
duce complexity has been adopted before. For example in [14]
and [15], in the theory of graph sparsification, algorithms
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have been presented that compute a sparse graph, where the
number of edges is of the same order as the number of nodes,
thus approximating a full graph with many edges. These ap-
proximating graphs are close to the original graphs according to
a certain metric, for instance in the sense of cut-similarity [16]
or spectral-similarity [15]. While these algorithms provide ac-
curate approximations of the original graph, they do not take
dynamics on the nodes of the network into consideration. Con-
sequently, these algorithms are not directly applicable to the
problem of model reduction of networked multiagent systems.
For resistor networks with scalar agent dynamics, the problem of
model reduction by edge-removal was studied in [17] and [18].
In both papers, the nodes in the resistor networks are divided
into a set of external nodes and one of internal nodes. In [17],
an efficient method (reduceR) was introduced for finding an
equivalent resistor network with the same number of external
nodes, but with a reduced number of internal nodes. In [18], the
number of external and internal nodes is kept the same for the re-
duced network. The approximation error that is considered is the
worst case relative error between the steady-state voltages over
the nodes of the original and reduced network. The upper bound
on the approximation error given in [18] depends on the con-
ductance matrices of both the original and the reduced network.

In the present paper, we will provide expressions for the
H2-approximation error, expressed in terms of the signed path
vectors of the removed edges, the nonzero Laplacian eigen-
values, and the associated eigenvectors of the edge Laplacian
matrices of the original and reduced network graphs. In [19],
preliminary results were achieved for the case that the agent
dynamics is a single integrator and the networked system is a
standard diffusively coupled network. In the present paper, we
extend these results to the case that the agent dynamics is given
by a general, symmetric linear input-state-output system.

This paper is organized as follows. In Section II, we re-
view some relevant graph theory and investigate the notion of
signed path vectors and the edge Laplacian matrix of a graph. In
Section III, we discuss the dynamical model of a network with
symmetric agent dynamics and investigate the dynamics of the
reduced networked system. Then, Section IV contains the main
results of this paper and expressions for the model reduction er-
ror when a single, or multiple edge-disjoint cycles are removed
from the network graph. In Section V, we elaborate on the spe-
cial case that the network graph has a star graph as a spanning
tree. In Section VI, we briefly investigate the case that the agent
dynamics is a single integrator with a drift term and how these
results relate to the main results of [19]. In Section VII, we illus-
trate our results by means of a few numerical examples. Finally,
we conclude the paper in Section VIII with concluding remarks.

II. PRELIMINARIES

In this paper, we mostly use standard notation. Let R de-
note the field of real numbers, Rp the p-dimensional Euclidean
space, and Rp×p the space of p × p real matrices. The field of
complex numbers is denoted by C. Let I denote the identity
matrix of appropriate dimension. The trace of a square matrix
X is denoted by tr(X) and is the sum of its diagonal elements.

Let |E| denote the cardinality of the set E . The H2-norm of
the transfer matrix of a system Σ is denoted by ‖Σ‖2 . The
Kronecker product of matrices A and B is written as A ⊗ B.
The diagonal matrix with α1 , α2 , . . . , αp on the diagonal is
denoted by diag(α1 , α2 , . . . , αp). If instead we have matrices
A1 , A2 , . . . , Ap , then diag(A1 , A2 , . . . , Ap) denotes the matrix
with A1 , A2 , . . . , Ap as diagonal blocks. For a full-rank ma-
trix B ∈ Rn×m with n > m, B⊥ ∈ R(n−m )×n is any full-rank
matrix such that B⊥B = 0.

This paper considers networks whose interconnection topol-
ogy is represented by an undirected graph. An undirected
graph is a pair G = (V, E), which consists of a set of nodes
V = {1, 2, . . . , p} and a set of edges E , which is a subset of
{{i, j} | i, j ∈ V }, the set of all unordered pairs. These edges
can, for example, represent the communication channels be-
tween unordered pairs of nodes, see [1] and [20]. While the
network graph is undirected, in this paper an arbitrary orienta-
tion will be assigned to each edge. The specific orientation that
is chosen is not important. We call two distinct nodes adjacent
if they are connected by an edge. A sequence of nodes in which
sequential nodes are adjacent is called a path. The length of
a path is the number of edges that have been traversed while
following the path. A path is called a cycle if the first and last
node in the path coincide, and all other nodes in the path occur
only once. In a connected graph, there exists a path from every
single node to every other node. Throughout the paper, we will
only consider networks that have connected network graphs.

A graph G′ = (V ′, E′) is called a subgraph of G, if V ′ ⊂ V
and E′ ⊂ E . This is denoted by G′ ⊂ G. A spanning tree T =
(V, Et) of the graph G = (V, E) is any connected and cycle-free
subgraph of G. Since any spanning tree of G has p nodes and
is a tree, we have |Et | = p − 1. Let Et contain the edges of a
spanning tree T . The set containing the edges in G that are not
in T is then Ec = E\Et . Therefore, these edges close the cycles
in G. Of course, which edges are in Ec depends on the specific
choice of T . The complement of a given graph G is denoted by
G = (V, E) and is the graph defined on the same node set V
with the complementary edge set E = {{i, j} | i, j ∈ V }\E .

After fixing the orientation of the edges in G, the incidence
matrix of G is the |V | × |E|-dimensional matrix E, where Eik =
1 if node i is the initial node of the edge k, Eik = −1 if it is
the terminal node, and Eik = 0 otherwise, see, e.g., [20]. The
incidence matrix depends on the numbering and the orientation
of the edges in E .

For a specific spanning tree T of G, let Et denote the columns
of the incidence matrix E that correspond to the edges in Et .
Let Ec contain the columns that correspond to the edges in Ec ,
that close the cycles of G. After a suitable renumbering of the
edges in E , we then have

E = (Et Ec).

Next, we discuss signed path vectors, which are representations
for paths in G, see, e.g., [13]. Recall that, we have assigned
a specific but otherwise arbitrary orientation to each edge in
the undirected graph G. A signed path vector v ∈ R|E| then
encodes how a given path traverses the oriented edges in E .
The ith element of v is 1 if the path follows the edge ei ∈ E in



JONGSMA et al.: MODEL REDUCTION OF NETWORKED MULTIAGENT SYSTEMS BY CYCLE REMOVAL 659

the positive direction, i.e., from the initial to the terminal node.
The ith element is −1 if edge ei is traversed in the opposite
direction, and it is 0 if the path does not follow the edge at all. It
is easily seen that the length of the path, denoted l(v), is given
by l(v) = vT v. The next lemma plays an important role in this
paper, and follows from [13, Th. 1]. The lemma implies that the
columns of Ec are linear combinations of the columns of Et .

Lemma 1: For a connected graph G and spanning tree T ,
let Et correspond to the edges in Et and Ec to the edges in Ec .
Define T = (ET

t Et)
−1

ET
t Ec . Then T satisfies EtT = Ec .

The proof of this lemma is omitted here. We can interpret
the columns of T = (c1 · · · c|Ec |) as signed path vectors which
express the edges in Ec in terms of paths in the spanning tree
T . Indeed, let the ith column Etci of Ec represent the (cycle
closing) edge from node u to node v. Then ci is the signed
path vector of the (alternative) path from u to v in the graph T .
An element of ci is 1 if that path traverses the corresponding
edge in T in the chosen positive direction, −1 if in the opposite
direction, and 0 if the edge is not part of the path. In this paper,
we often refer to ci as the ith cycle of the graph G. Obviously,
the length of this cycle is equal to cT

i ci + 1.
Following [13], we have the following definitions for edge-

disjoint and correlated cycles.
Definition 2: Two cycles are called edge-disjoint, or inde-

pendent if they have no edges in common. Two cycles are called
correlated, or dependent if they are not edge-disjoint.

The matrix T encodes the above mentioned features of the
cycles in the graph. This is captured by the following lemma, for
which the proof can be derived from that of [13, Proposition 1].

Lemma 3: The matrix TT T encodes the following informa-
tion of the cycles in G:

1) (TT T )ii = cT
i ci = l(ci) − 1.

2) (TT T )ij = cT
i cj = 0 if and only if ci and cj are edge-

disjoint.
We will further use the fact that the matrix I + TTT is in-

vertible.
Example 4: As an example, consider the graph in Fig. 1. The

graph is defined on seven nodes and contains the star graph S6
as a subgraph. If we choose as a spanning tree T = S6 , we see
that the matrices Et , Ec , T , and TT T are given by

Et =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Ec =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
1 0
−1 0
0 0
0 0
0 −1
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0
1 0
0 0
0 0
0 1
0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

, T T T =
(

2 0
0 2

)
.

Indeed, it is easily verified that Ec = EtT . Note that the length
of the cycles and the fact that they are edge-disjoint can be

Fig. 1. Graph on seven nodes with star graph S6 as spanning tree.

obtained from the columns of T . Each column has two nonzero
elements, so the length of each cycle is 3. Furthermore, the
columns of T are orthogonal to each other, so the cycles are
edge-disjoint.

An important object in graph theory is the Laplacian matrix.
The Laplacian matrix L of an undirected graph G is a positive
semidefinite matrix in Rp×p . It can be defined in terms of the
incidence matrix E as

L = EET .

The Laplacian matrix does not depend on the chosen numbering
and orientation of the edges. It has rank p − 1 if and only if the
graph G is connected. In that case, L has a simple eigenvalue
at 0. Obviously, the remaining eigenvalues of L are real and
positive. They can therefore be ordered in increasing fashion as

0 = λ1 < λ2 ≤ · · · ≤ λp .

Closely related to the Laplacian matrix is the edge Laplacian
matrix, see [12], which is defined as

Le = ET E.

The edge Laplacian is a symmetric positive semidefinite matrix
in R|E|×|E|. It has the same nonzero eigenvalues as the Lapla-
cian. For a tree graph on p nodes, the edge Laplacian Le is in
R(p−1)×(p−1) , and is a positive definite matrix. Since it is sym-
metric, there exists an orthogonal transformation U that brings
Le to diagonal form:

UT LeU = Λ = diag(λ2 , λ3 , . . . , λp). (1)

Here, the columns of U = (x2 x3 . . . xp) are orthonormal
eigenvectors of Le .

III. CONSENSUS MODEL

In the standard consensus model, the agents of the network
are single integrators that exchange their relative state with
their neighbors in the network graph. In [19], model reduction
for the standard consensus model was investigated. In the single
integrator case, the network dynamics is given by

ẋ = −Lx

where x ∈ Rp contains the states of all the agents in the net-
work. Here, L is the Laplacian matrix of the network graph
G. In [19], the behavior of the network is approximated by
a reduced network with network graph Ĝ, with Ĝ a con-
nected subgraph of G. After reduction, the network dynamics is
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given by

˙̂x = −L̂x̂

with L̂ the Laplacian of Ĝ and x̂ again in Rp . In [19], we also
derived expressions and bounds for the approximation error.

In the present paper, we will consider the case that the agent
dynamics no longer consists of a single integrator system, but
is given by the symmetric input-state-output system

ẋi = Axi + Bui, yi = BT xi (2)

where xi ∈ Rn , ui, yi ∈ Rm , and A = AT . Symmetric input-
state-output systems appear, for example, in electrical and power
networks, and chemical reactions networks. In particular, they
appear in mechanical systems with only potential energy or only
kinetic energy, and in electrical systems with only electrical
energy or only magnetic energy (e.g., RL or RC circuits), see,
e.g., [21] or [22].

The agents are connected through the diffusive coupling

ui = −
∑
j∈Ni

yi − yj = −BT
∑
j∈Ni

xi − xj (3)

where Ni is the neighboring set of agent i. The network dynam-
ics is then represented by the autonomous system

ẋ = (I ⊗ A − L ⊗ BBT )x. (4)

The vector x ∈ Rpn contains the states of all agents and L is
the Laplacian matrix of the network graph G = (V,E). It will
be a standing assumption in this paper that the network (4)
reaches consensus, i.e., xi − xj → 0 as t → ∞ for all i, j. It is
a well-known fact, see, e.g., [5], that (4) reaches consensus if
and only if the matrices A − λiBBT are Hurwitz for all nonzero
eigenvalues λ2 , λ3 , . . . , λp of the Laplacian matrix L.

The idea of the model reduction procedure proposed in this
paper is now to remove selected edges from the underlying
network graph. This then yields a reduced network, and the
corresponding reduced graph G′ = (V, E′) ⊂ G is the subgraph
of G constructed by removing these edges in the original graph.
It has the same nodes as G, and the edge set E′ is a strict subset
of E . The dynamics of the reduced network is given by

ẋ′ = (I ⊗ A − L′ ⊗ BBT )x′ (5)

where L′ denotes the Laplacian of G′. Since the reduced net-
work has the same number of agents, the state-space dimension
remains equal to pn. The reduced network will reach consen-
sus if and only if the nonzero eigenvalues ω2 , ω3 , . . . , ωp of
the reduced Laplacian L′ satisfy A − ωiBBT is Hurwitz for
i = 2, 3, . . . , p. In the sequel, we will formulate necessary and
sufficient conditions for consensus of both the original and re-
duced network. For this, we will use Finsler’s Lemma, see,
e.g., [23, Th. 2.3.10], which, for a given symmetric A, gives
necessary and sufficient conditions for the existence of μ ∈ R
such that A − μBBT is Hurwitz, and a lower bound for such μ.

First note that the algebraic connectivity does not increase
with the removal of edges from a graph, see [13] and [20]. This
implies that for every reduced network, we have ω2 ≤ λ2 . Com-
bining this fact with Finsler’s Lemma, we immediately obtain

the following necessary and sufficient conditions for consensus
of both the original and reduced network.

Lemma 5: Assume that m < n and that B has full column
rank. Then the original and reduced network reach consensus if
and only if B⊥AB⊥T < 0 and

ω2 > λmax(B+(A − AB⊥T (B⊥AB⊥T )
−1

B⊥A)B+T ). (6)

Here, B+ is any left inverse of B. If B is square nonsingular,
then consensus is reached for both networks if and only if

ω2 > λmax(B−1AB−T ).

For the case that B does not have full column rank, analogous
conditions can be obtained, see [23]. The details are omitted
here. In the remainder of this paper, we will assume that both
the original and the reduced network reach consensus.

Remark 6: Lemma 5 gives a necessary and sufficient condi-
tion for the reduced network to reach consensus: the lemma
expresses this as a lower bound condition on ω2 . If the
original network reaches consensus, then already the con-
dition B⊥AB⊥T < 0 holds. The second inequality ω2 >

λmax(B+(A − AB⊥T (B⊥AB⊥T )−1
B⊥A)B+T ) then holds if

and only if the reduced network reaches consensus. If, after
removing certain edges, ω2 would turn out not to satisfy this
inequality, then removing these particular edges should not be
done, because consensus is lost. In other words, the inequality
in Lemma 5 gives a criterion to check whether certain edges can
be removed without losing consensus.

We will now make the idea of reducing the network by re-
moving edges explicit. First, we assign a virtual input d and
an output z to the original network (4). This is done as fol-
lows: given the network graph G = (V, E), we first choose a
particular spanning tree T = (V, Et), with incidence matrix Et ,
and as output we consider the disagreement over the spanning
tree, i.e., z = (ET

t ⊗ I)x. Thus, we associate with the original
network (4), the two-port consensus model

ẋ = (I ⊗ A − L ⊗ BBT )x + (I ⊗ I)d

z = (ET
t ⊗ I)x. (7)

Remark 7: A usual choice of output in consensus models is
z = (ET ⊗ I)x, with E the incidence matrix of G. This output
represents the disagreements between all neighboring nodes.
Note from the previous that, after choosing a spanning tree T ,
there exists a matrix T such that E = (Et EtT ). Thus, actually

z =

(
(ET

t ⊗ I)x

(TT ET
t ⊗ I)x

)

which shows that already (ET
t ⊗ I)x contains all relevant infor-

mation on the disagreements; the second part of the output vector
is just a linear transformation of the first part. This observation is
the motivation for us to choose as output z = (ET

t ⊗ I)x in (7).
A similar approach was taken in [12] and [13].

The impulse response of the system (7) quantifies the initial
condition response of (4) to the vector of disagreements over
the spanning tree T . While the state space representation (7)
is controllable, it is not a minimal representation since it is not
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observable. Indeed, let 11 be the vector of ones, and let y and λ

be such that y is nonzero and Ay = λy, then

(I ⊗ A − L ⊗ BBT)1 ⊗ y = λ(1 ⊗ y), (ET
t ⊗ I)1 ⊗ y = 0.

Utilizing ideas from [13], we construct a minimal representa-
tion for (7) by taking ξ = (ET

t ⊗ I)x as the new state. Indeed,
using the fact that Ec = EtT [where T = (c1 · · · cr ) encodes
the cycles in the graph] we obtain the following minimal repre-
sentation Σ of (7):

ξ̇ = (I ⊗ A − Le(I + TTT ) ⊗ BBT )ξ + (ET
t ⊗ I)d

z = ξ. (8)

The matrix Le(I + TTT ) appearing in (8) is called the essential
edge Laplacian of G, see [13]. The matrix Le appearing in (8)
is the edge Laplacian of the spanning tree T , satisfying

Le = ET
t Et.

Now, the system (8) is a minimal state space representation of
the original network (7). It is straightforward to verify that the
eigenvalues of I ⊗ A − Le(I + TTT ) ⊗ BBT coincide with
the eigenvalues of the matrices A − λiBBT for i = 2, 3, . . . , p.
Since it is assumed that the system reaches consensus, the matrix
I ⊗ A − Le(I + TTT ) ⊗ BBT is Hurwitz, and for d equal to
zero, ξ → 0 as t → ∞. The procedure of model reduction of the
original network (7) that we propose is now to remove selected
cycles from the network graph. This is exactly achieved by
removing the columns corresponding to these cycles from the
matrix T in the minimal realization (8) of the network. In this
way we obtain a reduced order network having a T matrix,
say T̂ , with a reduced number of columns. This reduced order
network Σ̂ is represented by

ẇ = (I ⊗ A − Le(I + T̂ T̂ T ) ⊗ BBT )w + (ET
t ⊗ I)d

ẑ = w. (9)

Again, by our standing assumption we have that the reduced net-
work achieves consensus and that the matrix I ⊗ A − Le(I +
T̂ T̂ T ) ⊗ BBT is also Hurwitz. Obviously, the extreme case is
to remove all cycles from the network, which is achieved by
setting T̂ = 0.

We summarize the above in the following reduction proce-
dure:

Input: Network with graph G, incidence matrix E, Laplacian
L,

Step 1: Choose a spanning tree T with incidence matrix Et ,
Step 2: Choose a list of to be removed cycle-closing edges,
Step 3: Renumber the edges in G so that its incidence matrix

is (Et Ec) and Ec = (Êc Ēc), where the columns of Ēc

correspond to the to-be-removed edges,
Output: Network with reduced graph Ĝ, defined by the

incidence matrix Ê = (Et Êc), Laplacian
L̂ = EtE

T
t + ÊcÊ

T
c .

As error, we take theH2-norm of the difference of the transfer
matrices of the original two-port consensus network (7) and the

reduced network, which is represented by

˙̂x = (I ⊗ A − L̂ ⊗ BBT )x̂ + (I ⊗ I)d

ẑ = (ET
t ⊗ I)x̂. (10)

Clearly, these transfer matrices coincide with those of Σ and
Σ̂ given by (8) and (9), respectively, and this will be exploited
heavily in the sequel.

Remark 8: We note that a different choice of orientations of
the edges in G will in general lead to different representations (7)
and (10) of the original and reduced network. Obviously, in both
representations the state equations remain the same (by the way
the Laplacians are formed), but the components of z and ẑ
may differ in sign. However, if a component of z changes sign,
the same will happen with the corresponding component in ẑ.
Thus, the H2-norm of the system mapping d to z − ẑ will be
independent of the orientation chosen.

In the following section, we will derive explicit expressions
and upper bounds for the error between Σ and Σ̂.

IV. MODEL REDUCTION ERROR

In this section, we will first establish expressions for the error
in the case that from the original network graph we remove
all edges that close cycles. The reduced network is then given
by (9), with T̂ = 0, equivalently by (10) with L̂ = EtE

T
t , the

Laplacian of the chosen spanning tree. As a measure for the
accuracy of the approximation (9), we take the H2-norm of
the error system. The error system maps the input d to the error
e = ẑ − z. The error dynamics is given by

(
ẇ

ξ̇

)
= Ae

(
w

ξ

)
+ Bed, e = Ce

(
w

ξ

)
(11)

where the system matrices in (11) are given by

Ae :=

(
I ⊗ A − Le ⊗ BBT 0

0 I ⊗ A − Le(I + TTT) ⊗ BBT

)

Be :=

(
ET

t ⊗ I

ET
t ⊗ I

)
, Ce :=

(
I ⊗ I −I ⊗ I

)
.

For the system to have a well-defined H2-norm, we need the
matrix Ae to be Hurwitz. Since, by assumption, the matrices I ⊗
A − Le(I + TTT ) ⊗ BBT and I ⊗ A − Le ⊗ BBT are both
Hurwitz, this is clearly the case. It is well-known, see, e.g., [24],
that the squared H2-norm ‖Σ − Σ̂‖2

2 of the error system equals

‖Σ − Σ̂‖2
2 = tr(CeXCT

e ) (12)

where the symmetric positive semidefinite matrix X is the
unique solution to the Lyapunov equation

AeX + XAT
e + BeB

T
e = 0. (13)

By partitioning X as

X =

(
X1 X12

XT
12 X2

)
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with X1 ,X12 ,X2 ∈ R(p−1)n×(p−1)n , it follows that (12) can be
rewritten as

‖Σ − Σ̂‖2
2 = tr(X1) + tr(X2) − 2 tr(X12). (14)

It is easily seen that X solves Lyapunov equation (13) if and only
if the matrices X1 , X12 , and X2 solve the following equations:

0 = (I ⊗ A − Le ⊗ BBT )X1

+ X1(I ⊗ A − Le ⊗ BBT )

+ Le ⊗ I (15a)

0 = (I ⊗ A − Le ⊗ BBT )X12

+ X12(I ⊗ A − (I + TTT )Le ⊗ BBT )

+ Le ⊗ I (15b)

0 = (I ⊗ A − Le(I + TTT ) ⊗ BBT )X2

+ X2(I ⊗ A − (I + TTT )Le ⊗ BBT )

+ Le ⊗ I. (15c)

We will now first compute X1 . Let U be the orthogonal matrix
that diagonalizes the edge Laplacian Le of the spanning tree
T . Then, we have UT LeU = Ω = diag(ω2 , ω3 , . . . , ωp), where
ω2 , ω3 , . . . , ωp are the nonzero eigenvalues of the Laplacian
matrix of the spanning tree. We premultiply (15a) by UT ⊗ I
and postmultiply by U ⊗ I . We then substitute Y1 = (UT ⊗
I)X1(U ⊗ I) into the resulting expression to obtain

(I ⊗ A − Ω ⊗ BBT )Y1

+ Y1(I ⊗ A − Ω ⊗ BBT ) + Ω ⊗ I = 0. (16)

This equation is solved by taking

Y1 = diag(Z2 , Z3 , . . . , Zp)

where Zi for i = 2, 3, . . . , p solves

Zi(A − ωiBBT ) + (A − ωiBBT )Zi + ωiI = 0.

Hence Zi is the observability Gramian of the system

ẋ = (A − ωiBBT )x + ET d, z =
√

ωix

and we can compute

Zi =
ωi

2
(ωiBBT − A)

−1
.

Note that, by assumption, the reduced network reaches consen-
sus, and equivalently, A − ωiBBT is Hurwitz, so its inverse
exists. Finally, since X1 = (U ⊗ I)Y1(UT ⊗ I), we obtain the
following expression for X1 :

X1 = (U ⊗ I) diag(Z2 , Z3 , . . . , Zp)(UT ⊗ I). (17)

Next, we will compute X2 . First, we symmetrize (15c) by

pre- and postmultiplying (15c) by (I + TTT )
1
2 ⊗ I . We then

substitute Y2 = ((I + TTT )
1
2 ⊗ I)X2((I + TTT )

1
2 ⊗ I) to

obtain

[I ⊗ A − (I + TTT )
1
2 L2(I + TTT )

1
2 ⊗ BBT ]Y2

+ Y2 [I ⊗ A − (I + TTT )
1
2 Le(I + TTT )

1
2 ⊗ BBT ]

+ (I + TTT )
1
2 Le(I + TTT )

1
2 ⊗ I = 0.

The expression above can be brought to block diagonal form by
the transformation V ⊗ I , where V is an orthogonal matrix that
brings the matrix

L̄e = (I + TTT )
1
2 Le(I + TTT )

1
2 (18)

to diagonal form:

Λ := V T L̄eV = V T (I + TTT )
1
2 Le(I + TTT )

1
2 V

= diag(λ2 , λ3 , . . . , λp).

The matrix L̄e is similar to the matrix Le(I + TTT ), hence
its eigenvalues coincide with the nonzero eigenvalues λ2 , λ3 ,
. . . , λp of the Laplacian matrix L of our original network graph
G. Applying the transformation V ⊗ I , we obtain

(I ⊗ A −Λ ⊗ BBT)Ỹ2 + Ỹ2(I ⊗ A− Λ ⊗ BBT)+ Λ ⊗ I = 0
(19)

where Ỹ2 = (V T ⊗ I)Y2(V ⊗ I). Solving for Ỹ2 gives

Ỹ2 = diag(Q2 , Q3 , . . . , Qp)

where Qi for i = 2, 3, . . . , p solves

Qi(A − λiBBT ) + (A − λiBBT )Qi + λiI = 0.

Hence, Qi is the observability Gramian of the system

ẋ = (A − λiBBT )x + ET d, z =
√

λix.

An explicit solution for Qi is then given by

Qi =
λi

2
(λiBBT − A)

−1
.

Here, again, the inverse exists since we assume that the net-
work reaches consensus, equivalently, A − λiBBT is Hurwitz.
Finally, we obtain the following expression for X2 :

X2 =
(
(I + TTT )

− 1
2 V ⊗ I

)
diag(Q2 , Q3 , . . . , Qp)

×
(
V T (I + TTT )

− 1
2 ⊗ I

)
.

(20)

The solution X12 to the Sylvester equation (15b) can be given
in terms of the eigenvectors and eigenvalues of I ⊗ A − Le ⊗
BBT . From [25, Th. 6.5, p. 178], we derive the following
lemma:

Lemma 9: Let M = MT , N , and C be square matrices in
Rq×q . Furthermore, let xi be a normalized eigenvector of M
corresponding to eigenvalue μi (i = 1, 2, . . . , q). If σ(M) and
σ(−N) are disjoint, then the Sylvester equation

MX + XN = C
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has a unique solution given by

X =
q∑

i=1

xix
T
i C(μiI + N)−1 .

A proof follows immediately from the proof of the more
general case in [25]. Using Lemma 9, we have the following
expression for X12 :

X12 =
∑
i,j

(xi ⊗ yij )(xi ⊗ yij )
T (−Le ⊗ I)

×
(
σij I ⊗ I + I ⊗ A − (I + TTT )Le ⊗ BBT

)−1
(21)

where i = 2, 3, . . . , p and j = 1, 2, . . . , n. The vectors xi are
normalized eigenvectors of Le , σij is the jth eigenvalue of the
matrix A − ωiBBT , and yij a corresponding normalized eigen-
vector. To see that the vectors xi ⊗ yij are indeed eigenvectors
of the matrix I ⊗ A − Le ⊗ BBT , first apply the transforma-
tion U ⊗ I to the matrix, where U = (x2 x3 . . . xp) is the
orthogonal matrix that diagonalizes Le . We obtain

(UT ⊗ I)(I ⊗A −Le ⊗ BBT)(U ⊗ I) = I ⊗ A − Ω ⊗ BBT .

This yields a block-diagonal matrix with A − ωiBBT for
i = 2, 3, . . . p on the diagonal. Since A is symmetric, the ma-
trices A − ωiBBT are also symmetric. Thus, there exists an
orthogonal matrix Yi = (yi1 yi2 . . . yin ) such that

Y T
i (A − ωiBBT )Yi = diag(σi1 , σi2 , . . . , σin ).

It is easily seen that the vectors xi ⊗ yij are eigenvectors and
the σij s are the eigenvalues of I ⊗ A − Le ⊗ BBT . Next, we
will prove a lemma that will be instrumental in proving one of
our main results.

Lemma 10: Let xi be an eigenvector of Le with correspond-
ing eigenvalue ωi and let yij be an eigenvector of the matrix
A − ωiBBT corresponding to eigenvalue σij . Denote

Mij = −σijL
−1
e ⊗ I − L−1

e ⊗ A + I ⊗ BBT .

We then have

M−1
ij (xi ⊗ yij ) = − ωi

2σij
(xi ⊗ yij ).

Proof: First, we have

M−1
ij = (U ⊗ I)

(
−σijΩ−1 ⊗ I − Ω−1 ⊗ A + I ⊗ BBT

)−1

× (UT ⊗ I). (22)

The matrix −σijΩ−1 ⊗ I − Ω−1 ⊗ A + I ⊗ BBT is a block-
diagonal matrix, whose diagonal blocks are given by 1

ωi

(−σij I − A + ωiBBT ), i = 2, 3, . . . , p. It is easily checked
that multiplying xi ⊗ yij with M−1

ij yields

M−1
ij (xi ⊗ yij ) = xi ⊗

(
1
ωi

(−σij I − A + ωiBBT )
)−1

yij .

Furthermore, since yij is an eigenvector of the matrix A −
ωiBBT corresponding to eigenvalue σij , we have

(σij I + A − ωiBBT )
−1

yij =
1

2σij
yij .

Combining the two expressions above completes the proof. �
The next theorem now gives an explicit expression for the ap-

proximation error in the special case that the network consists
of a tree combined with one single extra edge. The approxima-
tion error is given in terms of eigenvectors and the eigenvalues
of matrices related to the original and reduced systems and the
signed path vector of the removed cycle.

Theorem 11: Let Σ be a network consisting of the tree T
combined with a single extra edge e ∈ E t , with graph G =
(V, Et ∪ e), such that the graph has exactly one cycle c with
length l(c). Let Σ̂ be the network obtained by removing the
edge e. Then, the approximation error is given by

‖Σ − Σ̂‖2
2 =

1
2

∑
i,j

(xT
i c)

2 ω2
i

σ2
ij

yT
ijB

(
I +

p∑
k=2

ωk (xT
k c)

2
Gk (−σij)

)−1

BT yij

+
1
2

p∑
i=2

(
1 − (vT

i c)2

l(c)

)
λi tr(λiBBT − A)

−1

− 1
2

p∑
i=2

ωi tr(ωiBBT − A)
−1

. (23)

Here, i runs from 2, 3, . . . , p and j from 1, 2, . . . , n. In the above
expression:

1) ωi are the nonzero Laplacian eigenvalues of T and xi

denote corresponding normalized eigenvectors of Le .
2) λi are the nonzero Laplacian eigenvalues of G and vi

denote corresponding normalized eigenvectors of L̄e =
(I + ccT )

1
2 Le(I + ccT )

1
2 .

3) σij and yij denote the jth eigenvalue and corresponding
normalized eigenvector of the matrix A − ωiBBT .

4) Gk (s) denotes the transfer matrix of the system

ẋ = (A − ωkBBT )x + Bu, y = BT x. (24)

Remark 12: To compute (23), we first need to compute the
eigenvalues and corresponding eigenvectors of both Le and
L̄e . These can be computed using, for instance, the Jacobi
eigenvalue algorithm, which is a fast iterative algorithm that
computes all eigenpairs of a symmetric p × p matrix Q in
O(p3) time, see, e.g., [26, Ch. 9]. Next, for i = 2, 3, . . . , p,
we need to compute the eigenpairs (σij , yij ) of A − ωiBBT

and eigenvalues of A − λiBBT , which carries a total time
cost of O(pn3). We then have all information needed to
compute the last two terms in (23). Next, we can com-
pute BT yij for i = 2, 3, . . . , p, j = 1, 2, . . . n in O(pn2m)
time. Reusing the eigenpairs of A − ωiBBT and our previ-
ously computed BT yij ’s, we can compute the m × m ma-

trix Nij = I +
∑p

k=2 ωk (xT
k c)2

Gk (−σij ), where Gk (−σij ) =
BT Yk diag( 1

−σi j −σk 1
, . . . , 1

−σi j −σk n
)(BT Yk )T

, using only ma-

trix multiplication and addition in O(pnm2) time. Finally, we
can compute yT

ijBN−1
ij BT yij in O(m3) time. To compute the

first term in (23), this calculation needs to be performed for
i = 2, 3, . . . , p, j = 1, 2, . . . , n. If m ≤ n, then the first term
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can be computed in O(p2n2m2) time. Computing (23) by solv-
ing (15) combined with (14) in general takes O(p3n3) time,
see [27]; however, iterative algorithms might be able to capi-
talize on the sparsity of (15) to more efficiently compute the
approximation error.

Remark 13: Note that in the above theorem, ideally we
would like to express the nonzero Laplacian eigenvalues ωi of
the reduced network in terms of the nonzero Laplacian eigen-
values λi of the original network. For general graphs this is
however a hard problem. Only for special types of graphs it is
possible to explicitly compute these eigenvalues and associated
eigenvectors of the edge Laplacians, thus obtaining a simplified
expression for the error. We will elaborate on this for star graphs
in Section V of this paper. Another, different, approach could
be to use results on graph sparsification, see [14] and [15]. One
might be able to obtain a specific spanning tree for which the
nonzero Laplacian eigenvalues of the reduced network graph
are close to those of the original one, together with bounds
relating the eigenvalues and eigenvectors of the reduced edge
Laplacian to those of the original edge Laplacian. Combining
these bounds with the expression in Theorem 11 could lead to
upper bounds on the approximation error that are cheaper to
compute.

Proof: Since the graph only contains a single cycle, we have
that T = c and the essential edge Laplacian is given by Le(I +
ccT ). From (17) and (20), we have expressions for X1 and X2 .
We can now compute the trace of both matrices. For X1 , we
have

tr X1 = tr(U ⊗ I) diag(Z2 , Z3 , . . . , Zp)(UT ⊗ I)

=
p∑

i=2

ωi

2
tr(ωiBBT − A)

−1
. (25)

Similarly for X2 , we have

tr X2 = tr((I + ccT )
− 1

2 V ⊗ I) diag(Q2 , Q3 , . . . , Qp)

× (V T (I + ccT )
− 1

2 ⊗ I)

= tr

(
I − V T ccT V

l(c)
⊗ I

)
diag(Q2 , Q3 , . . . , Qp)

=
p∑

i=2

(
1 − (vT

i c)2

l(c)

)
λi

2
tr(λiBBT − A)

−1
(26)

where the second equality follows from the Sherman–Morrison
inversion formula, with l(c) = cT c + 1, and the fact that V
is an orthogonal matrix. Next, we consider the trace of X12 .
Using (21), we have the following expression for X12 :

X12 =
∑
i,j

(xi ⊗ yij )(xi ⊗ yij )
T (−Le ⊗ I)

×
(
σij I ⊗ I + I ⊗ A − (I + ccT )Le ⊗ BBT

)−1
. (27)

Next, take Mij as in Lemma 10. Then (27) can be rewritten as

X12 =
∑
i,j

(xi ⊗ yij )(xi ⊗ yij )
T

×
(
−σijL

−1
e ⊗ I − L−1

e ⊗ A + (I + ccT ) ⊗ BBT
)−1

=
∑
i,j

(xi ⊗ yij)(xi ⊗ yij)
T
(
Mij + (c ⊗ B)(c ⊗ B)T

)−1
.

Using the Sherman–Morrison–Woodbury matrix inversion for-
mula, see, e.g., [28], we find that
(
Mij + (c ⊗ B)(c ⊗ B)T

)−1
= M−1

ij − M−1
ij (c ⊗ B)

×
(
I + (c ⊗ B)T M−1

ij (c ⊗ B)T
)−1

(c ⊗ B)T M−1
ij .

We obtain

X12 =
∑
i,j

(xi ⊗ yij )(xi ⊗ yij )
T M−1

ij

−
∑
i,j

(xi ⊗ yij )(xi ⊗ yij )
T M−1

ij (c ⊗ B)

×
(
I + (c ⊗ B)T M−1

ij (c ⊗ B)T
)−1

(c ⊗ B)T M−1
ij

= X1 −
∑
i,j

(xi ⊗ yij )(xi ⊗ yij )
T M−1

ij (c ⊗ B)

×
(
I + (c ⊗ B)T M−1

ij (c ⊗ B)T
)−1

(c ⊗ B)T M−1
ij

(28)

where the fact that

X1 =
∑
i,j

(xi ⊗ yij )(xi ⊗ yij )
T M−1

ij

follows immediately by interpreting (15a) as a Sylvester equa-
tion and taking X1 as the explicit solution, similar to (21). Next,
denote

E =
∑
i,j

(xi ⊗ yij )(xi ⊗ yij )
T M−1

ij (c ⊗ B)

×
(
I + (c ⊗ B)T M−1

ij (c ⊗ B)T
)−1

(c ⊗ B)T M−1
ij .

Combining (14) with (28), we obtain that the approximation
error is then given by

‖S − Ŝ‖2
2 = tr X2 − tr X1 + 2 tr E. (29)

We can now write the trace of E as

tr E =
∑
i,j

(xi ⊗ yij )
T M−1

ij (c ⊗ B)

×
(
I + (c ⊗ B)T M−1

ij (c ⊗ B)T
)−1

× (c ⊗ B)T M−1
ij (xi ⊗ yij ).
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Using Lemma 10, this expression can be rewritten as

tr E =
1
4

∑
i,j

ω2
i

σ2
ij

(xT
i c ⊗ yT

ijB)

×
(
I + (c ⊗ B)T M−1

ij (c ⊗ B)
)−1

(cT xi ⊗ BT yij )

=
1
4

∑
i,j

(xT
i c)

2 ω2
i

σ2
ij

yT
ijB
(
I + (c ⊗ B)T M−1

ij (c ⊗ B)
)−1

× BT yij .

Using (22) for the inverse of Mij , we can compute that

(c ⊗ B)T M−1
ij (c ⊗ B)

=
p∑

k=2

ωk (xT
k c)

2
BT (−σij I − A + ωkBBT )

−1
B.

Using the two expressions above, we arrive at the following
expression for the trace of E:

tr E =
1
4

∑
i,j

(xT
i c)

2 ω2
i

σ2
ij

yT
ijB

×
(

I +
p∑

k=2

ωk (xT
k c)

2
Gk (−σij )

)−1

BT yij

where we observe that Gk (s) = BT (sI − A + ωkBBT )−1
B

is indeed the transfer matrix of system (24), which to-
gether with (25) and (26) proves the last equality in
expression (23). �

Theorem 11 gives an explicit expression for the approxima-
tion error if a single cycle is removed from the graph. A similar
result holds if multiple edge-disjoint cycles are removed. An
expression for the approximation error in the case that the net-
work contains precisely r edge-disjoint cycles is given in the
next theorem.

Theorem 14: Consider a network Σ consisting of a tree T
together with r edges e1 , e2 , . . . , er ∈ E t , with graph G = (V,
Et ∪

⋃r
j=1{ej}), such that the associated cycles c1 , c2 , . . . , cr

are edge-disjoint. Let l(ck ) denote the length of the cycle ck .
Let Σ̂ denote the reduced network obtained by removing all r
edges ej . Then the approximation error is given by

‖Σ − Σ̂‖2
2 =

1
2

∑
i,j

ω2
i

σ2
ij

(xT
i T ⊗ yT

ijB)
(
I + (T ⊗ B)T M−1

ij (T ⊗ B)
)−1

× (TT xi ⊗ BT yij )

+
1
2

p∑
i=2

(
1 −

r∑
k=1

(vT
i ck )2

l(ck )

)
λi tr(λiBBT − A)

−1

− 1
2

p∑
i=2

ωi tr(ωiBBT − A)
−1

(30)

where i = 2, 3, . . . , p and j = 1, 2, . . . , n. In the above expres-
sion:

1) T = (c1 c2 . . . cr ),
2) ωi are the nonzero Laplacian eigenvalues of T and xi

corresponding normalized eigenvectors of Le ,
3) λi are the nonzero Laplacian eigenvalues of G and

vi corresponding normalized eigenvectors of L̄e =
(I + TTT )

1
2 Le(I + TTT )

1
2 ,

4) σij denotes the jth eigenvalue of the matrix A − ωiBBT .
Proof: In the case of multiple cycles, (25) for the trace of X1

still holds. The matrix X2 is again given by (20), and similarly
to (26), the trace of X2 satisfies

tr X2 = tr(V T (I + TTT )
−1

V ⊗ I) diag(Q2 , Q3 , . . . , Qp)
(31)

where V is an orthogonal matrix that diagonalizes the matrix L̄e

in (18). Again using the Woodbury inversion formula, we find
that the inverse of I + TTT is given by I − T (I + TT T )−1

TT .
Since the cycles c1 , . . . , cr are independent, the matrix TT T is
diagonal with cT

i ci = l(ci) − 1 on the diagonal. It then follows
that

(I + TTT )
−1

= I −
r∑

k=1

ck cT
k

l(ck )
.

It is immediate that the trace of X2 is then given by

tr X2 =
p∑

i=2

(
1 −

r∑
k=1

(vT
i ck )2

l(ck )

)
λi

2
tr(λiBBT − A)

−1
.

Analogous to (28), we have the following expression for X12 :

X12 = X1 −
∑
i,j

(xi ⊗ yij )(xi ⊗ yij )
T M−1

ij (T ⊗ B)

×
(
I + (T ⊗ B)T M−1

ij (T ⊗ B)
)−1

(T ⊗ B)T M−1
ij .

(32)

In general, the matrix I + (T ⊗ B)T M−1
ij (T ⊗ B) is not easily

simplified. It is a block matrix consisting of r × r blocks Kij
mq ,

where the

Kij
mq =

{
I +

∑p
k=2 ωk (xT

k cm )2
Gk (−σij ) if m = q,

∑p
k=2 ωk (xT

k cm )(xT
k cq )Gk (−σij ) otherwise.

(33)
Combining (14) with (32) and the result of Lemma 10 completes
the proof. �

The result in Theorem 14 is not a straightforward gener-
alization of (23), mainly because the inverse of the matrix
I + (T ⊗ B)T M−1

ij (T ⊗ B) is not easily expressed in simpler
terms. For some specific graph topologies, expression (30) can
however be further simplified. This will be illustrated in the fol-
lowing section, in which we will study the case that our network
graph has a star graph as a spanning tree.

Finally, we will take a look at the case that only a subset
of the cycle closing edges is removed from the network graph.
In other words, we consider a network Σ consisting of a tree
T together with r edges e1 , e2 , . . . , er ∈ E t , with graph G =
(V, Et ∪

⋃r
j=1{ej}). We number the edges in such a way that

the last r − k edges ek+1 , . . . , er are removed, resulting in the
reduced network Σ̂. In this case, we can find an upper bound to
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the error by comparing both Σ and Σ̂ with the network obtained
by removing all edges e1 , e2 , . . . , er , resulting in the spanning
tree T . Denote this network by ΣT . Then we obtain:

‖Σ − Σ̂‖2 ≤ ‖Σ − ΣT ‖2 + ‖ΣT − Σ̂‖2 . (34)

Next, an upper bound can be obtained by applying Theorem 14
to both errors on the righthand side of (34).

Remark 15: For the case of scalar single integrator dynam-
ics, in [19] explicit expressions were obtained also for the case
that the reduced network is obtained by removing multiple de-
pendent cycles. Due to the complexity of the error expressions,
in the present paper, we will not treat the extension of these
results to symmetric input-state-output systems.

V. STAR GRAPHS

In this section, we will zoom in on the special case that the
chosen spanning tree is given by a star graph: a tree graph where
all the nodes are connected only to a single root node. It turns
out that in that case the expression for the approximation error
can be greatly simplified, because we can explicitly compute the
Laplacian eigenvalues of the original graph and its spanning tree,
and also corresponding eigenvectors of Le and L̄e . In addition,
if the original network reaches consensus, then automatically
also the reduced network does.

First, we will formulate and prove a lemma that will be in-
strumental in the sequel:

Lemma 16: Let c1 , c2 , . . . , cr be edge-disjoint cycles. Then
for the matrix T = (c1 c2 . . . cr ), we have

(I + TTT )
1
2 = I + TDTT

where D = diag(α1 , α2 , . . . , αr ) and αi =
√

1+ |ci |2 −1
|ci |2 .

Proof: The claim is easily checked by squaring I + TDTT

and verifying that I + 2TDTT + TDTT TDTT equals I +
TTT , if and only if |ci |2α2

i + 2αi = 1. By taking αi as the
positive solution of |ci |2α2

i + 2αi = 1, obviously I + TDTT

is positive semidefinite. �
The following result deals with the case that after removal of

multiple edge-disjoint cycles, we obtain a star graph as spanning
tree. The result gives an expression for the approximation error
between the network on the original graph and the reduced
network on the star graph.

Theorem 17: Consider a network Σ consisting of a star
graph Sp−1 together with r edges e1 , e2 , . . . , er ∈ E(Sp−1),
with graph G = (V, E(Sp−1) ∪

⋃r
j=1{ej}), such that the as-

sociated cycles c1 , c2 , . . . , cr are edge-disjoint. Let Σ̂ be the
reduced network obtained by removing all r edges ej . Then Σ
and Σ̂ reach consensus if and only if A − BBT is Hurwitz. The
approximation error is then given by

‖Σ − Σ̂‖2
2 = r

n∑
j=1

1
σ2

j

yT
j B(I + 2G(−σj ))

−1BT yj

+
r

2

(
tr(3BBT − A)

−1 − tr(BBT − A)
−1
)

(35)

where σj is the jth eigenvalue with corresponding normal-
ized eigenvector yj of the matrix A − BBT , and G(s) :=
BT (sI − A + BBT )−1

B.
Remark 18: Note that the approximation error (35) is inde-

pendent of the number of agents in the network. The error is
proportional to the number of cycles that have been removed
from the network.

Proof: The proof follows easily by computing the eigenval-
ues and eigenvectors of the edge Laplacian of the star graph Sp−1
and constructing the unitary matrix U such that UT LeU = Ω.
It is well known that the eigenvalues of the edge Laplacian Le

of the star graph Sp−1 are given by

ω2 = ω3 = · · · = ωp−1 = 1, ωp = p (36)

see, e.g., [1] and [2]. The edge Laplacian Le has a p − 2 dimen-
sional eigenspace associated with the eigenvalue 1 and a one-
dimensional eigenspace associated with the eigenvalue ωp = p.
The eigenspace associated with ωp is the span of the vector
1 ∈ Rp−1 , the vector of ones, so we can take xp = 1√

p−1 1.
Since Le is symmetric, these two eigenspaces are each other’s
orthogonal complement.

If we number and orient the edges in the star graph such
that edge i is from node 1 to node i + 1, then without loss
of generality we can assume that c1 = (−1 1 0 · · · 0)T , c2 =
(0 0 − 1 1 0 · · · 0)T , etc. The interpretation is that the first
removed edge points from node 2 to node 3, the second edge
points from node 4 to node 5, etc. It is easily seen that indeed
all the cycles are independent. For each cycle ci , we have that
cT
i 1 = 0, from which it follows that they all lie in the eigenspace

of Le associated with the eigenvalue 1. Now, for j = 1, 2, . . . , r,
choose

xj+1 =
1
|cj |

cj =
1√
2
cj . (37)

Since the cycles are edge disjoint, we have that xT
j xi = 0 if i 
=

j(i, j < r + 2). Finally, choose xi for i = r + 2, r + 3, . . . , p −
1 such that the matrix

U = (x2 · · · xr+1 xr+2 · · · xp−1 xp)

is orthogonal. We then have that the xis are eigenvectors of Le

and that UT LeU = Ω. Furthermore, it holds that

xT
i cj =

{√
2 if i = j + 1

0 otherwise.
(38)

This follows from the fact that for i = j + 1, we have xT
i cj =

cT
j cj

|cj | =
√

2, and from the orthogonality of the eigenvectors.
Next, we compute the eigenvalues λi and eigenvectors vi of

L̄e = (I + TTT )
1
2 Le(I + TTT )

1
2 . For all cycles, we have that

|cj |2 = 2. From Lemma 16, it then follows that

(I + TTT )
1
2 = I + αTTT
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where α = 1
2 (
√

3 − 1). For i = 2, 3, . . . , r, we obtain

(I +αTTT )Le(I + αTTT )xi

= (I + αTTT )Le(xi + α|ci−1 |2xi)v

= (I + αTTT )(xi + α|ci−1 |2xi)

= xi + α|ci−1 |2xi + α|ci−1 |2 + α2 |ci−1 |4

= xi + |ci−1 |2(2α + α2 |ci−1 |2)xi

= 3xi

which follows from (37), the fact that |cj |2 = 2 for all j and
from |cj |2α2 + 2α = 1. From (38), it follows that for i = r +
2, r + 3, . . . , p, we have TT xi = 0 and consequently

(I + αTTT )Le(I + αTTT )xi = (I + αTTT )Lexi

= (I + αTTT )ωixi

= ωixi.

We see that the eigenvectors of Le are also the eigenvectors
of L̄e and that λ2 = · · · = λr+1 = 3, λr+2 = · · · = λp−1 = 1,
and λp = p. Recall that we have assumed that A − BBT is
Hurwitz. Thus, also A − 3BBT and A − pBBT are Hurwitz,
so both the original network as well as the reduced network
reach consensus.

We can now compute

tr X2 − tr X1

=
1
2

(
p∑

i=2

(
1 −

r∑
k=1

(vT
i ck )2

l(ck )

)
λi tr(λiBBT − A)

−1

−
p∑

i=2

ωi tr(ωiBBT − A)
−1

)

=
1
2

(
(p − 2 − r) tr(BBT − A)

−1

+ r tr(3BBT − A)
−1

+ p tr(pBBT − A)
−1
)

− 1
2

(
(p − 2) tr(BBT − A)

−1
+ p tr(pBBT − A)

−1
)

=
r

2

(
tr(3BBT − A)

−1 − tr(BBT − A)
−1
)

. (39)

Next, we consider the following trace:

tr E =
1
4

∑
i,j

ω2
i

σ2
ij

(xT
i T ⊗ yT

ijB) (40)

×
(
I + (T ⊗ B)T M−1

ij (T ⊗ B)
)−1

(TT xi ⊗ BT yij ).

As mentioned in the proof of Theorem 14, the matrix I +
(T ⊗ B)T M−1

ij (T ⊗ B) is in general not easily simplified.
However, by combining (33) and (38) and the fact that xT

m cj

and xT
q cj are never simultaneously nonzero for m 
= q, we see

that in the case of a star graph, the matrix is block diagonal. The
diagonal blocks are given by

Kij
mm = I + ωm+1(xT

m+1cm )
2
Gm+1(−σij )

for m = 1, 2, . . . , r. From (36) and (38), we obtain that

Kij
mm = I + 2G2(−σij )

where G2 is the transfer matrix of system (24) with ω2 = 1.
Equation (40) then reduces to

tr E =
1
4

∑
i,j

ω2
i

σ2
ij

(xT
i TTT xi)yT

ijB(I + 2G2(−σij))−1BT yij .

Recall that for i > r + 1, we have TT xi = 0, so only the first r
terms of the sum over i are nonzero. From (36), we have that for
i = 2, 3, . . . , r + 1 the eigenvalues ωi and σij do not depend on
i. Combined with (38), we finally obtain

tr E =
r

2

n∑
j=1

1
σ2

j

yT
j B(I + 2G2(−σj ))−1BT yj (41)

with σj and yj as in Theorem 17. We conclude the proof by
combining (29), (39), and (41). �

VI. SINGLE INTEGRATOR DYNAMICS

In this section, we will return to the case that we have a general
(undirected and connected) graph, and zoom in on the special
case of simple first-order agent dynamics. In [19], the agent
dynamics was given by a single integrator, which resulted in a
standard diffusively coupled network. In this section, we take
another look at the single integrator case; however, we include
a drift term a in the agent dynamics, in other words, we assume
that the dynamics of each agent is given by ẋi = axi + ui with
a ∈ R. We will show that the results in [19] indeed follow from
the more general results presented in this paper. For the single
integrator case, in the agent dynamics (2), we now have A = a,
B = 1. Thus, the state of each agent is scalar and n = 1. The
original model dynamics (8) now reduces to

ξ̇ = (aI − Le(I + TTT ))ξ + ET
t d, z = ξ (42)

and, in the case that all cycles are removed, the reduced model
dynamics (9) is given by

ẇ = (aI − Le)w + ET
t d, ẑ = w.

The eigenvalues σij in Theorem 11 are now given by a − ωi and
we have yij = 1 for j = 1. To guarantee consensus, we assume
that the drift term a satisfies a < ω2 ≤ λ2 , where ω2 and λ2
are the algebraic connectivities of, respectively, the reduced
network graph and the original network graph. The transfer
function Gk (s) is now given by 1

s−a+ωk
. Finally, we observe

that now s tr(sBBT − A)−1 = s
s−a . Using these observations,

we arrive at the following corollary of Theorem 11:
Corollary 19: Let Σ be a network consisting of the tree T

combined with a single extra edge e ∈ E t , with graph G =
(V, Et ∪ e), such that the graph has exactly one cycle c. Let the
agent dynamics be given by coupled integrators with drift term
a, i.e., by ẋi = axi + ui with a ∈ R. Let Σ̂ the reduced network
obtained by removing the edge e. The approximation error is
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Fig. 2. RL circuit with three inductors and four resistors.

then given by

‖Σ − Σ̂‖2
2 =

1
2

(
p∑

i=2

ω2
i

(ωi − a)2
(xT

i c)2

1 +
∑p

j=2
ωj

ωj +ωi −2a (xT
j c)2

+
p∑

i=2

(
1 − (vT

i c)2

l(c)

)
λi

λi − a
−

p∑
i=2

ωi

ωi − a

)
.

(43)

�
Remark 20: Of course, by applying Theorem 14, the above

can be extended to the case that multiple edges that close edge-
disjoint cycles are removed. Also note that by taking a = 0
in (43), we immediately reobtain the result on the single inte-
grator case in [19, Th. 5]:

‖Σ − Σ̂‖2
2 =

1
2

⎛
⎝

p∑
i=2

(xT
i c)2

1 +
∑p

j=2
ωj

ωj +ωi
(xT

j c)2 +
1

l(c)
− 1

⎞
⎠ .

Remark 21: If, as in Section V, we consider the special case
that the network graph contains a star graph as a spanning tree,
we can take A = a, B = 1 in (35). For a star graph, we need
to assume that a < 1, in order to guarantee that the original and
reduced networks reach consensus. Thus, we obtain that, after
removing r edges closing edge-disjoint cycles, the approxima-
tion error is given by

‖Σ − Σ̂‖2
2 =

r

(1 − a)(2 − a)
+

r

2

(
1

3 − a
− 1

1 − a

)
.

Computing the limit for a → −∞, we see that the approxi-
mation error approaches zero. Thus, the approximation error
decreases with increasing stability of the agent dynamics. For
a → 1 from the left, we see that the approximation error tends
to infinity instead. This means that if the original and reduced
network come closer to losing consensus, the error grows un-
boundedly. If we assume that the agent dynamics is a simple
integrator without a drift term, i.e., a = 0, then we obtain that
the error is exactly r

6 . If we remove one edge, the error is always
1
6 , for any number of nodes in the star graph.

VII. NUMERICAL EXAMPLES

In this section, we consider a number of examples to illustrate
the theory developed in this paper.

Example 22: Consider a network in which each agent is the
RL circuit depicted in Fig. 2 . The circuit is taken from [22].
As the network graph, we take the graph of Fig. 1. This graph

consists of p = 7 nodes, has two edge-disjoint cycles (r = 2),
and contains S6 as a spanning tree.

As the state of each agent, we take the currents through the
inductors L1 , L2 , and L3 , so n = 3. The input each agent re-
ceives is the voltage Vd . Finally, as output, we take the current
through the first inductor L1 . This results in the following agent
dynamics:

ẋi =

⎛
⎜⎜⎝

−R2
L1

R2
L1

0

R2
L2

−(R2 +R3 )
L2

R3
L2

0 R3
L3

−(R3 +R4 )
L3

⎞
⎟⎟⎠xi +

⎛
⎜⎝

1
L1

0
0

⎞
⎟⎠ui

yi =
(
1 0 0

)
xi. (44)

If we take L1 = L2 = L3 = 1H , then (44) is a symmetric sys-
tem. As in [22], for the resistors, we take R1 = 0.5 Ω, R2 = 8 Ω,
R3 = 5 Ω, R4 = 1 Ω. The matrices A, B, and C are now
given by

A =

⎛
⎝

−8 8 0
8 −13 5
0 5 −6

⎞
⎠ , B = CT =

⎛
⎝

1
0
0

⎞
⎠ .

Using expression (35) in Theorem 17, we will now compute
the approximation error when removing all cycles from the
network. We first compute the eigenvalues σj and normalized
eigenvectors yj of A − BBT . We obtain σ1 = −20.3691, σ2 =
−6.9764, and σ3 = −0.6545 with corresponding eigenvectors

Y =
(
y1 y2 y3

)
=

⎛
⎜⎝

0.5535 0.6039 0.5735
−0.7866 0.1528 0.5983
0.2737 −0.7823 0.5596

⎞
⎟⎠ .

Thus, A − BBT is Hurwitz, so both the original network as
well as its approximation reach consensus. We then compute
the first term in (35) as

3∑
j=1

1
σ2

j

yT
j B(I + 2G(−σj ))

−1BT yj = 0.4790.

Next, we compute the trace of (BBT − A)−1
and (3BBT

− A)−1 , and obtain tr(BBT − A)−1 = 1.7204, tr(3BBT − A)−1

= 0.9950. Combining the above, we find as approximation error

‖Σ − Σ̂‖2
2 = 0.4790 · 2 +

2
2
· (0.9950 − 1.7204) = 0.2326.

(45)
Note that, by Theorem 17, this error is independent of the num-
ber of nodes in the resulting star graph. If the original graph
would be the union of Sp−1 with r edges that close edge-disjoint
cycles, then removing these r edges yield an approximation er-
ror 0.4790 · r + r

2 · (0.9950 − 1.7204).
While this approximation error is independent of the number

of nodes in the graph and is always proportional to the number
of removed edges, it heavily depends on the eigenvalues of the
matrices A − BBT and A − 3BBT . In the previous section, it
was shown that in the single integrator case the approximation
error decreases as the agent dynamics becomes more stable. We
again consider the system (44) and investigate what happens to
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Fig. 3. Eigenvalues σ1 , σ2 , σ3 of A − BBT for increasing R4 .

Fig. 4. Approximation error ‖S − Ŝ‖2
2 per removed edge.

Fig. 5. Graph on p = 20 nodes with five edge-disjoint cycles.

the approximation error if we vary the resistance of R4 from 1
to 50 Ω, thereby moving the eigenvalues of A − BBT closer
to −∞. As seen in Fig. 3, the eigenvalue σ1 of A − BBT re-
mains strictly monotonically decreasing, while both σ2 and σ3
decrease slightly before converging to a constant lower bound.
The corresponding approximation error per removed edge is
shown in Fig. 4. Fig. 4 shows that the approximation error
rapidly decreases as the resistance of R4 increases. Indeed, in-
creasing R4 from 1 to 10 reduces the approximation error per
removed edge from 0.1163 to 0.0184.

Example 23: As a final example, we investigate network (42)
with network graph G shown in Fig. 5. In this network, the agent
dynamics is given by a single integrator system with drift term
a = 0.03. This network has p = 20 agents and five edge-disjoint
cycles. Computing λ2 , we obtain λ2 = 0.0910, so the original
network reaches consensus. It is easily verified that the graph has
1200 spanning trees: in each cycle, we need to remove a single
edge, so the number of different spanning trees can be com-

Fig. 6. Relative approximation error versus ω2 (T ) of all possible span-
ning trees.

puted by taking the product of the cycle lengths. After selecting
a specific spanning tree, Theorem 14 can be used to compute
the approximation error. However, how to select the spanning
tree that minimizes the approximation error remains an open
question. In [29], an upper bound on the approximation error
was obtained that decreases with the increase of the algebraic
connectivity ω2 of the reduced network graph. Thus, a sensible
approach could be to use the spanning tree with the largest alge-
braic connectivity ω2 . Unfortunately no algorithm currently ex-
ists that efficiently computes this spanning tree. However, while
there is no direct relationship between the algebraic connectiv-
ity ω2(T ) of the spanning tree T and its diameter diam(T ),
the diameter can be used to obtain an upper bound on ω2 , see,
e.g., [30, Th. 4.1]. This bound is given by

ω2(T ) ≤ 2
(

1 − cos
(

π

diam(T ) + 1

))
.

The upper bound increases as the diameter of the spanning
tree decreases. The problem of finding a spanning tree with
minimum diameter for a given graph has been widely studied
and can be solved in O(qp + p2 log p) time, where q is the
number of edges in the graph, see, e.g., [31].

For each possible spanning tree T of the graph G in
Fig. 5, the value of ω2(T ) and the relative approximation error
‖S − ŜT ‖2/‖S‖2 , with ‖S‖2 = 2.7598, have been plotted in
Fig. 6. Each point in the scatter plot has been colored according
to the diameter diam(T ) of the spanning tree, with small diame-
ters colored blue and large diameters colored red. The spanning
tree T1 with the minimum value of ω2 , obtained at ω2(T1) =
0.0329, also achieves the worst relative approximation error:
‖S − ŜT1 ‖2/‖S‖2 = 0.3308. This tree is obtained from G by
removing the red edges in Fig. 5. Furthermore, diam(T1) = 15,
so it is among the spanning trees with the maximum possible
diameter. The tree T2 , which maximizes ω2 = 0.0622, is ob-
tained by removing the blue edges from G. For T2 , we have
diam(T2) = diam(G) = 9 and ‖S − ŜT2 ‖2/‖S‖2 = 0.1687,
which is very close to the minimal relative approximation error
obtained at minT ‖S − ŜT ‖2/‖S‖2 = 0.1679.

VIII. CONCLUDING REMARKS

This paper proposes a new method for model reduction of lin-
ear multiagent systems. Instead of a clustering-based approach,



670 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 3, MARCH 2018

this new method is based on removing cycles from the network
graph. We provided explicit expressions and upper bounds for
the approximation error when approximating a network that has
a symmetric system as its agent dynamics. The approximation
error is expressed in terms of the signed path vectors of the re-
moved cycles and the eigenvalues and eigenvectors of the edge
Laplacian matrices of the original and reduced network graphs.
Results have been presented for the cases that either a single
cycle or multiple uncorrelated cycles are being removed from
the network graph. If the reduced network topology is given
by a star graph, these expressions can be further simplified. We
have shown that previously obtained results for single integra-
tor agent dynamics are easily obtained from the more general
results presented in this paper.

While the paper concentrates on the case that the reduced
network graph is a tree graph, one can use the present results
to obtain upper bounds on the approximation error for general
reduced graphs, such as the approximation error when removing
an arbitrary cycle, by using the expressions presented in the
paper and the triangle inequality. Future research could try to
improve these bounds or could try to find explicit expressions
for the approximation error in the more general case.

The expressions presented in this paper depend on the Lapla-
cian eigenvalues and eigenvectors of the original and reduced
networks. The computation of these values might prove expen-
sive for networks with a large number of agents. Combining the
expressions in this paper with results from graph sparsification
could produce upper bounds on the approximation error that are
cheaper to compute.

In this paper, we have assumed that the chosen spanning tree
and to be removed cycles are given. A natural question to ask
is how to optimally choose such a spanning tree in such a way
that the approximation error in minimized. From the expressions
for the approximation error that have been provided in this paper,
the answer to this question is not immediately apparent. Earlier
results on networks with single integrator dynamics have shown
that the approximation error can be bounded by an upper bound
that increases with the length of the to be removed cycles and
decreases with the increase of the algebraic connectivity of the
spanning tree. Future research should investigate whether it is
possible to obtain similar upper bounds in the multivariable
case.

Other possible extensions could be to find expressions for or
bounds on the H∞-norm of the error system instead of the H2-
norm used in the present paper. Furthermore, it could be possible
to combine the results in this paper with clustering-based tech-
niques. For example, in the past, clustering-based techniques
based on almost equitable partitions have been proposed. While
finding almost equitable partitions of graphs is a difficult com-
binatorial problem in general, it might be more feasible for tree
graphs. Combining results from both techniques could provide
low-dimensional but accurate approximating systems. This pa-
per only deals with the case that the agents are represented by a
symmetric input-state-output system. In our paper, this assump-
tion is made for technical reasons. Future research could aim
at extending our results to the case that the agent dynamics is
a general input-state-output system. Finally, another important

topic for the future research is to investigate in what sense the
proposed model reduction method leads to faster simulations
for the reduced network as compared to the original one. Also,
it would be of interest to investigate whether controllers that are
designed on the basis of the reduced network lead to satisfactory
behavior of the original network.
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