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ABSTRACT

Two new approaches for reducing the order of large 
scale continuous time systems are presented. The first 
approach is a modified version of the aggregation tech­
nique. It uses the matching properties of the steady state 
output covariance and the Markov parameters of the high

fcll
order system to those of the r order model. This 
approach also uses a new algorithm derived for the compu­
tation of the controllability and observability Grammians, 
to produce controllable, observable and stable low order 
models. There is no unique method available for evaluating 
the aggregation matrix or the matrix relating the system 
state vector to the model state vector. A procedure, 
based on the singular value decomposition of the control­
lability Grammian of the system, is provided for the 
computation of the aggregation matrix. This approach is 
also extended to design low order deterministic continuous 
time varying linear models.

vii



The second approach in this dissertation is an 
improved version of the Schwarz approximation. It uses 
the Schwarz canonical form to insure the stability of 
the model, the impulse response energy to determine the 
order of the model, the singular values or the second order 
modes of the controllability Grammian to select the state 
variables to be retained in the model, and the time moment 
matching properties to reduce the steady state errors 
between the response of the model and that of the system.

This dissertation also introduces an algorithm for 
the computation of the frequency responses of the system 
and/or the model. This algorithm does not require any 
complex arithmetic, which is a major problem for most 
compilers; it is simple and easy to implement in a small 
computer.

viii



CHAPTER I

INTRODUCTION

1.1. Motivation and Perspectives

In the last two decades considerable attention has 
been focused on the problem of approximating a higher 
order system by a lower order model. Low order models 
are desirable for a number of reasons, including the 
following:

(1) to achieve simpler simulation of the process,
(2) to reduce the computational effort for 

obtaining optimal and adaptive controllers.
These motives are particularly applicable to those 
on-line and off-line designs where iterative design 
needs to be performed.

The order reduction problem is of particular interest 
in areas such as power systems, aircraft maneuvering, chemical 
processes, nuclear reactors, biologic, economic and manage­
ment systems. The order reduction problem consists of 
two major areas:



(1) model reduction
(2) controller reduction
The model reduction problem is essentially the sim­

plification of high order systems. Various reduction method­
ologies have been proposed, namely, aggregation [7], 
output and equation error minimization [40, 41, 95, 106], 
continued fraction [140], Pade [109] and Routh [61] 
approximations, component cost analysis [126], Hankel norm 
approximations [70] , balancing methods [119], partial 
realizations [46, 59, 112, 132] and identification tech­
niques [12, 15, 20, 78, 107]. The reduction criteria 
used also ranges over a variety of measures.

The most commonly used methods [71, 122, 137] can 
be divided in three groups:

(1) Using a model reduction scheme to determine
i l .  i . Uthe r order model, then design its associated r order 

controller (open loop design).
(2) After reducing the system to order m, where 

r < m < n, a parameter optimization approach is used to 
give the optimal r order controller.

(3) An n order controller is applied to the 
system, then a closed loop model reduction technique is 
used to determine a reduced order closed loop model (closed 
loop design).



This dissertation is mainly concerned with the 
open loop design problem, and two methods of model 
reduction of stochastic and deterministic continuous 
time linear systems are introduced.

1.2. Contribution of This Work

Two different approaches to model reduction are 
developed in this research. The first one is based on 
the matching properties of the steady state output co- 
variances and the Markov parameters of the high order

4- Visystem to those of the r order model. A new algorithm 
is developed for the computation of the controllability 
and observability Grammians. This may be used to derive 
controllable and observable stable low order models.

This approach also combines the aggregation and 
state feedback concepts to synthesize low order models.
It is noted that the aggregation method, as it is usually 
employed, has the following drawbacks:

(1) The reduced model is not guaranteed to be 
stable.

(2) There is no unique method available for 
evaluating the aggregation matrix.

(3) The aggregation method ignores the state con­
tribution to the performance of the model.



In addition to the use of state feedback to 
insure model stability, this approach uses a procedure 
based on the singular value decomposition of the con­
trollability Grammian, to compute the aggregation

>matrix. The extension of this approach to design low 
order deterministic continuous time varying, uniformly 
controllable models is straightforward.

The last approach in this dissertation is an 
adaptation of the Schwarz approximation. It uses the 
impulse response energy to find the order of the model 
and the singular values or second order modes of the con­
trollability Grammian to select the state variables to 
be retained in the model. Finally, an algorithm is 
introduced for the computation of the frequency responses 
of the system and the model. This algorithm is simple, 
it does not require any complex arithmetic which is a 
major problem for most compilers, and it is easy to 
implement in a small computer.

1.3. Organization of This Work

This dissertation is organized as follows:
Chapter II provides an overview of the existing techniques 
of model reduction. Chapter III introduces the mathe­
matical preliminaries such as steady state output 
covariance, Markov parameters, controllability and



observability Grammians to be used in the later 
chapters.

Chapter IV discusses a new method which combines 
the aggregation and state feedback concepts, its applica­
tion to continuous time invariant linear systems with 
uncertainty (e.g., stochastic input), and its extension 
to continuous time varying deterministic, uniformly con­
trollable linear systems. Chapter V describes the Routh 
and Schwarz approximations, their link, and develops a 
new approach which is a modified version of the Schwarz 
approximation. Chapters IV and V each present a 
numerical example to demonstrate the validity of the 
preceding results.



CHAPTER II

OVERVIEW OF THE ORDER REDUCTION TECHNIQUES

In this section, we will review the development of
model reduction during the last two decades. Davison [34]
proposed one of the first order reduction techniques.
Chidambara [27, 28] showed that this method does not
ensure steady state agreement between the dominant states 
of the original system and the reduced model. Further 
argument [28, 29] led to several variations of Davison's 
original scheme which we call here Chidambara's first method, 
Chidambara's second method and Davison's first method.
Later, Davison [35] introduced a second modified method.

Independently, Marshall [84] presented a technique 
which preserves the steady state of the original system by 
exciting the modes in the reduced model differently 
from those of the original system. Chidambara [30] 
introduced two modal techniques, which are optimal in the 
sense that they minimize deviations between the original 
system and the reduced model, but these approaches do not 
provide an explicit formulation for the reduced model.
Fossard [48] proposed a modification to Davison's original
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technique which results both in initial and final (steady 
state) agreement, for unit step inputs, between the original 
system and the reduced model. Wilson [138] and Bonvin 
et al. [18] showed that Chidambara's first method is 
equivalent to Davison's first approach and Chidambara's 
second technique is similar to Marshall's method.

Litz [80, 81] presented a new modal technique which 
is optimal in the sense that the integral of the square of 
the errors between the dominant states in the system and 
the reduced model is minimized. Unlike Chidambara's tech­
nique [30], this new approach gives an explicit formulation 
for the model. The practical uses of the previous methods 
are not trivial, since the relationship between the states 
of the system and those of the model do not appear ex­
plicitly.

To overcome this difficulty, Aoki [5, 6] introduced 
the aggregation method. This approach has the advantage 
of preserving some of the internal structural properties 
of the system which are useful not only in analysis, 
but also in deriving suboptimal state feedback control.
The concept of aggregation was further exploited by 
others [10, 56, 100, 102, 123, 125, 129].

Lindner et al. [79], Medanic et al. [85] and Tse 
et al. [130, 131] suggested the idea of chained aggregation
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which is based on the generalized Hessenberg representation 
(GHR), and the order reduction is performed on the GHR 
by coordinate truncation, neglecting the feedback couplings 
from the truncated subsystem and using a generalized QL 
algorithm to transform the GHR into another representation 
from which the reduced model is derived. This way of 
reduction may destroy the basic idea of chained aggregation.

To avoid this problem, Kwong [72, 73] used an orthogonal 
transformation, which is equivalent to the Rayleigh-Ritz 
procedure, to compute an optimal approximate aggregation, 
which is similar to the one introduced by Aoki [7] .

Since the aggregation matrix used by Aoki [6, 7]. 
is arbitrary, it is therefore possible to select it in an 
optimal manner by minimizing a performance criterion. Such 
an approach to optimal aggregation has been developed by 
Siret et al. [124]. It has been shown [39,53,54,87] that the 
reduced models given by optimal properties [89,90,91] are 
optimally aggregated models and Davidson's [34], Marshall's 
[84 ] and Chidambara's models are special cases of aggregated 
models. It is known [123] that the reaction of a system to 
an arbitrary initial state cannot be described by a simple 
model, except through the aggregation concept.

In practice, the arbitrary initial states are con­
sidered in many situations as disturbances in the states



of the physical system and are not so arbitrary. Davison's 
aggregation scheme [34,35 ,,36] is based on the preservation 
of the smallest eigenvalues, hence dominant time 
constants of the original system, in the reduced model.
This implies that the response of the reduced model will 
be similar to the response of the original system, since 
the effect of the neglected eigenvalues on the system 
response is important only at the transient part of the 
response. However, the retained eigenvalues affect the 
entire response and determine the type of the response of 
the system. This method assumes that the original system 
is asymptotically stable and completely controllable. 
Furthermore, it is computationally cumbersome, since it 
requires the evaluation of the eigenvalues and eigenvectors 
of the higher order system.

Anderson [4 ] presented a method in which the eigen­
values are not, in general, retained. The approach consists 
of fitting the output data of the original system to a 
reduced model by the least squares technique. However, 
this method can give rise to unstable models unless the 
model's structure is constrained. Most often the minimiza­
tion of some objective function involving the approximation 
error is studied using the impulse response. The para­
meters of the reduced model are then obtained either from 
the necessary conditions of optimality or by means of a 
search algorithm.



Meier et al. [86] considered the problem of synthe­
sizing the reduced model transfer function for a single input, 
single output system by minimizing the mean square error 
between the output of the system and that of the model. The 
approximation approach consists of finding optimum residues 
and poles of the reduced model transfer function, then develop­
ing a set of necessary conditions involving the poles only.
The solution yields a set of nonlinear equations for the poles 
and zeroes of the optimum reduced model transfer function.

Riggs et al. [105, 106] have used similar approaches 
to derive new reduction methods. Wilson [136] formulated, 
for the multi-input multi-output problem, an algorithm which 
is based on the solution of a Lyapunov matrix equation and 
requires optimization of the individual parameters occurring 
in the particular canonical form chosen. The application of 
Wilson's algorithm to single input, single output is rather 
cumbersome and time consuming. Similar results have been re­
ported in [8, 9, 60, 141]. Some results concerning the unit 
step response are also available such as [35, 52, 75].
However, the method used in [52] requires the transforma­
tion of the system to a diagonal representation and then 
assumes that the order of the reduced model is equal to 
the number of outputs. It also uses the dynamic and static 
criteria, which leads to an incorrect steady state response.

Siret et al. [125] extended Wilson's approach [135] 
to a class of polynomial inputs, to define an optimum
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reduced model with the same steady state output as the 
system. This is obtained by expressing the constraint on 
the asymptotic stability behavior of the two models as a 
constraint on the structure of the reduced model, which is 
easier to take into account. The problem is then reduced 
to a problem of minimization without constraint. This 
method is also applicable to systems which have unstable 
modes.

For a different error criteria, Sinha et al. [121] 
proposed a computer program for obtaining the optimum re­
duced model based on arbitrary polynomial inputs. In this 
approach, all of the coefficients in the reduced model trans­
fer function are optimized by using a search routine. They 
have applied this technique to minimize the maximum deviation 
between two models. However, it was shown in [136] that this 
optimization procedure would be numerically manageable 
only for reducing systems of low order and would be in­
efficient for the mean square error criterion.

The most common characteristic of the previous 
methods is that they minimize an integrated quadratic error 
between the original system and the reduced model. This 
minimization is used as a measure of the performance of 
modelling of the methods. The parameters of the reduced 
model are determined so that the integral quadratic error 
is minimized. However, this procedure requires solving 
nonlinear equations and thus the calculation is quite
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difficult. Another major drawback of these approaches 
is that the canonical structure of the reduced order 
model has to be constrained in some manner. To avoid this 
problem, Obinata et al. [95,96] suggested a different 
approach. Instead of minimizing the output error, they 
minimized the equation error. This minimization leads to 
a linear problem. But, instead of the original system 
matrices, the input and output vectors have been used.

Eitelberg [41,42] using the same idea, found a simpler 
formulae where only the matrices of the original system 
are needed. These methods require the stability of the 
original system, and it is not clear that the reduced models 
obtained by these methods can always be asymptotically 
stable and completely controllable, even when the original 
system has these properties (see Appendix A) .

Since the original system is often identified in 
the frequency domain and then subsequently converted to 
the time domain, many techniques have been derived in 
the frequency domain. Among them is the Pade approximation 
procedure, in which the frequency response of the system at 
low and/or high frequencies is matched with that of the 
model by essentially retaining the first few terms of the 
Taylor series expansion of the system frequency response 
about the origin and/or infinity. Other methods using 
partial sequences of the Markov parameters and/or the time 
moments of the system frequency response were proposed 
[19, 50, 108, 109, 110].



Chen et al. [23,24] presented a method based on the con­
tinued fraction concept. Their form of continued fraction 
expansion resembles multiple feedback loops and 
feedforward paths with blocks corresponding to quotients.
As the quotients get lower and lower in position or equi­
valency and the blocks develop more and more loops, they 
have less and less significance as far as the overall 
system is concerned. Therefore, truncating the continued 
fraction after some terms is equivalent to ignoring the 
inner, less important loops. In this respect, three 
different reduced models are available through the use of 
the three Cauer forms. It was shown [ 20 ] that the con­
tinued fraction method and the moments matching method may 
give similar results and that they may both yield unstable 
models even for stable systems.

To improve the moments matching approach, Shamash 
[110] used the generalized Pade approximation to retain 
specified (dominant) modes in the reduced model. Similarly, 
Shieh et al. [115,116] used the dominant poles concept asso­
ciated with the continued fraction approach to get stable re­
duced models. But the concept of dominant poles requires the 
determination of the dominant poles first before the 
simplification is carried out, thus for a high order system, 
the computation is tedious and for some systems, it is not 
easy to define the dominant poles.
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Chen et al. [25, 26] sugqested a different 

method called the stability equations technique. The 
simplifying procedure is simple and only two equations 
with one-half of the order of the system need to be 
factored. All the reduced models are guaranteed to be 
stable. But the method cannot be applied directly to 
reduce the transfer function of nonminimum phase systems.

Another method which has similar problems was introduced 
in the order reduction literature [43, 143]. It was called 
the norm approximation method. To solve this problem,
Chen et al. [ 26 ] proposed an approach which combines the 
advantages of the stability equations and the continued 
fractions methods and it consists of three steps. The first 
step is to reduce the denominator of the transfer function 
by the stability equations method. The second step is to 
get the partial quotients by the algorithm of the continued 
fraction method, and the last step is to discard the unstable 
partial quotients and to reconstruct the reduced model of 
which the denominator is obtained in the first step.

Similarly, utilizing the Pade approximately and a 
continued fraction expansion, Shamash [113] derived a 
technique which produces stable models and has many useful 
properties such as computational simplicity. Fitting of 
the time moments and the steady state value of the original 
system is similar to that of the reduced model.

In the same domain as the previous methods, Hutton 
et al. [61] introduced an approach called the Routh-Hurwitz



approximant method which does not involve the computation 
of the eigenvalues of the original system. It involves 
no optimization routines and also guarantees stability 
because it is based on the Routh-Hurwitz stability table 
together with the fitting of the moments. Shamash [114], 
using examples, argued that the locations of the poles of 
the models from Hutton's method, are completely dependent on 
the locations of the poles of the system.

As mentioned before, for these methods to work, the 
time domain description is transferred to its equivalent 
frequency domain representation and the simplification is 
carried out in the frequency domain. The reduced model is 
then transferred back into the time domain. The time 
domain realization of the reduced model from its transfer 
function is not an easy task.

A method free of this and all of the previous 
problems is the singular perturbation approximation.
A singular perturbation theory provides a systematic 
approach to deal with the modelling, analysis and 
control of dynamic systems in which the physical separa­
tion of modes is recognized in terms of a small, positive 
parameter multiplying a part of the system equations.
This part is called the fast part of the system. The singular
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perturbation approximation reduces the system order by 
first neglecting the fast phenomena. It then improves the 
approximation by reintroducing their effects as boundary 
layer corrections calculated in time scales. In this case, 
the system is temporarily decoupled into two lower order 
subsystems which represent the slow and fast part of the 
system [31, 65 ]. In an asymptotically stable system, the 
fast modes corresponding to large eigenvalues are important 
only during a short time period [64, 65, 66, 81]. Hence, a 
matrix norm is given under which the large eigenvalues of a 
two-time scale system will be sufficiently separated from 
the small eigenvalues.

It has been shown [103, 104] that the Routh 
approximation can be treated as an approximate aggregate 
technique and it has been argued by Hickin et al. [ 55 ] 
and Vittal Rao et al. [103], that aggregation as well as the 
Routh approximation can be used to express any system into 
its slow and fast subsystems. This argument is based on 
the assumption that most systems possess the two time scale 
property, namely the eigenvalues of the system can be 
clustered into two groups of dominant and nondominant 
modes.

Several researchers have viewed the order simplification 
problem as a minimal realization problem and have obtained 
partial results [46, 58, 112]. The Hankel matrix [57] 
is formed with the Markov parameters, then the reduction of
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the Hankel matrix is determined with respect to the Hermite 
norm and a partial realization is obtained.

Such methods typically match some of the generalized 
Markov parameters instead of all of them as is done in minimal 
realization. Then a combination of the aggregation method with 
the partial realization gives an order reduction technique 
which has the advantage of matching Markov parameters as well 
as ensuring stability. The chained aggregation method 
[129,131] also belongs to this class of methods since it 
discards the weakly observable part of the system as a 
way of simplifying the large scale system.

In practice, it is more often desirable to design a 
control system of minimal size and yet controllable 
and observable. The most common features of the 
above techniques are that the approximation problem is 
approached by observing that the dynamical behavior of a 
physical system may, on occasion, be dominated by the 
dynamics of a particular subsystem. Therefore, 
most of the modal approaches, with the exception 
of the singular perturbation method, suffer from 
the drawback that the physical significance of the 
state is lost. This leads to some difficulties when the 
model is a part of the system. Thus, before any modal tech­
nique is used, several key decisions should be made, i.e.:

(1) The most important response modes of the system,
(2) An appropriate size (order for the reduced 

model.
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(3) The most sensitive state variables which are 

to be retained in the reduced model.
Even with the singular perturbation method, there is 

no clear-cut technique which can help to decide on the 
structure of the reduced model. In [44, 83], it was noted 
that the quality of the aggregated model depends on the con­
tribution of the neglected modes and an upper bound on the 
error incurred was introduced by simplifying the high order 
system. For the Routh approximation method [61], error func­
tions are easily evaluated in terms of impulse energy error.

In [98, 99, 133, 134], a scale invariant criterion 
has been proposed for picking out the state which signifi­
cantly participates in the construction of the model. The 
main idea behind this approach is the development of a 
participation matrix for evaluating the relative importance 
of each state. However, this method does not take into 
account the couplings between the states and the various 
inputs and outputs. The practical importance of this crit­
erion is thus limited.

Lastman et al. [77] proposed another criterion for 
estimating the effective participation of each state by 
evaluating its contribution to the total impulse response 
energy at the output of the system. With this criterion, 
a method of simplification combining the singular pertur­
bation and aggregation schemes was presented. This idea 
originated in [61], where the impulse response energy was
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utilized for the selection of the order of the reduced 
model. The same concept can be found in [ 144 ], for selecting 
the eigenvalues to be retained in the reduced model.

A method based on applying unit impulses separately to 
each component of the input was proposed by Commault [32], to 
obtain reduced aggregated models. Siret- et al. [125] also 
suggested a procedure of mode selection for the aggregation 
method based on the impulse response. Litz [ 80 ] determined 
the dominant modes by the use of unit step functions at each 
component of the input, the step functions are then used to 
obtain the model by approximating the nondominant modes.
He analyzed the couplings between the inputs and the 
states through the various modes and proposed a dominance 
measure for the sensitive states. Bonvin et al. [17] 
extended Litz1s method to any kind of inputs.

The operation of selecting within the system state 
space, a subspace of completely controllable and observable 
states as was done by Wonham [139]. In other words, 
the subspace is responsible for the whole of the input-output 
response. Then the simplification can be approached by 
relaxing controllability and observability concepts and a 
dominant subsystem in terms of strongly controllable and obser­
vable subspaces. This technique does not necessarily 
require a state variable description as a starting point, 
but input-output representation as well.

In [59], Ho et al. related the geometric structure of 
the controllable/observable subspace to the algebraic
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structure of the impulse Hankel matrix. Several methods for 
representing linear systems throuqh analysis of the rank or 
the dependence relation of the system Hankel matrix were 
proposed. However, due to a lack of efficient and robust 
numerical techniques for rank analysis, they proved 
unsuccessful for identification and not promising for 
solving the approximation problem. It has been shown in 
[21,93,94] that appropriate techniques in linear algebra 
such as orthogonal factorization and singular value decom­
position play a significant role in the analysis of the 
structure of dynamic systems, and consequently, in the 
determination of reduced models for approximating complex 
systems.

The use of singular values (second order modes) as 

opposed to eigenvalues or primary modes of the system 
first appeared in the work of Zeigler et al. [143]. Using 
a similar approach, Moore [92] introduced the internally 
balanced realization concept. He showed that from the 
internally balanced realization, an asymptotically stable 
approximate realization can be obtained by neglecting those 
state variables which correspond to very small second 
order modes. Kung [69] approached the reduction problem 
from a realization perspective and proposed an order reduc­
tion scheme based on the singular value decomposition of 
the Hankel matrix associated with the system. He also 
provided stability results and an error analysis.
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Pernebo et al. [97] presented a method with much 

stronger stability results based on Moore's balanced reali­
zation. Silverman et al. [119] showed that the singular 
values of the Hankel matrix are indeed the second order 
modes and the approaches of Moore [93] and Kung [69] lead 
to the same reduced models. Lastman et al. [76] showed 
that the aggregation technique may, in some cases, give 
better results than the balance realization method.

In general, the approximation of the Hankel matrix 
based on the singular value decomposition will not have a 
Hankel structure. To overcome this problem using the work 
of Adamjan et al. [1], in [12, 70], Kung et al. developed 
an optimal Hankel norm approximate approach. Glove [51] 
developed a new state space representation which he used 
to give a balancing-based state space algorithm for com­
puting the multivariable Hankel-norm approximant. Desai 
et al. [37, 38] extended the concept of internally balanced 
realization to stochastic realization of reduced order 
models, controllers and observers. Enns [45] derived an 
error bound for models obtained from internally balanced 
realizations. The bound is that the infinity norm of the 
frequency response of the difference between the system 
and the model is bounded by twice the sum of the balanced 
Grammian's singular values that correspond to the truncated 
states of the balanced realizations.

Concurrent with the above work, Skelton et al. [126, 
128] introduced the component cost analysis approach for



approximating stochastic systems. In the generalized form, 
Skelton et al. [127, 142] have referred to it as the co- 
variance equivalent realization approach. This method gives 
an algorithm for obtaining a reduced order stochastic 
realization such that a certain specified number of output 
covariance parameters for the reduced model match the 
output covariance parameters for the reduced model. Their 
approach can also be used for controller order reduction.

Hyland et al. [62] found necessary conditions for 
optimality of a continuous time stochastic linear system 
in the form of two Riccati and two Lyapunov equations 
coupled by an oblique projection. They also used this 
projection to compare Moore [93], Skelton [126] and 
Wilson [135] approaches.

Motivated by the work of Akaike [3] on predictor 
spaces, canonical variables and stochastic realizations, 
Fujishige et al. [49], Baram et al. [14, 15], Desai 
et al. [37] and Larimore [7 8] derived algorithms for 
obtaining approximate stochastic realizations. The 
reduction scheme is based on canonical correlation 
coefficients which can also be viewed as generalized 
singular values of a normalized matrix.



CHAPTER III

STEADY STATE OUTPUT COVARIANCES AND MARKOV PARAMETERS 
OF CONTINUOUS TIME LINEAR SYSTEMS

3.1. Introduction

In this chapter, we will introduce the mathe­
matical material that will be used in later chapters 
for the derivation of model reduction techniques of 
asymptotically stable, completely controllable and 
observable, large scale linear continuous time systems.

Consider the stochastic, asymptotically stable, 
completely controllable and observable, stationary, con­
tinuous time system

3.2. Mathematical Background

x(t) = A x (t) + B w (t) (3.1a)

y(t) = C x (t) (3.1b)

x(tQ) = xQ

23
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where xe2Rn , ydRA and we3Rm .
The initial condition Xq is assumed to be a zero mean 

Gaussian random vector independent of w(t). w(t) is a 
zero mean white noise process with intensity Q. Q is a 
symmetrix positive definite matrix. Then'

E{w(t)} = 0, and E{w(t)wT (x)} = Q6(t-x) (3.2)

where E{*} denotes the statistical expectation.
Let (J> (t, t ) be the state transition matrix of the 

system in equation (3.1). The solution of equation (3.1a) 
is then

x (t) = c|>(t, tQ )x0 + | 4>(t,5)Bw(£)d?. (3.3)
fc0

Let K(t1,t2) = E{x(t1)xT (t2)} denote the state
covariance matrix. Then using standard arguments 
[47, 71] and equations 3.2 and 3.3, it follows that

m ftK (t1,t2) = <j> (t^, ty) KQ<t> (t2,tQ) + J *(t1,5)BQBT«T (t2,?)d5
fc0

(3.4)

Twhere E{x 0x q} = KQ .
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Now let = t+x and t2 = t. Then equation (3.4)
yields

K(t+T,t) = <}> (t+T,t0)KQ(|)T (t,t0) + (t>(t+T,C)BQBT (j)T (t,5)d5

The system (3.1) is a continuous time invariant linear 
system, thus

<|> (tx, t2) = eA(tl-t2)

and

K(t+T,t) = eA(t+T KQeA (t_t0) +

[* eA(t+T-5>BQ B V T <t-5» <35

or

K(t+x,t) = eA't(eA(t_t0)K0eA (t_t0)

f* eA <t-«>BQBTeAT(t-5)d5]
:0
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thus
A tK (t+x,t) = e K(t,t) (3-7)

where

K(t,t) = E{x(t)xT (t)} is the state covariance

matrix and it satisfies the matrix differential equation 
f*7, 71]

K (t, t) = AK(t,t) + K(t,t)AT + BQBT (3.6)

The autocorrelation matrix of the output y(t) in the 
presence of the zero mean Xg is denoted as R(t + x,t).

Since we may readily induce the properties of

R(t+T,t) = E{y(t+x)yT (t)}, namely

R (t+T,t) = CeATK(t,t)CT (3.7)

It has been shown in [127, 142] that, in steady state 
R = Aim R (t ,t) and K = Aim K(t,t), thus equations (3.4)t-*00 t->OD
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and (3.7) becomes

0 = AK + KAT + BQBT (3.8)

and

r (x) = aim R(t+x,t) = CeATKCT (3-9>
t->-°°

The limit denotes the asymptotic approximation. Note 
that the steady state conditions are equivalent to the 
fact that y(t) is a stationary process, and since for
stationarity, E{y(t+x,t)yT (t)} = R(t+x,t) = R(t+x-t) = R(x)
and from [127, 142]

R • (x) = aim d^R(t+-T?— ■ = CeATA3KCT (3.10)
D t—  dx3

then

R. = aim R.(x) = aim CeATA3KCT = CA3KCT . (3.11)
3 X -+°° 3 T ->-oo

Furthermore,

R(t) = aim R (t+x , t) = I CAAKCT
t-t-oo i=0 ' •
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thus

(3.12)

where

R (3.13)

The R^'s are called the steady state covariance parameters.

Since system (3.1) is completely controllable and 
observable, its transfer function is given by the following 
rational function:

where the a^'s and 0^'s are constant scalars and matrices 
respectively, H(s) can be expanded into an infinite power 
series about s = » (Laurent series), of descending power
of s. Thus,

H(s) = I^s-1 + H2s-2 + H 3s-3 + (3.15)
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H(s) can also be expressed in terms of the system para­
meters A, B and C:

H(s) = C(sl-A)-1B = s"1C{I-s"1A)"1B

so

H(s) = CBS-1 + CABs"2 + CA2Bs"3 + . . . (3.16)

The comparison of equations (3.15) and (3.16) yields

= CA^-1B for i = 1, 2, 3, . . . (3.17)

\

The H 's are called the Markov parameters. They are also
JO

computed recursively using and 3^ as follows:

Hi = h

h2 = 32 aiHl

H, -a£-lHl' 1< JKn

and
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H„+j - “l V j - 1  ' a2Hn+j-2 - ' ' ' anHj ' 1~:lin

In short,

£-1
^  aji-jHj for

H* = £-1
~j=l for £>n with ar °  for ^<n

(3.18)

We will establish a relationship between , a^,
and or 8^. To do so, we introduce several matrices.

2 nIn the following, N is 2nx2n nilpotent, N =0, P is nxn 
lower triangular, S, and S2 are nxn, 2nx2n and 2nx2n 
diagonal.

0 . . .  0 0 1 . . . 0 0
1 . . .  0 0 ot ̂ • • • 0 0

N =
• • •
1
• • • r P = • • •
• • • 
0 . . .  1 0 2nx2n 01 •» • • • _ n-i ai 1

S = diag{ (-I)11"1 , (-D n-2, . • • / -1,1}

S1 " diag{(-1)n-1, (-D n“2, . • • 9 —1,1,0,. • . 0:

S2 = diag{(-1)n ,(-1) n-1 9 • • •  9 ■1 ,1,0 . . •, 0}



rt 1T > • • *' n-1 &xn)l

hT 1T t • ' ' n Jlxnm

T
» * * *' Rn-lJ Jixnft

H 1T , . . . / "n J g,xnm

T0 / • • • 0 ̂ &xnm

1TJ nx2n
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Proposition 3.1. The identity relating and or
(3̂ is given by:

where aQ=l.

In order to prove Proposition 3.1, we should note that 
since by assumption, the system (3.1) is asymptotically 
stable and completely controllable and observable, then 
there exists a symmetric positive definite matrix K 
such that

T T (AK + KA + BQB = 0

For simplicity of computation, let the weighting matrix 
Q be the identity matrix so that

AK + KAT + BBT = 0 .  (3.21)

. . ' 's ‘
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Now multiply equation (3.21) by -1, add and subtract from 
it sK, yields

(sI-A)K + K(-s I-AT) - BBT = 0.

Pre- and post-multiply this equation by C(sl-A)-1 and
T —1 T(-sI-A ) C gives

C(sI-A)"1KCT + CK(-s I-AT)-1CT

- C(s I-A)“1BBT (-s I-AT)“1CT = 0

or

C(sI-A)“1KCT + CK(-s I-AT)-1CT
(3.22)

—I T  T —1 T= C(sl-A) ■LBBi (-SI-A1) xc \

Lemma 3.1. The equation (3.22) can be expressed in 
terms of R£, cx£ and as follows:

r . . » n-Jl n - £  r  D n-J,
I (_1) a o s I I a-iRo-i_isZ=0 x 1=1 j=0 J x 3 x
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n n-£n £-1
+ I a s 

£=0 * £=1 3
l .1 ( - i i - ' y *_1 3_o J £-1-3

n-£

(3.23)
n £-1 „ „n £-1,n-£v r / ,.n-£_ „T sn-£I . I ajH£_jS £ .1 (~l)n” OjH^ • !i=l j=0 J * J £=1 j=0 3 £-3

Recall that:

w - w '1 “ let'ilM f = 5TST a^ (sI-A)
where

p-^s) = det(sI-A) = sn + o^s11-1 + . . . + a _±s + aI , =  -t u,n-l n

n
Pt(s) = I a?sn  ̂ with an = 1 

£=0 0

and

adj (sI-A) = + M 2sn-2 + . . . Mn_Ls + Mn



35

with

M1 = I

M2 = A + c^I

M = a ̂ ~ ̂ j. A 2 
1 1 ’ • -+ a Jl-2A + “n-l1 - *=1..... n

Mn+1 “ 0 *

rp _i adj (-s I-AT) Similarly (-sI-A ) - ^7det(-sI-A )

and noting that

P2 (s) = det(-s I-AT) = (-1)ndet(s I+AT) 

we have

P2 (s) = I (-l)n~ V sn-Jl •
1=0 , 36

Thus,

, T« r , ,,n-l.T^n-£ad](-sI-A ) = I (-1) M ?s
£=1
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Twhere is the transpose of .
Therefore, equation (3.22) can be rewritten as follows:

 y— r- = I CM KCTsn_i + —— 7-ry £ (-1) n" ACKMTCTsn"£
p I W  ^  a p 2 ( s )  £ = i

1 V ™  r,„n-jl v / i \ n-AnT„T„T„n-£
Pl(arp2TiT CMiBS Jj. ('1) B M c 3

or

p2 (s) I CMnKCTsn-  ̂+ p,(s) I (-l)n"£CKMTCTsn_A
4=1 4=1

(3.24)

I CM0Bsn_il I (-l)n-ABTMTCTsn"A. 
£=1 * 4=1

Using the above form of M„, we haveI

4-1
CM?KCT = I a . CA^-1--̂ KCT a0

x' . J
a_ = 1 (3.25)

3

and

i = 0

£_1
CM„B = I a.CA5'_1”^B a. = 1. (3.26)

* j=0 3
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Using equations (3.13) and (3.17), the last two equa­
tions become

CM*KCT = (3-27)

and

4-1
CM.B = I a.H- .. (3.28)

* j=0 3

Similarly,

S.—1
CKm |cT = I o..R^_ . (3.29)

D =0 J J

and

o—lrp m m a/ j-B M

Thus, equation (3.23) becomes

? , n , n - 4  n-4 r Y q ,I (-1) a-s I I +
L=0 4=1 3=0



This proves Lemma 3.1.
Note that if P(s) and Q(s) are two matrix poly­

nomials of different orders but the same dimensions, 
then

k & •
P(s) = I P.sk“3 and Q(s) = I Q-sA 3 .

j=0 3 j=0 3

Their product G(s) is given by

m j:
G (s) = P(s)Q(s) = J GjjS with m = £+k.

j = 0 J

The matrix coefficients G_j 1 s are determined from 
the following product:
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Go

I
o • 
o
1

G1 Pl ' ‘ • :
• • * PFo
• •

P1• •

Gk pk
• •• • •

. • •
• ••

_ Gm _° pk_

(3.32)

Proof of Proposition 3.1. Applying equations (3.31) and
(3.32) to tne equation (3.23), and using tne previous natrix

notation and

Rq o . . .  o

Rl+alR0 R0 • * • 0

Mr= Rn-i+ ' * ,+an-lR0 Rn-2+> * *+ctn-2R0

Rn-1+ "*•+an-lR0

0

R,
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Mh=

H,

H2+alHl

• • #

H,

Hn+ " * +anHl Hn-1+. . .+an-l^l

H +.• .+ot H, n n l

0

H,

. H +...+a_H. n n 1

L r

V
V

^n-l1
a i n

L2=

(-l)na0I
(-l)n_1a1I

-an-lI
a I n



U J  u i

lH I-u

0

0

y - v -

®H2-U»+'di

T-U' + L tH
u i

7—XI n T—U T—u■+c th :hl »+---+l th
iL ui ui

< y ° + Z * ) z. u (t-)

=^w

--
--

1
1—1 o • • 0 o

1

T u u

0 I -  • • 0 0 •

• • • .
•

: =  z s • t y » + ' H ) z.u (T-)

0

0

o • • 

o • • 0

) 0 

I U ( T - )
X - u ” ->

0
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We have

MrL2+MtLl " MhL3
(3.33)

After some algebraic manipulation, equation (3.32) 
becomes:

(a) I ( - D ^ P - j R  + SjP^R] = J (-l)n"A j V h  - N ^ H
H—0 £=0 j=Q

= nS2^2E .

This finishes the proof of Proposition 3.1.
Our results can be further simplified. For this 

we define

D, =

(-1) naQI 0

(~1) (-1) naQI

(-l)n"2a2I (-l)n"1a1I

a I n ■a 11 n-1
a,n

0

0

0

0

0

0

0

0

0

0

(-l)11”1^ !  (-l)na0I 2n£x2nS,
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D2 =

n-1 T (-1) ao1
n-1

(“1)n~lanI
0

n-2r(-1) a I (-1) anI

(-1

(-1

n-2a .. I n-1
n-2a I n

0

0

0

0

0

0

0

0

-aiT V 2n£,x2n£

£-1
Since $. = £ a.H . , is an Jlxm matrix, then 

* j =0 3 11

D3 =

(-1)n-13
0

0

( - D n“2e 2 (-D n_131 . .

n 3n-1
*n

0

0

0

0
0

. . . (-1)n_131 0 2nmx2nm
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°4 " t0l'e2' * * *' 2n' °' * * *' °Ux2nm

and R^ is an SLxSL matrix. Then equation (3.19) becomes

D1P1R1 + D2P1R = D3D4* ■

We now consider a special case of this equation. Sup­
pose that system (3.1) is a single input, single output 
system that is m = I = 1, then R^, H^ and are scalars

and

rT = CK(AT)^CT = (CA^KCT )T = Rj for j = 0, 1, ..., n-1

HI = BT (AT)£-1CT = (CA5'-1B)T = Hjl for £ - 1, 2, ..., n

and

T kv1 T k-1
ek = J o  “A - j  = ,|0 “A - j  for k - 1, 2 n.

Hence, equation (3.33) reduces to the following form:

D - ^ R  + D2P1R = D3D4>

Let D5 = {D1 + D2)P1' thSn D5R = D3D4 or <D5D5>R = D5D3D4
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We shall now compute some of the elements of R for 
different values of n.

(a) n = 2

2 ,
al 2 2 1 2 1R n = -i   Hf + + —  H. H_0 2aia2 2ala2 a2

R = -i- H 2 R1 2 1

and

°2E0 + “lEl - I§7 H1 + 2^  H2 + H1H2

(b) n = 3

R = ala2 + a3 (al ~ a2} 2 al + a3 2
0 2063(01̂ 012 ~ a.,) 1 2ar,(a1a<> -a,) 23 1 2  “3'

+ >- , ai r + - p p - — r hih2
2 0 6 3 ( 0 1 ^ 0 1 2  - “ 3 )  3 0 6 3 ( 06 - ^ 0 6 2  -  O63J

1 1+ —  H,H- + --,—  H~H0063 1 3  063(06-̂062 - 03) 2 3

R = — i. h 2R1 I H1
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r = . ai0t3 H2 + + ”2 H22 2 (a3 - aia2̂  1 2(a^ - ^

1 2 aiao+ 75-7----------r- H~ 4*  ?___  JJ tj2(a3 - a ^ )  3 a3 - W1H2

al+ ----- =---  H-H_a3 -

and

a3R0 + a2Rl + air2 = " \ H2 + I^H,

(c) n = 4, R3 = j H2 - H1H3,

Therefore, for n = 3, oî Rq + a2Rl + alR2 - ~R3' in<̂ ePenden^^Y 
of the structures of the system matrices A, B and C.

Similarly for n = 6,

*5 - - I  H 1 + H2H3 - H1H5

and for n = 8,

R7 = J H4 - H3H5 + H2H6 ‘ H1H7'

In general, for j = 21 + 1 and R, = 0, 1, ...(n-1)/2,
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Rj R2£+l "

A—i Jl+i+2
(3.36)

However, for j even or j odd and j>n, is a nonlinear
function of a^, or 3^.

NOTE: Although we do not take this up here, the
Rj's can also be expressed in terms of the Routh array ele­
ments of the characteristic polynomial of the system.

In the next section a realization method, based on
the Kalman and Ho realization [22] , is proposed. It 
will be called partial realization because the system 
parameters A, B and C are not entirely derived from the 
system transfer function.

3.3. Partial Realization

Suppose that the matrices of the asymptotically 
stable, completely controllable and observable system 
are given by

0 I 0

A =
0 0 I

qnxqn
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H,

B = and C = [I, 0, . . 0]
Hn-1
Hn

qxnq

qnxq

since

A*B = [Hj+1, . . . l = 0, 1, . . . , n-1

The controllability matrix is found to be

[B ,AB, , An-1B] =

Hn . . . H1 n

H H_ ,n 2n-l

which is recognized as, a Hankel matrix. Similarly,

C
CA

CA‘n-1

= I, and since %  = CA^KCT , then

(3.37)
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— — — — ■“

Ro C K11

R1 CA K12
•
•

= • TKC = •
•

•

Rn-1

1
i—iic<

• 
u

1

•

Kln

and

—  — —  — —

R0 R1 R0

R1 R2 R1
• • and A^

•

• •
•

• •
•

Rn-1 Rn n-1
- —  -

R,

l5,+l

n+5,-1

(3.38)

thus

<— • —

R o • • * Rn-1 ^1 * * # Rn
•

• = •

• •

Rn-1 . . . R2n-2 R  • • •n R2n-1 •

— —
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Now let

T =

Ro • • * Rn-1 R1 ' ' • Rn

• •
« • , T =
•
R i •

•

• * ^2n-2 Rn . • * R2n-1n-1 Ail qnxpn ■=■» qnxpn

and

A =

0 .
I .

0

-v
■“n-l1

"“l1
-*pnxpn

then AT = T = TA, and

0 ~ 0 A T  = TA for I = 0, 1, 2, . . . (3.39)

o - oObserve that the left upper corner element of A T  = TA
is R^. Let I = [I jO], where I is the qxq identity
matrix and 0 is the qxq(n-1) zero matrix. Since is a

o ~ omatrix, then R^ can be removed from A T = TA as

R- = I A aTIT = I TA£IT I q,qn p,pn q,qn p,pn (3.40)

for = 0 ,  1, 2, . . .
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Note that the matrix T can also be written as follows

T =

C
CA

n-1

[KCT ,AKCT, . . ., An-1KCT]

CA

rp fr n — 1 Tor T = [KC , AKC , . • ., A KC ] (3.41)

To determine the partial realization of the system 
described by the parameters of equation (3.36), we must 
find the singular value decomposition of the matrix T. 
Suppose there exists qnxqn and pnxpn unitary matrices P 
and Q such that

T =
Z 0
0 0 (3.42)

where Z - diag{A^, A2» . . . Am ) and A^ for £ = 1, . . ., m 
are the positive square roots of the eigenvalues of T*T.

Let P = [Pĵ  P21 and Q =



52
then T = P-^Q-jy rank T = m

T = P1Ely/2Z1//,2Q1 = VU

where E ^ 2 = diag{/T^, . . /F^ }

1/2V = P^E is a qnxm matrix
and

1/2U = E ' is a mxpn matrix.

Let us define V+ = E-1/ ^  and U+ = Q^E-1//2,

V+ and U+ are called pseudoinverses of V and U.

Since pTp  ̂ = Im and Pn 0? = I , then'1 1  m 1 1  m'

v+v = e-1//2p ?p , e1//2 = I1 1  n

uu+ = e1/2q 1q Te“1/2 = im

We can now establish the following proposition:

(3.43)

(3.44)

(3.45)

(3.46)

Proposition 3.2. The partial realization of the system
(3.37) can be accomplished using the singular value 
decomposition as follows:



F = V+TU+
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(3.47a)

H = first q rows of I V * q,qn

G = first p columns of [H^, H^]T

such that T = VU and rank T = rank V = rank U, 
where V is the same observability matrix

U = [KHT , . . ., Fn_1KHT] and T = VFU

Proof:

+ + +Let T = U V

then we have, by using (3.43), (3.45) and (3.46):

TT+T = VUU+B+VU = VU = T 
F = V+TU+

F2 = (V+TU+)2 = (V+ATU+)2
= (V+ATU+ )(V+TAU+) = V+ATU+V+TAU+
= V+ATT+TAU+ = V+ATAU+

(3.47b)

(3.47c)

In general, F^ = V+AATU+ for H = 1, 2, 3, . . . (3.48)
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= Iq,qn
4. ~ 0 4- TiTT TA T TIp,pn

Iq / qn
+  j. 0 4- 4- TVUU V A TU V VUI

H I F
v

I
PfPn

k hTn n

Thus, R HF^KH^1 for 1 = 0, 1, 2 (3.49)

Note that the decomposition of T = VU is not unique
T Tand the realization with V V = UU is called stochastic

internally balanced. Due to the chosen structures of the 
matrices F, G and H, this realization is controllable and 
observable. However, it may or may not be stable 
because the derivation of the system matrices F, G and H 
does not involve the system transfer function. If the realiza­
tion is not minimal different choices of the matrices P and 
Q must be made. In the coming section, we will study 
different algorithms for the derivation of the Lyapunov 
matrix.
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3.4. Computation of the Controllability 
and Observability Grammians

We introduce a method for the computation of the 
Lyapunov matrices. This method is based on matrix 
inversion. Let Kc and Kq be controllability and 
observability Grammians respectively. The matrix Kc 
and Kq are nxn symmetric definite matrices satisfying 
the following Lyapunov equations:

AK + K AT = -BBT (3.50a)c c

and ATK + K A = -CTC (3.50b)o o

It is known [22, 63] that if the pairs (A, B) and 
(C, A) are controllable and observable respectively, and 
the system state matrix A has distinct eigenvalues, then 
there exists a nxn nonsingular similarity transformation 
matrix P such that the matrix PAP  ̂has the companion form. 
From equations (3.50) and (3.51), we have

_   T - -TAK + K A = - BB c c
— !V  \ —  —  — —A K  + K A = - CiC O o

Applying the similarity transformation matrix P to 
these equations, we get
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PAP_1PK PT + PK pT(p-1)TATpT = _ PbbTPT c c

(p ~1)t at pt (p "1)t k 0p -1 + (p“1)t k0p -1p a p -1 - I T T  -1- (P ) C CP

thus

AK + K A = - BB c c c

A aK +.K a  = -C Co o

where

A = PAP”1 , B = PB, C = CP_1

Kc = PKc PT and KQ = (P-1) ^  P-1

(3.51)

(3.52)

Suppose that the A, B and C are real matrices of 
companion form, namely

0

A  =

“an ~an-l • • • -a
(3.53)

B — [b^, . . .,

C — • • • » c n ]
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Then the controllability and observability Grammians
are determined as follows:

Controllability Grammian: From equation (3.50a)
TKc and BB are nxn symmetric matrices. Therefore, they 

can be replaced by arrays with n(n+l)/2 elements each

kll
•

•

qll ’bibi'

kln qln blbn

k22 ' Wn = q22 b2b2 (3

k2n q2n b»b 2 n

• • •

knn n(n+l) xl qnn
i

b b n n n(n+1) 
2

and let

0 CM 0 . . . 0 0
0 0 1 • • • 0 0
0
•

0 0 • • • 0 0
• • • •

54a)

xl

-an "an-l ~an-2 ‘ ' ' "“2 “«1 nxn
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E = n

0 0 . . . 0 0 0 . . . 0 0
1 0 . . . .0 0 0 . . . 0 0
0 1 . . . 0 0 0 . . . 0 0
• • • • • •
• • • • • •
• • • • • •
0 0 . . . 1 0 0 . . . 0 0
_0 0 . . . 0 1 0 . . . 0 0

and

n-1

(3.54b)

nx n(n-1)

n-1

F = rn

-an

0
0
0
0

0 0 0 0
• • • •
• • • •
• • • •
0 0 0 0
• • • •
• • • •
• • • •
0 -an 0 0
0 0 0 0
0 0 -°ii 0
0 0 0 -2«h n (n-1) xn.
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Let

n
n

n

n

Jn-1 n(n+l) „ n(n+l)<■» X
(3.55)

and Z V = -W or m n n

V  = -z-1W n n n (3.56)

where = -2a^ and

0 2 0 kll *11

Z2 -a2
0

"al
”2a2

1

-2al

, v2 = kl2
k22

, w2 = q12
q22

0 2 0
0 0 1

-a3 ~a2 -a
0 0 0
0 -a3 0
0 0 -2a

0 0 0
1 0 0
0 1 0
0 2 0

-a2 ““I 1
0 -2a^ -2a
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V3 “ *-kll' k12' k13' k22' k23' k33-*

,T
W3 - q̂ll' qi2' q13' q22' q23' q33^

Since A and Z , are square matrices and A is n n-1 n
nonsingular, det An = (-l)nan , an ^ 0, and

A -1n

n-1
'2°<n

1
2

0
0

an-2
a.n

0
0

a_n

0
1

an

.0
0

(3.57)

Then z -1 exists and is determined as follows:*■ n

‘o'1 F.

-1
n

n n-1

r 1n
A ' 1 + A " 1E„A " 1Fn n n n n n

-1 -1 -Ay, E A_n n n

^n1
(3.58)
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where An is the Schur complement of An and is given by

A = Z , “ F A-1E . n n-1 n n n (3.59)

Using a transparent identity

C  = zn-l + C l Fn (Rn ' En \ - l Fn > (3-60>

where the recursive nature of equation (3.60) yields 
.-1 _ 1

and

,-1

2a,

al + a2 
2ala2

1
2

a.
2a.

a. 2a^2

2a.

as the first two terms.
The Observability Grammian can be obtained in a 

similar fashion, using the duality principle [22, 63].

3.4.3. Observations

(1) An is different from zn_^, because the left
bottom part of A is different from F ..1 n n-1
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(2) Equations (3.54), (3.56), and (3.58) confirm 
the statement of equation (3.35).

(3) Despite the amount of storage required for 
the computation of the matrices Z "*■, this

method has proven to be very efficient.

3.5. Conclusion

This chapter presents the necessary mathematics 
needed for the computation of the steady state output 
covariances and the Markov parameters. It also intro­
duces a procedure for solving the Lyapunov equation.
While this procedure requires a certain amount of computer 
storage, it is found to be as efficient as any other 
existing method. In the next chapter, the aggregation 
and the state feedback concepts will be combined to give 
a modified aggregation technique.



CHAPTER IV

ORDER REDUCTION BY STATE FEEDBACK AND'AGGREGATION

4.1. Problem Formulation and 
Mathematical Background

In this chapter, we introduce topics relative to 
aggregated modeling. These results are subsequently used 
in an order reduction technique of systems with 
uncertainties.

Consider the stochastic, continuous dynamic system 
described by the state space equations

x(t) = A x (t) + B u (t) + Gw(t), x(tQ) = xQ (4.1a)

y(t) = Cx(t) (4.1b)

where x(t), u(t), w(t) and y(t) are n, m, q, and p 
triples respectively. The initial condition x q is 
assumed to be a zero mean Gaussian random vector inde- 
pending of w(t). w(t)is a zero mean white noise process 
with intensity W. A, B, G and C are constant matrices 
of compatible dimensions. (A,B), (A,G) are completely 
controllable and (C,A) is completely observable. We 
want to find an aggregated model of the form

63
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xr (t) = Amxr (t) + Bru(t) + Grw(t) (4.2a)

yr (t) = Crxr (t) (4.2b)

where xr (t)eIRr is the aggregated state vector, and
Yr (t)elRs is the output response of the aggregated model.
A , B , G_ and C are constant matrices of compatible m r r r
dimensions.

For a given class of inputs u(t), w(t) , the model 
outputs {y (•)} are to be satisfactory approximations to 
the original system outputs {y(*)K

Note that the model (4.2) has order r such that
max {q,m} <: r < n. To establish a link between the system
and the model, let

u(t) = Sx(t) (4.3)

be a state feedback law. The system (4.1) becomes

x(t) = (A+BS)x (t) + Gw(t) (4.4a)

y (t) = Cx(t) . (4.4b)

Lemma 4.1; The system (4.4) is controllable if, and 
only if the pair ((A+BS),G) is completely controllable. 
Proof: It is known [22] that the state feedback preserves
the controllability of the original system, then ((A+BS),B) 
is controllable if and only if (A,B) is controllable.
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Assume that the pairs (A,B) and (A,G) are controllable, 
Note that

rAG‘
(A+BS)G = AG + BSG = [I,BS]

G

(A+BS)2G =  A2G + BSG + ABSG + BSBSG

[I, BS, (A+BS)GS]
A2G
AG
G

In general

(A+BS) G = [I, BS, , (A+BS)1-2BS, (A+BS)1-1BS]

A1G
A1_1G

AG
G

thus

[G, (A+BS)G, (A+BS)n-1Gj =

[I, BS, , (A+BS)n_2BS]

G AG 
0 G

0 0

An_1G
An’2G
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Hence, the pair (A+BS,G) is controllable if (A+BS,BS) and 
(A,G) are controllable.

Now suppose that there exists a nxr linear trans­
formation T such that

AT - TAr = -BST (4.5)

where Ar is the rxr state matrix of the reduced model

xr (t) = Arxr (t) + G rw (t) (4.6a)

yr (t) = Crxr (t) (4.6b)

where Cr and Gr are as in equation (4.2), and

Ar = Am + BrST (4.7)

Let P be a mxr constant matrix such that

ST = PCr. (4.8)

From equation (4.5), we have

(A+BS)T = TAr or TT (A+BS)T = TTTAr .

Thus, T has a left pseudo-inverse, denoted by

T+ = (TTT)~1TT (4.9)
T T +where the matrices T , T T and T have dimensions rxn, 

rxr and rxn respectively, and the following properties 
[22, 63] hold:
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(1) T+T = Ir

(2) (TT+)T = TT+ , (orthogonality)

+ 2 +(3) (TT ) = TT , (idempotency)

(4) T+TT+ = T+

(5) TT+T = T.

Using these properties, and the definition (4.9) we get.

T+ (A+BS)T = Ar (4.10)

and let xr (t) = T+x(t). (4.11)

Using equation (4.11), the equivalence between the 
system (4.4) and the model (4.2) is satisfied provided 
that the conditions

(1) AT - TAr = -BPCr

(2) Gr = T+G (4.12)

(3) x (0) = T+x(0).r

Note that the model matrix Ar obtained in (4.10) is an 
approximate solution to (4.4a) and it depends on the 
matrix T.
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4.2. Properties of the Model Matrix

More often, it is convenient to select the dynamic 
structure of the model (4.2) to reflect a significant 
portion of the dynamic system (4.4) in an appropriate sense. 
In this section, we will outline the most important proper­
ties of the model matrix A .r
Proposition 4.1 [125] : When an aggregation matrix T
exists,

3(Ar)'c 3(A+BS) (4.13)

where 3(A) denotes the spectrum of A.
We now state a theorem which gives a necessary and 

sufficient condition for equation (4.5) to have a unique 
solution for Ar .
Theorem 4.1 [117] : A necessary and sufficient condition
for equation (4.5) to have a unique solution is that

Range {TT (A+BS)T}c Range {TT} (4.14)

If, in addition, rank {t }= rank {(A+BS)t ) = r, 
then

Null{T} = Null { (A+BS)T} (4.15)

Observe that equation (4.15) is satisfied, if 
(A+BS) is nonsingular and if all the conditions of the 
theorem are achieved, then equation (4.10) is the
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desired solution. Note also that condition (4.15) implies 
that the pair {(A+BS),T} is not controllable, since

Null {T} = Null {(A+BS)T}

and in general, Null {T} = Null {(A+BS)^T} for any k >_ 1, 
which means that the matrix {T,(A+BS)T, ..., (A+BS)n-^T> 
has rank r < n and so the pair {(A+BS),T} is not control­
lable .

4.3. Computation of the Matrix T

Since xr (t) = T+x(t), then let the n-dimensional
row vectors of T+ be {(tt) } , i = 1, . . ., r, thus

we can express T+ as

T+ = [(t+) , (t+) , . . ., (t+)]T

Then the ith component of xr (t) is xr (t) and is given by

(t.) x(t) which means that the x (t) is the weighted 
1 ri

sum of those components of x(t). If we select the elements
+ +of T so that T has at most one entry in each column,

then n components of x can be grouped into, at most, r
separate clusters. Thus, the vectors {(tt)}, for 
1 <_ i <_ r, are mutually orthogonal, which means that 
t+ has maximal rank. This method constitutes a technique 
for determining the matrices T+ and T because
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4. T* —1 rn -i. rp rp _  1T = (T T) T“ and' (T ) =T(T T)

then

[T+ (T+)T]-1 = TTT and T = (T+)T [T+ (T+)T]_1.

This technique consists of projecting the state vector 
x(t) into an arbitrarily chosen r-dimensional subspace.

An alternative technique for determining the matrix 
T can be developed by considering the observability 
matrices of the system (4.4) and the model (4.6).

It has been shown in \22, 63] that a state feedback 
law of the form (4.3) preserves the observability of the 
system (4.1). Therefore, the pair (C,A+BS) is observable 
if the pair (C,A) is observable.

Define

R =

' C

C(A+BS) 
•

and R =

Cr
C A r r
•
•s

•
r

•

C (A+BS)r_1 —
,

rHc 
u 

<VIu1

where

(A+BS)T = TAr
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then

(A+BS)2T = (A+BS)TAr = TA2

In general

(A+BS)iT = Ta £ for i = 0, 1, 2, . . . (4.16)

and hence

CT = Cr

C (A+BS) T = CTAr = CrAr

C(A+BS)2T = C(A+BS)TAr = CTA2 = CrA2 .

Thus

C (A+BS) = CrAj for i = o, 1, 2,
and

RsT = V

Therefore

T = R+R s r

where

Rs = (Ri'RJ^Rs - <Rs V - 1rs-
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However, from the previous argument, if the pair 
(C, A+B^S) is observable, then R* = Rs1#

By specifying, Ar = diag{A^, . . ., Ar) and choosing 
Cr so that the pair (Cr , Ar) is observable, then rank

Rr = r *
A technique based on the selection of the matrices 

P and Cr such that the matrices A and Ar have no common 
eigenvalues and the pair (Cr , Ar ) is observable, will now be 
introduced to compute the matrix T.

The necessary condition for the existence of a 
matrix T in AT - TAr = -BPCr , are that the pair (A,B) is 
controllable and the pair (Cr , Ar) is observable.

Clearly from the Cayley Hamilton theorem p(A) = 0. Now, 
if A^ is an eigenvalue of Ar, then p(A^) is an eigenvalue 
of p(Ar) and because A and Ar have no common eigenvalues, 
then p(A^) ^ 0 for all A^ of Ar and det p(Ar ) ^ 0. Hence, 
p(Ar) is nonsingular.

2 2The substitution of TA = AT + BPC into A T - TAr r r
gives
A2T - TA2 = A2T-(AT+BPCr)Ar = A2T-ATAr~BPCrAr

= A(AT-TAr) - BPCrAr = A ("B^Cj.) - B P C ^

= ABPCr-BPCrAr.
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Proceeding in a similar manner, we get the following 
equations:

IT - TI = 0

AT - TAr = -BPCr

A2T - TA2 = -ABPC - BPC A (4.17)r r r r

Now, multiplying the first equation by an , the second by 
an_^, . . ., the last by 1 and then sum them up, let

and let the (i,j)th element of the (n-r+l)xr constant 
matrix V be defined as

AnT - TAn r
n-1 , .
I An_ -,BPC A3 

j=0 r rr r

q (s) = det(sI-Ar) = sr + CjS17-1 + . . . + £

then
0

V  . . =  V .  n ,  V .  . +  V . .  * . -ilj 1-1,1 lj 1-1,3+1

for i — 2, n—r+1, j 1, . . .,r.
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Define the (n-r+l)xr constant matrix u as follows:

U = VJ

where

J =

0 0 .
0 0 .

0 1 
1 0

. 0 1

. 1 0

0
0

rxr

such that

rAr 1r I

C 1 Ar
• = u •
• •
• •
Anr A*"1r
— —  —

(4.19)

Now let

RB = [B, AB, . . An-1B]

Rc = [C*, A^cJ, . . (a£“1)Tc£]T
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and

an-lIr
an-2Ir

°lIr

alIr

0 0 

0 0

After some algebraic manipulations, we have

p(A)T-Tp(Ar) = -RBPL
I
U R. (4.20)

Noting that p(A) = 0, and det{p(Ar)} ^ 0, we arrive at

T = RBPL|-'-|Rc (p(Ar)) -1

Since

p (Ar) = Ar+aiA£-1 + + a A + . n-r r + “n-lAr + V r
we may write



P(A_) = [an.rI3 “i W  I*

r ^ i

A'n
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Ar-1

+ [otn-r+lIr ' * * "  anIr]

We then have

p(A ) = [an-rIr' * ‘ "  “l W 7

.r-1

Ar-1

+ ân-r+lIr' ' anIr̂
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V +

Ar-1

Can-r+lIr + * * * ' “n M  }

or

r *
r-1

p(Ar) = [ ti-l I r, , nrir] (4.21)

where
n-r+1

nj ' an-r+l-JlvJj + an-r+j' (4’22)

for j = 1, . . . , r and an = 1

P (V  = nlAr_1 + • • • + nnir

Therefore, if all the a^'s are different from zero, then 
the rij_'s are also different from zero and (p(Ar))-1 exists.

and
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Note that since xr (t) has lower dimension than x(t), 
the system description given in (4.6) is nonminimal.
This situation occurs when there are (n-r) pole zero can­
cellations. The aggregation matrix considered here is 
restricted to those creating zeros in the input/output 
relationship that cancels (n-r) poles of the transfer func­
tion. There cancelled poles are precisely the eigenvalues 
of (A+BS), that are not retained in Ar> Let the aggrega­
tion error e(t) be defined as

e(t) = x (t) - Txr (t) (4.23)

Thus, from equations (4.2) and (4.6), the dynamics of the 
error are given by

4(t) = (A+BS) e (t) + [TAr - (A+BS)x ] Xr (t) (4.24)

This equation is obtained from the differentiation of 
equation (4.23) and the substitution of equations (4.2)

• and (4.6) in the resulting equation, that is

e (t) = x (t) - Txr (t)

= (A+B S) X (t) +Gw (t) - T[ArXr (t)+ Gcw(t) ]

= (A+BS) X (t) +Gw (t) - TArxr (t)-TGr w(t)
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If Gr = t +G or G = TGr 

then
e(t) = (A+BSJ x (t) - TArxr (t)

= (A+BS) x (t) - (A+BS)Txr (t)-TArXr (t) + (A+BS)Txr (t)

= (A+BS)[x(t)-Txr (t)]+[ (A+BS) T-TAr]xr (t)

= (A+BS)e (t) + [ (A+BS)T-TAr]xr (t)

This equation yields e(t) = (A+BS)e(t) provided
that (A+BS)T = TAr is satisfied, then e(0) = 0 and the
case of perfect aggregation e(t)= (A+BS)e(t) implies 
that e(t) = 0 for all t ^ 0. However, if xr (0) ^ T+x(0) 
since S is chosen so that (A+BS) is asymptotically 
stable, then e(t) = 0 as t goes to infinity.

4.4. Steady State Covariance Matrix and 
Markov Parameters Matching

In this section, we will show that the model steady 
state covariance and Markov parameters are automatically 
matched to those of the system.

Let the transfer function of the system (4.1) be 
represented as follows:

H(s) = [H1 (s), H2 (s)] (4.25)
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where
H1 (s) = C (sI-A) **1B and H2 (s) = C(sI-A)-1H.

The expansions of H-̂ (s) and H2 (s) in power series 
about infinity are

H1 (s) = CBS-1 + CABS-2 + ... + CA1Bs-(l+1) + ...

and

H 2 (s) = CGs-1 + CAGs-2 + ... + CA1Gs-(l+1) + ...

Let = CA1 ^B and H^2 = CA1 ^G. The Markov parameters
of the system (4.1) are given by

Hi = [Hil, Hi2] for i = 1, 2, . (4.26)

and

H(s) = I H . s = I [H.,, H ] 
i=l 1 i=l ^

-l

To determine the steady state covariance matrix 
parameters of the system (4.1), let

D = [B, G] and Q
I O
0 w

then the Lyapunov matrix for the system (4.1) is

K. = / eAtDQDTeA fcdt 
1 0

= / eAt BB TeATfcdt + / eAt GWG TeATfcd t «
0 0

(4.28)
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AK1 + K1AT + DQDT = 0  (4.29)

or

AK1 + K . ^  + BB^ + GWGT = 0

From equation (3.13), the steady state covariance 
parameters for the system (4.1) are

Rl = CA1K1CT for i = 0 , 1, 2, . . . (4.30)

Similarly, the Lyapunov matrix for the system (4.4) is 
given by

K . /“e (A+BS)tGWGTe (A+BS)Ttat („_31)
0

and satisfies

(A+BS)K2 + K2 (A+BS)T + GWGT = 0 (4.32)

or
T T T T = 0AK2 + K2Aa + BSK2 + K2S B + GWG

The steady state covariance parameters for the system 
(4.4) are then computed by

Ri = C(A+BS)1K2CT • (4.33)

Let C = CrT+ or Cr = CT, then the condition (4.8)
becomes
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S = PC. (4.34)

Now we can state the following proposition.
Proposition 4.2; The steady state covariance parameters
of the system (4.4) can be formulated as follows:

i t i;1R. = CA K,C + I H. . .PR. for i = 0, 1, ...
1 . * j=0 3

(4.35)

and l = ® for  ̂— °*

Proof: Since R^ = C (A+BS) 1K2CT and S = PC, then

— TR = CK2C

R0 = CK2CT

R± = C(A+BS)K2CT = CAK2CT + CBSK2CT

= CAK2CT + H11PCK2CT = CAK2CT + Hi;lPR0

R2 = C(A+BS)2K2CT = CA2K2CT + CABSK2CT +

CBSAK2CT + CBSBSK2CT 

= CA2K2CT + H 21PCJ2CT + Hi;lPCAK2CT + Hi:lPCBSK2CT 

= CA2K2CT + H21PRq + H11PC(A+BS)K2CT 

= CA2K2CT + H21PRq + H^PI^.
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Proceeding in a similar manner, we have

— i T —R. = CA K C + I H PRi  ̂ j=0 1 3

Let

Kn = / eArtG WG^aArtdt (4.36)j 0 r r

be the state covariance matrix of the model (4.6), such 
that

A K, + K_AT + G WGT = 0 .  (4.37)r 3 3 r r r

The steady state covariance parameters of the model 
(4.6) are then equal to

R. = C A1K_.CT . (4.38)i r r 3 r ' '

Note that Gr = T+G and

T+ (A+BS) = ArT+ (4.39)

since T+T = I , then the post-multiplication of the 
equation (4.39) by T, yields the expression given by 
equation (4.9). Thus

T+ (A+BS)1 = A^T+ for i = 0, 1, 2, . . . (4.40)

Lemma 4.2: The expressions (4.32) and (4.37) are equivalent
if and only if K3 = T+K2 (T+)T . (4.41)
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Proof; The proof of this Lemma consists of two parts.

(a) Necessary part: If the expressions (4.32) and
(4.37) are equivalent, then the pre- and post-multiplication

+ + Tof equation (4.31) by T and (T ) respectively yield

T+ (A+BS)K2 (t+)t + T+K2 (A+BS)T (T+) + T+GWGT (T+)T = 0.

Using equation (4.38) and Gr = T+G, we get

A T+K~(T+)T + T+K-(T+)TA^ + G WGT = 0. j. « m i l r

Subtracting this equation from the equation (4.32), we 
have

Ar [K3 “ t+K2 (t+)T1 + fK3 - T+K2 (T+)T ]aJ = 0

The pre- and post-multiplication of this equation by
A t A^te r and e r respectively leads to

eArt{Ar [K3-T+K2 (T+)T] + [K3~T+K2 (T+) T] A ^ e ^  = 0.

This equation can also be written as follows:

—  (eArt [K3 - T+K2 (T+)T ]eArfc} = 0

T
which implies that eAr*"[K3 - T+K2 (T+)T ] eArt is a constant 
for all t. In particular, the integration of the dif­
ferential equation from t = 0 to t =5 gives:

K3 - T+K2 (T+)T = eAr^[K4 - T+K2 (T+)T]eArS .
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Now letting £ 00 and using the fact that Ar is a stable
matrix, we obtain

k3 - T+K2 (T+)T = 0 or k3 = t+k2 (t+)t.

(b) Sufficient part: If K3 = T+K2 (T+)T , then the
substitution of equation (4.41) into equation (4.37) 
gives

A T+K-(T+0T + T+K-(T+)TAT + G WGT = 0.J- £• £* 1C 1C 1C

Using equation (4.38) and Gr = T+G, we have

T+ (A+BS)K2 (T+)T + t+k2 (A+BS)T (T+)T + T+GWGT (T+)T = 0.

Thus,

t+ [(a+bs)k2 + k2 (a+bs)t + GWGT ](T+)T = 0

or

(A+BS)K2 + k2 (a+bs)t + GWGT = 0.

Therefore, the equations (4.32) and (4.37) are equivalent.
Using expressions (4.40) and (4.41), we can relate the 

steady state covariance parameters of the model (4.6) to 
those of the system (4.4) as follows.
Proposition 4.3: If K3 = T+K2 (T+)T , then

R^ = for i = 0 , l , 2 ,  . . . .  (4.42)

Proof: Since the steady state covariance parameters of
— i Tthe system (4.4) are given by R^ = C(A+BS) K2C , then,



using the equations C = CrT+ and (4.40), we have

R± = CrT+ (A+BS)1K2 (T+)tc£ = C ^ T  + K2 (T+)TC^.

From equations (4.41) and (4.38), we have

Ri ■ CrArK3Cr = Ri'

The Markov parameters of the system (4.4) are 
determined by the following equation

1L = C(A+BS)1—1G , (4.43)

Proposition 4.4: iL can be expressed in terms of the
Markov parameters Hi2^ system (4.1), as
follows:

_ i-1 _
H. = H . 0 + 7 H. . .PH. for i = 1, 2, ...i i2 L i-d,1 3

(4.44)

and = 0 for SL <_ 0.

Proof: Since = CA1 '*'B, H^2 = CA1 and S = PC, then

Hi = CG = H12

H2 = C (A+BS) G = CAG + CBSG = H22 + H-^PCG



—  2 2H3 = C(A+BS) G + CA G + CABSG + CBSAG + CBSBSG 

= CA2G + CABPCG + CBPC(A+BS)G

- h32 + h21ph1 + Hiiph2.

Proceeding in a similar fashion, we get 

i-1H. =i = Hi2 +

Similarly, let the Markov parameters of the model (4.6) 
be defined as

H. = C Ai-1G for i = 1, 2, ... (4.45)i r r r

Proposition 4.5: The equations (4.44) and (4.45) are
equivalent and IL = IL for i = 1 , 2 , . . .
Proof: From equation (4.17), we have

TA1 = AiT + I A1 1BPCrAj 
r j=0

then

A1 = T’V ’T + I T+A1 ^"1BPC A^. (4.46)
r j=0

Replacing i by i-1 gives
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A1-1 = T+A1-1T + I T+A1“^“2BPC A^ . 
r j=0 r r

Substituting j-1 instead of j yields

i-1 . . '
AX_1 = T+A1_1T + I T+A1-^_1BPC Aj-1. (4r r r '

Pre- and post-multiplying equation (4.47) by Cr and Gr 
respectively, we get

CAj:_1G r = C T+A1"1TG„ + £ C T+A1_j_1BPC aJ-1G .
■L X L JL 1* j 1

Using the expressions C = CrT+ and G = TGr , we have
_ . . i-1 . . . . .
H. = CA G + I CA :-XBPC AD G i j=1 r r r

or
i-1  _L —  J_

H . = H . - + I H. . .PH.. l i2 1-3,1 3

This expression is equal to the one given by equation
(4.44). Therefore, = iL .

Let the transfer function of the model (4.2) be

H (s) = [H-^s) , H2 (s) ] (4

47)

.48)



89
where

H1 (s) = Cr <sIr- V ’lBr
and

S2 <s) »

The power series expansions of H^s) and H2 (s) about 
infinity result in the following expressions:

H ^ s) = CrBr s  3 - 2+ . . .+Cr* i - 1B , s - i + . .

H2 (s) -  CrGr s ' 1+CrAmGr s ‘ 2+ . . ,+Cr A^"1Gr s ' h  . .

Now let

H., = C A1_1B and H. _ = C .il r m r i2 r m r (4 .49)

The Markov parameters of the model (4.2) are thus given by 

**i = t**ii» Hi2] for i = 1, 2, . . . (4.50)

and

H(s) = I H.s-1 = I[Hilf fii2ls"1 * (4*51)i=l i=l

Using equation (4.7), we can derive an expression similar 
to the one given by equation (4.17) that is

Ar = A m + ^ Am'j'l B r PCrAi?- (4‘52)
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Furthermore, from equations (4.5), (4.7), and (4.34), we
have

(A+BS)T = TA , A = A +B PCr r m r r

ST = PCr and B = TBr.

Then AT + BST = T(A + B PC ) = TA + TB PCm r r m r r

= TA + BSTm
and AT = TA som

A1T = TA^ and t V t = A^ for i = 0, 1 , 2 , ... (4.53)

We now establish a link between the Markov parameters of
the model (4.2) and those of the original system (4.1).
Proposition 4.6; tL = for i = 0, 1, 2, . . . (4.54)
Proof; From equation (4.49), the Markov parameters of
the model (4.6) are given as: where
H .. = C Â ;-1B„ and H.« = C A1-1G . Since C T+ = C, ll r m r  i2 r m r  r '
TB^ = B and TGr = G, using equation (4.53), we obtain
Hil = CrT+A1-1TBr = CA1_1B and Hi2 = CrT+A1_1TGr = CA1-1G.
Thus, equation (4.26) leads to H.. = H.. and H._ = H .0 ^ ll ll i2 i2
and H. = [H.., H.0] = [H.., H.n] = H..l ll i2J il' i2J l

Therefore for i = 0, 1, 2, . . .
To determine the steady state covariance parameters 

of the model (4.6), let



91

Dr = tBr / GjJ and Q
I 0 
0 W

The Lyapunov matrix is then given by:

K = / eAmTD QD^eAmtdtH q r

= / eAmtB eAmtdt + / eAmt G WGT,eAmtdt0 r 0 r rz

and satisfies

AmK4 + K4Am + DrQD? = 0 (4.55)

A K. + K.AT + B .BT + G WGT = 0. m 4  4 m  r r  r r

The steady state covariance parameters are

R. = C A^-K.C11 . l r m 4 r (4.56)

Using the equations (4.52) and (4.53) and the property
T+T = I , we have T+A = A T+ and T+AX = AXT+ for (4.57)r . m m
i = 0, 1, 2, . . . The following Lemma determines the 
link between the Lyapunov equation of the model (4.2) and 
that of the original system (4.1).
Lemma 4.3; The expressions (4.29) and (4.55) are equi­
valent if and only if = T+K^(T+)T. (4.58)
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The proof of the Lemma 4.3 is similar to the proof of 
Lemma 4.2, and therefore, it is omitted here.

Using the expressions (4.57) and (4.58) we can 
relate the steady state covariance parameters of the 
model (4.2) to those of the original system (4.1).
Proposition 4.7: If K4 = T+K^(T+)T , then

R± = ^  for i = 0, 1, 2, . . . (4.59)

The arguments for proof of this proposition are sim­
ilar t© those given in the proof of Proposition 4.3.

Up to this point, we have seen two ways to derive 
the reduced order model:

(a) by applying the aggregation method directly to 
the original high order system, and

(b) by using state feedback and then applying the 
aggregation to the resulting system.

The first method is straightforward, but it requires 
more computation to determine the Lyapunov matrix. By 
using the state feedback concept, the second method ensures 
the stability of the reduced model. Note that if B or P
are equal to zero, the two methods are similar. From now 
on, we will use the second method.

4.5. Selection of the Aggregation Matrix

In a comparative study done by Hyland et al. [62] 
it was shown that the major differences among Moore [93]



Skelton [126] and Wilson [135] methods are in the defini­
tions of the aggregation matrix and its pseudo-inverse. 

From equation (4.41), we have

k3 = t+k2 (t+)t

where K2 and are real symmetric positive definite 
trices. Their singular value decompositions [22] are

K2 “ °2D2U2 (4‘60)

ma

and

K3 U3D3U3 (4.61)

where D2 and are nxn and rxr diagonal matrices and 
U2 and U3 are nxn and rxr orthogonal matrices.

U2U2 " U2U2 = *n and U3U3 " U3U3 = V

Then, the pre- and post-multipliation of equation (4 
Tby U2 and U2 respectively yields

D2 = U2K 2U2 (4.'62)

= diag{Xlf X2, . . . Xn>

where the X-j/s are the singular values of K2 and satisfy
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Repeating the previous operations with equation (4.61)
r nUijj and Ug, we obtain

D3 = U3K3U^ (4.63)

diag{y1, y2, . .  ̂

where the y^'s are the singular values of and satisfy

V*1 1 ‘ - yr - 0 •

Since the controllability Grammian K2 determines the effects 
of the system inputs on the system state variables, then 
assume that Ar >> ^r+1 and 2l ^r+2 — •** —  ^n*

Let L be a rxn matrix defined as follows:

L = [Ir :0] (4.64)
Tsuch that LL = I . Letr

D3 = d i a g U ^  . .., Xr > 
that is = A^ for i = 1, 2, . . ., r

then
D3 = LD2LT. (4.65)

The substitution of equation (4.6 5) into (4.6 3) results 
in

D3 = LU2K2U2LT (4.66)
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and the substitution of equation (4.66) into (4.61) leads 
to

K3 = U3LU2K2U2LTU3 . (4.67)

By comparing equations (4.41) and (4.66), we have

+ TT = U3LU2.

Since
T r T •,-1T = (T ) [T (T ) ]

it follows that
T = U2LtU3 . (4.68)

T satisfies all the properties stated in section 4.2.
To determine the orthogonal matrix U3, let

Kr = l k 2lT (4.69)
then Kr is a real symmetric positive definite matrix, 
because it is the rxr upper left submatrix of K2. It 
can be represented [22, 119] as follows:

K = U D UT (4.70)r r r r
Letting U3 = Ur , equation (4.67) becomes

T = UrLTU3 . (4.71)



4.5.1. Observations

(a) Let Kc2 and Kq2 be the system controllability and 
observability Grammians, and let and kq3 be the model
controllability and observability Grammians. Then using 
equations (3.59), (3.60) and (4.41) we have

K _ = T+K 0 (T+)T (4.72)c3 c2

K _ = TTK 0T. (4.73)o 3 o 2

The real symmetric positive definite matrices, K c2, KQ 2'
K and K can be written [22] asc3 o 3

K c 2  “  U g 2 D c 2 U c 2

K 02 = Do 2Do 2Uo 2

K c 3 -  U c 3 ° c 3 U c 3

Km  = u «D -UT_,03 o3 o3 o3

where Uc2 ' Uo2' Uc3 anc  ̂^o3 are orth°9onad matrices with
appropriate dimensions, and Dc2, Do2/ °c3 and DQ3 are 
diagonal matrices.

Define
_ nl/2 T „ d 1/2 T

r “ o2 o2 o2 c2

then the singular value decomposition of H is
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such that V^V = I and W WT = I «.r r n r r r

if T (respectively T+) is chosen to be:

(1) T - uc2Do22LTwr- (T+ = WrLD'c22uo2>
it follows that Kc3 = lr and Kq3 f The model
is then said to be input-normal.

(2) T -

it follows that ^ Ir and = Ir * The model
is then said to be output-normal.

(b) We now review the ways to determine the 
state feedback matrix S of equation (4.3) or the matrix 
P of equation (4.34).

Recall p(s) = det(sI-A)

n , „n-l,= s + a. s +... +01 .1 n

Now let = A+BS, and following equation (4.34),
1

set S=PC, we then have

p^(s) = det(sI-A^)

= sn + a,sn-1+...+a .1 n
We consider separately the single variate and multi­
variate cases.
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(1) Single input single output system. In this 

case P is a scalar and p^(s) is given by

pf (s) = det(sI-A-BPC) = det[(sI-A)-BPC]

= det{(sI-A)[I-(sI-A)_1BPC]},

= det(sI-A)[1-PC(sI-A)-1B]

= p(s)-PCadj(sI-A)B

where
,n-l n-2adj (sI-A) = F^s + F2s“ “ + + Fn

and

Fi - 1

Fi+1 = M 1! + “i1

= - T-tr(AF^) for i = 1,

F ,. = 0, n+1

This is the so-called Faddeva algorithm [22, 63],
By subtraction, we have

pf (s) - p(s) = -P[CF1Bsn“1 + CF2Bsn“2 + ... + CFnB]

so n-1'

-P[CF ̂ B,...,CFnB]

n-1
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or
[ (c^-a) ,.. . , (an-an) ] = -P [CF-^B, . .. , CFnB].

In this case, P is chosen so that the roots of p^(s) are 
in the desired locations.

(2) Multi-input, multi-output system. In order 
to investigate this case, we will review the following 
[22, 63]:
Definition 4.1: A matrix is called cyclic if its
characteristic polynomial is equal to its minimal 
polynomial.
Definition 4.2: Af is cyclic if and only if the Jordan
canonical form of A^ has one and only one Jordan block 
associated with each distinct eigenvalue.
Lemma 4.4: If {a ,B,C} is irreducible, then for almost
any mxr real constant matrix P, the eigenvalues of A+BPC 
are distinct and consequently A^ = A+BPC is cyclic.
Since A+BPC is cyclic, then the matrix P can be written as 
the product of two vectors and the single input single 
output technique is used to compute these vectors.

4.6. Illustrative Example

To illustrate this technique, the following example 
was contrived.
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Recall system (4.1), namely
x(t) = Ax (t) + Bu(t) + Gw(t) 
y (t) = Cx (t)

Let us choose

-1.0 0.0 0.01 0.05 0.25
0.0 -4.0 0.0 0.45 0.1

-0.088 0.2 -5.0 0.0 0.22
1.0 0.0 0.075 -4.0 0.05
0.11 0.2 1.0 0. 44 -3.0

M
1

• o
1 1----in•i—i

O•o 1.0

in•o

G  = 1.05
o•CM 2.65

_ 1 . 0 1.0

C = [-0.61249, -0.33522, 2.18751, 0.2333, -0.24787],

The pairs (A,B) and (A,G) are controllable and the 
pair (c,A) is observable. The system is stable, its 
characteristic polynomial is



101

p(s) = s5+17s4+110.66138s3+339.52548s2+476.62259s+228.38203-

and its eigenvalues are

= -5.09152 
A2 = -3.92956 
X3 = -4.11341 
X4 = -2.91282 
X5 ' - -0.9527

Following the development of page 81, we take ST = PCr , or 
S = PC,

where S, C are 1x5 vectors and P is scalar used to allocate 
the eigenvalues of the system with state matrix Af = A+BS.

Let P = 1, then S - C and

Af=

-1.61249 -0.33522 2.19751 0.2833 0.00213
0.0 -4.0 0.0 0.45 0.1

-0.39425 0.03239 -3.90624 0.11665 0.09606
-0.22499 -0.67044 4.45002 -3.5334 -0.44574
-0.50249 -0.13522 3.18751 0.6733 -3.24787

The characteristic polynomial of A^ is

p (s) = s5+16.3s4+105.12s3+335.5s2+531.00563+334.86469
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The eigenvalues are
X1 = -4.05-j0.15 
X2 = -4.05+j 0.15 
X3 = -3.5 
X4 = -2.35-jO.55 
X^ = -2.35+j0.55 .

Therefore, the system

X (t) = Afx (t) + Gw (t)

y (t) = Cx (t) 

is stable.
The pair (A^,G) is controllable and the pair (C,Â .) 

is observable. The real symmetric positive definite 
matrix k 2 satisfying the Lyapunov equation

AfK 2 + K 2Af + GWgT = °' with W = In 

is given by

1.20249 0.4340 0.29809 1.07033 0.62757
0.4349 0.18513 0.14681 0.47672 0.25996
0.29809 0.14631’ 0.12882 0.39028 0.19978
1.07093 0.47672 0.39028 1.24231 0.66828
0.62757 0.25996 0.19978 0.66828 0.38064
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K2 - u2D2u^

where

0.61084 -0.755 0.19918 -0.00083 0.13105
0.24899 0.10496 0.14724 -0.54041 -0.78311
0.19043 0.34083 0.31214 -0.62695 0.59756
0.63486 0.54632 0.16096 0.51939 -0.05308
0.35436 0.06578 -0.90294 -0.21245 0.09832

and

D2 = diag{2.94978, 0.17786, 0.01162, 0.00013, 0.000001}. 

Now let

1.0 oo oo o • o o•o

oo 1.0 o•o oo o « o

oo o•o 1.0 o•o oo

Using equations (4.67), (4.68) and (4.70), we have

0.88016 -0.31726 -0.32787
0.20689 0.01718 0.22714
0.08593 -0.02155 0.49195
0.38626 0.35146 0.67431
0.16105 0.88038 -0.37973
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Since Ar = T+A^T and Gr = T+G2, then

Ar =

-1.84345
-0.51341
-0.82095

-0.49498
-3.00001
-0.1422

1.74063
2.42753

-2.92501

and

Gr =

2.802
1.33039
1.65908

The characteristic polynomial of the matrix AE is 
found to be

p (s) = s3+7.768467s2+21.217558s+19.242783 rr

and its roots are

]i1 = -2. 91067-jl. 187722 
y2 = -2.91067+jl.187722 
y3 = -1.947114 .

The pair (Ar /Gr) is controllable. The parameters of 
the reduced model

x„(t) = A x (t)+B u (t)+G w(t) jo m r ir r

yr (t) = crxr (t)



where

Am = Ar-Br ST

B = T+B

are

CT

Am =

-1.15595
-0.04862
-0.49251

-0.50462
-3.00652
-0.1468

-0.95578
0.60459

-4.21317

B
1.8567
1.25525
0.877

and Cr = [-0.37028, 0.00519, 1,

The pairs (A^B^) and (Am ,Gr) are controllable.
The pair (C ,A ) is observable. The characteristic r m
polynomial of Am is

p (s) = s 3+8.375642s2+20.606097s+l3.082983.

Its roots are

= -3.139515 
\i0 = -4.257288
y3 = -0.978839

45226],
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Figure 4.1. Output Responses of the 5th Order System and the 
3rd Order Model to Unit Step and White Noise 
Inputs
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Therefore, the model is stable.
Using the Fourth order Runge Kutta routine, the 

outputs of the 5th order system (4.1) and the 3rd order 
model for this example are plotted in Figure 4.1, where 
u(t) is the unit step, and w(t)is a Gaussian white noise.
As it is seen from Figure 4.1, the model output follows 
the system output perfectly.

4.7. Order Reduction of Deterministic, Uniformly 
Controllable, Continuous, Time Varying System

Consider the n-dimensional linear time varying
system

x(t) = A(t)x(t) + B(t)u(t) (4.74a)

y (t) = C(t)x (t) (4.74b)

where A(t), B(t) and C(t) are nxn, nxp and qxn continuously 
differentiable matrix functions of t.

To reduce the order of this system using the aggre­
gation method, we must find an aggregation matrix T which sat­
isfies conditions similar to (4.9) or an algebraic transforma­
tion similar to T. However, the existence of algebraic 
transformations are related directly to the requirements 
of controllability and observability. Furthermore, these 
conditions can be specified in terms of matrices which do 
not depend on the knowledge of the state transition matrix
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which is known to play an important role in the theory of 
controllability and observability [ 22 ].

Let

Rc (t) = t<a1 (t) . . dn (t) ] (4.75)

where
d1 (t) = B (t)

di+i(t) = d^t) - A(t)di (t) (4.76)

di (t) = for i = 1/ • • n-1

We now review the following controllability theorems 
[118] :
Theorem 4.2; The system (4.74) is completely controllable 
on the interval [tQ , t^], if and only if the matrix Rc (t) 
has rank n on the interval [tQ , t^] .
Theorem 4.3: The system (4.73) is totally controllable
(differentially controllable) on the interval [tQ, t^], 
if and only if it is completely controllable on every 
subinterval of [tg, t^].

It is shown in [118] that a necessary and sufficient 
condition for total controllability is that the matrix 
Rc (t) has rank n almost everywhere on [tQ, t1], (i.e., 
except for a subset of measure zero). Notice that 
neither complete nor even total controllability are



strong enough conditions to ensure the existence of a 
transformation needed in a number of system representa­
tion problems. These problems are characterized by the 
requirement that the matrix Rc (t) has rank n everywhere 
in a given interval. Therefore, a new concept of 
controllability is introduced.
Definition 4.5 [118]: The system (4.74) is said to be
uniformly controllable on the interval [tQ, t̂ ]̂ if the 
matrix Rc (t) has a rank n everywhere on [tQ, t1].
Let

Rc (t) = [d2 (t), . . ., dn+1(t)] , (4.77)

then on any interval where Rc (t) has rank n, the A(t) 
matrix of the system (4.74) can be written as:

A(t) = [R (t) - R_(t) ]R*(t) (4.78)

where
R+(t) = R*(t) [Rc (t)R^(t) ]-1.

Equation (4.78) is obtained from the following equation 

Rc (t) = -A(t)Rc (t) + Rc (t)

Since d^(t) = B(t), then Rc (t) is sufficient to determine 
the system (4.74) uniquely on any interval where (4.74) 
is uniformly controllable.
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Before we introduce the system transformation, 

it is necessary to review the definition of equivalence. 
Definition 4.6 [117]: Let P(t) be an nxn nonsingular
differentiable matrix, such that z(t) = P(t)x(t). Then, 
it can be said that the system

z(t) = Ap (t) z (t) + Bp (t) u (t) (4.79a-)

y (t) = Cp (t)z(t) (4.79b)

where
Ap (t) = [P (t) A (t) + P(t)]P_1(t)

Bp (t) = P (t)B(t) (4.30)

Cp (t) = C (t) P_1 (t)

is equivalent to the system (4.74) and P(t) is an equivalent 
algebraic transformation.

Using this definition, the basic transformal 
property of the matrix Rc (t) can be established.

Let P(t) be the algebraic transformation giv.en 
in the definition 4.6, then

R (t) = P (t) R (t). (4.81)c c

This equation is found by induction. If ^(t) = P(t)dk (t), 
then
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^k+l*0  = "Ap (t)ak (t) + 3k (t)

= - [P (t) A (t) +P (t) ]P-1(t) [P(t)dk (t) ] +

[P(t)dk (t)+p,(t)dk (t) ]

= -p(t)A(t)dk (t)-p(t)dk (t)+P(t)dk (t) +

P(t)dk (t)

=* p(t) [-A(t)dk (t)+dk (t) ] = P(t)dR+1(t)

and
P(t)d1 (t) = P(t)B(t) = dx (t) = B (t).

The significance of equation (4.81) is that if an equivalent 
algebraic transformation between two uniformly control­
lable systems is known to exist, it is given as

P(t) = 5 (t)R+(t). (4.82)C W

4.7.1. Phase Variable Canonical Form

The technique for finding the phase canonical form 
using the transformation matrix which depends on the 
uniform controllability was first introduced by Silverman 
[118], and later on, improved by Ramaswami and Ramar [101 ]. 
The construction of the transformation matrix reveals that 
the uniform controllability is a necessary and sufficient 
condition for a nonsingular transformation matrix to exist. 

Consider the single input system:
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(4.83)

Let P(t) be the nonsingular transformation matrix which 
reduces (4.84) to the phase variable canonical form.

then
Let z(t) = P (t) x (t)

z(t) = A p (t)z(t) + B p (t)u (t)

(4.84)

(4.85)

where

Ap (t)

0
0

0 0 

~an (t) "an-l(t)

0
0

0
0

-a2 (t) -a1 (t)

B (t) = [0, . . ., 0, 1]\

A (t) and B (t) are continuously differentiable matrices, P P
Let x1 (t), . . ., *n (t) and z^t), . . . , zn (t) be the 
components of the vectors x(t) and z(t), respectively. 

Let
z1 (t) = P11(t)x1 (t) + pl2(t)x2 (t) + ... +

(4.86)
pl n ^ Xn ^  =

v it ‘-.a .



113

where p-^t) is given by

Px (t) = [p11(t)/ P12(t), . . ., Pln(t)].

From equation (4.84) and the representation (4.85), we 
have

z1 (t) = z2 (t) .

Using equation (4.86), we get

z2 (t) = z1 (t) = p1 (t)x(t) + p1 (t)x(t)

= [p1 (t) + px (t) A(t) ]x(t) + p^ (t) B (t) u (t).

Since the state variable z2 (t) is set to be a function of 
the state variable x(t) alone, we take p^(t)B(t) = 0.
So

z2 (t) = [pĵ  (t) A(t)+p1 (t) ]x (t) = p2 (t)x(t), p1 (t)B(t) = 0.

Therefore, the row vector p (t) is given by2

p2 (t) = p1 (t)A(t) + P 1 (t),

Repeating the procedure, we obtain

■̂ 3 (t) = [p2 (t) A(t)+p2 (t) ]x (t) = p3 (t)x(t), P 2 (t) B (t) =0

zn (t) = [pn_1 (t)A(t)+pn_1 (t) ]x(t) =

. pn (t)x(t), pn_1 (t)B(t) = 0.



The transformation matrix P(t) is then

P(t) = [p^(t), p2 (t) , pn ̂  T

The rows of the matrix P(t) are to be computed from the
recursive formula

Pi+1(t) = pi (t)A(t) +

for i = 1, . . . , n-1.

These rows should satisfy
p̂  ̂(t) B (t) = p2 (t) B (t)

However, from equation 
B (t), thenp '

Pĵ  (t) B (t) "0 “
• •

• •

• *
Pn (t) B (t) 0

pn (t)B(t)
—  — 1

Pi(t) (4.87)

= ... = pn_1 (t)B(t) = 0.
(4.88)

4.84), we know that P(t)B(t)

(4.89)

To construct the matrix P(t), one has to evaluate p^(t). 
Therefore, equation (4.89) leads to
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then
P1 (t)B(t) + p1 (t)B(t) = 0 or p1 (t)B(t) = -p1 (t)B(t)

and

P2 (t) B (t) = [p^ (t) A (t) +p^ (t) ] B (t)

= p1 (t) [A(t) B (t)-B (t) ] = -p1 (t)d2 (t) = 0.

Thus

P1 (t)d2 (t) = -p (t) d2 (t) and p2 (t)B(t) = -p2 (t)B(t)

P3 (t)B(t) = [p2 (t)A(t)+p2 (t) ]B(t)

= p2 (t) [A (t) B (t) -B (t) ] = -p2 (t)d2 (t) = 0.

and
P3(t)B(t) = - ̂  (t) A(t) +p1 (t) ]d2 (t)

= -p1 (t)[A(t)d2 (t)-d2 (t)] = p1 (t)d3 (t) = 0

Pn (t)B(t) = [pn_1 (t)A(t)+pn_1 (t) ]B(t) = -pn_2 (t)d2 (t)

= . . . = (-l)n-1P;L(t)dn (t) = 1 (4.90)

where d^(t), d2 (t), . . ., d (t) are the columns of the
controllability matrix R (t) of the system (4.74)o

Rc (t) = [d1 (t) , . . . , dn (t) ]
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where (t) = B(t) and d^+1 (t) =dL (t)-A (t) d^ (t)

for i = 1, . . . , n-1. Using equation (4.87), the repre­
sentation (4.90) can be written as

p1 (t)[d1 (t),...»dn (t)] = (-l)n_1[0, 0, . . ., 0, 1]

or

P l (t)Ro (t) = (-1)n_1 [ 0, 0, . . ., 0, 1]

Therefore,

Pl(t) = (-1)n_1 [0, 0, . . ., 0, U R " 1. (4.91)

Once p-L (t) is known, we can form P(t) using the recursive 
formula of equation (4.87), then we compute Ap(t) as

A (t) = [P(t)A(t) + P(t)]P_1(t) (4.92)P

Since we know the structure of Ap (t) we need to compute the 
last row only. Thus,

[-an (t), -an_!(t), . . ., -a^t)] = [pn (t)A(t)+Pn (t) ]P_1(t)

The proof of the nonsingularity of P(t) can be found in 
[117].
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4.7.2. System Transformation Using the State Feedback 
Concept

The controllability of the system (4.74) is invariant 
under any state feedback of the following form:

u (t) = v (t ) + S (t ) z (t) (4.93)

where S(t) is a pxn state feedback continuous matrix 
function of t. From a previous argument, it is known 
that, if a single input, single output linear time 
varying system is uniformly controllable, it can be 
transformed to its state variable canonical form, and 
if the system is in its companion form, by an appro­
priate choice of the state feedback matrix S(t), it can
be changed into a linear time invariant system, and the 
theory developed in the previous sections can be applied 
here without difficulty.

Note that the transformation (4.84) does not pre­
serve the dynamic properties of the system (4.74). To
see this fact, let

p (s ,t) = det(sIn-A(t)) = sn + a1 (t)sn_1 +...+

an-l(t)s + an (t)
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and
pD (s,t) = det(sln - A p (t))

det[sIn-P(t)A(t)P-1(t)-P(t)P 1 (t) ]

det{ p (t) [sIn-A(t)-P_1(t)P(t) ]P_1(t) }

= det[sIn-A(t)-P-1(t)P(t)]

which can also be written as

Pp(s,t) = sn+a1 (t)sn ■*■+ . . . + an-1 (t) s+an (t)

where the coefficients a^Ct),..., «n (t) are different from the 
coefficients a^(t),..., ctn (t) of the original system (4.77). 

Now substitute (4.93) into (4.79), and let

A = A (t) + B S(t) (4.94)S P P

we have

z (t) = A z (t) + B v (t) (4.95a)s p

y (t) = C z(t) (4.95b)P

and
As = P(t)A(t)P-1 (t)+P(t)P_1(t)4P(t)B(t)S(t) (4.96)
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A = s

0
0

1
0

0 0 

-*n

0
0

n-1

0
0

"*2 -?1

, Cn are the constant coefficients of the
characteristic polynomial of the new system (4.95).

The problem is to approximate the new system by a 
model of the following form

zr (t) = Arzr (t) + B^v(t)

Yr (t) = Crzr (t)

(4.97a)

(4.97b)

where zr (t)e3Rr .

Therefore, we need to find an nxr aggregation constant
matrix T such that the aggregation error

e(t) = z(t) - Tzr (t) is zero for all t (4.98)
or A T = TA , C = C T , B  = T+B and z (0) = T+x(0)S 3T ]T p 3T p
then

[P(t)A(t)P-1(t)+P(t)P_1(t)+P(t)B(t)S(t) ]T = TAr .
Let Q(t) be a pxq time varying matrix such that
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then

A(t)P-1(t)T+p"1 (t)P(t)P"1 (t)T+B (t)S(t)T = P_1 (t) TA .r
Now let

M(t) = P_1 (t)T (4.100)

be an nxr continuous time varying matrix with the following 
properties:

(1) M+ (t) = [MT (t)M(t) ]-1MT (t)

(2) M+ (t)M(t) = Ir

(3) M (t) = -P"1 (t)P(t)M(t)

(4) M+ (t)M(t) = M+ (t)P_ 1 (t)P(t)M(t)

(5) M(t)M+ (t)M(t) = M (t)

(6) M+ (t)M(t)M+ (t) = M+ (t)

(7) [M(t)M+ (t) ]T = M(t)M+ (t)

(8) [M(t)M+ (t) ] 2 = M(t)M+ (t).

M(t)M+ (t) is an nxn orthogonal, idempotent matrix, 
thus it is a projection matrix, its complementary 
projection matrix is (In - M(t)M+ (t)).

Using equation (4.100) and the property 3, the 
equation (4.99) becomes
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A(t)M(t)-M(t)+B(t)S(t)T = M(t)Ar. (4.101)

In order to have a good approximation, the following 
conditions must be satisfied:

(1) A(t)M(t)-M(t)Ar = M(t)-B(t)Q(t)C 

where S(t)T = Q(t)Cr

(2) Br = M+ (t)B(t)

(3) zr (0) = M+ (0)z(0).

These conditions are similar to the ones given by 
equation (4.9). Note that, since M(t) = P-1(t)T, then 
M(t) is also dependent on the uniform controllability of 
the original system (4.74). The substitution of

M(t)Ar = A(t)M(t)-M(t)+B(t)Q(t)Cr

into

A2 (t)M(t) - M(t) A 2
I

yields

A2 (t)M(t) -M(t) A2 = A2 (t) M(t) - [A(t)M(t)-M(t)+B (t) Q(t) Crl Ar

= A2 (t)M(t)-A(t)M(t)Ar+M(t)Ar-B(t)Q(t)CrAr 

= A (t) [A(t)M(t)-M(t)Ar ]+M(t)Ar-B(t)Q(t)CrA r
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Proceeding in a similar manner, we get the following 
equations

I M (t) -M (t) I = 0 n r

A(t)M(t)-M(t)Ar = M(t)-B(t)Q(t)Cr

A2 (t)M(t)-M(t)A^ = A (t) [M(t)-B(t)Q(t)Cr] + [M(t)-B(t)Q(t)CrlAr

A^-ttjMttJ-MttjAi = I A1-^-1(t) [M(t)-B(t)Q(t)C ]Â , 
r j-0

then

A1 = M+ (t)Ai (t)M(t) - 1X1M+ (t)A1"j"1 (t) [M-B(t)Q(t)C ]a J 
r j=0

(4.102)

Since the systems (4.95) and (4.97) are continuous time 
invariant linear systems, then let iL's be the Markov 
parameters of the reduced order time invariant model 
(4.98)



and Hi 's be the Markov parameters of the time invariant 
system (4.95)

Hi - v i ’S  (4ao4)

for i = 1, 2, 3, . . . ,

Since AgT = TAr , then

A1-1T = TA1-1 or T+A1_1T = A1"1 (4.105)s r s r

for i = 1, 2, 3,

while C = C T+ or C = C T p r r p

and B = TB or B = T+B_. p r r p

The substitution of C = C T+ and B = TB̂ . intop r p r
equation (4.104) yields
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Hence = H^. for i = 1, 2, 3, . . . (4.106)

The aggregation matrix T is determined in similar manner 
as in section 4.6.

Note that, in order for the equality Cr = C^T 
to exist, the following condition must be satisfied

C = C (t)P-1 (t)
r

so that

C = C T = C (t) P_1 (t) T r p

= C(t)M(t) . (4.107)

Similarly, since B = P(t)B(t) = TB , we haveP 3-

P-1(t)TBr = B(t), thus Br = M+ (t)B(t). (4.108)

Let

Am (t) = M+ (t)A(t)M(t)-M+ (t)M(t)

= A - B Q (t) C r r r (4.109)
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be the state matrix of the reduced order time varying 
model given by

Xr (t) = Am (t)xr (t)+Bm (t)u(t) (4.110a)

Yr (t) = cm (t)Xr (t) (4.110b)

where

B (t) = B and C (t) = C (4 m )m r m r v'i.j.j.x;

Equation (4.111) can be obtained by defining a new 
aggregation error as

e 1(t) = x (t)-M(t)xr (t) (4.112)

then
e' (t) = x(t)-M(t)xr (t)-M(t)xr (t)

e' (t) = A(t)x(t)+B(t)u(t)-M(t)xr (t)-M(t)Am (t)xr (t)

- M(t)Bm (t)u(t).

If equations (4.108). and (4.111) are satisfied, then 

e' (t) = A(t)x(t)-M(t)xr (t)-M(t)Am (t)xr (t)

= A (t) X (t) -A(t)M(t)xr (t)+A(t)M(t)vr (t)
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-M(t)x (t)-M(t)A (t)x (t) r m r

= A(t)e' (t) + [A(t)M(t)-M(t)-M(t)A (t)]x (t)m r *
The dynamics of the error are given by

e'(t) = A (t) e ' (t) + [A (t) M (t)-M (t)-M (t) A (t)]x (t) (4.113)m r

If equation (4.110) is satisfied, equation (4.113) becomes 

e* (t) = A(t)e * (t)

Therefore, for a good approximation, the following con­
ditions must be satisfied.

(1) A (t) M (t) = M(t)Am (t)+M(t)

(2) Bm (t) = M + (t)B(t), Cm (t) = C(t)M(t)

(3) xr (0) = M+ (0)x (0)

Furthermore, since z(t) = P(t)x(t) and P ^(t) exists, then 
the substitution of x(t) = P ^(t)z(t), xr (t) = zr (t), and 
equations (4.98) and (4.100) yields

e'(t) = P-1(t)z(t)-P_1(t)Tzr (t)=P-;L(t) [z(t)-Tzr (t) ] 
e'(t) = P-1(t)e(t) (4.114)

The constant matrix Ag of the system (4.95) is stable, 
then e(t) ■* 0 as t •> °°. Therefore, if P ^(t) is bounded,
then from equation (4.114), e' (t) ->■ 0 as t -*■ °°.

Since the model (4.96) is a time invariant system, then

its state transition matrix is given by

*r (t,t0 ) = eAr < t - V .  (4-115)
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Let A^(t) be an rxr continuous time varying matrix defined 
as

A,(t) = -e“Ar(t"t0)B 0(t)C eAr (t_t0). (4.116)a r r
and satisfying the following expression

$d (t,t0 ) = Ad (t)4>d (t,t0 ). (4.117)

Proposition 4.8: The state transition matrix of the
reduced time varying model (4.111) is given by

<j>m (t,t0) = eAr(t_to)<f>d (t,t0) (4.118)

Proof: Since <)>m (t,to) is the state transition matrix of the

model (4.111), then it satisfies the following condition

<£m (t,t0) = Am (t)4,m (t,t0). (4.119)

Since
<frm (t,t0) = eAr (t-t0)<|,d (t,t0)

then

im<t,t0) = AreAr(t-t0 ^ d (t,t0)+eAr (t't0 ^ d (t,t0)

= AreAr(t“tO)<i)d (t,t0)+eA r (t"to)Ad (t)(),d (t,to)

= AreAr(t“t0)*d (t,t0)+eAr(t“t0>{-e-Ar ̂t-to)

B r Q ( t ) C r e A r (t" t 0)}<frd ( t , t 0 )

= AreAr ^  (t, tQ) -BrQ (t) CreAr <*-*()> ̂  (t, t0)
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= tAr-BrQ(t)Cr]eAr(t'to)*d (t,to)

4.7.3. Stability of the Reduced Order Time Varying Model

thConsider the n order linear time varying system 
of equation (4.74)

x(t) = A(t) x(t)+B(t)u(t)

y (t) = C (t) x (t),

The response of the system is composed of two parts, 
the zero input response and the zero state response as

t
y(t) = C (t) <f> (t, tQ) x (tQ) + / C(t)<f>(t,x)B(x) u(x)dx

where ^(tjtg) is the state transition matrix of the system 
(4.73). To study the stability of the reduced order model 
(4.111), we will review the following definitions and 
theorems [22, 63].

Definition 4.7: A linear time varying system is said to
be totally stable if and only if for any initial state 
and any bounded input the output as well as the state 
variables are bounded.
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Theorem 4.4: A linear time varying system is totally
stable if and only if C(t) and cj> (t , tQ) are bounded 
and

f | | <j> (t, t) B (x) | |dx < k < ~
to

for any t0 and for all t > t0. In the above, any 
valid matrix norm can be used.

Theorem 4.5: The zero state x(t) = <|> (t, tQ) x (tQ) of x(t) =
A (t)x(t) is asymptotically stable at tQ if and only if

| | (p (t, t0) | | £ k (to) < “ 

implies

| | 4> (t, to) | | > 0 as t ---- >>oo.

The zero state is uniformly asymptotically stable over 
(0, ~ ) if and only if there exists positive numbers ^  

and k2 such that

for any tQ :> 0 and all t >_ tQ .
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If the matrices B(t) and C(t) of the system (4.74) are 
bounded, uniform asymptotic stability implies total stability.

Suppose now that system (4.74) is totally stable. To 
investigate the stability of the model (4.111), we need 
to find an expression relating (J>(t,to) of the system to 
<f>m(t»tQ) of the model (4.111). Before doing so, let
(f> (t , tg) be the state transition matrix of the system P
(4.78), that is

Since the system (4.95) is a linear time invariant system, 
its state transition matrix is given as

(4.120)

From equation (4.81), we have

A (t) = P(t)A(t)P_1(t)+P(t)P_1 (t)P
and
4>(t,t0 ) = P“1 (t)<},p (t,t0 )P(t0 ). (4.121)

From equation (4.94), we get

As = A (t)+BpS(t)

or
A p (t> = as-Bps(t) (4.122)

♦s (t,t0 ) = (4.123)



and satisfies the expression 

is <tft0) = As<{>s (t,t0)

thus
cf)p (t , tQ ) = eAs ̂ t-t0 ̂ <f>q (t, t0)

and
^p (t,t0) = Ap (t) <J>p (t,t0) 

where (t, tg) satisfies the following

iq (t,t0 ) = Aq (t)<j>q (t,t0 )

and
A (t) =g p

Equations (4.105), (4.114) and (4.122) give

AST = TAr or AgT = Ta £ for i = 0, 1, 2,

*r (t,t0> = eAr (t-t0) = j Ai
i=0

then

T<j> (t,t0) = TeAr(t“t0) = I TA^ (tT^Q}
i=0 1*
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(4.124)

(4.125)

(4.126)

(4.127)

(4.128)
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00 i 00 T

= J  A s:T = [ j  Aj 3T
i=0 i=0

= eAs (t- V T  .
or

T<Pr (t,t0 ) = <f>g ( t,t0 )T (4,

Post-multiplying equation (4.128) by T, leads to 

Ag (t)T = -e“As(t-tO)Bp S(t)eAs (t-tO )T.

Using equations (4.109), (4.114) and (4.129) and the 
condition

S(t)T = Q(t)Cr ,

we have

A (t)T = -e- A s tB S(t)TeAr(t-t0)^ jT

= -Te-Ar t̂-t0^BrQ(t)CreAr(t-to)

= T[-e-Ar(t_t0)B Q(t)C eAr (t_t0)]

thus
Aa (t)T = TAd (t) (4.

129)

130)



and hence
4> (t,t0)T = T<()d (t#t0) . (4.131)

The substitution of equation (4.125) into (4.120) gives 

<Mt,t0) = P~1 (t)eAs {t_t0)(j)q (t,t0)P(t0)

or

P(t)4»(tft0) = eAs (t"t0)(()q(t/t0)P(t0)

The pre-multiplication of equation (4.117) by T yields

T<frm (t,t0) = TeAr (t"t0)«()d(t,t0)

= eAs(t-t0)T(j)d (t,to)

=  e A s ( t _ t 0 ) (j) (t,t0)T 

=  e A s  (t-t 0̂  (j) (t/t0) P (t0) P-1 (t0) T 

= P(t)<j>(t,t0)P-1(t0)T.

Thus
T<*>m (t # tQ) = P(t)<|)(t,t0)P"1 (t0)T

or

P-1 (t) T<j)m (t, tQ ) = <J) (t, tQ ) P-1 (tQ ) T

M(t) (J>m (t , tQ) = <f> (t,tQ)M(t0)
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and
4>m (t,t0) = M+ (t)4>(t,t0)M(t0) (4.132)

If P(t) and P 1 (t) are bounded for all te(0,°°), then
M(t) and M+ (t) would also be bounded in (0,00) , and
since the original system is assumed to be totally stable,
then (j) (t, tq ) is bounded. Therefore, (t ,tq ) is also
bounded. Furthermore, since B and C are constant matrices,m m
then they are bounded and the reduced order model (4.111) 
is totally stable.

4.8. Conclusion

In this chapter we have studied the order reduction 
of stochastic linear time invariant systems or linear time 
invariant systems with uncertainty/ and deterministic 
linear time varying systems. A modified version of the 
aggregation method has been proposed and an example has 
been given to justify the effectiveness of this method.

In the next chapter, we will consider the Routh and 
Schwarz simplification techniques for deterministic linear 
time invariant systems.



CHAPTER V

ROUTH AND SCHWARZ APPROXIMATIONS

5.1. Introduction

In the previous two chapters, we have examined order 
reduction techniques using state space framework. How­
ever, in control applications, more often, systems are 
designed in the frequency domain and then subsequently 
converted to the state space representation. In this 
chapter, we will focus our attention on the description 
of the reduction techniques that always yield stable 
models. These approximations use the Routh table and 
the properties of the Schwarz matrix.

5.2. Mathematical Background

Consider the n-dimensional linear continuous time 
invariant system, which is asymptotically stable, com­
pletely controllable and observable:

x(t) = Ax(t) + Bu (t) (5.1a)

y(t) = Cx(t) (5.1b)

where
135
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" 0 1 . . .  0 0 ’o *
0 0 . . .  0 0 0

A = •
• • 

• • 

• •

• , B =; • (5.2)

-a 
l n -an-l -a2 _al nxn

1
nxl

and C = Cen' Bn-1' ' ’ " Pl]lxn*

Let the characteristic polynomial of the matrix A be

, . n , n-1 p(s) = cxqS + a^s + • . • "1* Ot -In-1 s + an (5.3)

Since the system (5.1) is asymptotically stable, then 
for completeness we shall state the following 
theorems.[16, 22, 63].

Theorem 5.1 (Routh): Construct the Routh array having
initial two rows

■̂r01' r02' r03' ‘ '  ̂a0 ' a2' a4' " ’
(5.4a)

and subsequent rows defined by
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r. . = -det 13
ri-2,1 ri-2,j+l

ri-l,1 ri-l,j+1
/ri-1,1 (5.4b)

for i = 2, 3, n

The polynomial p(s) is asymptotically stable if and only 
if all the first column elements r ^  for i = 0, 1, . . ., n 
are positive.

Theorem 5.2 (Hurwitz): Construct the nxn Hurwitz
matrix

H =
1—1

Is

a2 a5 • • • 1—11GCNa

ao a2 a4 • • • a2n-2
0 al a3 • • • a2n-3
0 a0 a2 • • • a2n-4
• • • •
• • • •
• • • •
0 0 0 an

IIa 0 for k > n .

(5.5)

The polynomial p(s) is asymptotically stable if and only 
if all the leading principal minors H^, H2, • . •/ Hn 
of H are positive.
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Theorem 5.3 (Margin of Stability); If p(s) is
asymptotically stable then the negative number
a=max{Re{X.}}, called the abscissa of stability i 1
of p(s), has the following upper bounds

g ^ _2-e(n)R-(n-1)(n+1)/2riir2i . . . rnl (5.6)

and

0 < -2'nR'2<n'1)rnlrn.1 ,:l (5.7)

where R = 2max| |
i

j \ / i\n (n-1)/2and e(n) = (-1) '

Proofs of these theorems can be found in [16, 22, 63]. 
The first two theorems are equivalent, as the following 
example for n = 3, shows

1 0 0 ' al a3 0 rll r12 r13 '
^0
al

1 0 ao a2 0 = 0 r21 r22

1 s o Q 2
al 1 0 a a3 0 0 r31

_a0a3 ala2 a0a3"ala2
JL

-

This can be generalized to give
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T^H

11 r12 rl3
0

0
r21 r22

■31

l,n

' 2n-l
’ 3n-2

(5.8)

rnl

where T^ is an nxn nonsingular matrix. The principal 
minors of H are

= r.^ r21 . . . r ^  for i = 1, 2, . . ., n

. (5.9)
and

H = a H . • n n n-1

The first column elements of the Routh array are then 
given as follows:

H.
rll = Hl# ril = hT"T for 1 = 2' ’ ' "  n

(5.10)

Now, let
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t 2 =

1
0

~n-l, 2

0
1

rn-l,1
'n-2,2 
"n-2,1

0 0 0 0 
0 0 0 0

0

32
'31

0

0

22

*21

0

1

0

(5.11)

nxn

be a similarity transformation matrix [3, 16],
such that

z (t) = T2x(t) (5.12)

Then the system (5.1) becomes

z(t) = A z (t) + B u(t)S 5

y(t) = Cgz(t)

where A = T-AT- 
S 2  2

B = T-B s 2

-1

C s =  C T ^ 1

(5.13a)

(5.13b)

(5.14)
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A = s

0
-Y

1
0n

0 -Yn-1

0 ... 0 0 0
1 ... 0 0 0
0 ... 0 0 0

0 0 0 . . .  0 1 0
0 0 0 • • • 1 u> 0 1
0 0 0 . . .  0 -y 2 "Y

(5.15)

nxn

A is called the Schwarz matrix [16] s

let
We will show that p(s) = det(sIn~As).

D =

n

0
0

-1 0 
s -1

0 0 
0 0

0
0

0
0

s -1 

Yo s+Y-

To do so,

(5.16)

and for k = 1, 2, th, n be the k leading principal
minors of det(sl -A ) and D = det(sl -A ). Then then s n n s
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expansion of Dn by its last column gives

D„ - «■ + W i  + V2Dn_2 <5'17>

Dk = sDk-l + Yn-k+2Dk-2 • (5.18)

for k = 3, . . . , n-1.

Let D„-l = a21Sn'’1 + a« sn'1"2 +

for Z = 1, . . ., n-1.

(5.19)

Substitute equation (5.19) into (5.18) with k = n-l and 
equate coefficients sn-^-^ , to get

d£,j+l = d£+l, j +1 + Y£+2dS,+2,j*

Evaluate Dn-1 and using equation (5.19). It
follows that the first two rows of the Routh array
{r.•} for D are the coefficients of sD . + y„D n and 13 n n-1 '2 n-2
YiDn-l' that is

<r01' r02' r03' • • • ̂ *dll' dl2 + Y2d21' d13 + Y2d22'

^rll' r12' r13 » • • • ̂ = ^YidH '  Yld12 ' Yld13 '



The third row is obtained as
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2 j Yid det
1~11

lll dl,j+l+Y2d2j

aldll ctldl /j+l

= Y2d2j for i = 1> 2> • ■ •

Then we can establish by induction [16], that in general

.1 = Yiri-2,1 (5.20)

r . . = r .. d . . i > li] il 13 - (5.21)

The first column of the Routh array for det(sIn-Ag)
is

i, yr  y2. y1y3, y2y4, y1y3y5, y2y4y6, Y1Y3Y5Y7f ... (5.22)

We select the elements of the Schwarz matrix to be

H, H.
Y i = Hi / Y1 1' '2 H ' 3 H.H1 2

“k ^ k
Yk H,. „H (5.23)

k-2 k-1
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Then the sequence (5.22) becomes

H
H.
n-1
n (5.24)

It follows that with the choice made previously for the
6-'s the polynomial p(s) and det(sl -A ) are identical, i n s
since their Routh arrays have the same first columns. 
Therefore,

P (s) = det(sIn-As).

Let G(s) be the transfer function of the system (5.1).

G(s) can be expanded in the continued fraction form:

Then
nG (s)

+ a.n

G(s) “ 1+ ^ 3+
1

1 6 2 s +.

1
162s+ ,6 3 s +

(5.26)
+ 1 + 1

where 6^ and ck for i = 1, . . ., n, are scalars obtained 
from the following arrays:



roi = ao r02 a2 r03 " a4
145

rll al rl2 “ a3 rl3 ° a5

and

rij ri-2,j+l ^i-lri-l,j+l (5.27)

for i = 2, . .., n+1 and j = 1, 2,

6 . =
1 ri,l

Similarly,

S01 Bl' S02 e3f S03 65'

S11 02' S12 “ B4'

and
S i • — S . *iT “ 0 • •• 3C • « • i 1i] i-2,j+l x-1 i-l,j+l (5.28)

for i = 2, . . ., n+1 and j = 1, 2, ... while

1 ri,l

for i = 1, 2 , ..., n
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These arrays are called the 6- and a-arrays [13, 61].
Let be a similarity transformation matrix such that

n (t) = T3z(t) (5.29)

where

T = 3

0 0

0, 0

0 6l-'-6n-l -

6r ' -lSn

0 6 

1
6152

0
0

0
0

nxn

(5.30)

The system (5.13) becomes

n (t) = A rn (t) + Bru (t)

y (t) = Crn (t)

(5.31a)

(5.31b)

where

A r T3A sT3

B r T3Bs

c r * V i 1
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-=- -=- 0

1_
6,

1_
'6 .

A r =

Br =

1_
6 ■

nxl

'n-1 'n-1
—  0 
5n nxn

(5.32)

and

C r “ [al' °2' * ' * ' an ]lxn

From equations (5.20) and (5.27), we have

=  ri>1 
Y1 " rH '  Yi ri-2,1

for i = 2, ..., n
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and

<S. = 1

Thus, r01

ri-l,l 
ri, 1

1, r

for i = l, n

11

for i = 2,

and =

and r
J1 5-1...6.1 l
n

Yi 6. -6.l-l l (5.33)

for i = 2, ..., n

The system (5.31) can be obtained directly from the system 
representation (5.1), using the transformation or

T4 =

rn-4,irn-3,3
rn-3,l

0

rn-2,irn-1.2
n-1,1

0
rn, 1

rn-5.irn-4,3
rn-4,l

0

n-3,1 n-2,3 
rn-3,l

0

rn-l,l

0

0
r r 11 23
r31 0 rH r22

r21
0 rll

r r 21 33 
••• r31 0 r2ir32

r31 • 0 r21 0

0 r3ir42
r41 0 r31 0 0

r4ir52
r51

0 r41 0 0 0

0 r51 0 0 0 0

r61 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



5.3. Routh Approximation [61]

The Routh approximation is based on expanding the 
n order system transfer function in the continued 
fraction form (5.26). The continued fraction expansion
(5.26) can be rewritten as follows:

G (s) = a1f1 (s) + a2f1 (s) f2 (s) + ... + (s) .. . f (s)

n i
I a, T1i=l j-1

= I a, T T f . (s)■i-i j

where fk (s) , for k = 2, 3, ..., n are determined by the
following continued fraction: 

fk(s) = 1
<5ks+-

6 k+is+
6kf2S+ (5

and f. (s) = 1
V b t

l Ka’ ~ 1 + 61s *

The reduction process is done by truncating the 
expansion (5.34) and rearranging the retained terms as e 
rational transfer function. Truncating the continued 
fraction (5.35) after the term and denoting it by

+ ■  V ik ̂  ' t*ie k order model transfer function Rk (s) is 

similar to (5.34) and is given as

(5.34)

.35)
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where
<3+ k <s) = 7-----3' j s +_

6 . , s+ 3+1 66+2s+ (5.37)

k-ls+s"s

Let the numerator and denominator of Rk (s) be P,, (s) and 
Q. (s) respectively, such that

P1 (s) = 01, Q1 (s) = 1 + 6-ĵs

2P2 (s) = a2+|S 2a1s > Q2 = 1 + 62s + <S162s

2P2 (s) = (c^+c^) + ^2a2s + 5253alS '

Q3 (s) = 1 + (5^+63)s + 6263s 2 + 616253s3

In general

pk (s) = 6k sPk -l(s) + Pk-2(s) + °k (5.38)

(^(s) = <SJcsQk_1 (s) + Qk_2 (s) (5.39)

for k - 1, 2, . . .,
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P_1 (s) = PQ (s) = 0 and Q_j_(s) = QQ (s) = 1. (5.40]

The equations (5.38), (5.39) and (5.40) with the
x .  t - .6- and cr-arrays are sufficient to determine a k order 

model. However, this model preserves high frequency 
characteristics, and for control applications, it is 
desirable to use the system reciprocal transfer function 
given by

1 1  ^nsU 1 + en-ls11 1 + ' * ' + ^1G(s) = ±G(i> = - 2 _ - - 2_1 - - 7- - - •  (5.41)a s  + a . s + . . . + 0-.n n-l 0

The reduction process can then be summarized by the 
following algorithm.

5.3.1. Routh Approximation Algorithm
Step 1: Determine the reciprocal of the system

~ 1 1  transfer function G(s) = — G(— ).s s
A A

Step 2: Construct the 6 - a arrays corresponding
A

to G (s).
fchStep 3: For a k order model use the recursive

formulas (5.38) and (5.39), to determine
A A A

Rk (s) = Pk (s)/Qk (s).
A A

Step 4: Reverse the coefficients of Pj^s) and Qk (s)
back to find Rk (s) = Pk (s)/Qk (s).
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For a stable system, this algorithm gives a stable 
reduced order model. For an unstable G(s), a shift of the 
imaginary axis would provide a modified asymptotically 
stable transfer function

/v
G(s) = G(s+a) (5.42)

where the real positive parameter a is chosen to be 
a > ReO^} where Am i^ the closed loop pole with the 
largest positive real part. However, it is not always easy 
to compute the closed loop pole. Therefore, it would be

A
simpler to estimate a so that G(s) is stable and then 
evaluate the new a which is equal to the absolute value of 
the results of equations (5.6) and (5.7). The next step 
would be to find R^(s) as usual and finally shift back 
the imaginary axis to its original position providing

A

Rk (s) = Rg (s-a)

"thwhere Rk (s) is the k approximant of the unstable system.
Another Routh-based model reduction scheme has been

proposed by Krishnamurthy et al. [ 67, 68]. in this technique,
the Routh 6 - a arrays for the numerator and denominator 

1. 1*
of an n order system are first constructed and then a 
desired reduced order model is obtained. Using the 
coefficients of the second and third rows, a polynomial
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of (n-1) order can be constructed. Similarly, an
i. T_(n-2) order polynomial can be constructed using the 

third and fourth rows of the a-Routh array, etc. Although, 
this method guarantees that a stable system is reduced 
to a stable model. Singh [120] has shown that it is a 
nonunique procedure in that several systems can have the 
same reduced model.

In the next section, we will describe a method that 
overcomes the Routh approximation drawback.

5.4. Schwarz Approximation

This approximation method is based upon the Schwarz 
canonical form, to produce a stable reduced model from a 
stable system. It was originally presented by Arumugan 
et al. [11] as a state space method, then showed by Lai 
et al [74] to have moment matching properties, and later 
reformulated by Davidson et al. [33] as a frequency domain 
technique. Lucas et al. [82] established links between 
Routh and Schwarz approximations and showed that the 
Schwarz approximation can also be obtained from the con­
tinued fraction expansion of G(s). It does not, however, 
require any reciprocal transformation for the continued 
fraction expansion to obtain a reduced transfer function. 
This is due to the fact that the last k terms of the con­
tinued fraction expansion of G(s) are retained instead 
of the first k terms, as in the Routh approximation.



154

Hutton [61] has shown that a state space realiza­
tion of G(s) is

n (t) ■

-F- “F—  0 . . .  0 0 
1 2

l
6l

J- 0 -J- ... 0 0 
2 2

0

• • • • • 

i * • • •

n (t) +
•

• • » • •

o o o . . .  o -i— 0
n-1

O o o • • • o 0
n j —

u(t)

(5.43a)

y (t) = [c^, o2t • • •, crn] u (t). (5.43b)

The block diagram realization of the state space repre­
sentation (5.43) is shown in Figure 5.1.

+“ v»The k order model is obtained by letting 
n j(t) = 0 for k < j £ n to get



” A

+0 — ►
on-1 n

■—► Q —► 1 i
6n-ls W 1 n-1 6ns

Figure 5.1. Block Diagram Realization of the Routh System.
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hk (t) =

1
"«1

1
~61

0 . . . 0 0
~i
6i

1_
62

0 1
"«2 * * •

0 0 0

. • . • • •
• • • • nk (t) + •

0 0 0 . . . 0 1

^ -1
0

0 0 0 . . . 1
Sk

0 0

Y k (t) =
a 2 ' • f ok]nk (fc)

U(t)

[5.44a)

(5.44b)

where nk (t) approximates the first k 6- and a- parameters 
and has the property of matching the first k Markov 
parameters of the system and the model. However, it 
is a high frequency approximation, since no reciprocal 
transformation has been used.

The Schwarz version begins with the realization



157

z (t) =

“ 0 l 0 ... 0 0 ' "o “
-Yn 0 1 . . . 0 0 0
•
•
•

•
•
•

• •
•

•
•
• z (t) + • u (t)

0 0 0 . . . 0 1 0 (5 45a)
0 0 0 ... -y 2 ~Y1- 1

y (t) = tcn' cn-l' • • • c^] z (t) (5 .45b)

where the y^'s are given by the equation (5.33) and 
similarly, this state space representation has its 
associated block diagram realization shown in 
Figure 5.2.

In deriving this scheme, Lucas et al. [82] have
1. U

found the k order model to be

zt (t) =

“  0 1 . . . 0 0 0

~Yn 0 . . . 0 0 0
•

•

•

V

•

•

•

•
zk (t)+ •

0 0 . . . 0 1 0
rn-k+l ,10 0 . • • “Yn-k+2 rn-k-l ,1_

k

u (t) 

(5.46a)



s Jz

Yl

£
E

'n-1

Y2

n-2

12
cn-l|

— S '

n̂-ll

£ r

Block Diagram Realization of the Schwarz System.
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yk (t) " [cn' cn-l' cn-k+l]zk (t) (5.46b)

where

K = r01 r01 rll
rn-K-l rll r21

n~k~2/1 = 6 6,. . .6 . . 
rn-k-l,1 1 2 n-k-1*

(5.47)

zk approximates the first k components of z. Using 
equations (5.33) the system (5.46) becomes

Zk (t) =

0

-1
6n6n-l

0 0

0 0

0 0 'o'

0 0 0

• • zk (t) + •
• • •
0
-1

1
1

0

K
6n-k+2^n-k+l 6n-k+l_

u (t) 

(5.48)

yk (t) - [cn , cn_lf . . cn_.kfl] zk (fc). (5.48b)

The approximation retains the last k 6-parameters.
Hence, the model will have the low frequency character­
istics of the system.
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Using the following transformation

0 0 . . . 0 6n-k+l*•*6n
0 0 • • •6n-■k+1 ’ * n-1 0
• • • •

N ** ri­ ll • • • •
• • • •

0 5n-k+l<Sn-k+2 • • • 0 0

_5n-k+l 0 • « • 0 0

the Routh counterpart is found to be

r 1 1 . . 0 0 r i
6n-k+l 5n-k+l 6n-k+l

1 0 . . 0 n 0
6n-k+2

u

nk <t)= • • • •
n(t) +

•

0 0 . . 0 1 0
6n-l

0 0 1
’ * 6n

0 0

nk (t)

(5.49)

u (t)

(5.50a)

^ k (t) = \ [an-k+l' * ‘ *' ° n l n 'k ( t ) - (5.50b)



By comparing Equation (5.50) with (5.32) and (5.26), 
it can be seen that the transfer function of the model 
(5.50) is

Gk(s) x n-k+l+ 1
6,n-k+2s+

(5.51)

Therefore, the Schwarz approximant can also be written 
as a continued fraction. It is not, however, necessary 
to invert this continued fraction to obtain the reduced 
transfer function. The denominators and numerators of 
the model transfer functions are generated by successive 
pairs of rows in the 6 and o-arrays respectively. How­
ever, by reformulating the 6 and a-arrays, it is possible 
to exhibit the reduced transfer function coefficients in 
single rows of each array. To determine the Schwarz 
approximation of G(s), Lucas [82] derived the so-called D 
and N tables which are different from the 6 and a-tables 
used in the Routh approximation.

Given
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The D and N tables are:

D Table

“0 al a2 a3 * ‘ ‘ an

0 0 . . .

a l a 2 a 3 a 4 * * •

a'2 0 0 . . .

where = <*]_ a2 ~ a2 a1 u3
aO

a 3 = a 3 a 4 a 4 a-L “ 5

and so on.

N Table

a0

&1 32 03 04 . . . 0n

0 a3 0

*2 B3 p4

a), 0 0

(5.52)
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where $'2 = g2

and so on.

If each row and column containing a separating 
zero is omitted, we obtain the 6- and a- tables associated

to obtain the Lucas-Schwarz approximation. For example,

5.4.1. Time Moment Matching Property

Most of the order reduction techniques do not match 
some of the first-time moments between the system and the 
model. This leads to steady state errors in the responses 
to step and polynomial inputs. The time moment matching 
property is essentially a match of time moments of the 
system impulse response to those of the model.

The n order transfer function of the system

with G(s). The D and N tables do not have to be completed

4* Vithe (n-1) order Schwarz approximation of G(s) is

(5.54)

(5.15)
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G (s) —
61sn-1+...+6n
n , n-1, ‘s +a, s +...+a 1 n

can also be expressed in terms of the system impulse 
response g(t) as follows

00

G (s) = / g(t)e~stdt. (5.55)
0

“ s tThe power expansion of e about s = 0, leads to

00 00 2
G(s) = / g(t)e-stdt = / g (t){1-st+s2 ^  +...}dt

0 0

CO 00 oo 2
/ g(t)dt-s / tg(t)dt+s / g (t)dt+...
0 0 0

2mQ + mĵ s + m2s + ... (5.56)

where the constants rru 1 s are related to the time moments 
( M^'s by the following relation

m, = /“ t S d U d t  = i d i l  M (5.57)
x i. 0 ± '

for i = 0, 1, . . .
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Furthermore, from the direct division of equation (5.25) 
the constants m^1s are also given as follows:

*nm = —  o an

n j=lmi m 1  “n - A - J 1 (5-58>

for i = 0, 1, • • •

To overcome the steady state errors in the responses 
to step and polynomial inputs, the Schwarz approximation 
may be modified to build in the time moments matching 
property. The denominator of the reduced transfer func­
tion is still computed from the D-table to insure 
stability. But the denominator is calculated by equating 
the coefficients of s1 in the power series expansion,

+“ Vifor i = 0, 1, . . ., k-1, (for a k order model),

between the system and the model transfer functions.
This guarantees that the same steady state responses 
are given by the system and the model to step and poly­
nomial inputs up to degree (k-1).
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5.5. Modified Schwarz Approximation
i. i_Consider the n dimensional, asymptotical stable, 

completely controllable and observable system

z (t) = A z (t) + B u (t)b S

y (t) = cgz(t)

where the matrices A , B and C are obtained from thes s s
equations (5.2), (5.14) and (5.15).

Let K be an nxn symmetric positive definite
matrix

and satisfying the Lypunov equation

AgK + KAg + BsBg = 0 .  (5.59)

Using equations (3.50), (3.57) and (3.58), the expres­
sion (5.59) becomes:

ZV = W (5.60)
where

z = zn = n

n

n

Jn-1 n (n+1) „ n(n+l)
2 2

(5.61)
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^ -,„n(n+1)In' 22 2n' nnJ lx-

W=[0, 0, . •/ 0, 1] 1„n(n+l)

To demonstrate, consider n = 5 in which case

A5 "

0 2 0 • 0 0

"Y5 0 1 0 0
0 "Y4 0 1 0
0 0 "Y3 0 1
0 0 0 "y2 -y

--
1 O 0 0 0 0 0 0 0 0 0

-2^5 0 0 0 0 0 0 0 0 0

0 "Y5 0 0 0 0 0 0 0 0

0 0 _Y5 0 0 0 0 0 0 0

0 0 0 _y5 0 0 0 0 0 0
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and

" 0 2 0 0 0 0 0 0 0 0

“*4 0 X 0 1 0 0 0 0 0

0 “*3 0 1 0 1 0 0 0 0

0 0 “*2 0 0 1 0 0 0

0 -2Y4 0 0 0 2 0 0 0 0

0 0 -*4 0 “*3 0 1 1 0 0

0 0 0 “Y4 0 “*2 0 1 0

0 0 0 0 0 -2T3 0 0 2 0

0 0 0 0 0 0 ’*3 "*2 1

0 0 0 0 0 0 0 0 -2Y2 -2y

and

After some simple algebraic manipulations, we have

j = 0 for i j, i,j = 1, 2, 3, 4, 5

kii - ki+l i+1 for 1 - !< 2> 3- 511 Yn-i+l 1+1,1+1

k - J L55 2Yl

thus
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K diag{2Y1Y2Y3Y4Y5' 2y 1Y2Y3V  2YlY2Y3' 2Y]Y2' 2Y]_ '

In general,

= 0 for i ^ j and i,j = 1, 2, ..., n

kii y ki+lfi+l'n-i+1

or

kii = 2y - Yn-i+1
for i = 1, n-1

and
* = nn 2y -̂ •

Hence,

K = diag{ 2Y i n 2Yi (

or-

K ~ dia^{2? r~7r T' 2r 7 ~ r  7~;' * * * ' 2r ,r * *n-1/1 n,l n-2,1 n-1,1 01 11

(5.62)

.63)
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Astrom [13], working in the frequency domain, has de­
rived an equation, equivalent to the time domain 
equation (3.50). To introduce Astrom's result, let 
the impulse response energy be

1E = 2— t- J G(s)G(-s)ds (5.64)
J — j  00

where G(s) = C(sI-A)-1B

Let g(t) be the impulse response, i.e., the inverse
AtLaplace transform of G(s), is g(t) = Ce B

From Parseval1s theorem, equation (5.64) can be 
rewritten as

i g || = / g(t)gT (t)dt
0

or 00
E = I IgI I 2 = / g2(t)dt (5.66)

where ||g|| is the RMS value of g(t).
Astrom [13] has shown that

n of
E ‘ 217 (5’67)1=1 1
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where and <5̂  are obtained from the 6- and a- Routh 
arrays or the D and N tables for G(s).

1.ULet ^(t) be the impulse response of the k order 
Routh or Schwarz approximant, i.e., the inverse Laplace 
transform of Gk (s). Then

k " 2wj f . Gk (s)Gk (-s)ds” J m

or

O*
Ek - Ek-1 + j j t  (5-6S)

2
-  f  + sk-l,l 

k_1 2rklrk-l,l

for k = 1, 2, . . . , n, and Eg = 0.

that
Since all the 6^'s are positive, it follows from [61],

0 < E, < E„ < . . . < E„ = E — 1 — 2 — — n

Hence the impulse response energies of Routh or Schwarz 
approximants converge monotonically to the impulse response 
energy of the system.
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To estimate the participation of each state 
variable, Hutton et al. [61] , proposed to evaluate its 
contribution to the total impulse response energy to the 
output of the system, by computing the ratio E^/E. The 
order of the model is then determined by picking the smallest 
k for which the RMS value I I 9^I I is greater than about 90 
percent of ||g||. For the same purpose, Arumugan et al.
[11] proposed the following comparison process:

Y(a) If — n 1 > 10 for i = 1, . . . , n-2,
Yn-i-l

then the comparison is successful, where the figure 10 
is found to be satisfactory for the problems considered 
by the authors. This figure depends upon the variables 
of interest to be retained in the model.

Yn-i(b) If   < 1 the comparison process is
Yn-i-l

termined.

(c) If no comparison is successful, then the eigen­
values of the system are of the same order of magnitude, 
which implies that no reduction is possible.

4“ l*iIf the i comparison is the last successful one,
+"1*1then the system can be reduced to the k order, where

k = n-i and the last i state variables are assumed to
have negligible effects.



This comparison process is similar to Davison's 
dominance criterion [ 34 ], since the diagonal elements 
of the matrix K dictate the contribution of the input 
to the states. For the purpose of this analysis, the 
states to be retained are those associated with the 
elements of the diagonal matrix K with the highest magni­
tude. Once the dominant state variables are selected, 
the y^'s that are left are rearranged to give the

4" Vifollowing k order reduced model:

Zk (t)=

0 1 . . . 0 0 " "0 "

1 -< o • • • O o 0
• ■ • • 
• • • • 
• • • •

zk (t)+ •

0 o . . . 0 1 0

0 o . . . - y  2 “Y{ 1

u(t) (5.69)

yk (t) = [c£. o|] zk (t)

and transfer function
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In order to determine the a|'s and B|'s, let Pv(s) be 
the characteristic polynomial of the submatrix comprising 
the last k rows and columns of the Schwarz matrix As
of equation (5.15), then

P0 (s) = 1

p1 (s) = s + y1

p2 (s) = s2 + Yĵ s + y 2

p a (s ) = sp£_1 (s) + y ^p ^ ^ s )

(5.71)

p(s) = p (s) = sn + a,sn_1 + ... + a n 1 n

P g ( s )  is chosen so that the recursive definition of 
p^(s) is valid for I >_ 1.

Equations (5.71) can be grouped to form the following 
matrix equation
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P0 <s> ••• P o (s) PQ (s) ’ 1 0 . . .  0 o '
s ••• (s) 

• •

PX (S) s
•

1
•

. . .  0 0
•

• •
• •

s11"1 ... Pn- l (S) qn_i(s)

•
•

n-1s

••
sn-2 . . .  1

•
•

0
_sn ... s p ^ f s ) P n (s) ns sn_1 • • • s 1

where % - l (s) = (Pn (s>-tn+l,n+l)/s-
The (n+l)x(n+l) matrix is given as follows:

T4 =

'11 ‘’12 ‘ * In ln+1

'22 * ’ * 2n 2n+l

0

0

0

0

t tnn nn+1

'n+1, n+1

where

ID

0 for i > j
1 for i = 1 and j = 1, n+1

 ̂Yi for i = 2 and j = 2, ..., n+1

(5.72)

(5.73)

(5.74)
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and
t.. = t .  . , +t. _ . ~y . .1,3-1 i-2,3-2'j-1

for i = 3, . . . , n+1 and j = 3, .. . , n+1

Hence, p^ (s) - t ^  £+1s + t 2 ^A+1s + ... + t£+1^ +1 (5.75)

for SL = 0, 1, . . • , n

Therefore, the coefficients ct|, . . ., a£ of Gk (s) are 
determined as follows. Let

t! . =13

0 for i > j
for i = 1 and j _> 1 

2 and j > 1
1 for i = 

[_ for i =

and

*•13t ! j = t ! . . + t ! 0 . 0y .1 ,3-1 1-2

for i = 3, ..., k+1 and j = 3, ..., k+1.

  if k—1Also let Pfc(s) = s + a|s + ... + be the character­
istic polynomial of the model state matrix, then from 
equation (5.75) ,

?*<=> = tl,k+lsk+ t2,k+lsk'1 + + ‘k+l.k+l



177

thus

aZ = ti+l,k+l (5.76)

for i = 0, 1, . . ., k
and

a0 = fci,k+l = 1

Similarly, since the system and the model are supposed 
to have the same first k time moments, then from 
equation (5.58), the coefficients 6 j ' s are given by

Z
6k-JI = akm £ + (5.77)

for 1 = 0 ,  1, . . ., k-1. To determine the cutout vector 
Cgk/ we first need to find 6|,..., S£, using either the 
following sequence

1 Y i Y2 Y1Y 3 y 2y46 * J- • / t* i . J- J1! —  ^ f* | X O f | _  f1 “
•i ~ Z T T t  0 o "" ^TT / 0 o v i v i '  ° A  ~  v 'v ' ' R v 1 v 1 v 1 '  * * *1 Y|' 2 ’’ y 2 * 3 YiY 3' 4 Y 2Y 4X 5 Y3Y3Y5'

or the 5.array with a|,..., a£. Similarly, a|, ..., 
are found from the a array, with 8^, ..., 8£. Finally, 
the components of the model output vector Cgk are given as

-1 a 'c. = 1 for i 1, ••«, k1 o, . . . 0 .

This technique can be summarized by the following algo­
rithm.
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5.5.1. Modified Schwarz Approximation Algorithm

Given the state space representation (in canonical 
form), or the transfer function of the system (5.1),

(1) Construct the denominator and numerator Routh 
arrays using equations (5.27) a.nd (5.28).

(2) From equations (5.11) - (5.15), find the 
similarity transformation matrix T  ̂ and the Schwarz system.

(3) Using equation (5.62), form the Lyapunov matrix K.
(4) Determine the time moments of the origin system, 

using equation (5.58).
(5) Compute the impulse response energies and the 

ratio = 100 (E^/E), for k ~ 1, ..., n.
(6) Find the value of k for which (lOOE^/E) > 50, where 

the figure 50 seems to be very satisfactory for all the 
examples considered.

(7) Select the k diagonal elements of the matrix
K, with the highest magnitude, and their associated states.

(8) Rearrange the remaining components of the 
Schwarz matrix, according to equation (5.69).

(9) Find the coefficients of the k order model 
transfer function (5.70), using equations (5.76) and 
(5.77).

We now illustrate this algorithm by the following 
example.
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5.6. Illustrative Example

1̂*1Consider the following 5 order system matrices:

A =

-2.37305 -7.25625 -9.49688 -7.5625 -3.65

B = and C = [9.775, 7.125, 5, 6.5, 11.75]

and transfer function

_ 11.75s 4+6.5s 3 +5s 2+7.125s+9.775H(s) - —g  ̂ 3 2
s +3.65s +7.5625sJ+9.49688s +7.25625s+2.37305

The following calculations then follow.
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1
3.65

4.96062
4.63614
4.06696
2.37305

7.5625
9.49688
6.6061
2.37305

0
0

7.25625
2.37305

0
0
0
0

0
0
0
0
0
0

Numerator Routh Array

11.75 5
6.5 7.125

25.57215 2.13573
-1.53111 0
15.22507 0

0 0

9.775 0
0 0
0 0
0 0
0 0
0 0

The system poles are:
\ = -0.45 + jl.35
\2 = -0.45 - jl.35 
X3 = -0.75 
X. = -1 + j0.75 
\5 = -1 - j0.75
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then

1
2
3
4
5

3.65 
4.96062 
1.27018 
0.81985 
0.51186

0.27397
0.73579
1.06999
1.13995
1.71381

0i
3.21918
1.31032

-5.51583
-0.37648
6.41582

The similarity transformation matrix T2 is given by

T2 =

1 0 0 0 0
0 1 < 0 0 0

0.51186 0 1 0 0
0 1.33171 0 1 0

0.65015 0 2.60188 0 1

The Schwarz system matrices are then:

As =

0 1
■0.51186 0 ■

0 -0.81985
0 0
0 0

0 0 0
1 0  0 
0 1 0

-1.27018 0 1
0 -4.96062 -3.65
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Bs = [0, 0, 0, 0, 1]T

and
Cg = [15.22507, -1.53111, -25.57215, 6.5, 11.75].

This system is stable, controllable and observable. Its 
Lyapunov matrix is found to be

K = diag{0.05181, 0.02652, 0.02174, 0.02761, 0.13699} 
and

i mi E .l Ji (%)

0 4.11917 0 0
1 -9.59303 18.91267 40.78835
2 14.9555 20.07939 43.30459
3 -17.72749 34.29654 73.96625
4 23.5422 34.35871 74.10032
5 -35.68313 46.36783 100

Since J3 = 73.96625 > 50, the order of the 
model is 3 and the three diagonal components of K with 
the highest magnitude are k44 and and the
corresponding states are x^, x4 and x,.. Therefore, the
y, J

3 order model has the following representation
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0 1 0 " ~o ‘

z3 (t) = -1.27018 0 1 z3 (t)+ 0
0 -4.96062 -3.65 1

y3 (t) = [-12.14768, -18.80907, 24.53872]z3 (t) 

and transfer function

H (S ) = 1 9 •09 7 1 2 s 2 + 1 8 -8 0 9 0 7 s + 2 4 -59872
3 s 3+3.65s 2+6.2308s +4.63615

„ j
The 3 order model is stable, controllable and observable.

From Figure 5.3, we can see that the model step
response tracks the system step response.

For comparison purposes, we have also plotted, in
*thFigure 5.4, the step responses of the 5 order system,

4th, 3rd and 2nd order models,

where

« r„\ _ 10.45916s3+2.43484s2+3.35094s+2.616984 “ ~ 4 -------- 3------------ ?----- ---- ---------------s + 3 . 65s + 6 . 74266s + 6 . 5 0 4 4 5 S + 2 . 53914

and

H (s) = 20-43364s-32.55241 
2 s2+3.65s+4.96062
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From the plots of Figure 5.4, we notice that the 
major difference on the responses of the models is on the 
transient part of the outputs, and the only model with a 
minor difference from the response of the system is the 
3 order model.

5.7. Conclusion

In this chapter we have described the Routh and 
Schwarz approximations and their link. We have also 
introduced a new version of the Schwarz method. This new 
scheme combines the advantages of the Routh and Schwarz 
and can be used either for time domain or frequency domain 
design of reduced order models. An example has been 
worked out to illustrate the goodness of this new 
procedure.
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CHAPTER VI

CONCLUSION

6.1. Work In Retrospect

In this dissertation an attempt has been made to 
present, in an unified way, a survey of the existing 
technique of system order reduction. Due to the number 
of more commonly used methods and their characteristics, 
if one is interested in investigating some aspect of 
performance of order reduction problem, one should select 
the most appropriate method or a combination of methods 
to achieve one's goal. Unlike in any other theory, the 
order reduction problems have approximate solutions only. 
However, most practical objectives are not concerned 
with exact models, but rather with the ability to approxi­
mate systems which may be in some sense exactly reducible. 
Furthermore, the exact models are difficult, if not impos­
sible, to obtain. Therefore, a better understanding of 
the exactness of the model will assist in defining rational 
approaches to the approximation problems.

Some of the techniques have characteristics such 
as the measure of the degree of controllability and/or

187
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observability of the system. In Chapter III, a new 
algorithm for the computation of the controllability and 
observability Grammians is presented. This chapter 
introduces the mathematical material to be used in the 
chapter, following it. Chapter IV uses the combination 
of the aggregation and state feedback concepts to develop 
a technique that yields a reduced order model whose steady 
state output covariances and Markov parameters match 
those of the original system.

This aggregation method seeks to form a model whose 
state vector is a projection of the system state vector.
The projection is made on the most controllable subspace of 
the state space. Therefore, the controllability Grammian is 
used to define a measure of the controllability in certain 
directions of the state space. The reduced model is 
then obtained by truncating the least controllable state 
variables of the system. The advantages of this approach 
over other techniques is that it uses the projection of the 
original system and does not change the input and output 
vector dimensions. Hence, the method can be used for timef
invariant model reduction, time varying model, as well 
as for controller reduction.

Chapter V describes in great detail the Routh and 
Schwarz approximations and introduces a new version of
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the Schwarz approximation that matches the first r time 
moments of the system to those of the model. Unlike the 
Schwarz technique, this approach utilizes the impulse 
response energy of the system to predict the order of the 
model and the controllability Grammian to select the states 
to be retained in the model.

In Appendix A, a critical review of Eitelberg's 
model reduction technique is given in which it is shown that 
if the models obtained by this method are not controllable, 
then they are unstable and vice versa. In Appendix B, an 
algorithm for the computation of the frequency reponses 
of the system and the model is presented.

6.2. Directions for Future Research

The theory presented in the previous chapters relies 
on the use of the controllability Grammian. An interesting 
extension of this theory would be to include the obser­
vability Grammian to that the dominance measure would 
indicate the choice of the measured and manipulated variables 
which maximizes the controllability and observability 
Grammians of the system.

Similarly, the aggregation method of Chapter IV 
could be improved using the combination of the algorithms 
derived by Kwong [73] and Miminis et al. [88]. Further­
more, despite the need of model reduction of systems 
operating under varying conditions in areas such as
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aerospace control, navigation systems, etc., the time 
varying model reduction has not attracted much attention. 
Therefore, a more general version of the time varying 
analogy of the method proposed in Chapter IV deserves 
to be investigated. Another avenue for future research 
involves the further development of the techniques presented 
in the previous chapters to include one of the following 
items:

(1) controller or estimator reduction
(2) distributed system reduction
(3) delay system reduction
(4) two dimensional system reduction
(5) simplification of the singular systems with 

uncertainty.
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APPENDIX A

Equation Error Technique

Given an n-dimensional system,

x(t) = Ax(t) + Bu (t) 

y(t) = Cx (t)

Eitelberg [41] proposed a technique to determine the m- 
dimensional model:

x(t) = Arx(t) + Bru(t)

y(t) = Crx(t)

where the state vector x(t) reproduces the desired com­
ponents of x(t) and/or their linear combinations, such 
that xr (t) = Rx(t)
where R is an mxn reduction matrix and xr (t) contains all 
the components that influence the output directly so 
that C = CrR

In order to determine the parameters of the model, 
the author took the following approximation

204
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x(t) ~ xr (t) = Rx (t) 

and used the equation error

d (t) = xr (t) - Arxr (t) - BrU(t) 

instead of

d (t) = xr (t) - x(t)

To derive the following reduced order model 
matrices,

T T -1 Ar = RASR (RSR ) x

B = A RA_1B r r

where

0

and Q is a weighting matrix.

Note that the author is assuming that the original 
system is asymptotically stable, i.e., Re{A^(A)}<0, for 
1 <_ i £ n and completely controllable. Hence, if A^ 
is an eigenvalue of A and its associated nonzero 
left eigenvector such that v^A^ = v^A or v^A^A  ̂= v^I, 
then v.A.A = v.B ^ 0 and A "'"B ^ 0 .l i  l '
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Therefore, RA ^B ^ 'O'. Otherwise, no reduction takes
place. The purpose of this appendix is to show that the 
models obtained by the equation error approach are uncon­
trollable, if they are not asymptotically stable, i.e.,
R e { ( A r)} 0 for 1 £ i £ m, and vice versa.

(1) First, we have to show that if the model is not 
asymptotically stable, then it is not controllable and the 
transfer function of the model is reducible. In other 
words, more order reduction with pole shifting needs to 
be done. . Let A^ be an eigenvalue of Ar and suppose that 
A^ = 0. Let the characteristic polynomial of Ar be:

From the Cayley-Hamilton theorem, we have

since

X. = 0  and p(A.) = 0, then £ = 0  andl c l ^m
Am is a linear combination of Am-  ̂r r
consider the model controllability matrix

since

Br = ArRA-1B

it follows that



But rank RA ^B = m, hence

RA-1B . . 0

rank 2= in and rank [A.r
ninn „A ] < m r

0

Therefore, rank M < m, and the model is not controllable.c

(2) We now show that, if the model is not control­
lable, then it is not asymptotically stable. The Popov- 
Belevitch-Hautus (PBH) controllability test stated that:
If a model is not controllable then there exists a
nonzero left eicrenvector v . of A with X . , its associatedi r i
eigenvalue, such that

In other words, there exists a nonzero left eigenvector 
of Ar orthogonal to all the columns of B^, i.e.,

viU iI " V  V  = 0
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X . v. = v • A and v . B = 0 .x i  l r l r

From the Cayley-Hamilton theorem, we have

Am + £,Am_1 + . r S1 r . + £ ,A + £ 1  = 0 ^m-l r sm

The pre- and post-multiplication of this matrix equation 
by and RA ■''B yields

,rn,—1_ , _ ,m-l„,-1„v^A^RA B + ?2.̂ i r *

+ 5m-lviArRfl'lB + 5mviRA-lB = 0,

This equation can also be written as follows:

v • [A , l r ' ,Am ] ' r

RA-1B

RA-1B

’m-1

+ £ v •RA_1B = 0 m l

We can now prove the second part by contradiction. Sup­
pose that the model is controllable, but unstable, that is
X . = 0, then £ = 0l ^m

and
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RA_1B . . .  0

RA-1B

m-1

= 0

or

5m-m-1

[viArRA~1B,. ,v.AmRA-1B] ' x r = 0

Since B = A RA ^B and F. yt 0 for 1 < i < m-1, r r si ' — — '

we have

[v . B , v . A B , . l r' l r r
. ni“l_ 1 n 

• •' vi r r = 0

and

[v . B , X . v • B , l r' l i  r
. m— 1 n 1 r\

• Xi vi r “ 0

But X^ = 0, hence
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[v^Br, 0, • . . , 0] — 0

or

[1, 0, . . ., 0]viBr = 0 .

Thus. v.B = 0 .  This contradicts the assumption that i r •
the model is controllable. The model is uncontrollable, 
if it is unstable.

Therefore, the equation error method cannot be 
used if the high order system has very sensitive eigen­
values or an ill conditioned state matrix.



APPENDIX B

Computational Method for Evaluating the Magnitude 
and Phase of the Frequency Response of a System

Many small computers have compilers without the 
capability of complex arithmetic. To overcome this 
drawback, we will introduce an algorithm for the compu­
tation of the magnitude and phase of the frequency 
response of a continuous time invariant linear system, 
that does not require any complex arithmetic.

q(s)
P (s)

where n > m and <Xq = 1

or given the sequence {otQ , a^, . . ., an , $Q , . . ., .
Determine the magnitude | H (jw) | and phase ^CH(jw), 
associated with H(s).

Let the complex number s = a + jb, where a and b
are real numbers and j = /-I* and

Problem
Given the transfer function

l /  + S.s1""1 + ... + 6
H(s) = -2-S----^ = 1 ------------ 51a s  + a, s + . . . + a„ o 1 n
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E =
a b 
-b a

be a skew symmetric matrix.
To solve the problem above, we shall derive an algorithm 

which is based upon the mapping s4- > E. The- matrix E is 
also a normal matrix, it commutes with its complex conju­
gate transpose.

We now investigate the properties of the map

s = a + j b -<--->-E =
a b 
-b a

s* = a - jb-<— >* E* =
a -b 
b a

s + s* = 2a-<— >-E + E* = 2al.

ss* = a2 + b2< ---►  EE* = E*E = (a2 + b2)i.

where I2 is the 2x2 identity matrix. Then, this mapping 
preserves addition and multiplication, and it is 
actually an isomorphism. Therefore, E has all the 
properties of a complex number, and in particular,
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s2 = (a+jb)2 = (a2-b2) + j2ab<— ^ E 2 =
2 2 a -b 2ab

2 2 -2ab a -b

s3 = (a+jb)3 = (a3-3ab2) + j(3a2b-b3)-<------ >-E'

where

E3 =
3 0 , 2 - 2, ,3a -3ab 3a b-b
0 2. ,3 3 ,2-3a b+b a -3ab

then

s1 = (a+jb)1^ ---- >■ E1 =
Re{ ( a + j b ) I m { ( a + j b ) ^ } 

-Im{ (a+jb) ̂ } Re{ (a+jb) ■*'}

To determine the expressions for Re{(a+jb)1} and 
Im{(a+jb)1}, we have to use either Pascale triangle 
or the following two tables:
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n a11 a"-2b2 an-4b4 n-6.6 a b • • •

1 1 0 0 0 •

2 1 -1 0 0 •
3 1 -3 0 0
4 1 -6 0 0
5 1 -10 5 0
6 1 -15 15 -1
7
•

1
•

-21 35
•

-7

• 0

9

•

•

•

•

•

•

TABLE 1. Coefficients of Re{(a+jb)n }

Imaginary Part

n n-1a , n-3,3 b a b n-5,5 n-cL D 3 .
1 1 0 0 0
2 2 0 0 0
3 3 -1 0 0
4 4 -4 0 0
5 5 -10 1 0
6 6 -20 6 0
7 7 -35 21 -1
« • • • •

• • • • •

• • • •

TABLE 2. Coefficients of Im{
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since

i1 = (a+jb) — >  E1 =
ReCs"*"} Imts'*'} 

-Imts1} Re{s1}

n* 1and p(s) = aQs + a^s + ... + «n_^s + an

-,n ,n-lthen p(E) = a E + a.E + ... + a ,E + a I- c o 1 n-l n 2

where

p(E) = a
Re{sn } Im{sn }

-Im{sn } Re{sn}
+ ... + an

1 0 

0 1

p(E) =
"a Re{sn }+a1Re{sn"1}+ ... + a o 1 n

-aoIm{sn }-a^Im{sn ^}- ... -an_-^Im{s}

a Im{sn }+a.Im{sn "*"} + ... + a .Imts) o 1 n—l

a Re{sn }+a1 Re{sn ^} + ... + a o 1 n w

Re{aosn+a1sn-1 + ... + an>

-Im(a sn+a1sn~1 + ... + a } o 1 n

Im{aosn+a^sn 1 + ... + an > 

Re{a0sn+a1sn"1 + ... + an >
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Re{p(s)} Im{p(s)}

-Im{p(s)} Re{p(s)}

Hence p(s)<------>p(E),

and

1 Re{p(S)}

0 -Im{p(S)}

Let T be a similarity transformation matrix such that 
for b / 0,

- -
-a 1 -1 0 -1/b

T =
-b 0

and T =
1 -a/b

and E = T "'"ET c

0 -l/b a b -a 1
E =c 1 -a/b -b a -b 0

0 1 

- (a2+b2) 2a

Note that the eigenvalues of E and Ec are A^ = s and 
X2 = s*.
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Furthermore, = (T-1ET)il = T-1E^T

thus T-1p(E)T = T-1 (a En+an E11-1 + ... + a . E+a I ) t r o 1 n-l n 2

= aQ (T_1EnT)+a1 (T"1En-1T). + ... +

,-1Vi'T ET)+V 2

aQ (T_1ET)n+a1 (T-1ET)n_1 + ... +

,-1an_1 (T ET)+anI2

and

= p(T_1ET) = p(Ec)

1 1 1
p(E)

0
= TT~1p(E)TT-1

0
= T[T-1p(E)T]T_1

0

Tp(Ec)

then

Re p(s) 0 -a 1
= Tp(E ) T =

-Im p(s) 1 -b 0
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To compute p(Ec) , let Zq = such that

_n+l
Ec Z0 = and let, for example, n = 4, then

p(Ec) = a0Ec + + a2Ec + a-:iE3~c + a4I2

and
- -  - — -

P (Ec) 0
1 - “0EO

0
1 + “lEc

0
1 + a2Ec

0
1 + a3Ec

0
1

+ a.

or
- -

P (Ec} 0
1

5 4 = E zn + anE c 0 0 c
0
1 + “lEc

0
1 + a2Ec

0
1

- ■* •
0 0

+ a4
1 1-* - •* -

We now apply Horner's rule to this expression:
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P(EC) E {E4zn+a„E3 C C 0 O r .

0 0 0 0 0 0
1

+a, E 1 c 1
+a0E 2 c 1 +a3 1

}+a4
1

E {E {E3z_+a.E2 c c c 0 0 c
o'
J

o' o’ o' 0 ’

r—1 +alEc 1 +a2
1 }+a3 }+a4 1

P<Ec> - <Ec{Ec{EolE^ 0 + 0Ec|
0 o 

1

0

i o

+a^

i i
—1

i

}+a2
i 

--
M

I

}+a3

« i 
M

}+ a 4

' 
(—*
 

t

“ -0 0 0 0 0
“ tEc{W Ec{V o +0,0 1

}+a1
1 }+a2 1 }+a3 1 }+a4 1

From this rearrangement, we have

Z1 ~ Ecz0 + a0

z _ = E z, + a, 2 c l  1

with Zq =
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z4 = Ec z3 + a3

z5 = Ec Z4 + a4

In general,

2n+1 = V i  + for £ = 0 , 1 ,  . . ., n

and

’o' 'o"
P(EC) 1 zn+l with Zq =

0 _

Let a + jg p(s) = Re{p(s)} + jlm{p(

thus

a Re{p(s) }
= p(E)

V
= Tp(E )

"o"
-Im{p(s)} _0_ _1 _

or
a ' -a 1 ”

_-3 _
" Tzn+1 = -b 0 _

Jn+1
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The same procedure can be repeated for the numerator 
of H (s) .

Let AN and AD be the numerator and denomi­
nator arrays of H(s) defined as

AN =

Bo
el

• and AD =

a0
al

•

m-1
I3™m

an-l
an

In order to use this algorithm, we have to introduce 
the following notation

AN ( j) = 8 ^ for j = 1, . . m+1

AD ( i) = ai_1 for i = 1, . . ., n+1

and
x.

z =
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Algorithm
Given the array AR which is either AN or AD and NM 

which is either M or N, compute the magnitude and phase 
of q(s) or p (s)

+ AR (I)

e V /2

"o 1
2 2 - (a +b ) 2am •“

(1) Let NM1 = NM +
(2) xl ;= 0
(3) x2 = 0
(4) TA := 2a
(5) TB ^ 2= a + b2
(6) Begin I = 1, •
(7) Let TC == xl
(8) xl == x2
(9) x2 =: TA* x2

(10) end loop in
(11) a = x2 - xl
(12) 8 = xl *b
(13) magnitude =
(14) phase = tan

2i

Comments
O'

since zt+1 = Vczt + at ^
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then

xlH+l x2H

x2l+l
-(a2+b2)-xl^+2*a*x2 +a^

or

xl

x2
£+1

£+1 -TB-xl£+TA-x2£+AR(£)

and

a -a l”
-3 -b 0 'n+1

-a ■ xl , i + x2 , , n+1 n+1

-b- xln+1

Thus,

a x2n+l- a ‘Xln+l’
3 _ 13' xln+l

In control systems theory, the frequency response 
of a continuous time invariant system is obtained by 
replacing s with jw (i.e., a = 0 and b = w), in the



transfer function H(s), as w varies between two fixed 
values.

Since H(s) = q4-s| p(s)

and

H (jw) = H(s) I g_jw= | H (jw) |eD
4  H (jw)

Hbw) .^:p(jw)
|p(jw) jeJ

q (jw)
p (jw)

(4q(jw) -4p(jw))

then

|h (jw)| = q( jw) 
p (jw) and -4 H (jw) = *£q(jw) -£p (jw)

Let q (jw) = aq + j$q and p(jw) = ap + jgp 

Therefore the algorithm should be used twice to compute
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-£H(jw) = tan "*"(— )- tan )J a aq P

Re(H (jw) } = | H (jw) | cos (-4-H( jw) )

and

Im{H (jw) } = | H (jw) | sin (-4-H (jw) )

For absolute stability analysis, it is usually 
enough to have a rough sketch of H(jw), since only the 
intersects on the real axis of the complex plane are to be 
determined. However, for complex systems and system 
designs, these computations may be too tedious to handle 
and sometimes it may be necessary to know more about the 
plot itself before the final sketch is made correctly. 
Therefore, based on the previous algorithm, a FORTRAN 
computer program is given in Table B.l, for the compu­
tation of the magnitude and phase to be used for the Bode 
plots, as well as the real and imaginary parts of H(jw) 
for the Nyquist plot. The time delay elements can be 
included only if a finite number of terms of the 
exponential function expansion are retained in the 
transfer function.



* THIS PROGRAM COMPUTES THE MAGNITUDE AND PHASE
» OF THE FREOUENCY RESPONSE FOR VARIOUS FREQUENCIES* N IS THE DEGREE OF THE DENOMINATOR* M IS THE DEGREE OF THE NUMERATOR
* NP IS THE NUMBER OF POINTS IN EACH DECADE
* ND IS THE NUMBER OF DECADES IN THE FREOUENCY VARIATIONI ST IS THE STARTING FREQUENCYDIMENSION PUG) ,AD(3) , AN<2>

REAL MREAL,MXMAGREWIND 6
NP® 10ND«5N=2M«1
N1«N+1 M1«M+1 ST=0.1
PI«4.0*ATAN<1.0>GAIN-1.0 WRITE<6,10)

10 FORMAT(25X,'FREQUENCY RESPONSE',/)WRITE <6,20)
20 FORMAT <5X,’OMEGA',7X,'AMGS’,8X,'AMDB’,8X,* MREAL',* 7X,'MIMAG',6X,'PHASE',/>DO 30 I«l,Nl HEAD(5,40) AD(1>30 CONTINUE40 FORMAT(F10.5)

DO 50 I»1,M1 READ(5,60) AN(I)SO CONTINUE60 FORMAT <F10.5)DO 70 L“1,NP 
70 P(L>"FLOAT(L)SIGMA-0.0 DO SO 1-1,ND 

DO 80 J»1,NPOMEGA»ST*P(J) * <10.0** (1-1) )
CALL SPECT(AD,SIGMA,OMEGA,ALPHD,6ETD,Nl>
AMGD-SURT <ALPHD**2+BETD**2)
CALL CMPHS(ALPHD,BETD,PHASD)
CALL SPECT(AN,SIGMA,OMEGA,ALPHN,BETN,Ml) 
AMGN»SURT(ALPHN**2+BETNM2>CALL CMPHS(ALPHN,BETN,PHASN)AM6S»GAIN*AMGN/AMGD AMDB-20.OtALOGlO <AMGS)PHASE®(PHASN-PHASD)* 180.O/PI MREAL"AMGS*COS(PHASN-PHASD)
MIMAG«AMGS*SIN(PHASN-PHASD)WRITE(6,90) OMEGA,AMGS,AMDB,MREAL,MIMAG,PHASE 80 CONTINUE

90 FORMAT(5E12.3,1E11.3)STOPEND

TABLE Bl. Main Program
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SUBROUTINE SPECT(AR,SIGMA,OMEGA,ALPHA,BETA,N) 
DIMENSION AR (N>X1"0.0X2*0.0TAS2.OtSIGMA TB-SIGMA**2+0MEGA**2 DO 10 Lmi,N TC*X1 X 1*X2
X2=TA*X2-TB*TC+AR(L>

10 CONTINUE
ALPHAeX2-Xl*SIGMA&ETA=X1*0MEGA
RETURNENDSUBROUTINE CMPHS(ALPHA,BETA,PHASE) PI»4.0*ATAN<1.0)
ALP«ABS(ALPHA)BET=ABS(BETA)IP (ALPHA.EQ.0.0.AND.BETA.EQ.0.0) THEN 
MR1TE(6,10)10 FORMAT(10X,’ERROR IN THE COMPUTATION*,/)ELSE IF (ALPHA.LT.O.O.AND.BETA.EQ.0.0) THEN 
PHASE-PIELSE IF (ALPHA.GT.0.0.AND.BETA.EQ.0.0) THEN 
PHASE-O.OELSE IF (ALPHA.EQ.0.0.AND.BETA.GT.0.0) THEN 
PHASE-P1/2.0ELSE IF (ALPHA.EQ.0.0.AND.BETA.LT.O.O) THEN 
PHASE— P 1/2.0ELSE IF (ALPHA.LT.O.O.AND.BETA.GT.0.0) THEN 
PHASEapI-ATAN(BET/ALP)
ELSE IF (ALPHA.LT.O.O.AND.BETA.LT.O.O) THEN 
PHASE*PI+ATAN(BET/ALP)ELSE IF (ALPHA.GT.0.0.AND.BETA.LT.O.O) THEN 
PHASE— ATAN (BET/ALP)ELSE
PHA5E*ATAN(BET/ALP)
END IF 
RETURN 
END

TABLE B1 (Continued). Subroutines.
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OMEGA AMGS AMOG MREAL MIMAG PHASE

, 100E+00 . 100E+01 .42BE-01 .100E+01 -.424E-01 -.242E+01
.200E+00 .1G2E+01 .163E+00 . 101E+01 -.907E-01 -.310E+01
, 300E+00 . 1G4E+01 .339E+00 .103E+01 13GE+00 -.B29E+01
,40GE+00 . 1G6E+01 .335E+00 . 104E*0l -.224E+GO 122E+02
s o o e+o o .10BE+01 .706E+G0 . 104E+01 -.313E+00 167E+02
1600E+C0 .110E+01 .807E+00 .102E+01 -.4UE+00 -.220E+02
70GE+00 .110E+01 .79BE+00 .970E+00 -.510E+00 277E+02
,BOOE+GO .108E+G1 .659E+00 .B9BE+00 —.39BE+G0 337E+02
900E+00 .10SE+01 .3B7E+00 .B07E+00 —•663E+00 393E+02
100E+01 .100E+01 .131E-02 .707E+00 -•707E+0G -.430E+02
IGuE+Gl .1G0E+01 .131E-02 .707E+00 707E+0G -.430E+02
200E+G1 . S42E+00 -.531E+01 .136E+00 -.319E+00 -.733E+02
300E+01 •349E+00 -.914E+01 .376E-01 — •344E+00 -.B03E+02
40GE+01 .257E+00 11BE+02 , .297E-01 -.2S5Ef00 -.B34E+02
SGOE+Ol .2G4E+G0 13BE+02 .1B1E-G1 -.203E+00 — •B49E+02
6G0E+01 .169E+G0 134E+02 . 123E-01 16BE+00 B3BE+02
7C0E+01 .144E+G0 168E+02 .BB6E-02 144E+00 -.B65E+02
BOGE+Ol .12&E+GG 1BGE+02 .671E-G2 126E+00 B69E+02
90GE+01 .112E+00 190E+02 .326E-G2 112E+GO -.873E+02
IGOE+G2 .10GE+00 -.2G0E+O2 .424E-02 100E+00 -.B76E+G2
1G0E+02 .IGGE+OG -.20GE+02 .424E-02 lOOE+OO -.B76E+02
20GE*02 .SG1E-01 -.2A0E+02 .104E-02 -.5GIE-01 -.B8BE+02
300E*02 .334E-01 -.295E+02 .461E-03 -.333E-01 -.B92E+02
4GGE+G2 .230E-01 -.32GE+02 .239E-03 -.230E-01 -.B94E+02
30CE+02 .2U0E-01 -.340E+02 .166E-03 -.200E-01 -.B93E+02
6GGE+G2 .167E-GI 3S6E+02 . USE-03 167E-01 —•896E+02
700E+02 .143E-01 -.369E+02 .B43E-04 143E-01 -.B97E*02
BOOE+G2 .12SE-GI , 3B1E+G2 .647E-04 125E—01 B97E+02
900E+02 .ItlE-Ol -.391E+02 • 31IE-04 111E-01 -.B97E+02
1GOE+03 .1GGE-GI -.400E+02 .414E-04 100E-01 89BE+02
IOGE+G3 .IGOE-Ol -.400E+02 •414E-04 100E-01 -.B9BE+02
200E+03 .S0GE-02 -• 460E+02 .104E-04 -.300E-02 -.B99E+02
300E+03 .333E-02 -.49SE+02 .460E-03 333E-02 B99E*02
4G0E+03 .23GE-02 -.320E+02 .239E-G3 -.230E-02 -.B99E+02
300E+03 .200E-02 540E+G2 .166E-03 -.200E-02 -.900E+02
6G0E+03 .167E-G2 -.356E+02 .113E-03 167E-02 -.900E+02
7GGE+G3 .143E-02 -.369E+02 .B43E-06 143E-02 -.90OE+O2
B00E+G3 .123E-02 -.381E+02 .647E-06 123E-02 -.900E+02
9GGE+G3 .111E-02 -.591E+G2 •SllE-08 -.1UE-02 -.900E+02
1GGE+04 .1GGE-02 -.600E+G2 •414E-Q6. 100E'C)2 900E+02

TABLE B2. Frequency Response

Table B2 gives the results for the transfer 
function

H (s) = Gain ---------- , Gain = 1.0
s +1.414s+l

4with s = jw and w varies from 0.1 to 10 rad/sec.
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In Table B2,
OMEGA represents the frequency w rad/sec.
AMGS represents the magnitude |H(jw)|.
AMBD represents 20 log^O |H(jw)|.
MREAL represents the real part of H(jw), i.e.,{Re H(jw)}
MIMAG represents the imaginary part of H(jw), i.e.,

Im(H(jw)}.
PHASE represents the phase of H(jw), i.e. , H (jw) 

in degrees.

Observations
(1) If the numerator and/or the denominator 

of the transfer function H(s) are given as products of 
first order factors, i.e.,

(1+T ,s)(l+T 0s) . . . (1+T s) u i„\ nl n2 nm
* ' (1+Tdls)(1+Td2s) . . . (1+Tdns)

or

H (s) =
T ,T ~ . . . T (T . + s)(T 9 + S)' • • (T +S)nl n2 nm . nl n2 nm
TdlTd2 ’ • • Tdn (=i- + s) (-L- + s) . . . (-L. + s)

dl d2 xdn

Then H(s) has to be changed to the following form:

3 sm + 3 sm_1 + ... + 3  ,,, . _ . o l mH (s) = Gain ---------- — -̂-----------
a s  + a sn-x + ... + a 0 1 n
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where
T T T

Gain = -iL1 n?------------ , an = 1 and n > m
dl d2 1 ‘ ‘ dn

The coefficients of the numerator and/or the denominator 
are then computed as follows:

0coef(£) = (-1) l (products of the roots taken
£ at the time)

for £ = 0, 1, . . . , r

(a) Numerator

roots are for i = 1, . . m
ni

coef(i) = Bi for i = 0, 1, . . m

(b) Denominator

roots are -sr̂ —  for i = 1, . . . , n 
di

coef(i) = ai for i = 0, 1, . . n
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Using the previous expression, a computer program 
can be written to calculate the coefficients of 
the transfer function to be used in the algorithm.

(2) The algorithm can be used to compute the 
frequency response of a discrete time system, by replacing 
s = a + jb = a + jw with z = e-̂ w,r = coswT + jsinwT, 
then

E =
a w 
-w a

becomes

E =
coswT sinwT 
-sinwT coswT

E is a rotation matrix, and it satisfies all the properties 
of e^wT. The map e^wT-<— >* E is an isomorphic map.

!
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