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Abstract

An LDRD funded approach to development of reduced order models for systems with local

nonlinearities is presented. This method is particularly useful for problems of structural

dynamics, but has potential application in other fields. The key elements of this approach

are 1) employment of eigen modes of a reference linear system, 2) incorporation of basis

functions with an appropriate discontinuity at the location of the nonlinearity.

Galerkin solution using the above combination of basis functions appears to capture the

dynamics of the system with a small basis set. For problems involving small amplitude

dynamics, the addition of discontinuous (joint) modes appears to capture the nonlinear

mechanics correctly while preserving the modal form of the predictions. For problems

involving large amplitude dynamics of realistic joint models (macro-slip), the use of ap-

propriate joint modes along with sufficient basis eigen modes to capture the frequencies of

the system greatly enhances convergence, though the modal nature the result is lost.

Also observed is that when joint modes are used in conjunction with a small number of

elastic eigen modes in problems of macro-slip of realistic joint models, the resulting pre-

dictions are very similar to those of the full solution when seen through a low pass filter.

This has significance both in terms of greatly reducing the number of degrees of freedom

of the problem and in terms of facilitating the use of much larger time steps.

3



Acknowledgment

The author thanks Thomas Burton of New Mexico State University for alerting the author

to the papers of Milman and Chu as well as for several helpful suggestions for exploration

of the methods presented here. Thanks are also due to the author’s colleagues Todd Grif-

fith, James Lauffer, Garth Reese, and Matt Hoplins at Sandia National Laboratories for

reviewing versions of this report and making many helpful suggestions.

4



Contents

1 Introduction 7

2 Formulation 9

Galerkin formulation for a System of Localized Nonlinearity . . . . . . . . . . . . . . . . 9

Reference Linear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Galerkin Solution, Modal Truncation, and Slightly Nonlinear Systems . . . . . . . . . 11

Problems of Larger Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Joint Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Eigen Vector Sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Milman-Chu Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Model Reduction for a Structure Containing a Mechanical Joint 15

Whole-Joint Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

The Four-Parameter Iwan Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Numerical Results for Problems of Micro-Slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Numerical Results for Problems of Macro-Slip . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Implementation in the Context of Finite Element Analysis 21

Automatic Determination of Special Vectors and Matrices . . . . . . . . . . . . . . . . . . 21

Algebraic Vector Fj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Gradient Matrix KN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5



Milman-Chu Algebraic Vector y
MC, j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Employment in Conjunction with Component Mode Synthesis . . . . . . . . . . . . . . . 22

How Many Modes? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Conclusion 25

References 31

6



Model Reduction of Systems with

Localized Nonlinearities

Chapter 1

Introduction

Though the weapons program has access to massively parallel computers and has finite

element code that can employ many processors simultaneously, the resulting numerical

predictions often are difficult to interpret physically. This difficulty is particularly frustrat-

ing in the area of structural dynamics where modal analysis has historically been a major

tool both for calculation and for interpretation. Once the nonlinearity of the structure has

been acknowledged, modal analysis no longer applies and the remaining tools are awkward

to apply and without intuitively obvious physical meaning. The need to address this issue

motivated the LDRD funding that made the work discussed in the following possible.

The method presented here provides a partial resurrection of modal analysis in the context

of nonlinear structures whose nonlinearity is local in nature. Though for problems of large

size or complexity it is still be necessary to employ large computing resources in order to

exploit the method presented here, two major advantages are gained:

1. The results are presented in terms of modal coordinates so that often the predictions

lend themselves to direct physical interpretation.

2. The reduced order system runs so quickly that many calculations over long periods of

time can be run casually. Force boundary conditions can be changed and the system

can be recalculated with minimal difficulty or additional computer resources.

The most straight-forward approach to model reduction for nonlinear systems is that of

employing assumed modes in a Galerkin formulation. (A good discussion on Galerkin

methods can be found in [5].) This is the approach most often used in problems of modest

and diffuse nonlinearity and it is often very successful. As one would expect, the success of

a Galerkin approach depends largely on whether the set of basis functions employed span

the space of the full solution. We shall see that in cases of localized nonlinearities, it is
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necessary to include within the basis functions ones that can accommodate the locality of

the nonlinearity. Examples are provided.

The initial portion of this report employs mathematical quantities specific to interfaces.

How one evaluates those quantities is discussed in a following section.The presentation

that follows focuses specifically on problems of structural dynamics, but one anticipates

that these techniques could be applied to model reduction of other classes of problem char-

acterized by local nonlinearity.
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Chapter 2

Formulation

Galerkin formulation for a System of Localized Nonlinear-

ity

Here we assume a discretization has already been performed - probably by a fine level

Galerkin finite element process. The governing equation now has the following nonlinear

differential-algebraic form:

Mü+Cu̇+ K̂u+∑
j

f j(s j,{ζ j})F
j = fx(t) (2.1)

Above M is the mass matrix and C is the damping matrix, the f j are (nonlinear) forces

acting between node pair j of the system and fx is the vector of external loads. The non-

linear interface force f j is a function of the distance s j between node pair j and of state

variables {ζ j} that evolve along with s j. The matrix K̂ captures the linear elasticity of the

rest of the structure; it is the stiffness matrix of a conventional finite element code, where

the nonlinear interfaces are ignored.

The vector F j captures the direction of forces between the node pair j (system degrees of

freedom j1 and j2) and is related to nodal kinematics by

F
j

k = ∂s j/∂uk (2.2)

where uk is the kth degree of freedom of the finite element discretization.

The Galerkin procedure begins with some assumed deformation modes {yk} so that the
kinematics of the problem can be approximated by

u(t) = ak(t)yk (2.3)
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The coefficients {ak(t)} are referred to as generalized coordinates. Here and in the follow-
ing, summation on repeated indices is assumed.

The next step is to assert that the residual is orthogonal to the each of the assumed defor-

mation modes:

yT
n Myk äk + yT

n Cyk ȧk + yT
n K̂yk ak + f j(s j,{ζ j})yT

n F j = yT
n fx(t) (2.4)

for each yn. This is simplified as

M̃ ä+C̃ ȧ+ K̃ a+ f j(s j,{ζ j}) F̃ j = f̃x(t) (2.5)

Ideally, one can obtain adequate solutions to the nonlinear system with far fewer basis func-

tions yn than the degrees of freedom of the original finite element formulation. The success

of a Galerkin approach generally hinges on the appropriate choice of basis functions.

Reference Linear System

The first basis functions that come to mind are the eigen modes of a reference linear system.

Say that at small loads, our interface forces can be approximated as

d f j(s j,{ζ j}) =
∂ f j(s,{ζ j = 0})

∂s

∣

∣

∣

∣

s=0

ds j = k j ds = k jF
j du (2.6)

In that range of small loads, the governing equation (Eq. 2.1) becomes

Mü+Cu̇+K0u = fx(t) (2.7)

where

K0 = K̂ +∑
j

k j F j F jT (2.8)

The use of a subset of the eigen modes of the reference linear system (RLS) in the linear

system itself is the familiar modal truncation. Modal truncation of a RLS is illustrated on

the structure depicted in Figure 1. The eleven unit masses of this system are connected by

springs of unit stiffness. An external triangularly shaped impulse of duration equal to one

quarter of the longest period is applied to the mass at the free end. It is primarily the first

mode that is excited, so one expects modal truncation to serve as a good approximation

to the full system. Indeed Figure 2 shows modal truncation to be quite adequate for this

problem. In this figure and in other kinetic energy plots, the legend refers to the envelopes

of the kinetic energies.
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Galerkin Solution, Modal Truncation, and Slightly Nonlin-

ear Systems

Let’s now consider a system that is just slightly nonlinear. We supplement the unit spring

between the 5th and 6th masses of the structure in Figure 1 with a slightly nonlinear spring

so that the net force between the masses is

f (s) = K1s+K2s
3 (2.9)

where K1 = 1 and K2 = 50. This structure is shown symbolically in Figure 3. Here we
consider a very low amplitude (peak force F0 = 0.05) externally applied impulse so that
only a little of the nonlinearity is manifest (see Figure 4 for the force displacement plot.).

Here the full solution of the nonlinear system of eleven differential algebraic equations is

our truth model.

We use eigen modes of the reference linear system as basis functions in the Galerkin for-

mulation. Examination of the kinetic energies predicted by our truth model and the reduced

models are shown in Figure 5. The good agreement between the predicted kinetic energies

argues that for this case, a Galerkin procedure using eigen modes of a RLS can yield good

approximation.

Another indication of the adequacy of the RLS modes to capture the response of the slightly

nonlinear system is a comparison of the singular value decomposition (SVD) modes of the

solution of the full nonlinear system with the RLS eigen modes. (A good discussion on

using SVD to explore the properties of nonlinear systems can be found in [6].) Figure 6

shows the first SVD mode and the first RLS eigen mode to be nearly identical. Figure 7

shows that it is only the first SVD mode that plays a significant role in the response to the

low amplitude triangular impulse.

Problems of Larger Nonlinearity

Problems of even large nonlinearity are often quite amendable to Galerkin approximation

employing modes of neighboring linear systems. Generally those successes are ones where

the nonlinearity is diffused smoothly through a significant part of the structure. We show

in this section examples of problems where the nonlinearity is very local in nature and the

eigen modes of a reference linear system are a less adequate basis.

Consider an eleven-element nonlinear structure identical to that discussed above (Figure

3), but subject to a higher amplitude triangular impulse. The force-displacement curve of

the parallel linear and cubic springs is shown in Figure 8 where significant nonlinearity is

observed.
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This problem is much less amenable to Galerkin solution using the RLS eigen modes.

Figure 9 shows the kinetic energy of the system over time predicted by the full nonlinear

solution and by various levels of Galerkin approximation. Not only is approximation by five

modes inadequate, but approximation by even ten modes results in significant error. Only

when the number of modes is equal to the total number of physical degrees of freedom of

the system does the kinetic energy predicted by a modal approximation match that of the

full nonlinear solution.

The source of the difficulty of performing model reduction of systems of local nonlinearity

is suggested in Figure 10 where the first SVD mode of the full nonlinear solution and the

first eigen mode of the RLS are shown. We see an apparent discontinuity in the SVD

mode. Because there is a stiffening spring between the 5th and 6th masses, there is less

deformation there than in the corresponding mode of the RLS. One should not be surprised

that attempting to capture this apparent discontinuity with a sum of modes of the RLS

would result in a Gibbs’ type phenomenon requiring a very large number of modes.

Joint Modes

One anticipates that discontinuities such as that illustrated in the SVD mode of the above

problem will be characteristic of systems with local stiffness nonlinearities. So one should

expect to encounter convergence issues when using approximation by modes of a reference

linear system. One well-known approach to accommodating analogous problems in Fourier

analysis is to subtract out the discontinuity; that is to augment the basis functions with a

simple function sharing the discontinuity of the function to be approximated.

Two candidate classes of basis function were examined for this study. The first is one

associated with eigen vector sensitivity analysis and the second is one associated with the

static response of the RLS to self-equilibrating loads.

Eigen Vector Sensitivities

The term eigen vector sensitivity can mean the sensitivity of eigen vectors of a matrix sys-

tem to small perturbations of those matrices or it may refer to sensitivities of the eigenvec-

tors of a mechanical system to physical parameters of that system. The concepts presented

here fit into both categories.

Consider a mechanical system with a nonlinear but differentiable connection between de-

grees of freedom x
J1
and x

J2
and that the tangent stiffness at zero load of that connection is

kJ . As before, the stiffness matrix for that reference linear system is K0 and the mass matrix

is M. We select an eigen mode, V J
m, of the reference linear system that causes significant

deformation at connection J.
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Consider also another linear system that differs from the reference linear system only in

the stiffness at connection J, where the stiffness is kJ + δkJ . The mth eigen mode of this

perturbed system is V J
m + δV J

m and the sensitivity of the mth eigen mode with respect to

stiffness at the connection is

V̂ J
m = δV J

m/δkJ (2.10)

Because the eigenvectors of the perturbed systems differ from those of the reference system

primarily in the displacement across the connection, sensitivity vectors will manifest a

discontinuity at the connection location. The reasoning presented above to explain the slow

convergence of a Galerkin procedure using only the eigen modes of the RLS would argue

that the discontinuity found in these perturbed eigen modes could make them valuable in

accelerating the convergence of the Galerkin process. The sensitivity of the first eigen

mode of our example system with respect to the stiffness of the connection between the 5th

and 6th masses is shown in Figure 11.

The strategy proposed above is illustrated in Figure 12. Here we see that a Galerkin basis

that consists of the first four eigen modes of the RLS and the sensitivity mode presented

in Figure 11 almost exactly captures the kinetic energy predicted by the full nonlinear

solution. In fact, even the use of just one eigen mode along with the sensitivity mode does

a pretty good job of predicting the kinetic energy (Figure 13).

Milman-Chu Modes

In addressing the optimal selection of dampers for linear systems, Milman and Chu ([1],

[8])introduced basis functions obtained by solving the statics problem of self-equilibrating

loads acting between the degrees of freedom where the linear damper was intended. A

character of these basis functions is that they have a discontinuity at the location of that

connection.

Milman and Chu referred to their basis functions as Ritz vectors. Because this term is so

general as to be unhelpful in the context of the work reported here, we refer to their basis

functions as Milman-Chu vectors.

The Milman-Chu vector for our reference linear system is shown in Figure 14, where that

anticipated discontinuity is manifest. In Figures 15 and 16 we see that the Milman-Chu

vectors perform almost identically as the eigen mode sensitivity vectors in accelerating the

convergence of the Galerkin procedure. A major advantage of the Milman-Chu modes over

the eigen mode sensitivities is that they can be calculated much more economically. Since

the Milman-Chu (M-C) vectors perform as well as the eigen mode sensitivity vectors, they

are used exclusively in the following.

In the calculations presented, the M-C vectors were made orthonormal with respect to the

mass matrix to each of the eigen modes employed. This in no way changes the configura-
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tion space available to the Galerkin algorithm, but it makes interpretation of the calculated

generalized coordinates easier.
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Chapter 3

Model Reduction for a Structure

Containing a Mechanical Joint

The major source of nonlinearity in structural dynamics is the localized frictional slip pro-

cesses at interfaces in mechanical joints. The two important qualitative properties of me-

chanical joints - softening and dissipation - are illustrated in Figures 17 and 18. With

respect to the first figure, one sees that under small load, the force-displacement curve ap-

pears nearly linear, though there is some amount of micro-slip and dissipation taking place

even there. At larger loads, the force-displacement curve begins to level off and at very

high loads macro-slip takes place and the tangent stiffness goes to zero. The second figure

shows the power-law relationship between the amplitude of oscillatory load and the dissi-

pation per cycle that is commonly seen experimentally over large load ranges. Mechanical

joints manifest very little rate dependence.

The usual process of dealing with the presence of joints in structural dynamics is to rep-

resent the joint compliances by tunable springs and to represent the joint dissipation by

modal damping. The resulting tuned linear models are of course of little value except at the

excitation amplitudes at which the structure is calibrated. A discussion of the limitation of

such approaches can be found in [11].

A interesting feature of mechanical joints that increases their interest in the world of non-

linear model reduction beyond their practical importance is the intrinsic path dependence to

their force-displacement properties. This feature is referred to as non-locality in the sense

that the full state of the system cannot be known solely from the current values of kinematic

variables and their rates. The nonlocality would appear to proscribe rigorous application of

a number of otherwise powerful mathematical tools - including the use of nonlinear normal

modes.

We shall introduce a particular constitutive model for joints so that we may explore the

model reduction technique of this report in context of problems of practical importance.
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Whole-Joint Approximation

Modeling the complexity of interface mechanics in the midst of structural dynamics cal-

culations would be impractical. A tractable approach involves the introduction of a class

of approximation that reduces the complexity of the contact problem to a small number of

scalar constitutive equation. This approximation constrains the kinematics of all degrees

of freedom on each side of the contact patch to a single kinematic variable. Correspond-

ing kinematic variables on opposite sides of the interface are connected by a single scalar

constitutive equation each. Such approximations are called “whole-joint” models. The

whole-joint approximation currently employed in Sandia codes imposes multi-point con-

straints to cause surface nodes on each side of the interface to be constrained rigidly to a

centralized node on that surface (Figure 19). In the absence of more complete knowledge

of joint physics, the constitutive equations for the six relative degrees of freedom are treated

as being independent.

The Four-Parameter Iwan Model

A constitutive equation consistent with the more important qualitative joint behavior ob-

served experimentally is the four-parameter Iwan model discussed in [10] and [12]. This

model is an instance of Iwan’s parallel-series configuration ([3], [4]) represented graph-

ically in Figure 20 showing a continuum of Jenkins elements. All the spring stiffnesses

are identical, so the model response is determined entirely by the population density ρ of
Jenkins elements of given slider strengths φ. The mathematics of such models is discussed
in depth in the papers of the above four citations.

The 4-parameter Iwan model is defined as follows:

ρ(φ) = Rφχ [H(φ)−H(φ−φmax)]+Sδ(φ−φmax) (3.1)

where H() is the Heaviside step function and the the process for finding parameters R, S, χ,
and φmax is found in [10] and [12] . Values of −1< χ < 0 results in power-law exponents
of 3+ χ. The general form of this 4-parameter distribution is shown in Figure 21. A
major deficiency of the above set of parameters is the fractional dimensions of R and S so

an alternate and preferred set of parameters ( FS, KT , χ, and β) for this model have been
developed [12]. In the following we use values

FS = 1.0 the force that initiates macro-slip.

KT = 1.0 joint stiffness in the regime of small load.

χ = −0.5 the dimensionless strength of the singularity at zero.
β = 2 a dimensionless parameter having to do with the shape of the dissipation curve.
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Numerical Results for Problems of Micro-Slip

We first examine the results of a numerical experiment associated with the structure shown

in Figure 3 but where the cubic nonlinearity is replaced with the Iwan model described

above. In this case the amplitude of the triangular pulse is F0 = 0.5 - just one half of the
break-free force FS of the joint. Referring to Figure 22, we see that a Galerkin solution

using the first five eigen modes of the reference linear system does a very poor job of

capturing the kinetic energy of this system, but a Galerkin solution using the first three

elastic modes and a joint mode (Milman-Chu) performs very well.

We also see that once the excitation is complete, the energy of the system continuously

declines because of the hysteretic nature of the joint. This joint damping plays a major role

in mitigating the shock that weapons systems can experience in a hostile environment.

It is natural at this point to ask the question: if the joint mode is necessary to capture

the mechanics of the system, how does it change the kinematics that would be observed

from the transient solution. This question is addressed with reference to Figure 23 where

we see that the generalized accelerations seem to be dominated by the first mode - as one

would expect. One order of magnitude lower are the kinematics of the second mode and

the kinematics of the third mode and the joint mode are an order of magnitude yet smaller.

Each of the modes is mass normalized, so the contributions to the physical accelerations

are roughly proportional to the generalized accelerations.

Recall also that in these simulations the Milman-Chu mode that is employed has been made

orthogonal to the elastic modes with respect to the mass and stiffness matrices. The cou-

pling evidenced by the peaks of the generalized acceleration associated with the M-C mode

occurring at frequencies of the peaks of the generalized accelerations of the elastic modes

is purely a nonlinear effect. Because the Milman-Chu mode has been made orthogonal to

only the first three elastic modes, it carries some part of the shapes of higher modes and the

peaks of the corresponding generalized accelerations at higher frequencies are reflective of

modes at those frequencies.

In the following simulations we highlight both the softening and dissipative features of me-

chanical joints through simulations of base excitation experiments. Again, we consider an

eleven mass system with the nonlinear element placed between the fifth and sixth masses.

This configuration is illustrated in Figure 24.

In these experiments, we employ an impulse of a sort that is increasingly popular in base

excitation experiments - the Morlet wavelet of frequency 4:

f (t) = A0 cos(ω2πt/τ)exp
(

(2πt/τ)2

2

)

(3.2)

where A0 is the peak amplitude to be obtained, τ is the period of the frequency to be excited,
and ω defines the shape of the wavelet. In the experiments presented here ω = 4 and the
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characteristic shape is shown in Figure 25.

In the first set of numerical experiments the max impulse is set to F0 = 0.005 and Figure
26 shows that the resulting joint force calculated from the full spatial solution stays well

below the break-free force F0 of the joint. The corresponding portion of the monotonic

force-displacement curve for the joint is shown along with the tangent stiffness at zero load

in Figure 27. One expects such excitations to cause very little nonlinear response in the

joint.

Indeed Figure 28 shows that the Galerkin solution employing eigen modes of the reference

linear system generates a very good approximation for the kinetic energy of the jointed

system subject to a small amplitude impulse. There is so little nonlinearity at the joints that

the linear eigen modes do a good job of spanning the configurations taken on by the jointed

structure. The presence of the joint is indicated only by the decrease in system energy over

time due to dissipation in the joint.

One could also anticipate the adequacy of the eigen modes of the RLS in solving this low

amplitude problem by consideration of Figures 29 and 30 obtained from the full nonlinear

spatial solution. The first shows that the nonlinear system response is limited to resonance

of just the first natural frequency of the reference linear system and the second shows that

the first SVD mode of the numerical solution is almost identical to the first eigen mode of

the RLS.

Interestingly Figure 31 shows that even for the nearly linear case discussed in this section,

the use of a single Milman-Chu joint mode greatly increases convergence of the reduced

order model to the solution of the full system.

When the amplitude of the base excitation is raised to A0 = 0.02, the elastic modes are
a much less satisfactory basis of modeling the more nonlinear system. Figure 32 shows

that three elastic modes augmented with a Milman-Chu mode provide a much better basis

for modeling vibration ring-down in this problem than are six elastic modes. Though not

shown here, the peak joint force encountered in this simulation is approximately 70% the

break-free force FS.

The generalized accelerations shown in Figure 33 show behavior similar to that presented in

Figure 23. Again, we see that though the joint mode is necessary for capturing the correct

mechanics in this problem, it mode does not make a strong appearance in the structural

kinematics.

Numerical Results for Problems of Macro-Slip

A Galerkin solution using just the eigen modes of the reference linear system is dramati-

cally less successful for problems where applied loads approach or exceed the break-free

force F0 of the joint.
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In the cases considered here, the amplitude of input wavelet is 0.05 and the resulting joint
load history predicted by the full nonlinear spatial solution is shown in Figure 34. We see

here that the joint is brought into macro-slip and peak force levels in the joint are saturated

at FS until enough energy has dissipated that the system loads on the joint drop to lower

levels. This force history on the joint corresponds to the monotonic force-displacement

curve shown in Figure 35, where the strong nonlinearity is illustrated by its contrast to the

zero-load tangent stiffness curve.

The nonlinearity that the joint lends to the system dynamics is suggested by the plots of the

first SVD mode of the full nonlinear spatial solution and the first eigen mode of the refer-

ence linear system in Figure 36. Note that these curves are quite different in the vicinity of

the joint.

Another indication of the strong nonlinearity of this system is shown in Figure 37. Here we

see that the acceleration of the right hand mass of the system contains not only components

at the frequency of the excitation (which was tuned to the first natural frequency of the

reference linear system), but also many higher frequency components.

Given the above, it should be no surprise that Galerkin solution using just the eigen modes

of the reference linear system demonstrates very poor performance. In Figure 38 we see

that even with ten elastic modes, the kinetic energy is approximated very poorly despite the

fact that those modes correspond to much higher frequencies in the linear system than are

indicated in Figure 37. The transitions to macro-slip in this problem appear to be responsi-

ble for the transfer of energy from the low excitation frequency to much higher frequencies.

As expected, when sufficient modes to reach the frequency response of the corresponding

linear system are augmented by a joint mode, the system is modeled much better (Figure

39). Figure 40 shows that the augmented basis set captures the correct character of the

magnitude of the Fourier transform of acceleration of the right-most mass, while the ap-

proximate solution that employs only the elastic eigen modes leaves too much energy at

the lower frequencies.

That the displacement across the joint in macro slip can be an appreciable part of the overall

kinematics is evidenced in Figure 41 where the generalized acceleration associated with the

joint mode is comparable with that of the first linear vibration mode.

An interesting result is found when a “ruthlessly reduced” model is employed. When this

large amplitude experiment, resulting in high frequency components in the structural re-

sponse, is approximated by three elastic eigen modes and one joint mode, the kinetic en-

ergy predicted (Figure 42 ) is in noticeable error. However, the error is substantially less

than that of the Galerkin solution where eight elastic eigen modes but no joint mode are

employed.

Particularly intriguing is the predicted acceleration of the right-most mass. In Figure 43

the accelerations predicted by the very reduced model appear as though they were the full

spatial solution as seen through a low-pass filter. That hypothesis is tested by comparing

the full solution and the very reduced solution when both are sent through a low-pass filter.
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(Sixth order Butterworth filter with cut-off frequency 0.03). The results shown in Figure

44 do argue that for the special case of these Iwan joint models, a low-order model for

the full non-linear structure seems to capture the low frequency response of the structure

reasonably well. Why this reduced order model works so well for these joint models is

not entirely clear at this time, though one would have every reason to believe that such

fortuitous results would not occur for a rate-type nonlinearity.
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Chapter 4

Implementation in the Context of Finite

Element Analysis

The tools presented in this report are intended to facilitate predictive structural dynamic

simulation, and that means integration into finite element analysis. Most of the necessary

components for large scale analyzes of jointed structures are available in standard finite

element packages, including eigen analysis and elastic static analysis. Additionally, the

techniques presented here seem to be complementary to other model reduction methods -

component mode synthesis especially.

Automatic Determination of Special Vectors and Matrices

The only quantities whose construction is not obvious are the vector Fj aligned along the

joint j, the tangent stiffness matrix KN({s j}), and the Milman-Chu vectors y
MC, j.

Algebraic Vector Fj

In the simplest case, when the joint is aligned in a principle direction, the vectors Fj are

constructed by putting a 1 in the entry associated with the degree of freedom of the first joint

node and the joint direction and a −1 in the entry associated with the degree of freedom of
the second joint node and that joint direction.

On the other hand, the task is more difficult when the joint is aligned in a local coordinate

system and here we discuss a formal strategy for deducing Fj in such general circumstances.

Recall that K0 is the stiffness of the reference linear system, where each joint j is repre-

sented by a properly oriented spring of stiffness k j. Let’s define K j to be the corresponding

stiffness matrix when the equivalent spring for joint j is replaced by a spring of stiffness
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k j + δk j. The difference matrix δK j = K j −K0 will have nonzero entries only for degrees

of freedom associated with the nodes associated with that joint. For an extensional joint (or

a torsional joint), those entries map to a six by six matrix K6, j which has only one nonzero

eigen value. Let F̂j be the corresponding eigen vector, normalized so that F̂
T
j F̂j = 2 and let

Fj be that vector mapped back to the full system.

Gradient Matrix KN

In solving the nonlinear dynamic equations numerically one often employs methods such as

Newton iteration which require taking the gradient of all terms in the governing equation

with respect to all the kinematic variables. The relevant gradient of the joint terms are

neatly merged to those of the stiffness matrix of the reference linear system in the following

manner

KN = K0+ ∑
joints j

G j

(

d f j(s)

ds
− k j

)

(4.1)

where

G j = Fj FT
j (4.2)

Milman-Chu Algebraic Vector y
MC, j

The Milman-Chu vector associated with joint j is easily constructed by performing a static

analysis associated with applying equal and opposite loads on the joint nodes in the direc-

tion of the joint alignment while applying no loads at other joints or external boundaries.

Employment in Conjunction with Component Mode Syn-

thesis

The model reduction method presented here addresses difficulties particularly associated

with local nonlinearities. It is consistent with other model reduction methods - the method

of component mode synthesis in particular.

Consider a structure B consisting of a number of substructures Bk with joint models con-

necting some of the interface degrees of freedom. The kinematics of each substructure is

characterized by the values of interface degrees of freedom
{

uk,n

}

and modal degrees of

freedom
{

φk,n

}

. The development of the reduced order model proceeds much as discussed

earlier in this report:
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• eigen analysis is performed on the linearized component mode representation for B .

• the Milman-Chu vector is calculated by placing self equilibrating loads on nodes on
the interface between substructures and performing a system level statics solution.

• the numerical results are in terms of vectors whose support is the whole structure.

How Many Modes?

The number of elastic modes and Milman-Chu modes necessary for application to a par-

ticular problem can be estimated in a manner similar to that employed in modal truncation

of linear systems. In the simplest implementation, one employs all elastic modes corre-

sponding to frequencies below an appropriately chosen cut-off frequency and one uses a

Milman-Chu mode for each joint degree of freedom.
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Chapter 5

Conclusion

We have demonstrated the feasibility of achieving reduced models for systems with local-

ized nonlinearities by augmenting the most natural basis functions with vectors that have

appropriate discontinuities at the locations of nonlinearity. This assures that the kinematics

necessary to couple the nonlinearity to the rest of the structural response are present.

Though this model reduction appears to work well for both large and small structural loads,

a fewwords are appropriate about how the results manifest themselves for the cases of small

loads. It is observed in the examples shown here that for such cases the amplitude of the

generalized coefficient for the discontinuous basis function is always very low compared to

those of the first several elastic eigen modes. The augmenting mode serves the purpose of

coupling the joint mechanics into the dynamics of the other modes. In doing so it does not

change the characteristic mode shapes as seen by SVD, it just provides modest nonlinear

damping. In these ways, the apparent modal response of the reduced nonlinear systems

appears very much like that found in a modal lab for real structures: one sees apparently

linear modes, except for nonlinear damping of each mode.

It is natural for practitioners of several areas of applied analysis to identify the technique

presented here with some of the basis functions common in their areas and some of those

identifications are correct. For instance one might identify the joint modes presented here

with the constraint modes or attachment modes ([2]) of component mode synthesis. Those

comparisons are incomplete. Constraint modes and attachment modes live solely on in-

dividual sub-structures while the support for the joint modes presented here live over the

entire structure. (It should be pointed out that one could create functions with the necessary

discontinuity through combinations of constraint modes, but the suitability of such func-

tions as joint functions has not yet been explored.) Perhaps better analogues to joint modes

are hydrodynamic doublet fields or the displacements in a crystal lattice due to the presence

of a point dislocation.

The most important observation - regardless of what analogies one wishes to make - is

that it is because of the mechanical coupling of those joint modes with the eigen modes
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of the reference linear structure that those eigen modes satisfactory describe the nonlinear

structural dynamics.

The utility of the approach presented here will be explored in future work applying these

tools to increasingly large finite element problems. Ultimately, we hope to demonstrate

the natural complementarity between this technique and component mode synthesis by

converting problems of millions of degrees of freedom to ones of thousands and then hun-

dreds.
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Appendix: Nonlinear Normal Modes

Because Nonlinear Normal Modes (NNMs) have proven helpful in understanding the dy-

namics of many nonlinear systems, it is helpful to discuss the approach presented here in

terms of NNMs in the hope of expanding the utility of NNMs in structural dynamics.

In the sense of Pesheck et al. [9] the existence of a nonlinear normal mode is equivalent to

the assertion that the deformation field at any time can be expressed

u(t) = A(t)y1+
N

∑
n=2

Pn(A, Ȧ)yn (A-1)

where vectors {yn} are a displacement basis for the structure, A is a periodic function of

time, and the coefficient functions Pn are characteristic of the system. Usually, all basis

vectors are chosen to be the eigen modes of the reference linear system.

The similarity of equations 2.3 and A-1 and the numerical calculations of the previous

section permit us to make the following assertion: For structures containing localized non-

linearities, unless the set of basis functions is selected to include some with the appropriate

discontinuities, expansions such as the above cannot converge to the true solution.

On the other hand, the analysis technique explored in the previous chapter does employ

basis vectors with the appropriate discontinuity so it might be profitable to see if that tech-

nique yields solutions containing any of the character of nonlinear normal modes. We

consider “ruthlessly-reduced” cases using as basis vectors just the first eigen mode of the

reference linear system and a Milman-Chu vector. We perform simulations for F0 = 0.05,
F0 = 0.1, and F0 = 0.5.

The nonlinear normal mode expression corresponding to our two-basis element Galerkin

formulation is

h(t) = A(t)y+ f (A(t))w (A-2)

In the context of Equation 2.3, a1 = A(t) and the assertion of this being a nonlinear normal
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mode would be

a2(t) = f (A, Ȧ) (A-3)

We examine the results of our transient numerical calculation to assess if Eq. A-3 is satis-

fied. Figure A-1 shows plots of a2(t) vs a1(t) for each of our three cases. These plots are
obscured by gray clouds of higher frequency components. When the phase space (a1, ȧ1)
is distributed into bins (a1 x ȧ1 into 15x5 bins) and the values of a2 in each bin in averaged,

the points shown in dark squares results. The lack of scatter in these dots indicates the

absence of velocity dependence - as one would expect for a perfectly elastic system.

The averaged results of the previous figure are plotted together in Figure A-2 and indeed

the data are consistent with an assertion that a2 is some function of a1. This is the the

assertion of the manifestation of a nonlinear normal mode.

Let’s now see how consistent these results are with a simple nonlinear normal mode cal-

culation. Recall that the joint mode (Milman-Chu in this case) is made orthonormal with

respect to the mass matrix to the linear eigen modes that employed. Say that y = y1 is the

first eigen mode of the RLS and w is the M-C mode made orthonormal to y with respect to

the mass matrix:

yT My = 1 yT Mw = 0 wT Mw = 1 (A-4)

Contraction of these vectors with the stiffness matrix yields the Rayleigh quotients

yT Ky = ω20 wT Kw = ω̂2 (A-5)

where ω0 is the natural frequency of the first eigen mode of the RLS and ω̂ is a number
greater than or equal to the second natural frequency of the RLS. (This is the minimax

principle. [7])

We do not know much about the evolution of this NNM, but we can assert that the system is

conservative so that the kinetic energy when the system velocities are maximum equals the

strain energy when the system displacements are greatest. The maximum kinetic energy is

KEmax = 1

2
Ȧ2m (y+ f ′(A)w)T

M (y+ f ′(A)w) (A-6)

≈ 1

2
ω2
0

A2m
(

1+ f ′(A)2
)

(A-7)

where Am is the maximum value taken on by A(t) during the cycle, Ȧm is the maximum

value taken on by Ȧ(t) during the cycle, f ′(A) = d f (A)/dA, and we have assumed that

Ȧm = ω0Am.
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The maximum strain energy is

SEmax =
1

2
(Am y+ f (Am)w)T

K (Am y+ f (Am)w)

+N (Am δy∗ + f (Am)δw∗) (A-8)

where N is the nonlinear part of the strain energy at the joint. In the case of our cubic

spring,

N(δu) = K2δu4/4 (A-9)

The maximum strain energy is now

SEmax =
1

2
ω20A

2

m+
1

2
ω̂2 f (Am)2+N (Am δy∗ + f (Am)δw∗) (A-10)

where δy∗ and δw∗ are the displacements across the nonlinear joint of y and w respectively

and N is the strain energy associated with the essential nonlinearity. When we equate the

two energies (Equations A-7 and A-10, we obtain an equation for f ′

ω20A2m f ′(A)2w = ω̂2 f (Am)2+2N (Am δy∗ + f (Am)δw∗) (A-11)

which can be solved numerically for f (A). These results are shown in Figure A-3 along
with the data shown previously in Figure A-2. We see a strong similarity between the

NNM prediction and the values deduced from post-processing of simulations and we also

see systematic differences that can be attributed to the ambitious effort to represent the

system dynamics with just two basis vectors.
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Figure 1. For purposes of illustration, we consider this sim-

ple system of eleven unit masses connected in a series manner to

ground by a system of unit springs.
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Figure 2. The response of the system shown in Figure 1 to a

triangular pulse with peak force F0 is calculated by the numerical

solution for full spatial system (eleven degrees of freedom) and by

several levels of modal truncation. In this and in similar plots, the

legend refers to envelopes of the kinetic energy curves.
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Figure 3. We consider this simple eleven unit masses connected

in a series manner to ground by a system of unit spring. Addition-

ally we place a cubic spring between the 5th and 6th masses of the

system.
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Figure 4. The response of a system with a small cubic nonlinear-

ity appears almost linear so long as the excitations are also small.

This figure is relevant to the following simulations where the peak

force applied to the right hand side of the system is F0 = 0.05.
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Figure 5. The kinetic energy of the system with a small cubic

nonlinearity resulting from a triangularly shaped impulse. The

Galerkin solution employing various numbers of eigen modes of

the reference linear system provides a reasonably good approxi-

mation to this slightly nonlinear system.
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Figure 6. The response of a system with a small cubic nonlinear-

ity is explored using the the singular value decomposition (SVD)

modes of the history of the full nonlinear system. Shown here are

the first SVD mode of the fully history and the first eigen mode of

the RLS. For this small nonlinearity, both modes are almost iden-

tical.
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Figure 7. The response of a system with a small cubic nonlin-

earity is explored using the singular value decomposition (SVD)

modes of the history of the full nonlinear system. The relative role

of each SVD mode in the history is shown here. Only the first such

mode is significant.
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Figure 8. The response of a system with a cubic nonlinearity

appears extremely nonlinear when the excitations are large. This

figure is relevant to the following simulations where the peak force

applied to the right hand side of the system is F0 = 0.5.
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Figure 9. The kinetic energy of the systemwith a large cubic non-

linearity resulting from a large-amplitude, triangularly shaped im-

pulse. The Galerkin solution employing various numbers of eigen

modes of the reference linear system does not provide a good ap-

proximation to this nonlinear system unless the number of modes

equals the total number of degrees of freedom of the physical sys-

tem.
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Figure 10. The response of a system with a large cubic nonlin-

earity is explored using the singular value decomposition (SVD)

modes of the history of the full nonlinear system. Shown here are

the first SVD mode of the full history and the first eigen mode of

the RLS. For this large nonlinearity, the modes show a marked dif-

ference at the location of the nonlinear spring. Because there is

a stiffening spring between the 5th and 6th masses, the SVD mode

shows less deformation at that location than is the case of the linear

eigen mode.
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Figure 11. The sensitivity of the first eigen mode of the refer-

ence linear system with respect to stiffness at the location of the

nonlinear spring manifests a discontinuity at that location.
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Figure 12. Convergence of the Galerkin procedure is greatly en-

hance when the basis includes an eigen mode sensitivity vector. In

this case there are 4 eigen modes of the reference linear system

and one eigen mode sensitivity vector.
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Figure 13. Convergence of the Galerkin procedure is greatly en-

hance when the basis includes an eigen mode sensitivity vector. In

this case there are 1 eigen mode of the reference linear system and

one eigen mode sensitivity vector.
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Figure 14. The Milman-Chu mode is the solution to a statics

problem. It also has the discontinuity that is desired at the location

of the local nonlinearity, but it is computed much economically

than is the eigen mode sensitivity.
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Figure 15. Convergence of the Galerkin procedure is greatly en-

hanced when the basis includes an Milman-Chu vector. In this

case there are 4 eigen modes of the reference linear system and

one Milman-Chu vector.
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Figure 16. Convergence of the Galerkin procedure is greatly en-

hanced when the basis includes an Milman-Chu vector. In this

case there are 1 eigen mode of the reference linear system and one

Milman-Chu vector.
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Figure 17. Mechanical joints manifest small regions of micro-

slip where force-displacement appears linear, though some amount

of dissipation accompanies any load. As the load increases, the

tangent stiffness decreases until macro-slip initiates.
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Figure 18. When mechanical joints are subject to oscillatory

loads, the energy dissipation per cycle appears to increase with

load amplitude in a power-law manner. In the above, χ is a num-
ber such that −1< χ ≤ 0.
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Figure 19. The mathematical complexity of the joint is simplified

by approximating the whole interface by a single scalar constitu-

tive equation for each of the six relative degrees of freedom. In the

illustration shown here all of the nodes on each side of the interface

are held rigid and connected to a single joint.
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Figure 20. The parallel series Iwan model consists of a contin-

uum of Jenkins elements. All the spring stiffnesses are identical,

so the model response is determined entirely by the population

density of Jenkins elements of given slider strengths.
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Figure 21. The four-parameter Iwan model predicts the correct

qualitative behavior of mechanical joints.
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Figure 22. Convergence of the Galerkin procedure is greatly en-

hanced by the presence of Milman-Chu vector in this problem in-

volving the structure shown in Figure 3, F0 = 0.5, and a nonlinear
Iwan joint model. In this case there are 3 eigen modes of the ref-

erence linear system and one Milman-Chu vector.
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Figure 23. Though the presence of the joint mode among the

basis vectors of the Galerkin calculation greatly accelerates con-

vergence, the amplitude of the generalized acceleration associated

with that vector is actually fairly small in this problem. Shown

here is the magnitude of the Fourier transform (MFT) of acclera-

tion.
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Figure 24. An eleven-mass system with a nonlinear joint excited

at its base.
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Figure 25. The Morlet wavelet with ω = 4.
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Figure 26. The force history of the joint resulting from a very

low amplitude (A0 = 0.005) base excitation.
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Figure 27. The force history of the joint resulting from a very low

amplitude (A0 = 0.005) base excitation corresponds to the above
portion of the motonic force-displacement curve for the joint. Also

shown is the tangent stiffness at zero load.
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Figure 28. The Galerkin solution employing eigenmodes of the

reference linear system generates a very good approximation for

the kinetic energy of the jointed system subject to a small ampli-

tude impulse (A0 = 0.005).
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Figure 29. When subject to very small amplitude excitation

(A0 = 0.005), the system responds with a nearly monochormatic
response at the frequency of excitation - which was tuned to the

first natural frequency of the reference linear system.
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Figure 30. The SVD of the full nonlinear spatial solution and the

first eigenmode of the reference linear system are nearly identical

when the system is subject to a very low amplitude (A0 = 0.005)
base excitation.
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Figure 31. Even when the system is subject to a very low ampli-

tude (A0 = 0.005) base excitation, the use of a Milman-Chu joint
mode makes a noticible improvement in convergence.
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Figure 32. At a higher level of base excitation (A0 = 0.02), the
use of a Milman-Chu joint mode makes a more noticible improve-

ment in convergence.
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Figure 33. As was the case in the resonance calcuation of Fig-

ure 23, though the presence of the joint mode among the ba-

sis vectors of the Galerkin calculation greatly accelerates conver-

gence, the amplitude of the generalized acceleration associated

with that vector is actually fairly small in this base excitation prob-

lem (A0 = 0.02).
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Figure 34. When the system is subject to a high amplitude (A0 =
0.05) base excitation, the joint is brought into macro-slip and force

levels in the joint are saturated at FJ = FS (= 1).
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Figure 35. The force history of the joint resulting from a high

amplitude (A0 = 0.05) base excitation corresponds to the above
portion of the motonic force-displacement curve for the joint. Also

shown is the tangent stiffness at zero load. The nonlinearity mani-

fest at these force levels is large.
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Figure 36. The first SVD mode of the full nonlinear spatial solu-

tion and the first eigenmode of the reference linear system are quite

different in the vicinity of the joint when the system is subject to a

high amplitude (A0 = 0.05 base excitation.
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Figure 37. Macro-slip causes frequency responses of the struc-

ture that are well above that of the base excitation - which was

tuned to the first resonance of the reference linear system. Shown

here is the magnitude of the Fourier transform (MFT) of acclera-

tion.
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Figure 38. The Galerkin solution employing eigenmodes of the

reference linear system generates a very poor approximation for

the kinetic energy of the jointed system subject to a large amplitude

impulse.
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Figure 39. The Galerkin solution employing seven eigenmodes

of the reference linear system augmented by one joint mode gen-

erates approximation for the kinetic energy of the jointed system

subject to a large amplitude impulse. A large number of elastic

modes are necessary to capture the high frequency response of the

systems. The necessity of including the joint mode is illustrated

by comparision to the prediction resulting from use of eight elastic

modes.
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Figure 40. Comparison of the Fourier tranform magnitudes of

the acceleration of the right most mass for the full spatial solution

and the two reduced order solutions illustrates how resolution of

joint kinematics is necessary to capture the energy shift from low

frequencies to high. Shown here is the magnitude of the Fourier

transform (MFT) of accleration.
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Figure 41. In this problem of macro-slip the generalized acceler-

ation of the joint coordinate is no longer small.
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Figure 42. A “ruthlessly reduced” analysis using only three elas-

tic eigenmodes and one joint mode results in noticable error in the

kinetic energy, but substantially less error than an analysis using

twice the number of elastic eigenmodes and no joint mode.
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Figure 43. A “ruthlessly reduced” analysis using only three elas-

tic eigenmodes and one joint mode results results in accelerations

of the right most mass that have the appearance of a low-pass filter

of the full spatial solution.
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Figure 44. When the “ruthlessly reduced” analysis using only

three elastic eigenmodes and one joint mode and the full spatial

solution are seen through a low pass filter, they appear very similar.
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Figure A-1. When the coefficient for the first generalized coor-

dinate (Milman-Chu) is plotted against the first, clouds (gray) as-

sociated with higher frequency result. When that the phase space

(a1, ȧ1) is distributed into bins and the values of a2 in each bin in

averaged, the points shown in dark squares results. The lack of

scatter in these dots indicated the absense of velocity dependence

- as it should.
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Figure A-2. When averaged mapping of the coefficient for the

second generalized coordinate (Milman-Chu) against the first we

see a pattern suggestive of the existance of a nonlinear normal

mode.
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Figure A-3. When one assumes that a nonlinear normal mode

exists and can be represened by the first eigenmode and a Milman-

Chu mode, energy methods permit the estimation of the dependece

of the second generalized coordinate as a function of the first.
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