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Model Reduction of Three Dimensional Eddy Current Problems 

Based on the Method of Snapshots 
 

Yuki Sato and Hajime Igarashi 
 

Graduate School of Information Science and Technology, Hokkaido University, 060-0814 Sapporo, Japan 

 

The model reduction based on the method of snapshots is applied to the finite element analysis of three dimensional transient eddy 

current problems. It is known that accuracy of the reduced model highly depends on the number of snapshots. In this paper, we 

introduce a novel method which determines the adequate number of snapshots automatically. It is shown that the computational time 

can be reduced when using the model reduction based on the present method. 

 
Index Terms—Model order reduction, method of snapshots, proper orthogonal decomposition, finite element method, eddy current 

problem. 

I. INTRODUCTION 

INITE ELEMENT METHOD (FEM) has widely been used for 

electromagnetic field analysis of electric machines and 

devices such as motors and transformers. Three dimensional 

FE analysis is still time consuming although computer 

performance has been significantly improving. In particular, 

heavy computational burden in the three dimensional FE 

analysis causes serious problems when it is applied to 

optimizations [1-3]. It is, therefore, strongly required that the 

computational time for the FE analysis is reduced. The model 

reduction method is one of the promising methods to reduce 

the computational time. For the linear problems, the reduction 

methods based on Padè approximation with the Lanczos 

processes and Krylov subspace projection have been proposed 

[4], [5]. However, it seems uneasy to extend these methods to 

non-linear problems. On the other hand, the method of 

snapshots based on principal component analysis has been 

shown effective for the non-linear problems [6-11]. This 

method is also called the proper orthogonal decomposition [6]. 

In the model reduction based on the method of snapshot, the 

variance-covariance matrix is constructed from the 

independent vectors which express field distributions called 

snapshots. The basis vectors for the reduced model are then 

obtained from the eigenvectors of the variance-covariance 

matrix. It is shown that the model reduction based on method 

of snapshots is effective for fluid analysis [7], [8] and for 

quasi-static electromagnetic analysis in two dimensions [9], 

[10]. This method has also been shown effective for three 

dimensional quasi-static electromagnetic problems [11].  

It has been pointed out in [11] that accuracy of this method 

highly depends on the number of snapshots. However, it has 

been unclear how to determine the adequate number of 

snapshots. In this paper, we introduce a novel method to 

determine the number of snapshots automatically. 

II. TIME-DOMAIN FINITE ELEMENT METHOD 

The governing equations for eddy current problems derived 

from Maxwell’s equations are expressed as 
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where A , ν,  and J are the vector potential, scalar potential, 

magnetic resistivity, conductivity and current density. By 

applying the weighted residual method and the Galerkin 

method to eqs. (1) and (2), we can obtain the FE equation 
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where 
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and Ni and Nj are vector and scalar interpolation functions, 

respectively. The unknowns aR
e
 and R

n
 in eq. (3) are 

assigned to the edges and nodes of the FE mesh, and the 

matrices in eq. (3) are mm, where m=e+n. The finite 

difference scheme in time is applied to eq. (3) to obtain 
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where x
k
= [a

k
 k

]
t
, 0 ≤ θ ≤ 1, t is the time step interval and k 
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represents time steps. The original solutions can be determined 

by solving eq. (9) at each time step. 

III. METHOD OF SNAPSHOTS 

A. Construction of basis vectors 

In order to reduce the computational time, we apply the 

reduction method based on the method of snapshots to eq. (9). 

To obtain the snapshots, we solve eq. (9) to obtain the 

transient solutions x
k
, where 0 ≤ k ≤ s, and s represents the 

number of snapshots (m>>s). Then, the matrix XR
ms

 is 

constructed from x
k
 as 
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where  is the mean vector of x
k
. Applying the singular value 

decomposition to X, we obtain 
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where ui and vi are the eigenvectors of the variance-covariance 

matrix XX
t
 and X

t
X, respectively and i, i=1,2,,s are the 

singular values which correspond to the square root of 

eigenvalues of XX
t
. The dominant eigenvectors ui of XX

t
 are 

chosen as the basis vectors for the reduced system. The 

transfer matrix W is constructed from ui as follows: 

 

 , W 21 suuu   (12) 

 

where W∈R
m×s

. The original unknown vector x
k
 can be 

expressed by the linear combination of ui, that is, 
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where y
k
 ∈R

s
 is the reduced unknown vector. 

B. Formulation for linear problems 

Equation (9) is here written in the form Ax
k
 = b

k
 for 

simplicity to which eq. (13) is substituted to obtain the 

reduced equation 
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Because the reduced coefficient matrix W
t
AW is s×s, eq. (14) 

can be solved much faster than eq. (9). 

C. Formulation for nonlinear problems 

In the nonlinear problem, the magnetic reluctivity in the 

magnetic material varies depending on the magnetic flux 

density. Hence, eq. (9) can be expressed as 
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By substituting eq. (13) into eq. (15), we obtain 
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By applying the Newton-Raphson method to eq. (16), we 

obtain the linearized equation given by 
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where g’ = W
t
b

k
W

t
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k
. The coefficient matrix in eq. 

(17) can be rewritten as 
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where g = b
k
Ax

k
. Consequently, the reduced equation for 

nonlinear problem is expressed as 
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D. Automatic determination of snapshot numbers 

As mentioned in section I, accuracy of the present method 

highly depends on s [11]; if we take a too small value for s 

resultant accuracy is expected to be low. On the other hand, if 

we take a too large value for s, the resultant accuracy would be 

sufficiently high, but simultaneously, computational time 

becomes long. Moreover, optimal value for s depends on the 

problems. In the followings, we introduce an effective method 

which can determine the number of snapshots s automatically.  

The error at step k is defined by 
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where Bi is the original magnetic flux density and Bi
red

 is the 

magnetic flux density given by eq. (14) or eq. (19). It is 

expected that es is relatively small because the basis vectors 

are constructed from the snapshots by this time step. On the 

other hand, es+1 would be larger than es if s is not sufficiently 

large. To characterize the sudden change in the error at the 

time steps s and s+1, we introduce the ratio defined by
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If  is smaller than a certain value, s is judged to be 

sufficiently large, and the reduced eq. (14) or (19) is solved 

until steady state. If this condition is not satisfied, the number 

of snapshots s is increased and the reduced equation is newly 

constructed. The algorithm for the present method is 

summarized as follows: 



 

 

 
(a) The initial value is set for s. 

(b) Equation (9) is solved to obtain the original solutions x
k
 

until time step s+1. 

(c) From x
k
, k=1,2,s, we construct X, whose singular values 

are computed to obtain the reduced equations (14) or (19). 

(d) Equations (14) or (19) are solved until time step s+1. 

(e) If  computed from (21), is larger than a threshold, 

ss+s, and return to (b). Otherwise, the reduced 

equation is solved until convergence. 

IV. NUMERICAL RESULT 

The numerical models in Figs. 1-3 are analyzed by the 

present method. The domain is discretized by the hexahedral 

elements which are composed of 125000 nodes, 117649 

elements, 367500 edges. The conductivity is 0.5 ×10
7
 S/m. 

The driving frequency f is set to 50 Hz and t = 5×10
-4

 sec. 

The initial states are assumed to be zero fields. If we have a 

good approximation for the steady states, it would be suitable 

for the initial state. 

A. Error Variation 

The error ek is plotted against time steps for Model 1 in Fig. 

4 where r is set to 100. We can see in Fig.4 that ek is 

relatively small until k=s, and there are sudden increases in ek 

at k=s+1, as expected, especially when s is small. When s=20, 

the increase from k=s to s+1 becomes small. These results 

suggest that  would be a good measure for the accuracy in the 

reduced model constructed from the snapshots until s steps. In 

the following computations, the threshold for  is set to 10 and 

100 in the linear and nonlinear problems, respectively. These 

 

values of  are determined from the results of numerical 

experiments. 

B. Test for Linear Problems 

The present method is applied to the three models in Figs. 

1-3 where r is set to 100. The results are summarized in 

Table I, where the computation time is normalized to that of 

the conventional computations without reduction which are 

continued until the change in the amplitude is smaller than 

0.01%. From Table I, we can find that error ratio  decreases 

with increase in the snapshot number s. Moreover, we find 

that esteady, which is the mean error in the steady state, is less 

than 0.1 % when s is determined by the present method. 
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Fig. 3 :Model 3(J = 2106A/m2,  = 0.5107 S/m) 
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Fig. 5. Error variation with respect to time until steady state. 
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Fig. 4. Error variation with respect to time. 

TABLE I 
REDUCTION RESULTS FOR LINEAR PROBLEMS 

 Number of snapshots s=10 s=15 s=20 Automatic* 

 Snapshot time 0.0045 0.007 0.0095 ----- 

M
o
d

el
 1

  = es+1/es 1322 18.8 1.58 ----- 

Error esteady (%) 4.06 0.50 0.03 0.03 

Com. time (%) 12.63 15.29 18.65 19.67 

M
o
d

el
 2

   = es+1/es 342 5.94 ----- ----- 

Error esteady (%) 1.74 0.08 0.07 0.08 

Com. time (%) 20.00 26.07 30.35 27.86 

M
o
d

el
 3

   = es+1/es 1.50 ----- ----- ----- 

Error esteady (%) 0.005 0.002 0.0003 0.005 

Com. time (%) 30.22 36.43 53.63 35.89 

* The value of s is automatically determined by the present method. 
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Fig. 2. Model 2(J = 1107A/m2,  = 0.5107 S/m) 
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Fig. 1. Model 1(J = 1107A/m2,  = 0.5107 S/m) 



 

Therefore, the present method can determine the adequate 

number for s automatically. Moreover, the computational time 

is shorter than that of the conventional method without 

reduction in all the models. 

C. Test for Nonlinear Problems  

We apply the present method to the models in Figs. 1-3 

where we assume that the magnetic material obeys the BH 

curve shown in Fig. 6. The results are summarized in Table II, 

from which we can see that the present method is effective 

since its computational time is shorter than that of the 

conventional method. The reduction effect in the 

computational time for Model 1 becomes weaker than that in 

the linear model. One of the reasons of this degradation is that 

the convergence in the Newton-Raphson iteration has 

relatively slow convergence. Moreover, esteady is also relatively 

large for Model 1. Figure 7 shows the error distribution in 

magnetic material for Model 1 at 182-th step of the reduced 

model where ek is the maximum. From Fig. 7, we can see that 

the error is relatively large near the coil. This suggests that the 

reduced model could not accurately express the localized 

saturated fields from the snapshots. 

V. CONCLUSION 

In this paper, we have presented a novel method to determine 

the adequate snapshot number s for the reduction method. 

 
It has been shown that the present method can effectively 

determine the adequate snapshot number so that the accuracy 

of the reduction method is satisfactory. Moreover, the 

computational time for the reduction method based on the 

present method has been shown to be shorter than that of the 

conventional method. To improve the accuracy in the reduced 

system, localized errors due to magnetic saturation should be 

reduced. This might be possible if the heavily saturated 

regions are excluded from the domain to which the present 

method is applied. 
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Fig. 7 Error distribution in magnetic material (Model 1). The relatively 

large errors near the coil would be due to magnetic satulation. 

TABLE II 
REDUCTION RESULTS FOR NONLINEAR PROBLEMS  

M
o
d

el
 1

 

Number of snapshots s=50 s=60 s=70 Automatic 

Snapshot time 0.0245 0.0295 0.0345 ----- 

 = es+1/es 2093 1860 2.1 ----- 

Error esteady (%) 4.6 4.8 3.7 3.7 

Com. time (%) 54.5 63.5 74.6 86.6 

M
o
d

el
 2

 

Number of snapshots s=40 s=50 s=60 Automatic 

Snapshot time 0.0195 0.0245 0.0295 ----- 

  = es+1/es 5778 3.65 ----- ----- 

Error esteady (%) 2.2 1.8 1.2 1.8 

Com. time (%) 45.9 54.4 74.4 58.2 

M
o
d

el
 3

 

Number of snapshots s=20 s=25 s=30 Automatic 

Snapshot time 0.0095 0.012 0.0145 ----- 

  = es+1/es 7000 452.3 83.1 ----- 

Error esteady (%) 2.0 0.34 0.28 0.28 

Com. time (%) 29.7 37.3 43.1 47.3 
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