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Abstract

Balanced truncation is a standard and very natural approach to
approximate dynamical systems. We present a version of balanced
truncation for model order reduction of linear time-delay systems.
The procedure is based on a coordinate transformation of the posi-
tion and preserves the delay structure of the system. We therefore
call it (structure preserving) position balancing. To every position
we associate quantities representing energies for the controllability
and observability of the position. We show that these energies can
be expressed explicitly in terms of the solutions to corresponding de-
lay Lyapunov equations. Apart from characterizing the energies, we
show that one block of the (operator) controllability and observabil-
ity Gramians in the operator formulation of the time-delay system
can also be characterized with the delay Lyapunov equation. The
delay Lyapunov equation undergoes a contragredient transformation
when we apply the position coordinate transformation and we pro-
pose to truncate it in a classical fashion, such that positions which
are only weakly connected to the input and the output in the sense
of the energy concepts are removed.
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Abstract Balanced truncation is a standard and very natural approach to ap-
proximate dynamical systems. We present a version of balanced truncation for
model order reduction of linear time-delay systems. The procedure is based on
a coordinate transformation of the position and preserves the delay structure of
the system. We therefore call it (structure preserving) position balancing. To every
position we associate quantities representing energies for the controllability and ob-

servability of the position. We show that these energies can be expressed explicitly
in terms of the solutions to corresponding delay Lyapunov equations. Apart from
characterizing the energies, we show that one block of the (operator) controlla-
bility and observability Gramians in the operator formulation of the time-delay
system can also be characterized with the delay Lyapunov equation. The delay
Lyapunov equation undergoes a contragredient transformation when we apply the
position coordinate transformation and we propose to truncate it in a classical
fashion, such that positions which are only weakly connected to the input and the
output in the sense of the energy concepts are removed.

1 Introduction

Models consisting of dynamical systems with a delay arise naturally when studying
phenomena involving events occuring in a non-instantaneous manner. Here, we
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consider a linear time-invariant time-delay system with a single delay,

ẋ(t) = A0x(t) +A1x(t− τ) +B0u(t) (1a)

y(t) = C0x(t), (1b)

where A0, A1 ∈ Rn×n, B0 ∈ Rn×m, CT
0 ∈ Rn×p; see the standard references on

time-delay systems [9],[25],[23].

If, for example, the time-delay system stems from a discretization of a partial
differential equation, then the order n can be so large that it is computationally dif-
ficult to solve or analyze the problem. In these situations, it is often advantageous
to approximate (1) by a system of smaller size. Such an approach of model order

reduction is well-established for dynamical systems without delay, cf. [1],[2],[5].

The fact that (1) is a time-delay system has several consequences in terms
of qualitative physical properties. Some of these properties will be lost in the
approximation unless the reduced system also has a delay structure. In this paper
we construct an algorithm to compute a model where the structure is preserved,
i.e., the reduced system will also be a linear time-invariant time-delay system of
the form

˙̂x(t) = Â0x̂(t) + Â1x̂(t− τ) + B̂0u(t) (2a)

y(t) = Ĉ0x̂(t) (2b)

with Â0, Â1 ∈ Rr×r, B̂0 ∈ Rr×m, ĈT
0 ∈ Rr×p and r � n.

A number of approaches for model reduction of time-delay systems are available
in the literature. For instance, there are methods with interpretation as rational
approximation [19], [20], methods based on interpolation [4], Krylov methods in
an infinite dimensional setting [10], moment matching based methods [24], and
methods based on the dominance of poles [32]. Some open problems related to
model reduction of time-delay systems are formulated in [29]. To our knowledge,
no structure preserving variants of balanced truncation are available for time-delay
systems.

Our approach is based on associating, with each position, controllability and
observability functionals and we characterize them with the help of Gramians.
While in the case of delay-free systems these Gramians are obtained from algebraic
Lyapunov equations, here we will have to consider delay Lyapunov equations. The
solutions of the delay Lyapunov equations related to controllability and observ-
ability energies will be denoted by Uc : [−τ, τ ] → Rn×n and Uo : [−τ, τ ] → Rn×n,
respectively. The matrices Uc(0) and Uo(0) are symmetric nonnegative definite and
the corresponding quadratic forms characterize the controllability and observabil-
ity energies associated to given a position.

Moreover, we show that Uc(0) and Uo(0) can be interpreted as submatrices of
the infinite-dimensional Gramians associated to the full state of the time-delay
system. This is in analogy to the case of second-order systems (e.g. [7]), which we
discuss as a motivating and illustrating class of systems.

By considering a linear transformation of the position, we can achieve balancing
of Uc(0) and Uo(0). This suggests to carry out the model reduction by truncating
those positions which are both hard to reach and hard to observe, in the sense of
the derived energy concepts.
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2 Preliminaries

2.1 The fundamental solution and delay Lyapunov equations

The fundamental solution corresponding to (1) is given by the matrix delay-differential
equation

K̇(t) = A0K(t) +A1K(t− τ) (3a)

K(0) = I, K(θ) = 0 when θ < 0. (3b)

Suppose the system (1) is exponentially stable. Then, the fundamental solution
decays exponentially, and we can define a finite parameter-dependent matrix,

Uo(θ) :=

∫ ∞

0

K(t)TCT
0C0K(t+ θ) dt

which is called a delay Lyapunov matrix. It is related to the observability problem for
the delay system; more precisely to an energy quantity representing observability,
as we shall explain in Section 3.1. Further properties of Uo have been studied,
characterized and used in a number of settings. The existance of a solution and
how it can be used to study stability with Lyapunov-Krasovskii functionionals is
given in different generality settings in [15],[13],[18],[17],[34],[14]. It has been used
to derive a bound on the solution of (1) in [16]. Some computational aspects are
considered in [26], [11], [27] and it has been used to compute the H2 norm of (1)
in [12].

In particular (cf. [17]) the function Uo : [−θ, θ] → Rn×n is the unique solution
of the boundary value problem

U ′o(t) = Uo(t)A0 + Uo(t− τ)A1, t ≥ 0 (4a)

Uo(−t) = Uo(t)
T (4b)

−CT
0C0 = Uo(0)A0 +AT

0Uo(0) + Uo(−τ)A1 +AT
1Uo(τ). (4c)

This characterization of Uo is useful both for theoretical and computational reasons
and gives rise to an explicit solution in terms of a matrix exponential [30], [12].

The dual delay Lyapunov matrix related to controllability is given by

Uc(θ) :=

∫ ∞

0

K(t)B0B
T
0K(t+ θ)T dt . (5)

Following the steps to derive (4) in [17] it is straightforward to show that Uc also
satisfies a similar matrix boundary value problem,

U ′c(t) = Uc(t)A
T
0 + Uc(t− τ)AT

1, t ≥ 0 (6a)

Uc(−t) = Uc(t)
T (6b)

−B0B
T
0 = Uc(0)AT

0 +A0Uc(0) + Uc(−τ)AT
1 +A1Uc(τ). (6c)

Note that (4) and (6) correspond to transposition of the system matrices and
switching the roles of B0 and CT

0. This is consistent with the notion of dual time-
delay system used, e.g. in [21]. It is also a consistent generalization of the control-
lability and observability Gramians of a dynamical system without delay.

We also need the fact that Uc(0) and Uo(0) are symmetric positive semidefinite.
This follows from the fact that the integrand in the definition of Uc(0) and Uo(0)
are symmetric positive semidefinite.
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2.2 Position balancing

The concept of position balancing is well-established for second order systems and
it is used in many variants of balanced truncation [6], [7], [22],[31], [35]. To prepare
its modification for time-delay systems, we briefly review the idea of position
balancing for second order systems, following the reasoning in [7],[22],[31].

Consider an exponentially stable second order system

Mẍ(t) +Gẋ+Kx = Bu(t), x(t) ∈ Rn, (7a)

y(t) = C1x(t) + C2ẋ(t), (7b)

where M is nonsingular. In the context of mechanical systems, x is usually referred
to as the position and ẋ =: v as the velocity. For given initial values x(0) = x0 and
v(0) = v0 and a given input function u we denote the corresponding solutions by
x(t, x0, v0, u) and v(t, x0, v0, u), and the output by y(t, x0, v0, u).

The second order system can be written in first-order form as

[
ẋ(t)
v̇(t)

]
=

[
0 I

−M−1K −M−1G

] [
x(t)
v(t)

]
+

[
0
B

]
u(t), (8a)

y(t) = C1x(t) + C2v(t). (8b)

Let P = P T ∈ R2n×2n and Q = QT ∈ R2n×2n denote the controllability and
observability Gramians of (8). By definition P and Q are nonnegative definite,
and for simplicity, we assume that P is nonsingular. Then the total energy flowing
out of the uncontrolled system is given by

∫ ∞

0

‖y(t, x0, v0, 0)‖2 dt =

(
x0
v0

)T

Q

(
x0
v0

)
, (9)

and the minimal control energy needed to reach a state (x1, v1) asymptotically
from

x(0) = 0, v(0) = 0,

is given by

inf
T>0, u∈L2([0,T ])

x(T,0,0,u)=x1

v(T,0,0,u)=v1

∫ T

0

‖u(t)‖2 dt →
(
x1
v1

)T

P−1

(
x1
v1

)
. (10)

We call the system balanced if P = Q = Σ is diagonal. In this case every state
is equally difficult to reach as it is to observe. Balancing can be achived with a
coordinate transformation (

x̃

ỹ

)
= R

(
x

y

)
(11)

which results in a contragredient transformation of the Gramians P and Q (see
e.g. [36]). Note that the transformation of the state (11) does in general result in a
dynamical system of size 2n× 2n, but not of the form (8), i.e., the transformation
destroys the second order structure. To avoid this we consider only transformations
of the position

x̃ = Tx. (12)
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This restriction has the consequence that in general we can not balance the
full matrices Q and P . If we partition

[
Q11 Q12

Q21 Q22

]
:= Q ,

[
P11 P12

P21 P22

]
:= P , (13)

it is easy to show that the transformation (12) induces a contragredient transfor-
mation of the blocks P11 and Q11 and the transformation (12) does provide enough
freedom to balance those blocks in in the Gramians.

Definition 1 The second order system (7) is called position-balanced if

P11 = Q11 = Σ,

where Σ is diagonal.

The restricted Gramians Q11 and P11 describe the observability and reacha-
bility energies of the positions (cf. [22]). Namely, it follows from (9) that

∫ ∞

0

‖y(t, x0, 0, 0)‖2 dt = xT0Q11x0 . (14)

By an inversion formula for block matrices (e.g. [28, Thm. 2.7]) we have

P−1 =

[
P−1
11 0
0 0

]
+

[
P−1
11 P12

−I

]
S−1

[
P−1
11 P12

−I

]∗
(15)

with S = P22 − P ∗12P−1
11 P12 > 0. Applying this to (10) we obtain

inf
T>0, u∈L2([0,T ])

x(T,0,0,u)=x1

∫ T

0

‖u(t)‖2 dt = xT1P
−1
11 x1 , (16)

where the optimal limiting velocity is v(T, 0, 0, u) = v1 = P ∗12P
−1
11 x1.

Remark 1 The position transformation (12) preserves the second order structure
but only involves a restricted class of transformations of the state. This changes the
energy concepts in the sense that we associate the energies with a given position
instead of a state. The observability energy is the energy associated with starting
with zero velocity and the controllability energy is the energy associated with
the optimization problem where the final velocity is also optimized. In [22] the
optimization problem (16) is referred to as the free velocity optimization problem.

3 Position balancing of time-delay systems

In order to construct a balancing procedure which preserves the structure of the
time-delay system (1), we will now, inspired by the second order case, consider a
transformation of the position,

x̃ = Tx. (17)

We derive an analogous concept of position balancing, where now the delay Lya-
punov matrices at zero, Uc(0) and Uo(0), play the same role as the matrices P11

and Q11 in the previous section.
First, note that (17) induces a contragredient transformation of Uc(0) and

Uo(0). The following result follows directly from the equations (6) and (4).
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Lemma 1 (Contragredient transformation) Consider an exponentially stable time-

delay system defined by (1) and the associated delay Lyapunov matrices Uc and Uo.

The time-delay system defined by the coordinate transformation (17) is given by Ã0 =
TA0T

−1, Ã1 = TA1T
−1, B̃0 = TB0 and C̃0 = C0T

−1. Moreover, the associated

delay Lyapunov matrices satisfy

Ũo(0) = T−TUo(0)T−1, Ũc(0) = TUc(0)T T.

3.1 Energy functionals and delay Lyapunov equations

Consider a time-delay system (1) with x(0) = x0 and x(t) = ϕ0(t) for −τ ≤
t < 0. For a given input u, we will denote the position and output of such a
system by x(t, x0, ϕ0, u) := x(t) and y(t, x0, ϕ0, u) := y(t). In analogy to (14), the
(observability) energy associated with the position x0 can be defined as

Eo(x0, T ) :=

∫ T

0

‖y(t, x0, 0, 0)‖2 dt . (18)

Since x(t) = K(t)x0 and y(t) = C0x(t) = C0K(t)x0, we have Eo(x0, T )→ xT0Uo(0)x0
as T →∞. We have hence expressed the energy (18) for T →∞ in terms of Uo(0).

In analogy to (16), we consider the minimal energy needed to steer the system
(at rest at t = 0) to a given position x1 in time T as

Ec(x1, T ) := min
u∈L2([0,T ]),

x(T,0,0,u)=x1

∫ T

0

‖u(t)‖2 dt . (19)

In order to characterize the minimum and its limit for T → ∞ we need an
explicit expression for the optimal control u. The optimal control is given in the
following lemma, where (·)† denotes the Moore-Penrose inverse.

Lemma 2 (Optimal control) Consider an exponentially stable time-delay system

(1), with a fundamental solution K. Moreover, let

P (θ) :=

∫ θ

0

K(θ − s)B0B
T
0K(θ − s)T ds. (20)

If x1 ∈ Im P (T ), then the control ux1 : [0, T ]→ Rm defined by

ux1(t) = BT
0K(T − t)TP (T )†x1

is the unique minimizer in (19) and

Ec(x1, T ) = ‖ux1‖L2 = xT1P (T )†x1 .

Proof Inserting x0 = 0 and ux1 in the variation-of-constants formula, we have

x(T, 0, ux1) =

∫ T

0

K(T − s)B0B
T
0K(T − s)TP (T )†x1 ds = P (T )P (T )†x1 = x1 ,
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and
∫ T

0

‖ux1(t)‖2 dt =

∫ T

0

xT1P (T )†K(T − t)B0B
T
0K(T − t)TP (T )†x1 dt

= xT1P (T )†P (T )P (T )†x1 = xT1P (T )†x1 .

It remains to prove that ux1 is optimal. So let ũ be another input satisfying
x(T, 0, 0, ũ) = x1. Taking the difference of both variation-of-constants represen-
tations, we find that

∫ T

0

K(T − s)B0(ũ(s)− ux1(s)) ds = 0

and thus the orthogonality relation
∫ T
0
ux1(s)T(ũ(s) − ux1(s)) ds = 0. By the Py-

thagorean theorem we have

‖ũ‖2L2 = ‖ux1 + (ũ− ux1)‖2L2 = ‖ux1‖2L2 + ‖(ũ− ux1)‖2L2 ,

showing that ‖ũ‖L2 ≥ ‖ux1‖L2 with equality only for ũ = ux1 .�

Now note that by variable substitution and equation (5) we have

P (T ) =

∫ T

0

K(t)B0B
T
0K(t)T dt→ Uc(0) as T →∞.

Thus, we have also characterized (19) in terms of the solution to the delay Lya-
punov equation. We summarize these results in the following theorem.

Theorem 1 Consider an exponentially stable time-delay system (1) and let Uc and

Uo be the solutions to the delay Lyapunov equations (6) and (4). The energies defined

by (19) and (18) are for T →∞ given in terms of Uo and Uc by,

Eo(x0) := lim
T→∞

Eo(x0, T ) = xT0Uo(0)x0 (21)

and

Ec(x1) := lim
T→∞

Ec(x1, T ) =

{
xT1Uc(0)†x1 if x1 ∈ Im Uc(0)

∞ if x1 6∈ Im Uc(0).
(22)

Remark 2 (Notion of state of a time-delay system) Similar to second order systems,
the real vector x(t) ∈ Rn (which we call the current position) does not define
the state of a time-delay system since the derivative (1a) depends on a previous
position (τ time-units ago). The state of a time-delay system must also involve the
position at the past τ time-units.

The energy concepts are changed in an analogous way. In the definition of Eo,
we start with the function, x(t) = 0 for t < 0 and x(0) = x0, similar to the second
order case where (14) was the output corresponding to x(0) = x0 and v(0) = 0. For
Ec, we had for the second order case in (16) that the terminal velocity was free.
In analogy, the optimization problem (19) can also be seen as the optimization
where the terminal history is a free variable since

Ec(x1, T ) = inf
x(T+θ),θ∈[−τ,0)

inf
u∈L2([0,T ]),

x(T,0,0,u)=x1

∫ T

0

‖u(t)‖2 dt . (23)

Analogous to the second order case, the optimization problem is a free history

optimization problem.
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3.2 Partitioning of infinite-dimensional Gramians

A common way to analyze time-delay systems is to reformulate the system as
an infinite dimensional first-order system, using an operator expressed with the
notation known as head-tail formulation which we now briefly summarize, following
the standard reference [8].

Consider the Hilbert space X = Rn × L2([−τ, 0),Rn), with the induced scalar
product. We define an operator A on X with domain

D(A) :=

{(
r

ϕ

)
∈ X

∣∣ϕ absolutely continuous on [−t, 0) ,
ϕ′ ∈ L2 ([−τ, 0),Rn) , r = ϕ(0)

}
,

where ϕ′(θ) = dϕ(θ)
dθ , θ ∈ (−τ, 0) and action

A

(
r

ϕ

)
:=

(
A0r +A1ϕ(−τ)

ϕ′

)
,

(
r

ϕ

)
∈ D(A).

The delay equation (1) is exponentially stable, if and only if A is the infinitesimal
generator of an exponentially stable strongly continuous semigroup T . If we further
define B : Rm → X and C : X → Rp by

Bu =

(
B0u

0

)
, C

(
x

ϕ

)
= C0x,

we can rewrite (1) in first order form as

{
d
dtzt = Azt +Bu(t),
y(t) = Czt.

(24)

The connection between a solution of (1) and a corresponding solution of (24) is
the following. The state of (24), i.e., zt, consists of the vector x(t) and the function
segment x(t + θ), θ ∈ [−τ, 0), corresponding to the trajectory of x at t and the
past τ time units, i.e.,

zt =

(
x(t)

x(t+ ·)

)
. (25)

In words, the state of (24) consists of a “head”, which contains the current value of
x, i.e., the position, and a “tail”, which contains the past trajectory of the system
over an interval of length τ .

For any t ≥ 0 the state and the output are given by

zt = T (t)z0 +

∫ t

0

T (t− s)Bu(s) ds (26a)

y(t) = Czt . (26b)

Following [8, Def. 4.1.20] we define the controllability map B∞ and the observ-
ability C∞ map by

B∞u =

∫ ∞

0

T (t)Bu(t) dt , B∞ : L2([0,∞),Rm)→ X

C∞z = CT (·)z , C∞ : X → L2([0,∞),Rp) ,
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with the dual operators

(B∞)∗z = B∗T (·)∗z , (B∞)∗ : X → L2([0,∞),Rm)

(C∞)∗u =

∫ ∞

0

T (t)∗C∗u(t) dt , (C∞)∗ : L2([0,∞),Rp)→ X .

The corresponding Gramians are then P∞ = B∞(B∞)∗ and Q∞ = (C∞)∗C∞.
In the following reasoning we will also consider the finite-horizon reachability
Gramian. For θ > 0 let Bθ : L2 ([0, θ],Rm)→ X and its dual be defined by

Bθu =

∫ θ

0

T (θ − t)Bu(t) dt and (Bθ)∗z = B∗T (θ − ·)∗z .

Then for the Gramian Pθ := Bθ(Bθ)∗ we have

Pθ =

∫ θ

0

T (θ − t)BB∗T (θ − t)∗ dt =

∫ θ

0

T (t)BB∗T (t)∗ dt θ→∞−→ P∞ .

We partition

P∞ =

[
P∞11 P∞12
P∞21 P∞22

]
and Q∞ =

[
Q∞11 Q∞12
Q∞21 Q∞22

]

according to zt. We will now show that the leading blocks of the partitioned
Gramians are equal to the solutions of the corresponding delay Lyapunov equations
at t = 0.

Theorem 2 Consider an exponentially stable time-delay system (1) and let Uc and

Uo be the solutions to the delay Lyapunov equations (6) and (4). Then

Q∞11 = Uo(0) (27)

and

P∞11 = Uc(0). (28)

Proof In order to show (27) we first express the energy Eo (defined in (18)) with
the (operator) Gramian Q∞. From the equivalence of the time-delay system (1)
and the infinite-dimensional system (24), it follows from the definition (18) and
(26), that for an arbitrary x0 ∈ Rn,

Eo(x0) =

∫ ∞

0

y(t)Ty(t) dt = ‖y‖2L2 =

∫ ∞

0

〈CT (t)z0, CT (t)z0〉 dt = 〈z0,Q∞z0〉 ,

where

z0 =

[
x0
0

]
.

Hence, from the partitioning of Q∞, we have Eo(x0) = xT0Q∞11x0. Since, x0 was
chosen arbitrarily and Q∞11 is symmetric, the conclusion (27) follows from the
characterization of Eo(x0) in (21).

To show (28) and to characterize Ec, we consider a finite time θ > 0 first. Note
that Im Pθ is the set of all states z1 reachable from z0 = 0 in time θ. Let Ec(z1, θ)
denote the minimal energy needed to reach z1 ∈ Im Pθ in time θ. If

z1 =

[
x1
φ1

]
= Pθ

[
ξ

ψ

]
for some ξ ∈ Rn, ψ ∈ L2([−τ, 0),Rn) , (29)
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then it follows from an argument analogous to the proof of Lemma 2 that with z1,
ξ and ψ as above we have

Ec(z1, θ) = 〈z1,
[
ξ

ψ

]
〉 = 〈

[
ξ

ψ

]
,Pθ

[
ξ

ψ

]
〉. (30)

Now take an arbitrary x1 ∈ Im P (θ), and recall that Ec(x1, θ) can be intepreted
as the solution of the free-tail optimization problem (in the sense of (23)) and we
have

Ec(x1, θ) = min
φ
Ec(
[
x1
φ

]
, θ). (31)

Let φ1 be a minimizer.
Now consider a small variation (ξ+ δξ, ψ+ δψ) of the preimage (ξ, ψ) with the

property
Pθ11δξ + Pθ12δψ = 0.

This property implies that the variation does not change x1 (in (29)) and we can
define δφ by [

x1
φ1 + δφ

]
= Pθ

[
ξ + δξ

ψ + δψ

]
.

We will now characterize the minimum (31), by noting that for any sufficiently
small δξ and δψ, the energy change under the considered variation must vanish to
first order, i.e.,

Ec(
[

x1
φ1 + δφ

]
, θ)− Ec(

[
x1
φ1

]
, θ) ≈ 2〈ξ,Pθ11δξ + Pθ12δψ〉+ 2〈ψ,Pθ21δξ + Pθ22δψ〉

= 2〈
[
Pθ12
Pθ22

]
ψ,

[
δξ

δψ

]
〉 !

= 0 .

Hence

[
Pθ12
Pθ22

]
ψ ∈

(
ker

[
Pθ11 Pθ12

])⊥
= Im

[
Pθ11
Pθ21

]
, where we exploit that this is a

finite-dimensional subspace of X and therefore closed. Thus there exists an α ∈ Rm

with

[
Pθ11
Pθ21

]
α =

[
Pθ12
Pθ22

]
ψ, i.e.,

[
α

−ψ

]
∈ kerPθ.

Therefore we have
[
x1
φ1

]
= Pθ

[
ξ + α

ψ − ψ

]
= Pθ

[
ξ̃

0

]
,

which implies that x1 = Pθ11ξ̃. We conclude that a position x1 is reachable in time
θ if and only if x1 ∈ Pθ11ξ̃. Hence Im P (θ) = Im Pθ11.
By combining Lemma 2 with (31) and (30) we have

xT1P (θ)†x1 = min
φ
Ec(
[
x1
φ

]
, θ) = ξ̃TPθ11ξ̃ = xT1(Pθ11)†x1 .

We conclude that P (θ)† = (Pθ)† since they share the same image and the same
kernel, and the quadratic forms coincide on the image. From the uniqueness of the
Moore-Penrose-inverse we have P (θ) = Pθ11 and in the limit we get Uc(0) = P∞11 .�



Title Suppressed Due to Excessive Length 11

Remark 3 Note that P∞ and Q∞ are the unique self-adjoint solutions to the Lya-
punov equations

∀z1, z2 ∈ D(A∗) : 〈P∞z1, A∗z2〉+ 〈A∗z1,P∞z2〉 = −〈B∗z1, B∗z2〉 ,
∀z1, z2 ∈ D(A) : 〈Q∞z1, Az2〉+ 〈Az1,Q∞z2〉 = −〈Cz1, Cz2〉 ,

where A∗ is the Hilbert-space adjoint of A [8, Thm. 4.1.23]. A different proof
of (27) is provided in [30, Equation (6.19)], based on the corresponding infinite-
dimensional Lyapunov equation. The same type of reasoning does not seem to
carry over to (28).

4 Truncation based on position balancing

We have now characterized the Gramians Uc(0) and Uo(0) by showing that they
can be interpreted as an energy quantity representing observability and control-
lability of a given position. We have shown that they also coincide with the
leading blocks in the partitioning of the infinite-dimensional observability and
controllability Gramians. Moreover, note that the coordinate transformation (17)
corresponds to a similarity transformation of the product of the Gramians, i.e.,
Ũc(0)Ũo(0) = TUc(0)Uo(0)T−1.

This leads to the following natural definition of a position balanced system.

Definition 2 The time-delay system (1) is called position balanced if

Uc(0) = Uo(0) = Σ,

where Σ is diagonal.

Note again that Uc(0) and Uo(0) undergo a contragredient transformation with
the coordinate transformation (17). We can hence follow the standard procedure
to balance and truncate a system using a Cholesky decomposition (see e.g. [1]).

Theorem 3 Consider the Cholesky decomposition of the Gramians Uc(0) = STS and

Uo(0) = RTR, such that S and R are upper triangular. Let U , Σ, V be the singular

value decomposition of SRT = UΣV T and define the coordinate transformation as

T = Σ−1/2V TR and T−1 = STUΣ−1/2. Let Ũc and Ũo be the solution to the delay

Lyapunov equations for the transformed time-delay system, Ã0 = TA0T
−1, Ã1 =

TA1T
−1, B̃0 = TB0 and C̃0 = C0T

−1. Then,

Ũc(0) = Ũo(0) =



σ1

. . .

σn


 = Σ.

That is, the transformed system is position balanced.
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Algorithm 1 Model reduction based on position balancing

1: Compute Uc(0) and Uo(0), e.g., using a numerical scheme [11],[33] or explicit formula
[30],[12].

2: Compute the Cholesky decomposition of Uc(0) and Uo(0), i.e., upper triangular R and S
such that

Uc(0) = STS and Uo(0) = RTR.

3: Compute the truncated singular value decomposition of SRT, i.e., if SRT = UΣV T with
diagonal Σ ordered by decreasing magnitude, we compute Û , V̂ ∈ Rn×r as the r first
columns of U and V and Σ̂ ∈ Rr×r as the leading block of Σ.

4: Compute T T
1 = Σ̂−1/2V̂ TR ∈ Rr×n and T2 = STÛΣ̂−1/2 ∈ Rn×r.

5: Compute reduced model Â0 = T T
1A0T2, Â1 = T T

1A1T2, B̂0 = T T
1B0 and Ĉ0 = C0T2.
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(a) x with u(t) = 0
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2

t
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(b) Output with u(t) = 0

0 2 4 6 8 10

−2

0

2

t

x1(t)

x2(t)

(c) x with (32) and x(T ) = e1

0 2 4 6 8 10
−2

0

2

4

6

t

u(t)

(d) Input u(t) with (32)

Fig. 1 Simulations with the unbalanced system for the example in Section 5.1.

5 Examples

5.1 Illustration of balancing

Consider the time-delay system given by

A0 =

(
−2 −1
−3/2 −1/2

)
, A1 =

(
0 1/2
1 0

)
, B0 =

(
1
−1

)
, CT

0 =

(
2

0.2

)
,
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Fig. 2 Simulations with the balanced system for the example in Section 5.1

The system is stable and the spectral abscissa is α ≈ −0.52. We will need Uc(0)
and Uo(0) for this system which were computed to,

Uc(0) ≈
(

0.93 −1.74
−1.74 3.63

)
, Uo(0) ≈

(
1.27 −0.41
−0.41 0.37

)
.

In a first simulation, we start the time-delay system with x(0) = e1 = (1, 0)T

and x(t) = 0 for t < 0 and let u(t) = 0. This is a standard delay-differential
equation and we can integrate it with standard software for integration of delay-
differential equations. The evolution of x(t) until t = T = 10 is given in Fig. 1a. The

numerical integral of |y(t)|2 is given in Table 1. Note that eT1Uo(0)e1 ≈
∫ T
0
|y(t)|2 dt

as predicted by Theorem 1.
Lemma 2 gives a formula for the input which steers the system optimally to a

given position in time t = T . We hence expect that the input

u(t) = BT
0K(T − t)TUc(0)−1e1 (32)

will steer the system from x(0) = 0 to x(T ) = e1 in a close to optimal manner
for sufficiently large T . Note that P (T ) ≈ Uc(0) for sufficiently large T since K(t)
decays asymptotically exponentially with rate eαt.

In order to evaluate the input function u(t) we need to evaluate the fundamental
solution K(t). This can be done numerically, e.g., by noting that the vectorized
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Unbalanced Balanced

Ec(e1, T ) Eo(e1, T ) Ec(e1, T ) Eo(e1, T )

11.03 1.27 0.50 1.98

Table 1 The energies before and after the balancing process for the example in Section 5.1.
Note that for the balanced system Ec(e1, T ) ≈ 1/Eo(e1, T ).

equation vec(K(t)) started with vec(K(0)) = vec(I) is a standard delay-differential
equation and we can again use software for solving delay-differential equation. We
now start the algorithm with x(t) = 0 for t ≤ 0 and use the control (32) and
again integrate until T = 10. We clearly see in Fig. 1c-d that the control steers the
system to x(t) = e1. The integral of the square of the input is given in Table 1,

i.e., consistent with Theorem 1 in the sense that eT1Uc(0)−1e1 ≈
∫ T
0
‖u(t)‖2 dt.

Note that the system is not position balanced in the energy sense since Ec(e1, T ) 6=
1/Eo(e1, T ). By carrying out the balancing process in Theorem 2 we get a new sys-
tem

Ã0 ≈
(

0.13 0.71
0.24 −2.63

)
, Ã1 ≈

(
−0.74 −0.10
0.43 0.74

)
, B̃0 ≈

(
−1.1
0.65

)
, C̃T

0 ≈
(
−1.08
0.95

)
.

After balancing both delay Lyapunov are equal and diagonal at θ = 0,

Ũc(0) = Ũo(0) = Σ ≈
(

1.98 0
0 0.16

)
.

The same simulations described for the unbalanced system are now carried out
for this balanced system and the results are presented in Fig. 2. In the balanced
system, Ec(e1, T ) ≈ 1/Eo(e1, T ) consistent with the interpretation that a position
should be equally difficult to observe as it is to reach. This is observed in Table 1.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a)

0 20 40 60 80 100 120
10−20

10−14

10−8

10−2

104 singular values of Σ

(b)

Fig. 3 The triangularized L-shaped domain and singular values of Σ for balanced system for
the example in Section 5.2.
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Original

Fig. 4 Transfer function and error for the proposed method and an unstructured approach
for the example in Section 5.2

5.2 Illustration of truncation

In order to illustrate the truncation based on position balancing, we will now con-
sider a time-delay system stemming from the discretization of a partial differential
equation. We let A0 be the matrix corresponding to the discretization of the PDE
eigenvalue problem

−∆u = λu

on the L-shaped domain Figure 3a with Dirichlet boundary conditions and the
grid also given in Figure 3a. The discretization is such that n = 110. We let A1 =
βeje

T
k where j and k corresponding to the grid points closest to (−0.4,−0.6) and

(0.2,−0.6), respectively, localizing the delay-term in space. With this construction
‖A0‖2 = 6.0 and ‖A1‖2 = β = 5. We fixed the delay to τ = 2, and BT

0 = C0 =
(1, . . . , 1), corresponding to an average of u in the whole domain. The system is
stable with a spectral abscissa α ≈ −0.4.

In Algorithm 1 we need to compute Uc(0) and Uo(0) for a system with n = 110.
For this we use a discretization approach which has been used in another setting
[33]. We discretize the infinitesimal generator with a spectral method, which results
in approximating (1) with a linear system without delay but with larger order. The
discretization approach involves a choice of the number of discretization points.
We chose this number by increasing it until no substantial change in the reduction
was observed. In this example, N = 20 was sufficient.

The singular values are shown in Fig. 3. Note that the boundary condition in
the delay Lyapunov equation, i.e., (4c) and (6c), is a (standard) Lyapunov equation
in Uc(0) and Uo(0) with low rank right-hand side. This explains the fast decay of
the singular values, compare e.g. [1].

The result of Algorithm 1 is visualized in Figure 4 and Figure 5.
In Figure 4 we observe that the oscillations of the transfer function are well

matched in the structured reduced model. In order to show the advantage of a
structured approach, we also carried out simulations which were not preserving
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the structure. Similar to the procedure that we used to compute Uc(0) and Uo(0)
we can discretize the system, and get a large linear system. This can subsequently
be reduced with the standard version of balanced truncation for linear dynamical
systems without delay. This is also shown in Figure 4. Note that only a finite
number of oscillations is matched in the unstructured approach.

In Figure 5 we observe that the error decreases with the size of the reduced
model. This is consistent with the decay of the singular values in Fig. 3.

However, different from the case of full-state balanced truncation of systems
without delay, the error is not of the same magnitude as the largest neglected sin-
gular value. In particular, for r = 25, the neglected singular values are numerically
equal to zero. But the error is still significantly larger than the unit roundoff error.
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structured BT r = 20
structured BT r = 25

Fig. 5 Error of the truncation based on position balancing for the example in Section 5.2.

6 Concluding remarks

We have here suggested a variant of balanced truncation for delay systems. The
computationally dominating part of the algorithm is the computation of Uc(0)
and Uo(0), which stem from the generalization of the Lyapunov equation. Al-
though computational aspects of the delay Lyapunov equation have received some
attention (e.g. [11],[12]), there is, for instance, no method similar or as efficient as
the Bartels-Stewart algorithm [3] available for the delay Lyapunov equation.
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Also note that some generalizations of the results in this paper are straight-
forward, because delay Lyapunov equations have already been studied for many
variant of time-delay systems. An important component in the derivation of our
result is the connection between the definition of Uc (equation (5)) and the de-
lay Lyapunov equations (6). This connection has, for instance, been worked out
for multiple delays [17], neutral systems [30],[14], and time-delay systems with
distributed delays [15].

We finally wish to point out that, although our approach is natural in terms
of the energy concepts and Gramians, it does share some of the disadvantages ob-
served for a similar approach for second order systems in [7],[22],[31]. In particular,
stability is not always preserved and error bounds are not available. On the other
hand, it yields a computable method (at least for moderate dimensions), which
preserves the structure of the system and performs quite convincing in numeri-
cal examples. In contrast to this, a full state balancing approach would lead to
infinite-dimensional operator equations, which are difficult and expensive to solve,
and typically do not lead to a reduced system of the form (2).
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