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Abstract

In this paper a method is presented for model reduction of
systems described by time-varying differential-algebraic equa-
tions. This method allows automated extraction of reduced
models for nonlinear RF blocks, such as mixers and filters, that
have a near-linear signal path but may contain strongly nonlin-
ear time-varying components. The models have the accuracy
of a transistor-level nonlinear simulation but are very compact
and so can be used in system-level simulation and design. The
model reduction procedure is based on a multipoint rational ap-
proximation algorithm formed by orthogonal projection of the
original time-varying linear system into an approximate Krylov
subspace. The models obtained from the approximate Krylov-
subspace projector can be obtained much more easily than the
exact projectors but show negligible difference in accuracy.

1 Overview

The problem of automated macromodel generation is interesting
from the viewpoint of system-level design because if small, accurate
reduced-order models of system component blocks can be extracted,
then much larger portions of a design, or more complicated systems,
can be simulated or verified than if the analysis were to have to
proceed at a detailed level. The prospect of generating the reduced
model from a detailed analysis of component blocks is attractive
because then the influence of second-order device effects or parasitic
components on the overall system performance can be assessed. In
this way overly conservative design specifications can be avoided.

There has been considerable recent interest, primarily in the
context of simulation of electrical interconnect, in extracting low-
order models of lumped (often passive) components that are time-
invariant. There are many systems, however, that are not linear
time-invariant (LTI) but can be accurately modeled as linear time-
varying (LTV). For example, if a nonlinear circuit model is lin-
earized around a time-varying large signal, the resulting model is
linear time-varying. In particular, many RF components (e.g., mix-
ers and filters) are designed to have a near-linear response in the
signal path, but may have strongly nonlinear response to other exci-
tations, such as the clock of a switched-capacitor filter, or a mixer’s
local oscillator. Such components are prime candidates for LTV
model reduction. Clearly, the set of circuits that can be accurately
modeled as linear-time varying is much larger than the set that can
be described as LTI.

Most of the recent work on LTI model reduction has been based,
implicitly or explicitly, on projection-based formulations.[4, 11]
The reduced model is obtained from the full model by project-
ing the linear system into a subspace of lower dimension. The
subspace chosen determines the approximation properties of the
reduced model.

It is now generally accepted that in LTI systems, choosing the
projection subspaces to be Krylov subspaces is effective and ef-
ficient. Efficiency arises because the Krylov subspaces are eas-
ily computed. The effectiveness of the approach is motivated
by noting that projecting into a Krylov subspace corresponds to
matching derivatives of the Laplace-domain transfer function (the
moments). Methods based on multipoint rational approximations
[11, 22, 5, 2, 9] are known to be particularly efficient.

Unfortunately, however, model reduction for time-varying sys-
tems appears to have received little attention. Balanced truncation
approaches[30] have been proposed, but it is unclear how to imple-
ment these techniques effectively. Therefore, given the wealth of
knowledge that has developed about model reduction using rational
approximations and the projection formulations, the first task of this
paper is to ask if the LTV systems can be analyzed in this frame-
work. As is shown in Section 4, this is indeed the case. Once the
projection framework has been identified as a viable candidate for
model reduction, the next task is to determine appropriate subspaces
and how to compute them efficiently.

Since our work is motivated by RF problems, periodically lin-
ear time-varying systems (PLTV) are of particular interest and our
implementation and application examples focus on these systems.
In Section 5 we show that models based on approximate multipoint
Krylov spaces can be very efficiently extracted from a time-domain
RF circuit simulator. The methodology, however, should generalize
to arbitrary time waveforms.

2 Model Reduction for LTI Systems

In hope of gaining insight into possible approaches to time-varying
systems, in this section we review the essentials of the Krylov-
subspace based projection methods.

Consider the linear time-invariant multi-input,multi-output (MIMO)
linear system written in differential-algebraic form1

Cẋ(t) = �Gx+ Bu(t)

y(t) = D
T
x

whereC;G 2 Rn�n;x(t) 2 Rn;B 2 Rn�ni ;D 2 Rn�no ; u(t) 2
Rni ; y(t) 2 Rno , n is the system order, and ni and no are the num-
ber of system inputs and outputs respectively.

For simplicity assume for the moment that C = I where I is
the identity matrix. After performing a Laplace transformation,

1We omit any direct input-output feed as these terms do not enter the model reduc-
tion procedure.



the system output is y(s) = DT (sI + G)�1Bu(s). The transfer
function DT (sI +G)�1B is a rational function in s, so it seems
logical to approximate it with a rational function, such as a Padé
approximant[1]. Pade approximants, and most of the other approx-
imants used for model reduction, have the property that they match
the transfer function and some of its derivatives with respect to s.

In the general case a rational approximant can be obtained by

Ĉż(t) = �Ĝz + B̂u(t)

y(t) = D̂
T
z

where Ĉ; Ĝ 2 Rr�r ; z(t) 2 Rr; B̂ 2 Rr�ni ; D̂ 2 Rr�no , and
r � n if the reduction is useful. The reduced matrices are obtained
from the projection matrices L;T by

Ĝ = L
T
GT; Ĉ = L

T
CT; B̂ = L

T
B; D̂ = T

T
D (1)

Returning to the caseC = I (the following results generalize),
note that the kth derivative, or moment, of the transfer function
is given by DTG�(k+1)B. Clearly the approximants we wish to
generate are connected with powers of the matrix G�1 acting on B,
or of G�T acting on D. Connecting the moments to the projection
matrices L;T is the key to the model reduction procedure. These
ideas are formalized by the following definition and theorem.

Definition 1 (Krylov subspace) The Krylov subspace Km(A; p)
generated by a matrix A and vector p, of order m, is the space
spanned by the set of vectors fp;Ap;A2p; : : : ;Am�1pg.

Theorem 1 (Krylov Subspace Approximation) If the columns of
L span the ordermKrylov subspaceKm(G

�T ;D) and the columns
of T span the order n Krylov subspaceKm(G�1;B), then the re-
duced order transfer function D̂T (sI + Ĝ)�1B̂ matches the first
m + n moments of the unreduced function DT (sI +G)�1B.

Proof. See [4, 11].

For example, in the PVL algorithm[7], which forms a Pade
approximation and is thus equivalent to the AWE[18] technique
because of the relation between Lanczos algorithm and Pade ap-
proximants [10], the choice of L and T is LT = WTG�1; T = V ,
where W and V contain the biorthogonal Lanczos vectors, and in
one variant of model reduction based on the Arnoldi method[24],
LT = WTG�1; T = V where V is the orthonormal matrix gener-
ated by the Arnoldi process. The columns ofW spanKm(G

�T ;D)
and the columns of V span Km(G�1;B).

In [16, 5], the projection matrices are taken directly from the
Krylov basis itself, L = T = V . Because of the orthogonal
projection2, if the full model possesses desirable structural proper-
ties, such as stability and passivity, they are inherited by the reduced
models. See Grimme[11] for further discussion of projection-based
approaches.

This approach can be extended to the case of multipoint approx-
imants where the transfer function and some of its derivatives are
matched at several points in the complex plane.[11, 22, 5, 2, 9] In
this case L and T must contain a basis for the union of the Krylov
subspaces constructed at the different expansion points. When the
expansion point is complex, real models may be efficiently obtained
by exploiting the fact that for a real matrix A, if u = (I � sA)�1p
is in the Krylov space, then so is u�[22]. Having established ap-
proximation properties for LTI model reduction schemes, we turn
to the time-varying case.

2An orthogonal projection results wheneverL = T and implies nothing about the
orthogonalityofL orT , thoughconstructingL and/orT to have orthonormalcolumns
can be a useful from a computational standpoint.

3 Time-Varying Small-Signal Analysis

We begin our analysis by describing one way in which linear time-
varying systems may arise. To obtain a linear time-varying circuit
description, first the differential equations describing the circuit are
written (using, say, modified nodal analysis [12]), as

f(v(T )) +
d

dt
q(v(T )) = u

(T )(t) (2)

where u represents the input sources, v(T ) describes the node volt-
ages, f is the relation between voltages and currents, and the func-
tion q relates voltages to charges (or fluxes). b is a vector that
describes the mapping from the input function u to the system
internals.

We have written the voltage v and input variable u with the
superscript T to indicate that they are total quantities that we will
split into two parts, a large-signal part and a small signal part, in
order to obtain a TVL model,

u
(T ) = u

(L) + u; v
(T ) = v

(L) + v: (3)

By linearizing around v(L), a linear time-varying system of the form

G(t)v+
d

dt

�
C(t)v

�
= bu(t) (4)

where G(t) = @f(v(L))(t)=@v and C(t) = @q(v(L))(t)=@v are
the time-varying conductance and capacitance matrices, is obtained
for the small response v.

3.1 Analyzing the linear time-varying system

In what follows script (A) will be used to denote continuous oper-
ators and upper case (A) to denote a member of the space of n� n
complex matrices, Mn . Subscripts will denote a vector or matrix
variable at a particular timepoint or harmonic, and lower case un-
subscripted will denote a variable over a time or frequency index.
That is, for a system with N states represented with M (discrete)
degrees of time-freedom (timepoints or Fourier harmonics), then
A 2 MNM , At 2 MN , xt 2 RN , x 2 RMN .

In model reduction of LTI systems,most progress has been made
in expoiting rational approximations to the frequency-domain trans-
fer functions. Thus motivated, we adopt the formalism of Zadeh’s
variable transfer functions[31] that were developed to describe time-
varying systems. In this formalism the responsev(t) can be written
as an inverse Fourier transform of the product of a time-varying
transfer function and the Fourier transform of u(t), u(w). That is,

v(t) =

Z
�1

1

h(i!0; t)u(!0)ei!
0td!0 (5)

To obtain the frequency-by-frequency response,we letu be a single-
frequency input, u!0 = u!�(! � !0), and see that

v(t) = h(i!; t)u(!)ei!t (6)

Writing s = i! and substituting into Equation 4, an equation for
the h(s; t) is obtained,

G(t)h(s; t) +
d

dt

�
C(t)h(s; t)

�
+ sC(t)h(s; t) = b (7)

Defining

K = G(t) +
d

dt
C(t) C = C(t) (8)



0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ms

V

Figure 1: Response of the switched-capacitor filter to a small 1kHz
sinusoid.

this may be written more compactly as

[K+ sC]h(s; t) = b: (9)

This expression may also be obtained from the finite-difference
formulations[15, 27] in the limit as the timestep goes to zero,or from
the multivariate-partial-differential-equation formalism[20, 19].

Equation 9 has a form similar to the frequency-domain expres-
sions of LTI transfer functions. However, it involves continuous op-
erators instead of finite-dimensional matrices. Finite-dimensional
representations will be obtained in Section 4 below. In general,
since h(s; t) comes from a lumped linear system, it will be a ra-
tional function with an infinite number of poles [3]. For example,
in a periodically time-varying system with fundamental frequency
!0, if � is a pole (in particular, a Floquet multiplier) of the system,
then � + k!0, k an integer, will be a pole of h(s; t). This is be-
cause signals can be converted by harmonic k in the time-varying
description from a frequency � � k!0 to the pole at �.

3.2 Systems concepts

The formalism above completely describes the internal system re-
sponse to an arbitrary outside input. However, we have not de-
scribed how the detailed differential-equation description is related
to outside systems. In the LTI context this role is played by the D
and B matrices.

Time-varying systems differ from LTI ones also in that there is
considerable flexibility as to the choice of the possible input-output
mapping functions, and thus of the transfer function itself. In the
LTI case, the model ports are usually fixed in advance, and that is
the end of the story. Specification of a constant matrix pair (D;B)
is sufficient to describe the input-output mappings. In the time-
varying case, this is no longer sufficient. We must specifyD and B
matrices, but it is useful to allow these matrices to vary with time.

To see this, consider a switched-capacitor filter problem. A
five-pole low pass switched capacitor filter, containing 71 MOS-
FETs was simulated and the time-varying linear response to a 1kHz
sinusoid computed. The results are shown in Figure 1. The jagged
waveform shape is a result of the strong nonlinearity of the filter
with respect to the clock. Incorporation of such effects is the point
of time-varying modelling. An LTI system would produce a smooth
sinusoid, shifted in phase and scaled in magnitude, as a response to
this input. The output of the filter, however, is usually followed by
some sort of function (e.g., the sample/hold of an A/D converter)

that discards the filter output outside some small sample time win-
dow. To model this system at a higher level, we would need a
reduced-order model that relates continuous, sinusoidal inputs to
the window of output that the following circuitry (the sample and
hold) needs.

In general, in the PTVL case, we must specify (D(t);B(t))
over a fundamental period. Fortunately in our case there is not
quite as much freedom as it first appears. In circuit problems,
since the output ports are fixed, we may write D(t) and B(t) as
D(t) = D[d1(t); : : : ; dni(t)];B(t) = B[b1(t); : : : ; bno(t)] for
some periodic scalar functions di(t); bi(t). The most common
choice, as in in [26, 27], and for most harmonic balance codes, is
to choose the d(t); b(t) to be single-tone sinusoids. In some cases,
for example mixers, this is a natural choice, but in general cases,
the choices of d(t); b(t) are not as simple. If many harmonics are
of interest in the input or output mappings, then the choice of pure
tones is a poor one. In the case of the switched-capacitor filter, a
natural transfer function is obtained by choosing a d(t) that samples
the output in a narrow interval after it has settled.

4 Model Reduction for LTV Systems

4.1 Obtaining Discrete Rational Functions

Because, for the lumped time-varying systems considered here, the
time-varying transfer functions are rational functions, it seems rea-
sonable to believe that reduced models can be obtained from the
same sorts of rational approximation paths that have been so prof-
itable for reduction of LTI systems. Therefore, we first seek a rep-
resentation of the transfer functions in terms of finite-dimensional
matrices.

To obtain a discrete rational matrix function, we must discretize
the operatorsK and C.3 Because the focus of this paper is on PTVL
systems that occur in RF applications, at this point we also introduce
explicit assumptions about the time-variation of the system, and
explain how the input-output mappings are incorporated into the
model reduction procedure. We will only discuss the SISO case as
the generalization is simple.

Following[26, 27], in the example case of a backward-Euler
discretization, we have

(K + sC)h(s) = b (10)

with

K =

2
666664

C1
h1

+G1 �
CM
h1

�
C1
h2

C2
h2

+G2

. . .
. . .

�
CM�1
hM

CM
hM

+GM

3
777775

(11)

C =

2
664

C1

C2

. . .
CM

3
775 (12)

h(s) =
�
h1(s) h2(s) � � � hM(s)

�T
(13)

and
b =

�
b1 b2 � � � bM

�T
(14)

3Of course, this step is also a model reduction by projection operation, though
not usually an orthogonal one, as most codes use some form of collocation (BDF or
pseudo-spectral discretizations). In general the model reduction may proceed directly
from any representation of the operator.



where Gj = G(tj); Cj = C(tj); bj = b(tj); hj(s) = h(s; tj).
In principal, at this point, any of the algorithms developed for
reduction of lumped LTI systems can be applied to the matrices
and vectors defined in Equations 11-14, if the results are properly
interpreted. Note that since the input functions or basis vectors vk
represent time-waveforms, the reduced input and output functions
b̂ and d̂ will represent time-varying input and output mappings. An
example will be presented in Section 7

4.2 Preserving System Structure

Recently there has been considerable interest in developing model
reduction methods for passive LTI systems that preserve the system
passivity.[16, 14] Unlike in the lumped RLC case, the time-varying
models considered in this paper are not necessarily passive, or even
stable, since they come from a linearization of a nonlinear system.
Indeed, small-signal gain may be a desired property of the model.
However, even if no a-priori conditions can be established for the
passivity or lack thereof in the time-varying systems, we would at
least like to insure that whatever nice structural properties, in partic-
ular stability or passivity, happen to be possessed by the underlying
system, are not destroyed in the model reduction procedure. When
an orthogonal projection is performed using orthonormal matrices
as proposed in this paper, it can be shown using arguments based on
the field of values of an operator[13] that properties such as passivity
are inherited in the reduced model.

5 Approximating the Krylov space

In [27], the transfer functions from a small-signal sinusoidal input
to sinudoids at harmonics of the output were obtained by the solving
the finite-difference equations

2
666664

C1
h1

+ G1 �
CM
h1

� �(s)

�
C1
h2

C2
h2

+ G2

. . .
. . .

�
CM�1
hM

CM
hM

+GM

3
777775

2
666664

ṽ(t1)

ṽ(t2)

...

ṽ(tM )

3
777775

=

2
666664

b̃(t1)

b̃(t2)

...

b̃(tM)

3
777775

(15)
where �(s) � e�sT and T is the fundamental period. The transfer
function h(s; t) is then given by h(s; t) = e�stṽ(t).

It is now convenient to decompose K into a lower triangular
and an upper triangular piece, K = L+ R. Using the expressions
for L and R, (15) becomes�

L+ �(s)R
�
ṽ = b̃(s) (16)

If we define a small-signal modulation operator Ω(s),

Ω(s) �

2
664

Iest1

0 Iest2

. . .
. . .

0 IestM

3
775 (17)

then we can make the identification

h(s) = ΩH(s)ṽ(s) (18)

and more importantly,

K + sC ' Ω(s)
�
L+ �(s)R

�
ΩH(s) (19)

The left and right hand sides of Eq. 19 differ in the treatment of the
small signal. The left hand side represents a spectral discretization,
and the right-hand-side represents a finite-difference discretization.

Suppose we need to solve Eq. 16 for some right-hand-side b̃.
Again following [27], consider preconditioning with the matrix L.
BecauseL is lower triangular, with a small block bandwidth, block
Gaussian elimination is very efficient at computing the inverse act-
ing on a vector. In this procedure, once the M diagonal blocks
have been factored, an operation that must be prformed exactly
once, then every application of the inverse is an M step procedure,
at each step needing a backsolve with the factored diagonal ma-
trices and multiplication by the blocks off the diagonal. There is
one off-diagonal block in each row for the simple backward-Euler
discretization. The preconditioned system can be written as

�
I + �(s)L�1

R
�
ṽ = L

�1
b̃(s) (20)

Suppose that Equation 20 is solved by a Krylov-subspace based it-
erative method such as GMRES[23].4 Because the Krylov subspace
of a matrix A is invariant to shifts[17, 27] of the formA! A+�I ,
the same Krylov subspace may be used to solve Equation 20 at
multiple frequency points. This “recycled Krylov subspace” al-
gorithm is made even more efficient[27] by exploiting the special
structural properties of L�1R, and because the spectrum of L�1R,
being related to the the Floquet multipliers of the TVL system, is
usually clustered. The recycling of the Krylov space also accel-
erates solution with different right-hand-sides. The final point is
that systems of the form (16) may be solved very efficiently for
different frequencies and right-hand-side vectors. However, the
finite-difference formulation is not suited to model reduction.

In contrast, the spectral form that is amenable to model reduction
is less convenient to work with (contrast Equation 10 and Equation
16). Even if we use a lower-tridiagonal preconditioner, at each
different frequency point the preconditioner must be reconstructed
(i.e. we must re-factor the diagonal blocks), and the resulting
Krylov-subspaces are not preserved with shifts in frequency s.

To resolve this dilemna consider what would happen if the
matrix V used for the projection was not a basis for the Krylov
subspace of (K + sC)�1, but instead a nearby matrix. Because
of the way the reduced model is formed, only small errors would
be introduced into the final model. As long as the model was not
evaluated in the vicinity of a pole, the additional errors introduced
into the model would be small.

This suggests that the basis for the projector in the model-
reduction procedure be obtained by using the finite-difference equa-
tions. Because the basis will be a very good approximation to
the Krylov-subspaces of the spectral operator, good reduced mod-
els should still be obtained. In addition, because of the recycled
Krylov scheme, obtaining projectors from expansions about multi-
ple frequency points is essentially no more expensive than single-
frequency-point expansions. This leads us to the proposed model
reduction algorithm, Algorithm 1. It may be considered an adapta-
tion of the algorithm of [5] where approximate linear solves have
been used instead of exact ones.

The recycled Krylov-subspace iterative solvers,and block solvers
in general, are more efficient than the non-block solvers only if the
sequence of right-hand-sides have Krylov spaces that are ‘near’ one
another. To motivate why recycling might be very effective for the
model reduction problem, consider the simple case where C = I
and the expansion point is taken at the origin. Then in the exact
case the kth order projector Vk is constructed so that

Vk � Kk(K
�1
; b) � fb; K

�1
b;K

�2
b; : : : ; K

�(k�1)
bg: (21)

4These are different Krylov-subspaces than the ones used for model reduction.



Algorithm I
(Approximate Multipoint Krylov-subspaceModel Reduction)

Set k = 1.
for i = 1; : : : ; nq f

for j = 1; : : : ;m(i) f
if j = 1 then

w = b
else

w = Cvk�1

u = ΩH(si)
�
L+ �(si)R

�
�1 Ω(si)w

for l = 1; : : : ; k � 1 f
u = u� vTl u

g

vk = u=jjujj
k = k + 1

g

g

K̂ = V TKV

Ĉ = V TCV

D̂ = V TD

B̂ = V TB

Suppose that instead of the preconditioned procedure proposed
above, each new vector in the model reduction was obtained by
an inner Krylov iteration with the matrix K . Then, intuitively,
since each new right-hand-side ui in the model reduction procedure
is drawn from a Krylov space of (K;p;m) for some m, it seems
reasonable to expect that the next term in the space of Ki(K

�1; b)
would be related to the Km(K; b) and that some efficiency could
be obtained thereby. In fact Van der Vorst[29] has shown that the
vector K�qb can be constructed from nearly the same Krylov se-
quence fb; Kb; : : : Kmbg; m > q; that is used to construct K�1b.
Thus is is reasonable to expect that the entire Vk can be constructed
from the space fb;Kb; : : :Kmbg, where m only slightly exceeds
k.

For our model reduction implementation, a recycled version
of the GMRES algorithm[8] is used as a ‘black box’ to solve the
equations L + �(si)vi = pi . As a result these nice properties of
the Krylov spaces are automatically exploited without having to
worry about the details of the preconditioning, shifting, etc. Recent
work on ‘thickly restarted’ methods[25] for eigenvaluecomputation
exploit similar ideas.

6 Applications

To test the model reduction procedure, the proposed algorithms
were implemented in a time-domain RF circuit simulator. The
large-signal periodic-steady-state is calculated using a shooting
method[26]. The time-varying linear system was discretized us-
ing variable-timestep second-order backward-difference formulas.

The first example considered was the switched-capacitor filter
previously discussed, running at a clock frequency of 25kHz. This
example generated 58 equations in the circuit simulator, and 453
timesteps were needed to describe the steady-state waveform. The
same timesteps generated in the solution of the periodic-steady-state
problem were used to discretize the time-varying linear operator.
For the model reduction procedure, the input function b(t) (see
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Figure 2: The time-sampled switched-capacitor filter transfer func-
tion.

x(t) y(t)H(f)

cos(   t)ω

sin(   t)ω

Figure 3: The receiver macromodel. The frequency of the sin and
cosine elements is the mixer LO frequency, 780MHz.

Equation 10) was constant, corresponding to the continuous sinu-
soidal input present at the filter input. To specify an output function,
we took a sample function that was constant over a 200ns period
1us before the clock edge at the start of the cycle. Essentially, the
final model is a real LTI system that represents a tranfer function
between the continuous analog input and the sampled digital out-
put. The amplitude of the transfer function, as a function of input
frequency, of the reduced model is shown in Figure 2.

Two nine-state models are shown in Figure 2. The model shown
with a dashed line was generated by matching nine real moments
at the origin. The dash-dot line, virtually identical to the actual
transfer function, was generated from matching 3 real moments at
the origin, and one moment at 200kHz, 400kHz, and 800kHz on the
imaginary axis. As these expansion points were off the real axis,
each complex moment in the Krylov space generates two states in
the final real model, corresponding to the Krylov vector and its
complex conjugate. The multi-point approximation is seen to be a
better match.

The second example is the complex image-rejection receiver
studied in [28]. This receiver is a complicated circuit with sev-
eral functional component blocks (a low-noise amplifier, a splitting
network, two double-balanced mixers, and two broad-band Hilbert
transform output filters). The entire circuit has 167 bipolar tran-
sistors and generates 986 equations in the circuit simulator. 200
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Figure 4: Transfer function of the mixer (solid) and the 15-state
mixer model(dash), from RF input to mixer output.

timesteps were needed for the time-domain analysis, so that the
matrix K has a rank of almost 200,000.

A fifteenth order real-valued time-varying model was generated
to represent the receiver conversion path from RF to output. Since
a model from multiple sidebands to mixer output was desired, the
adjoint matrix KT was used to generate the model reduction. In
this case the time-varying elements appear before a LTI filter in the
final model,5 as is shown schematically in Figure 3. The mixing
elements shift the input from the RF frequency by 780MHz, the
mixer LO frequency. Following these elements is a multi-input LTI
filter whose response is shown in Figure 4. The lower-sideband
rejection characteristic of this mixer is evident in the model. If the
model were used in a suppressed-carrier DSP simulator, the mixing
elements would simply be omitted.

Table 1 shows the statistics for the computational costs for the
reduced model extraction and evaluation. 200 frequency points
were considered in the filter example and fifty in the mixer example.
In both examples the reduced model took less time to extract than
the single frequency sweep, and the evaluation was vastly more
efficient (in fact the overhead in the code was sufficient that it was
difficult to determine exactly how much time was consumed in the
actual model evaluation). Note the efficiency in particular of the
reduction of the switched-capacitor example. The time-varying
model has a rank of 26,274, yet the reduced model was generated
in only 7 CPU seconds.

We did not compare the effectiveness of the exact moment-
matching procedure. This approach requires a new complex matrix
factorization for multipoint approximants and is very inefficient if
many separate frequency points are considered. However, the effi-
ciency of the recycled Krylov algorithm is evident. In the case of
the filter, for a order-nine real model only 18 applications of L�1

were required in the recycled GMRES procedure that obtained the
moments. The remaining matrix vector products (or backsolves)
were needed to perform the projection or for the initial precon-
ditioning steps. Even in the mixer example, where GMRES had
much more difficulty converging, 124 backsolves were needed for
the reduction, about 8 per model order, which is still good.

5Basing the model reduction on K is more convenient if we wish to place time-
varying elements after the LTI component.

Circuit MOR/Recycle MOR/Std Pointwise
MVP 45 99 410

SCF Reduce 7s 12s –
Solve 1s 1s 1.5m
MVP 166 1980 280

Receiver Reduce 4m 48m –
Solve 2s 2s 8.5m

Table 1: Comparison of time-varying model reduction procedures
and pointwise frequency sweeps. The frequency sweeps were accel-
erated by the recycled GMRES algorithm. MVP refers to equivalent
real-real matrix vector solves with the matrix L. “Reduce” is the
model reduction time in seconds or minutes, and “solve” the CPU
time required to obtain the frequency response.

7 Conclusions and Future Work

In this paper we have demonstrated extraction of simple and com-
pact macromodels from nonlinear, time-varying transistor-level cir-
cuit descriptions. As the switched-capacitor and receiver examples
demonstrate, these models are capable of representing very com-
plicated underlying dynamics. The class of systems that can be
represented as linear time-varying is very broad and so the ap-
proach proposed here is potentially a powerful analysis and ab-
straction tool. The use of the multi-point Krylov-subspace based
rational approximant with the inner approximate recycle GMRES
solver appears to be a particularly synergistic combination and is
primarily responsible for the efficiency of the method.

In fact, we have observed that an advantage of the multi-point
approximants is that they seem to be more robust in their ability
to use approximant solves of very low accuracy, when coupled
with the recycled GMRES solver. When the requested solution
tolerance from the recycled GMRES solver is set very loosely, it
will fairly quickly cease to generate new vectors for use in the model
reduction projection space. Moving to another frequency expansion
point introduces new information into the recycled solver, and new
directions are generated for the model reduction projection.

There are several immediate extensions of the ideas of this
paper. The formalism and algorithms can be trivially extended
to the case of quasi-periodic small-signal analysis. Similarly the
methodology of this paper can be directly applied to obtain reduced
models of (poly)cyclostationary noise transfer functions[21], as has
essentially already been shown in [6].
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