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Abstract - This paper presents a spectrally-weighted balanced truncation
technique for RLC interconnects, a technique needed when the intercon-
nect circuit parameters change as a result of variations in the manufactur-
ing process. The salient features of this algorithm are the inclusion of
parameter variations in the RLC interconnect, the guaranteed stability of
the reduced transfer function, and the availability of provable frequency-
weighted error bounds for the reduced-order system. This paper shows
that the balanced truncation technique is an effective model-order reduc-
tion technique when variations in the circuit parameters are taken into
consideration. Experimental results show that the new variational spec-
trally-weighted balanced truncation attains, on average, 20% more accu-
racy than the variational Krylov-subspace-based model-order reduction
techniques while the run-time is also, on average, 5% faster.

1.  INTRODUCTION

The problem of interconnect model reduction has gained considerable
attention in the EDA community in recent years. Model reduction tech-
niques enable us to capture the interconnect effects with a much shorter
computational time than that required for the simulation of the full circuit.
On the other hand, as the minimum feature sizes shrink to the sub-quarter
microns, geometrical variations in the line width, metal height, and dielec-
tric thickness due to process variations have more pronounced effects on
the reliability and performance of VLSI circuits [1]. As a consequence, it
is crucial to assess the impact of these process variations on model-order
reduction techniques.

Among various classes of model reduction techniques, the explicit
moment matching algorithms (AWE [2], RICE [3]) and Krylov-subspace-
based methods (Pact [4], PVL [5], PRIMA [6]) have received the most
attention for generating reduced order models of the interconnects. The
computational complexity of these model-order reduction techniques is
due to the matrix-vector products. However, these methods do not provide
a provable error bound for the reduced system.

An alternative to these model reduction techniques that has seen
renewed interest and consideration are the balanced realization techniques
[7], [8], [9]. Balanced realization techniques have not received the same
attention as Krylov-based and Pade-based model reduction techniques
partly because these methods normally require time-consuming computa-
tions [7]. A reduced system using the balanced realization technique is
guaranteed to be stable. Moreover, a provable error bound does exist for
this class of model-order reduction techniques.

In the balanced realization-based model reduction methods, each state
is equally controllable and observable, and the reduced-order model of the
original transfer function is derived by minimizing the Hankel-norm of the
error between the transfer functions of the original and the approximated
system. Paper [8] uses the truncated balanced realization as well as the
Schur decomposition method to develop an efficient numerical method for
the order reduction of a large linear time-invariant (LTI) system. The bot-
tleneck in balanced truncation methods is the computational complexity
incorporated in solving the Lyapunov equations. Papers [9] and [10] pro-
pose efficient algorithms to solve the two Lyapunov equations in order to
obtain the controllability and the observability grammians. The algorithms
are based on the Alternated Direction Implicit (ADI) method that was pro-
posed in [11].

A shortcoming of these model reduction techniques is that they do not
reshape the frequency spectrum to emphasize error minimization in some
frequency range of interest. Furthermore, they also do not address the
numerical difficulties when the system is nearly uncontrollable or unob-
servable. In paper [12], a new numerically stable, frequency-weighted bal-
anced truncation technique was presented. The proposed method gives a
definitea priori error bound and is guaranteed to be stable even when both
input and output weightings are utilized at the same time.

Analyzing the interconnect without taking into account the rather large
variations of the interconnect geometries is not useful in practice. These

variations are especially large in the inter-layer dielectric (ILD) thickne
and the metal line width and height. These process-dependent geomet
variations have a definite impact on the total line and inter-wire coupli
parasitics, which in turn results in variations in the signal delay and t
coupling noise. Liuet al. in [13] studied the effect of interconnect param
eter variations on Krylov-subspace model-order reduction techniques.
paper basically combines the matrix perturbation theory [14] and the K
lov-subspace-based model reduction method [4], [6]. The authors al
two-dimensional variations on the projection matrices. To compute t
corresponding sensitivities of the susceptance and conductance mat
to each dimensional variation, some sample points were picked up and
dominant eigenvalues/eigenvectors were calculated.

The goal of this paper is to consider the effects of process variatio
and spectral shaping on model-order reduction using balanced trunca
technique and to propose an efficient order reduction technique t
includes these effects. The main contribution of this paper is our use of
method proposed in [12] combined with a new variational balanced tru
cation approach that accounts for process variations in order to obta
new variational spectrally-weighted balanced truncation method.

Section 2 gives a brief overview of the balanced realization method
discussion about the effect of process variations on interconnect mode
is also provided in this section. Section 3 reviews the formulation of t
frequency-weighted model reduction proposed in [12]. In section 4, t
new variational balanced truncation with spectral shaping is illustrate
and a theoretical comparison between this work and the work presente
paper [13] is made. In section 5, The new model reduction technique
compared to the work presented in [13] by running simulations on a nu
ber of global interconnect line and clock tree scenarios. Other experim
tal results in this section verify the accuracy of our technique. Final
section 6 presents the conclusions of our paper.

2. BACKGROUND
In this section, first, we briefly explain the conventional balanced trunc
tion method. Next, a brief discussion about the effect of process variatio
on interconnect modeling will be provided.

2.a.    An overview of balanced realization
Consider a network consisting of inductances, capacitances, and re
tances. Modified Nodal Analysis (MNA) can be used to obtain the follow
ing system of equations:

(1)
  (2)

where the state vectorx represents the vector ofN node voltages across
circuit capacitances and voltage sources and the vector ofM currents flow-
ing through inductors and current sources. In addition:

, , ,

where

The MNA equations can be rewritten in the form of the standard sta
space representation by introducing the following matrices:

, (3-a)
Hence:

   (3)
   (4)

L ẋ G x– BN u+=
y Cx=

L Ccap 0

0 L
= G G E

ET– 0
= x v

i
= E eij[ ]=

eij

1

0

1–





=

If branchj is incident at nodei and oriented away from it.

If branchj is incident at nodei and oriented towards it.

If branchj is not incident at nodei.

A L 1– G–= B L 1– BN=

ẋ Ax Bu+=
y Cx=
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For stable LTI systems, the controllability and observability grammians
are defined as follows:

         ;       (5)

The P and Q matrices (known as controllability and observability
grammians) satisfy the Lyapunov equations [7]:

     ;     (6)
The controllability and observability grammians give some interesting

insights about the system characteristics. A particularly interesting prop-
erty is that the Hankel singular values of the system transfer function,
H(s), are the square-roots of the eigenvalues ofPQ:

 (7)
Each Hankel singular value represents the energy exerted by the corre-

sponding state variable in the controllability and observability map of the
balanced system. It can be proved that there exists a similarity transforma-
tion matrixT such that the controllability and observability grammians of
the new system  are equal and diagonal:

 (8)
where . The balanced transformation of an LTI sys-
tem allows one to choose the state variable set that would provide a signif-
icant amount of information in the external representation of the system.
In fact, on the basis of the computed energy for each state variablexk , we
settle on a criterion for evaluating the possibility of eliminatingxk in the
reduced model scheme. IfΣ is partitioned into to two submatrices:

  (9)

where , . The new coordinate trans-
formed system (Ar , Br , Cr) is also partitioned in conformity withΣ as:

Ar = = , Br =  = , Cr = =

The reduced order model based on (A11, B1, C1) is stable, and the -
error is bounded by [7]:

(10)

2.b.    Modeling of interconnect variations
Due to process variations, interconnect technology parameters are varying
substantially. These parameters can have as much as a % variation off
their nominal values [1]. Therefore, the effect of the process variations on
the interconnect delay and crosstalk should be taken into consideration. A
common approach to anticipate these variations in the design is the con-
ventional skew-corner, worst-case modeling. This method, however, is too
conservative because the probability of all 3-σ process corner values
occurring simultaneously is very small. As a consequence, statistically-
based worst-case interconnect modelings using Monte-carlo simulation
have been proposed [16], [17]. These approaches, however, fail to handle
large circuits that exist in reality. To alleviate the problem of having large
computational complexity (as also mentioned in [13]) the effect of process
variations must be taken into account in model-order reduction algo-
rithms. Furthermore, the resulting variational reduced-order model needs
to converge to the reduced-order model of the nominal network when all
the parameter variations are zero.

3. BALANCED TRUNCATION WITH SPECTRAL SHAPING

We have seen that balanced realization is an attractive model reduction
technique due to the fact that it gives a provable -error bound for the
reduced-order system. Even more attractive is a balanced truncation tech-
nique extended to include weighting on the input and/or output.

To determine the state-space characteristics of the new augmented sys-
tem, we are faced with two basic questions that must be answered:

1. What set of points in the x-state space could be a part of the zero ini-
tial condition response for the weighted input denoted byη(t)?

2. What set of points in the x-state space as initial conditions could pro-
duce a weighted output denoted byξ(t)?

Consider the state-space representation of a set of tightly coupled RLC
interconnects given by equations (3) and (4). The goal of the frequency-
weighted balanced realization technique is to calculate of degreek
(k < n), making

(13)
as small as possible. To obtain such a reduced system we first calculat
grammians of the augmented system and go through the same steps
were taken for a unity-weighted system. First, we write the Laplace tra
formation of the input and output weighting functions:

(14)

(15)
According to definition [18], the controllable subspace of the au

mented system,H(s)Wi(s), is the solution set to the first question. A con
troller-form realization of the augmented systemH(s)Wi (s) is as follows:

, ,   (16)

Similarly, according to definition [18], the observable subspace of t
augmented system,Wo(s)H(s) , is the solution set to the second question
An observer-form realization of the augmented systemWo(s)H(s) is as
follows:

,  , (17)

For a complete explanation of controller and observer form realizatio
see chapter 3 of reference [18]. Since all controllable and observa
modes of these two augmented systems are determined by up
left corner submatrices of and , the desired controllability an
observability grammians are given by the corresponding upper l
corner submatrices of  and :

, (18)

where  and  must satisfy the following Lyapunov equations:

(19)

(20)
Expanding the upper left corner block of the Lyapunov equ

tions yields:
(21)

(22)

From equations (21) and (22) the new variables are defined as follo
(23)

(24)
It is readily seen thatX and Y are symmetric matrices. As a conse

quence, there exist orthogonal matricesU andV and diagonal matricesS
andZ such that:

(25)
(26)

whereS=diag(s1 , s2 , . . .  , sn),  and Z=diag(z1 , z2 , . . . , zn), and

, . Suppose that
rank(X)=i and rank(Y)=j, where . We can write:

(27)

(28)

Let and denote the solutions of the following Lyapunov equ
tions:

(29)
(30)

We find that the transformation matrix that simultaneously diag

nalizes  and  is as follows:

 (31)
Similar to the unit-weighted balanced truncation method, this transf

mation matrix, , is used to map the original system to a new coordin
transformed system. The reduced-order system is then obtained from
transformed system. Note that contains the characteristics of
weighting functions.

The input and output weightings are determined based on the rang
frequencies where we would like to have the maximum accuracy. T

P eA tBBTeA
T

t td
0

∞

∫= Q eA
T

tCTCeA t td
0

∞

∫=

AP PAT BBT+ + 0= AT Q QA CTC+ + 0=

σ i H s( )( ) λi PQ( ){ }1 2⁄=

A r Br Cr, ,( )
Pr Qr Σ diag σ1 σ2 … σn, , ,( )= = =

σ1 σ2 … σn 0>≥ ≥ ≥

Σ Σ1 0

0 Σ2

=

Σ1 ℜk k×∈ Σ2 ℜ n k–( ) n k–( )×∈

TAT 1– A11 A12

A21 A22

TB B1

B2

CT 1– C1 C2

L∞

H s( ) H r
k s( )– ∞ 2 σ i

i k 1+=

n

∑
 
 
 

≤

30

L∞

H r
k s( )

Wo s( ) H s( ) H r
k s( )–( )Wi s( ) ∞

Wi s( ) C i sI A i–( ) 1– Bi Di+=

Wo s( ) Co sI Ao–( ) 1– Bo Do+=

Ai
A BCi

0 Ai

= B i
BDi

Bi

= Ci C 0=

Ao
A 0
BoC Ao

= Bo
C
0

= Co DoC Co=

n n×
A i Ao

n n×
P Q

P
P P12

P12
T P22

= Q
Q Q12

Q12
T Q22

=

P Q

Ai P PAi
T B iB i

T+ + 0=

Ao
T Q QA o Co

T Co+ + 0=

n n×

AP PAT BC iP12 P12
T C i

TBT BD iD i
TBT+ + + + 0=

ATQ QA Q12BoC CTBo
TQ12

T CTDo
TDoC+ + + + 0=

X BC iP12 P12
T C i

TBT BDiD i
TBT+ +=

Y Q12BoC CTBo
TQ12

T CTDo
TDoC+ +=

X USUT=
Y VZV T=

s1 s2 … sn 0≥ ≥ ≥ ≥ z1 z2 … zn 0≥ ≥ ≥ ≥
1 i j, n≤ ≤

B Udiag s1
1 2⁄ … si

1 2⁄ 0 … 0, , , , ,( )=

C diag z1
1 2⁄ … zj

1 2⁄ 0 … 0, , , , ,( )VT=

P̂ Q̂

AP̂ P̂AT BBT+ + 0=
ATQ̂ Q̂A CTC+ + 0=

T̂
P̂ Q̂

TP̂TT T 1–( )TQ̂T 1– diag σ1 … σr σr 1+ … σn, , , , ,( )= =

T̂

T̂
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weighting functions should emphasize the frequency ranges where more
accuracy is required. Similarly, they must de-emphasize the range of fre-
quencies where the noise resulting from the order reduction has very min-
imal energy or is out of the desired frequency bound.

4.  VARIATIONAL SPECTRALLY-WEIGHTED BALANCED
TRUNCATION

Characterization of the interconnect geometry variation is an important
issue in deep-submicron VLSI technology. In order to accurately assess
the performance of an interconnect system, it is essential to characterize
the interconnect geometry, which in turn specifies the interconnect parasit-
ics [13]. From a designer point of view, one important source of the IC
performance variability is the physical source of variability [19]. For the
purpose of design performance evaluation, we are concerned with two
possible cases here. The first one includes the case where the interconnect
(or device) parameters are constant within a die but vary within a wafer or
a lot. In the second case, the device and interconnect parameters vary
within a die. The inter-die variability can be minimized by using several
techniques and corrections during the fabrication process. Due to its rela-
tively low spatial frequency and smoothness, simple models can be used
to describe the wafer level variations. As a result, the wafer level variation
can be modeled locally (within the die) as a linear function of the position
within the die:

(32)

where the model parameters , , and are random variables
and have joint probability density functions. For instance, for a given
metal wire, if we know that there is a width variation of and a height
variation of , then the resistance and capacitance of that particular
metal wire are:

or in general, for the susceptance and conductance matrices of the inter-
connect system that are exposed to the process variations, we have:

(33)

(34)
To obtain a balanced truncation technique that takes the process variations
into account, we first find the new system matrix (the so-called per-
turbed system matrix) of the interconnect that is affected by process varia-
tion in terms of the ideal system matrix,A, and the perturbed susceptance
and conductance matrices and . Lemma 1 helps us determine
this new system matrix.

Lemma 1. Given an LTI system whose state-space representation is pro-
vided by equations (3) and (4), let the susceptance and conductance matri-
ces, and , vary according to equations (33) and (34). If

<< , then:

(35)

where (36)

This lemma enables us to obtain the relationship between the new per-
turbed system matrix and the original one as well as the incremental varia-
tions of the susceptance and conductance matrices.

The balanced realization approach directly utilizes the balancing trans-
formation to project the existing system to a new system whose controlla-
bility and observability grammians are identical and diagonalized. The
diagonal elements represent all the singular values of the system corre-
sponding to the state variables of the system. Thek-thorder truncated bal-
anced realization is then obtained by considering the firstk singular-
values. This approach gives more intuitive information about theenergy
exerted by each state variable and thus the contribution of each state vari-
able on the external behavior of the system, as opposed to the Krylov-sub-
space methods that involve more abstract computations. From a
mathematical viewpoint, the Hankel singular values of the system transfer
function are indeed the eigenvalues of the symmetric matrix,PQ. To real-
ize the effect of interconnect parameter variations on the observability and
controllability grammians of the system, we prove the following Theorem.

Theorem 1.Consider a stable LTI system with the state-space representa-
tion given by equations (3) and (4). Suppose that the system matrix

is perturbed by . The resulting perturbed system
has the following controllability and observability grammians:

(37)

(38)

where
According to Theorem 1, any perturbation in the system matrix ma

fests itself as a congruence transformation, , that maps the observ
ity and controllability grammians of the system to the ones for the ne
perturbed system demonstrated by equations (37) and (38).

To account for the effect of process variations in our proposed mod
order reduction technique, we directly utilize Theorem 1 in our algorith
Moreover, our proposed technique also reshapes the estimated error i
frequency domain using the technique described in section 3 and t
gives rise to a reduced order system with more accurate time and
quency domain responses. Comparing our proposed algorithm with
work in [13] on the variational Krylov-subspace-model-reduction, we c
theoretically prove the superiority of the truncated balanced realizat
technique in terms of its computational complexity. More specifically, t
PRIMA-based variational order-reduction proposed in [13] involves t
calculation of an expanded Krylov-subspace whose projection matrix is
follows:

wherew1 and w2 are dimensional variations. ’s are computed b
choosing a set of sample points. A variational reduced-order model
then be constructed by inserting the resulting variational Krylov-subsp
into the PRIMA equations. The geometrical variations of interconnects
random processes. So are the corresponding variations on the intercon
electrical parameters. Therefore, we have to consider an interval for
dimensional variations. Hence the whole model-reduction techniq
would be very time-consuming and even impossible to use when hand
very large circuits.

There are, however, some problems that need to be taken into acco

• We still need to solve the Lyapunov equations to obtain the gramm
ans of the system. To efficiently solve the Lyapunov equations
make use of the ADI procedure [11], which is an iterative method f
solving a Lyapunov equation,

The system is first reduced to tridiagonal form with Gaussian simila
ity transformation,Ttrid , as follows:

Reducing a matrix to tridiagonal form has an order of com
plexity. The resulting system is solved with the ADI iteration [11]:

,

for  j = 1, 2, . . . , J
An iterative solution of the reduced Lyapunov equation is accom
plished in flops [11]. In the above iteration,
are the ADI parameters. We use the same optimal ADI paramet
that were presented in [11].

• The calculations required to construct the balancing transformat
are complicated and sensitive to numerical errors. In particul

the balancing transformation may be poorly conditioned wh
matrix PQ has a high condition number1. Paper [15] proposes an
algorithm where the balancing is avoided altogether, and as a re
the numerical difficulties are never encountered. However, this alg
rithm involves solving an eigenvalue problem whose dimension is
large as the order of the original transfer function.

We can avoid the problem of solving a large eigenvalue proble
by using the Krylov subspace-based methods. In fact revisiting
balanced realization method reveals that it is only necessary to fi
the firstk largest eigenvalues of the matrix productPQ and their cor-
responding left and right eigenvectors. Based on this observation
modified version of Safanov’s algorithm is utilized here. Recall th
PQ is a large symmetric matrix, which will also be a positive definit

Φ x y,( ) Φ0 Φ∆ x x Φ∆ y y+ +=

Φ0 ∆Φx ∆Φy

w1

w2

r w1 w2,( ) r 0 r∆ 1w1 r∆ 2w2+ + r 0 r∆+= =

c w1 w2,( ) c0 c∆ 1w1 c∆ 2w2+ + c0 c∆+= =

Gvar w1 w2,( ) G0 G∆ 1w1 G∆ 2w2+ + G G∆+= =

Lvar w1 w2,( ) L 0 L∆ 1w1 L∆ 2w2+ + L L∆+= =

A var

L∆ G∆

L G
L∆

2
L

2

A var A A∆+≈
A∆ A∆ 1 A∆ 2+=

A∆ 1 L 1– G∆– L 1– L∆ L 1– G+=

A∆ 2 L 1– L∆ L 1– ∆G=

A ℜn n×∈ A∆ ℜn n×∈ 1. Recall that the condition number provides
a measure of the distance ofM to the set of singular matrices.

Pvar ∆ϒ P ∆ϒT≤
Qvar ∆ϒTQ ∆ϒ≤

∆ϒ I n 1–( ) ∆A A 1–⋅⋅+=

ϒ∆

X w1 w2,( ) X0 X11∆ w1 X21∆ w2 X12∆ w1
2 X22∆ w2

2+ + + +=
X i j∆

AP PAT X+ + 0=

S Ttrid AT trid
1–=

Z T trid PTtrid
T=

X s T trid XT trid
T=

O n3( )

Z0 0=

S pj I+( )Zj
1
2
---– Xs S pj I–( )Zj 1–[ ]T–=

S pj I+( )Zj Xs S pj I–( )Zj
1
2
---–[ ]T

–=

O 12Jn2( ) pj{ } j 1=
J

T
T

cond M( ) σmax M( ) σmin⁄ M( )=
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matrix. Thus the problem is to efficiently obtain the largest eigenval-
ues of a symmetric matrix. This problem is solved by using theLanc-
zosmethod. A complete explanation of the Lanczos method can be
found in [5] and [14]. In our algorithm, we utilize a modified version
of Safanov’s algorithm using the Lanczos method to obtain the bal-
ancing transformation.

• To account for the effect of process variations on the interconnect
delay and performance, Theorem 1 is directly utilized. However,
there is a matrix inverse involved in equations (37) and (38). To com-
pute the inverse of a matrix more efficiently, we elaborate the prob-
lem in the form of solving a set of linear algebraic equations rather
than explicit inverse formation.

Now we proceed with describing our new algorithm for variational bal-
anced truncation.

 GivenH(s), Wi(s), Wo(s):
1. Using lemma 1, Determine matrix .

2. Using Theorem 1, compute perturbing congruence transformation,
.

3. Using the ADI iteration, compute the controllability and observ-
ability grammians of and of the original spectrally-weighted
system by solving the Lyapunov equations (19) and (20).

4. Apply perturbing congruence transformation on the
upper left corner blocks of and specified by matricesP andQ
in Eq. (18), and construct new perturbed controllability and observ-
ability grammians,  and .

5. Use equations (23) and (24) to computeXvar andYvar from and
.

6. DecomposeXvar andYvar using the eigenvalue decomposition tech-
nique into and .

7. Use equations (27) and (28) to compute  and .

8. Using the ADI iteration, solve the mapped Lyapunov equations
(29) and (30) for the new perturbed system to compute and

.

9. Using the Lanczos algorithm, obtain the reduced order left and
right eigen-matrices, and , associated with thek largest
singular values of the matrix product .

10. Let and compute the singular-value decomposition
of , i.e., .

11. Let and

12. Compute the reduced order space realization using the matrices
 and  as follows:

(39)

Now we prove that this new variational, spectrally-weighted balanced
truncation has a provable -error bound.
Theorem 2.The -error of the variational model reduction with spectral
shaping is:

(40)

where  and

As mentioned earlier, process variations will have a definite impact on
the on-chip interconnect parasitics. These variations have two adverse
effects on the system matrix as also demonstrated by Eq. (36). Ignoring
second-order variations, any incremental increase in the values of parasitic

conductances and resistances reduces , whereas any increm
increase in the values of parasitic inductances and capacitances incre

.
As an interesting special case, consider the tightly coupled RLC int

connects. It is easily proved that, for this case, the system matrixA is a
symmetric positive-definite matrix. Under these circumstances, the f
lowing theorem proves useful in finding the upper and lower limits of var
ations in the poles of the system transfer function of tightly coupled RL
interconnects that are subject to the process variations:
Theorem 3 [14]. Given an LTI system whose state-space representation
given by equations (3) and (4), if the system matrix is pe
turbed by due to the process variation, then the followin
inequalities hold:

(41)
where  is given by lemma 1.

According to Theorem 3, the magnitude of difference between poles
the perturbed system and those of the original system is limited by the
norm of the perturbed matrix, .

5. EXPERIMENTAL RESULTS

In this section the variational spectrally-weighted balanced truncati
model-order reduction technique (referred to as VSWBT) is evaluated
performing experiments on some global interconnect lines such as cl
trees, and coupled lines. First, the spectrally-weighted balanced trunca
(SWBT) technique is demonstrated and the result of applying this alg
rithm is compared with those obtained by utilizing our implementations
PRIMA [6] and the truncated balanced realization using Vector AD
(VADI) [9]. We then apply the VSWBT method to study the impact of th
interconnect process variations on the timing performance of the clo
trees and coupled busses. Finally the accuracy of VSWBT is validated
using it to reduce the order of an arbitrary stable LTI system that is subj
to the perturbation.

5.a.   Two capacitively coupled interconnects
We compare the performances of the model reduction of two capa

tively-coupled transmission lines. The order of the reduced order system
3. The circuit is depicted in Fig. 1. The Bode diagram of the original sy
tem along with the reduced systems obtained by using three approac
(PRIMA, VADI, SWBT) are also shown in Fig. 2. The output weighting
function is:

From Fig. 2, we observe that the frequency response of the redu
order system obtained by SWBT closely follows the frequency respon
of the original system, especially in the low frequency range. Compari
the bode diagrams clearly indicates that SWBT is much more accur
than PRIMA and also VADI in generating the reduced-order model.

A∆

ϒ∆

P Q

ϒ∆ n n×
P Q

Pvar Qvar

Pvar

Qvar

UvarSvarUvar
T VvarZ varVvar

T

Bvar Cvar

P̂var

Q̂var

V̂L var, V̂R var,

P̂varQ̂var

Êvar V̂L var,
T V̂R var,=

Êvar Êvar ÛE var, Σ̂E var, V̂E var,
T=

ŜL var, V̂L var, ÛE var, Σ̂E var,
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ŜR var, V̂R var, V̂E var, Σ̂E var,

1 2⁄–
= ℜn k×∈
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T

B
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Fig. 1. Two capacitively coupled RLC interconnects consisting of 20
RLC lumped sections.
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5.b.   H-tree clock distribution
The clock tree is routed using the TSMC 0.25µ digital CMOS technol-

ogy library. The clock tree is an H-tree clock distribution with tapered
buffers at the root of the tree as shown in Fig. 3. The design target of the
on-chip clock frequency is 1.0 GHz. The clock tree is modeled by a large
RLC circuit. Each wire segment in Fig. 3 is modeled by a large RLCπ
network whose R, L, and C values are changed due to metal width and
ILD thickness variations. Based on the data reported in paper [17] on the
interconnect-dominated test circuits, the typical variational distribution for
metal interconnects as well as ILD thicknesses is a normal distribution.
The widths of metal and ILD layers are changing up to 30% of their nom-
inal values (which is the magnitude of the percentage of 3-σ variations).

We performed 20 experiments where, in each experiment, a set of nor-
mally-distributed numbers for the metal and ILD width variations were
generated. The 50% delay at an arbitrarily chosen fan-out (leaf) node were
computed by VSWBT and compared with the result obtained by [13]. The
results of this comparison for different experiments are provided in Table
1. Here, we assume that the geometrical variations are mutually indepen-
dent.

From Table 1, it is clear that our approach can predict the 50% dela
more accurately for all possible 3-σ variations of the metal and ILD layers
that are indicated in Table 1. By comparing the number of flops fro
MATLAB simulation, the CPU-time for our method is, on average, 5%
faster than the work reported in [13].

5.c. Two capacitively coupled interconnects with vari-
ational parameters

In this example we apply the VSWBT model reduction technique o
two capacitively-coupled microstrip lines whose electrical parameters
subject to process variations. The schematic of these two coupled li
along with their nominal geometrical parameters are depicted in Fig. 4

Fig. 4. Two parallel microstrip lines in 0.25µ CMOS technology.

The height and width of the metal layer are subject to % variation
Again we performed 20 experiments with normally distributed rando
variations. The result of these 20 experiments is shown in Table 2. T
MATLAB-reported flop usage of our method is 10% less than that of [13
From Table 2, it can be seen that, for all variations demonstrated in Ta
2, the 50% delays predicted by VSWBT are more accurate than those
dicted by paper [13].
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Fig. 2.The Bode diagram of the system in Fig. 1.
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Fig. 3. The H-tree clock distribution driven by a tapered buffer.

Table 1: COMPARISON BETWEEN SIMULATION RESULTS ON AN H-
TREE CLOCK NET WITH PROCESS VARIATIONS (Star-HSPICE LEVEL
49, 0.25µ CMOS PROCESS). DELAYS ARE GIVEN IN psec

3-σ variations
(%)

50% delay
of the fan-out node

ILD
width

Metal
Layer
width

Paper [13]
(psec)

VSWBT
(psec)

Star-
HSPICE
(psec)

12.3 -10.3 195.7 196.0 196.3
5.8 19.8 215.5 216.4 216.2

-21.4 -2.3 199.3 200.1 200.1
-10.2 -8.2 205.0 208.2 206.6
2.45 22.1 201.2 204.1 203.2
19.2 10.6 193.1 195.0 194.2
-24.3 -17.8 198.2 200.3 200.0
28.1 11.4 220.3 222.5 221.7
-12.4 -5.9 219.5 221.9 220.9
-14.9 -2.5 194.1 196.2 195.6
-1.3 12.6 211.6 213.2 212.5
25.7 -7.2 203.2 207.3 206.4
7.6 1.6 210.7 217.7 215.3
-2.3 -29.1 223.2 233.4 231.8
20.1 -18.5 206.4 211.8 210.5
-18.8 13.7 196.2 201.0 200.3
22.4 -4.5 200.0 204.7 203.3
-27.6 13.6 191.7 193.1 192.8
5.3 14.3 216.5 218.2 217.8

-13.4 -10.6 195.5 198.1 197.5

WD TH

HT

SP

L

0.25µ technology with copper
HT = 5µ
TH = 1µ
Cycle-time = 4nsec

L =15mm
WD = 1.8µ
SP = 0.4µ

Line 1 Line 2

30±
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5.d.    A general example
To demonstrate the accuracy and validity of VSWBT on any arbitrary

stable LTI system exposed to perturbations, we started from an arbitrary
state-space specification of an LTI system with 20 poles and 13 zeros,
which is shown in the pole-zero map of Fig. 5. Suppose that each and
every element of the system matrixA experiences a normally distributed
random perturbation with a standard deviation of 30% around the nominal
value. The order of the reduced order system is 3. We would also like to
have high accuracy in high frequencies, therefore the following weighting
function is introduced:

A variational spectrally-weighted reduced-order model is derived using
two approaches. The first approach is to calculate the perturbed system
matrix and then directly apply the spectrally-weighted balanced trunca-
tion. The second approach is to use the VSWBT technique.

Fig. 6 shows and compares the bode diagram of the magnitude
response, the bode diagram of phase response, the impulse response of the
original perturbed system, the reduced-order system using direct order
reduction technique, and the reduced-order system using VSWBT algo-
rithm. As can be seen from Fig. 6, the difference between the two order
reduction approaches is indistinguishable. Remember that applying the
direct mode-order reduction technique on a large system of parameter-
varying interconnects to generate the reduced order system is very time
consuming. The reason for this is that the direct order reduction algorithm
must be run on the system each time under different offset values for elec-
trical parameters of the interconnect.

6.  CONCLUSIONS

In this paper a variational spectrally-weighted balanced truncation tech-
nique for the model-order reduction of geometrically varying multiport
RLC interconnects was proposed. It was shown that the balanced trunca-
tion technique is a highly effective approach when the variations in the cir-
cuit parameters need to be taken into consideration. Various experiments
demonstrate that the computational requirement of the variational spec-
trally-weighted balanced truncation approach is 5% lower than that of the

variational Krylov-subspace-based model-order reduction techniqu
while the accuracy is also 20% higher, on average.

Fig. 6. The bode diagram and impulse response of the original perturb
system, the system obtained by direct spectrally-weighted balanced tr

cation, and the VSWBT algorithm.
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Table 2: COMPARISON BETWEEN SIMULATION RESULTS ON TWO
CAPACITIVELY COUPLED MICROSTRIP LINES (Star-HSPICE LEVEL
49, 0.25µ CMOS PROCESS). DELAYS ARE GIVEN IN psec

3-σ variations
(%)

50% delay
of the far-end node of Line 2 (psec)

Metal
W

Metal
H

Paper [13]
(psec)

VSWBT
(psec)

Star-HSPICE
(psec)

-0.4 20.1 1592 1597 1596
15.8 -1.9 1636 1640 1639
-9.3 13.2 1519 1525 1524
-1.75 10.8 1607 1612 1610
15.8 -14.4 1690 1700 1697
-13.2 -0.9 1726 1734 1731
19.1 -29.1 1711 1725 1722
29.3 2.5 1531 1538 1536
-1.8 7.9 1603 1610 1607
11.5 -4.2 1673 1683 1680
-15.3 19.4 1650 1665 1662
14.7 25.3 1557 1567 1563
1.1 -10.4 1662 1667 1665

-15.6 22.1 1704 1717 1711
18.2 -23.5 1622 1631 1629
-13.2 -0.5 1699 1705 1703
-9.4 21.7 1640 1644 1643
0.7 -11.1 1708 1713 1712
10.8 -0.7 1621 1630 1627

Wi s( ) 14 s 14+( )⁄=

Real Axis

Im
ag

 A
xi

s

Pole−zero map

−12 −10 −8 −6 −4 −2 0 2
−10

0

10
 

Fig. 5. The pole-zero map of the LTI system specified in section 5.d.
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