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is study presents a technique that uses a model reduction method for the dynamic response analysis of a beam structure
to a moving load, which can be modeled either as a moving point force or as a moving body. 
e nature of the dedicated
condensation method tailored to address the moving load case is that the master degrees of freedom are reselected, and the
coe�cient matrices of the condensed model are recalculated as the load travels from one element to another. Although this
process increases computational burden, the overall computational time is still greatly reduced because of the small scale of motion
equations. To illustrate and validate the methodology, the technique is initially applied to a simply supported beam subjected to
a single-point load moving along the beam. Subsequently, the technique is applied to a practical model for wheel-rail interaction
dynamic analysis in railway engineering.Numerical examples show that the condensationmodel can solve themoving load problem
faster than an analytical model or its full �nite element model. 
e proposed model also exhibits high computational accuracy.

1. Introduction

A structure subjected to moving loads is a common situation
in mechanical and civil engineering. Some examples include
a sha workpiece to a lathe tool, a bridge to cars and vehicles,
and a rail to cranes or rail vehicles. Various models have
been proposed for this dynamic analysis. Although they may
be applied in di�erent engineering domains, these models
share similar characteristics. Two approaches are generally
employed to build a model, that is, an analytical method or
a �nite element (FE) method.

Various analytical solutions to a uniform simply sup-
ported beam with a single span exist in the excellent
monographs of Frýba [1]. Mamandi and Kargarnovin [2]
modeled a continuous beam with Timoshenko beam theory
which is applicable for beams with a large height to span
ratio. For slender beams, Bernoulli-Euler beam theory is
promising. Hayashikawa andWatanabe [3] used a continuum
method of dynamic analysis formultispan continuous beams.
Zheng et al. [4] modi�ed beam vibration functions, which
are used as assumed modes to analyze the vibration of

multispan nonuniform beams. Lalthlamuana and Talukdar
[5] investigated dynamic interaction between a single-span
bridge and moving �exible vehicles using a semianalytical
approach. Analytical methods can provide accurate solutions
to simple moving load problems, but they are sometimes
cumbersome for modeling complex practical structures.

Alternatively, the FE method has been used as a versatile
numerical approach to various complicated structures. Wu
and Dai [6] used a transfer matrix method to evaluate the
natural frequencies and mode shapes of a beam and applied
a mode superposition method for the dynamic response
analysis of the beam under a moving load. Wu et al. [7]
developed a general analytical procedure to allow standard FE
analyses to deal with the dynamic behavior of 3D structures
with bodies moving in two dimensions. Rieker et al. [8]
investigated the relationship between model accuracy and
the number of elements used to discretize a structure for a
moving load analysis.

However, the number of unknowns involved is frequently
large in practical FEmodels.
us, the computational burden
may be great. A condensation method or a substructure
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approach is employed to reduce the operation scale. Yang
and Lin [9] developed a vehicle-bridge coupled model, in

which the bridge element and a part of the vehicle body
resting on it were regarded as a substructure. 
e degrees
of freedom (DOFs) associated with the vehicle body within
the substructure were eliminated through a dynamic con-
densation method (DCM) based on iteration. Biondi et al.
[10] proposed a variant component-mode synthesis method
to model the train-track-bridge system. de Salvo et al. [11]
tailored a variant of the component mode synthesis method
to deal with multispan continuous beams by decomposing
the entire structure in primary and secondary spans. Exact
eigenfunctions were used as assumed local modes and the
beam was reassembled to consider kinematical compatibility
between spans.

To illustrate the methodology of employing a model
reduction method to solve the moving load problem, three
typical model reduction methods, namely, DCM [12], the
improved reduced system (IRS) method [13], and the system
equivalent reduction-expansion process (SEREP) [14], are
introduced in this study. 
ey serve as examples for inves-
tigating whether a reduction method can be employed to
accelerate the dynamic response analysis of a beam structure
under a moving load. 
e Guyan reduction method [15]
performswell in static cases but is unsuitable for this dynamic
moving load case. DCM is a representative physical model
reduction technique. IRS combines the Guyan method and
DCM. SEREP is a typical model reduction method. Other
reduction methods are derived from these methods, but
they are not discussed in this paper. Given that the load
is moving along the beam, the master coordinates of the
condensed model should be reselected; these coordinates are
accompanied by a recalculation of the coe�cient matrices.
First, the beam is meshed into a series of equal beam
elements. 
en, the global system matrices and load vector
of the full FE model are obtained. Second, based on the
load location, the master DOFs of the condensed model are
selected, and the elements in the global system matrices and
the load vector are rearranged. 
ird, the transformation
matrix that establishes the relationship between the master
DOFs and the original coordinates is obtained. 
e system
matrices and the load vector of the condensed model are
calculated. 
e dynamic response is solved using a direct
time integration method. Fourth, when the load moves on
to the next element, the initial conditions of the new master
coordinates are determined. Finally, by repeating the second
to fourth steps, the operation is implemented continuously
as the load traverses the entire beam. To expound and
validate the methodology, the method is applied initially to
a moving point load case and subsequently to a moving
body case in practical railway engineering.Accuracy andhigh
computational e�ciency are discussed through numerical
examples.

2. Moving Load FE Models

2.1. Full FE Model. A simply supported beam with a uniform
cross-section is built to illustrate the methodology.
e beam
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Figure 1: Simply supported beam subjected to a moving concen-
trated force.
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Figure 2: Simply supported beam discretized by beam elements.

is subjected to a constant load �0. 
e load location is
indicated by � that traverses the beam at a constant speed
V, which starts at the le end and travels to the right end, as
shown in Figure 1.

An FE method is employed to discretize the beam, as
displayed in Figure 2.


e simply supported beam is discretized into � + 1
nodes connected by � 1D Bernoulli-Euler beam elements
(the small circles on the beam denote the nodes of FEs rather
than their hinges). 
e length of a single-beam element is �,
which is given by � = �/�. 
e Arabic numerals beneath the
beam denote the serial numbers of the nodes, whereas those
above the beam represent the serial numbers of the elements
between two adjacent nodes. Each node has two DOFs, that
is, translation �� and rotation 	�, [
 = 1 ∼ (�+ 1)]. 
erefore,
each beam element has four DOFs, and the entire beam has(2� + 2) DOFs (the vertical displacements of two beam
endpoints are also counted, although they are always equal
to zero). 
e motion of the beam is ruled by the following
equation:

DX = F, (1)

where

D (�) = K − �2M, (2)

D of order [(2�+ 2) × (2�+ 2)] is the structural dynamic or
e�ective sti�nessmatrix.M andK are the [(2�+2)×(2�+2)]
structuralmass and sti�nessmatrices, respectively.X of order[(2� + 2) × 1] is the displacement response vector, which is
given by

X = {�1, 	1, �2, 	2, . . . , ��+1, 	�+1}� , (3)

and F of order [(2� + 2) × 1] is the external load vector.
Considering that the external load can only be applied in
nodes in the FE model, the point moving load must be
converted into equivalent nodal forces and moments based
on the generalized force equilibrium condition. 
e process
is illustrated in Figure 3.


e equivalent forces or moments (��, ��, ��, and��) are evaluated by the external load �0 and �, which is
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Figure 3: Equivalent nodal loads of the concentrated loads.

the distance along the element to the application point of �0.

erefore, the overall external force vector is

F =

{{{{{{{{{{{{{{{{{{{{{

...��������...

}}}}}}}}}}}}}}}}}}}}}

2� − 12�2� + 12� + 2,
(4)

where

�� = (� − �)2 (� + 2�)�3 �0,
�� = �2 (3� − 2�)�3 �0,
�� = � (� − �)2�2 �0,
�� = −�2 (� − �)�2 �0.

(5)


e entries of matrix F, excluding ��, ��, ��, and ��, are
zero elements, which are represented by the symbol “⋅ ⋅ ⋅ .”

e variables on the right side of the column vector denote
the position of the nonzero entries in the vector. � is the
serial number of the beam element where the external force
is located. 
e concentrated force moves along the beam.
Accordingly, the values of the four nonzero entries change
with the periodical variation of �. When the force moves to
the next beam element, the position of these entries within
the column vector shis correspondingly.

2.2. Condensed FEModels. Tomake themodel computation-
ally e�cient for solving the aforementioned problems, the
condensed model is formulated using the dedicated variants
of the twomodel reduction techniques tailored to themoving
load case.
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Figure 4: Selecting the master DOFs in the condensed model.

Given that the external force exerted on the beam is
equivalent to two forces and two moments imposed on four
DOFs, four coordinates are maintained in the condensed
model. 
ese coordinates are the DOFs of the beam element
that is posited by the exerting force. 
e other DOFs are
regarded as slaves.When the forcemoves on to the next beam
element, the master DOFs have to be reselected accordingly;
that is, the four DOFs for the next beam element are chosen
as the master DOFs, which are shown in Figure 4.


e bold nodes of the beam model in Figure 4 are the
ones maintained. Accordingly, the bold entries in the column
vectorX are chosen as the four master DOFs.
e four DOFs
of the next beam element are selected as the master DOFs
when the load moves on to the next element.

2.2.1. DCM. Assuming that the force is located on the �th
beam element, (1) can be partitioned into � master DOFs
(� = 4) and � slave DOFs to form two equations written in
matrix form as follows:

[
[
D(�)�� D(�)�	

D(�)	� D(�)		
]
]
{{{
X(�)�

X(�)	

}}}
= {{{

F(�)�

F(�)	

}}}
, (6)

where

D
(�) = K

(�) − �2M(�), (7)

� is the frequency that forms the matrices of the condensed
model. Accordingly,

K
(�) = [

[
K(�)�� K(�)�	

K(�)	� K(�)		
]
]
,

M
(�) = [

[
M(�)�� M(�)�	

M(�)	� M(�)		
]
]
,

(8)

where superscript (�) refers to the serial number of the beam

element where the force is located. F(�)� is the equivalent force
vector and can be written alternatively as follows:

F
(�)
� = {�� �� �� ��}� = Φ�0, (9)
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where

Φ

= {(� − �)2(� + 2�)�3 �2 (3� − 2�)�3 �(� − �)2�2 −�2 (� − �)�2 }� .
(10)

Given that equivalent loads are only exerted on themaster

DOFs, no load acts on the slave DOFs. 
us, F(�)	 = 0 in (6).

e second equation can be written as follows:

D
(�)
	�X
(�)
� +D

(�)
		 X
(�)
	 = 0, (11)

which can be solved for the displacement at the slave DOFs
as follows:

X
(�)
	 = −D(�)		 −1D(�)	�X(�)� . (12)


is equation can be manipulated to obtain

{{{
X(�)�

X(�)	

}}}
= { I

−D(�)		 −1D(�)	�}X
(�)
� = T

(�)
DCMX

(�)
� . (13)

Introducing (13) into (6), premultiplying both sides by T(�)
�
,

and considering F(�)	 = 0, the motion equation of the
condensed model when the load acts on the �th beam
element is derived as follows:

D
(�)
DCMX

(�)
� = F

(�)
� (14)

or

(K(�) − �2M(�))X(�)� = F
(�)
� , (15)

where D
(�)
, M
(�)
, and K

(�)
are the dynamic sti�ness, mass,

and sti�ness matrices of the condensed model, respectively.

ese variables are determined as follows:

D
(�)
DCM = T

(�)
DCM

�
D
(�)
T
(�)
DCM,

M
(�)
DCM = T

(�)
DCM

�
M
(�)
T
(�)
DCM,

K
(�)
DCM = T

(�)
DCM

�
K
(�)
T
(�)
DCM.

(16)

2.2.2. IRS. 
e coe�cient matrices of the condensed model
are derived once more via IRS, which combines the Guyan
method [15] and DCM by adding a term to the static
transformation to consider inertial forces.


e Guyan reduction scheme is derived. Omitting the
inertial item in (6), that is, considering the static form of
motion equations, yields

[
[
K(�)�� K(�)�	

K(�)	� K(�)		
]
]
{{{
X(�)�

X(�)	

}}}
= {{{

F(�)�

F(�)	

}}}
. (17)

Assuming that the forces on the slave DOFs are zero, the
second equation can be solved for the displacement at the
slave DOFs as follows:

X
(�)
	 = −K(�)		 −1K(�)	�X(�)� , (18)

which can be manipulated to obtain

X
(�) = {{{

X(�)�

X(�)	

}}}
= { I−K(�)		 K(�)	�}X

(�)
� = T

(�)
staticX
(�)
� . (19)

Substituting (19) into (6), the eigenvalue problem of the
condensed model based on the Guyan method is presented
as follows:

�2M(�)staticX(�)� = K
(�)
staticX
(�)
� (20)

or

�2X(�)� = M
(�)
static

−1
K
(�)
staticX
(�)
� , (21)

where � and X(�)� are the natural frequency of the reduced
model and its corresponding eigenvector at the master

DOFs, respectively.M
(�)
static and K

(�)
static are the condensed mass

and sti�ness matrices obtained using the Guyan method,
respectively. 
ese variables are determined as follows:

M
(�)
static = T

(�)
staticM

(�)
T
(�)
static,

K
(�)
static = T

(�)
staticK
(�)
T
(�)
static.

(22)

Using the binomial theorem, (12) can be rewritten as follows:

X
(�)
	 = −D(�)		 −1D(�)	�X(�)�
= −K(�)		 −1 [K(�)	� + �2 (M(�)		 K(�)		 −1K(�)	� −M

(�)
	�)

+* (�4)]X(�)� ,
(23)

where o(�4) denotes an error of order �4. Introducing (21)

into (23) and ignoring the terms in �4 yields
X
(�)
	 = [− K

(�)
		
−1
K
(�)
	� + K

(�)
		
−1

× (M(�)	� −M
(�)
		 K
(�)
		
−1
K
(�)
	�) M(�)static−1K(�)static]X(�)� .

(24)


us, the relationship becomes available by relating the
master DOFs to the full set of DOFs as follows:

X
(�) = {{{

X(�)�

X(�)	

}}}
= T
(�)
IRSX
(�)
� , (25)
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where

T
(�)
IRS

= [ I

−K(�)�� −1K(�)�� + K(�)��
−1 (M(�)�� −M(�)�� K

(�)
��
−1
K(�)��)M(�)static−1K(�)static]

= T
(�)
static + SM(�)T

(�)
staticM

(�)
static

−1
K
(�)
static,

S = [0 0

0 K(�)		
−1] .

(26)


is transformation can be regarded as a perturbation on the
transformation from the static reduction method. 
erefore,
using the transformation matrix, the condensed mass and
sti�ness matrices obtained by IRS are respectively written as
follows:

M
(�)
IRS = T

(�)
IRSM
(�)
T
(�)
IRS,

K
(�)
IRS = T

(�)
IRSK
(�)
T
(�)
IRS.

(27)

2.2.3. SEREP. When the coe�cient matrices of the con-
densed model are derived using SEREP, the physical coordi-
nates of the original model can be expressed in modal space
as follows:

X
(�) = Φ(�)q(�) (28)

or

{{{
X(�)�

X(�)	

}}}
= [
[
Φ(�)�
Φ(�)	 ]]

q
(�), (29)

whereΦ(�) is the (�+ �) × ;modal matrix with columns that
consist of ;modal vectors. q(�) is the ; × 1modal coordinate
vector. Considering only themaster coordinates in (29) yields
the following:

X
(�)
� = Φ(�)� q

(�). (30)

In this case, the number of retained modes ; is assumed to
be larger than the number of master DOFs � to investigate
the high-frequency vibration of the beam. 
us, the matrix

Φ(�)� �Φ(�)� is rank de�cient. Φ(�)� Φ(�)� �, which is nonsingular,
is employed as an alternative solution to overcome this
problem. Equation (30) is solved for the modal coordinate
vector as follows:

q
(�) = Φ(�)� � (Φ(�)� Φ(�)� �)−1 X(�)� . (31)

Substituting (31) into (28) yields an expression for the full
coordinate vector in terms of the master coordinate vector,
as follows:

X
(�) = Φ(�)Φ(�)� � (Φ(�)� Φ(�)� �)−1 X(�)� = T

(�)
X
(�)
� . (32)


erefore, the condensed mass and sti�ness matrices
obtained by SEREP can be respectively written as follows:

M
(�)
SEREP = T

(�)
SEREPM

(�)
T
(�)
SEREP,

K
(�)
SEREP = T

(�)
SEREPK

(�)
T
(�)
SEREP.

(33)


e dynamic time response of the condensed model,
for example, the displacements, can be obtained by solving
motion equations using a direct step-by-step time integration
method, such as the central di�erence method.


us, the displacement of the beam at a contact point �

can be calculated with the four nodal displacements by the
Hermitian interpolation function, which is given by

�(�)
 = NX
(�)
� , (34)

where N is the shape function determined as follows:

N = {�1 �2 �3 �4} ,
�1 = 1 − 3(�� )

2 + 2(�� )
3 ,

�2 = (�l − 2(�l )
2 + (�

l
)3) �,

�3 = 3(�� )
2 − 2(�� )

3 ,
�4 = (−(�� )

2 + (�� )
3) �.

(35)


e master DOFs must be reselected as aforementioned
when the force moves across the node and on to a new
element. 
e sti�ness and mass matrices of the condensed
model should also be recalculated with the rearrangement of
the coordinates in the original model.


e central di�erence integration method is a two-step
algorithm. 
us, the displacements at moment C + ΔC can
only be calculated with known displacements at two previous
moments, that is, C and C − ΔC, which are given by

X
(�)
� (C + ΔC) = Θ(�)1 +Θ(�)2 X

(�)
� (C) +Θ(�)3 X

(�)
� (C − ΔC) ,

(36)

where X(�)� (C + ΔC), X(�)� (C), and X(�)� (C − ΔC) denote the
displacements of the master DOFs at moments C + ΔC, C, andC − ΔC, respectively, when force impacts on the �th beam

element. Θ(�)1 , Θ(�)2 , and Θ(�)3 are the constant coe�cient
matrices that are the functions of sti�ness, the mass matrices

of the condensedmodel (K(�),M(�)), and the force vectorF(�)� ,
respectively.

Equation (36) is applicable in most cases, except in two
cases in which the force has just crossed the node and moves
on to the next element aer only one or two time steps.
ese
two cases are theoretically the same. Accordingly, only the
�rst case is discussed in this paper.
e situation is as follows.
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Figure 5: Loading situation of three adjacent time steps: (a) C − ΔC, (b) C, and (c) C + ΔC.


e force is one time step away from the le node of the �th
element, as illustrated in Figure 5.

On this occasion,X(�)� (C) andX(�)� (C−ΔC) in (36) cannot be
calculated because the master DOFs at these two time steps
are the four nodal DOFs of the le (or prior) beam element(X(�−1)� (C), X(�−1)� (C − ΔC), � > 1). Consequently, X(�)� (C + ΔC)
cannot be directly calculated.

X(�)� (C) is used as an example to determine X(�)� (C) and
X(�)� (C − ΔC). 
e transfer matrix T(�−1) is employed to estab-

lish the numerical relationship betweenX(�)� (C) andX(�−1)� (C).

e displacement vector of the full FE model X̃(C) (with
entries in incorrect order) can be achieved by premultiplying

X(�−1)� (C) by T(�−1); that is, X̃(C) = T(�−1)X(�−1)� (C). 
e four

entries in vector X(�)� (C) are the third, fourth, (2� + 1)th, and(2� + 2)th entries of vector X̃(C), respectively. Vector X(�)� (C)
can be expressed in matrix form as follows:

X
(�)
� (C) = Ψ(�)T(�−1)X(�−1)� (C) , (37)

whereΨ(�) is a 4 by 2�+2matrix (� > 1) that is determined
as follows:

Ψ(�) =
3 4 2� + 1 2� + 2

[[[[[
[

1 1⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅1 1

]]]]]
]
. (38)


e serial numbers above the matrix denote the position of
the nonzero entries in the matrix. 
e entries in the matrix,
excluding the four unit entries, are zero entries.

Similarly, the transformation at moment C − ΔC is as
follows:

X
(�)
� (C − ΔC) = Ψ(�)T(�−1)X(�−1)� (C − ΔC) . (39)

Substituting (37) and (39) into (36), X(�)� (C + ΔC) can be
addressed.


e computation process of X(�)� (C + 2ΔC) is formally the

same as that of X(�)� (C + ΔC).

us, the response of the condensed model can be solved

continuously as the forcemoves fromone element to the next.
Time integration methods apart from the central di�erence

Mw
mr�rErIr

Kr, Cr

Ks

Mc
�

Cs

Zw

Zr(x, t)PWR

Zc

Figure 6: Wheel-rail contact model.

method, such as Newmark and Wilson-	 methods, can also
be used to solve the problem.
e di�erence is the coordinate
transformation of the master DOFs when the force moves
from one element to the adjacent element.

3. Wheel-Rail Contact FE Model
(Moving Body Model)


e model reduction method used to model the moving
load problem can be extended to the case of actual railway
engineering. In this case, the concentrated moving force
is replaced by a double mass spring damping system that
represents the railway vehicle wheel and sprung mass, which
is assumed to run in the horizontal direction at a constant
speed V and is referred to as the “moving body.” 
e model is
depicted in Figure 6. In this �gure, ��, I�, J�, and K� denote
the rail mass per meter, rail density, Young’s modulus of the
rail, and themoment of inertia of the rail, respectively. �	 refers
to the rail bed spacing.


is model can be used to investigate the wheel-rail
contact problem, which is a fundamental subject in railway
engineering. To provide prominence to the study of contact
behavior, a single-wheel model is adopted. 
e primary
sprung mass is reduced to a lumped mass (�
). 
e wheelset
is modeled as a rigid body (��), which is linked with �

through a primary suspension (L	, M	).


e rail is modeled as a uniform Bernoulli-Euler beam
meshed into a 1D beam element (the rail section between two
rail beds is equallymeshed into four beam elements, as shown
in Figure 6). 
e rail is supported by discrete viscoelastic rail
beds characterized as a series of springs anddampers (L�, M�).

e reduction technique used to condense the rail model is
the same as that of the moving load case discussed in the
previous section.



Shock and Vibration 7


e interaction between the moving body and the rail
is achieved at the interface through wheel-rail contact force
compatibility when considering the instantaneous lost con-
tact of the wheel from the rail surface. 
e contact forceNWR can be described by nonlinear Hertzian theory that is
commonly used in the wheel-rail interaction problem, which
is given by

NWR (C) =
{{{{{{{{{{{{{

{ 1P [R�(C) − NX(�)� (C) − S(C)]}3/2
if R� (C) − NX(�)� (C) − S (C) > 00
if R� (C) − NX(�)� (C) − S (C) < 0,

(40)

whereR�(C) is thewheel displacement,X(�)� (C) is the displace-
ment vector of the four nodal DOFs of the beam element on
which the force is exerted (the master DOFs), and N is the
shape function de�ned previously. 
us, NX(�)� (C) is the dis-
placement of the rail at the contact point.S(C) represents rail
irregularity. P is the Hertzian contact coe�cient determined

as P = (4.57Z−0.149 × 10−8)(3/2) [16].

e motion equations of the condensed system are as

follows:

�
R̈
 + M	 (Ṙ
 − Ṙ�) + L	 (R
 − R�) = 0, (41)

��R̈� + M	 (Ṙ� − Ṙ
) + L	 (R� − R
) = −2NWR, (42)

M
(�)
Ẍ
(�)
� + C

(�)
Ẋ
(�)
� + K

(�)
X
(�)
� = F

(�)
� , (43)

where R
 and R� are the rigid body displacements of the

sprungmass and wheelset, respectively; andX(�)� is the vector
of themasterDOFs of the railmodel.NWR in (42) ismultiplied
by 2, which means that two parallel rails exist beneath
the wheelset. 
e derivation of the condensed coe�cient

matrices M
(�)
, C
(�)
, and K

(�)
is nearly the same as that of

the moving load model. However, the coe�cient matrices
of the two original models di�er because of the springs and
dashpots beneath the rail. 
e detailed derivation process is

omitted in this paper. F(�)� can be expressed by (9) when �0
in the expressions of ��,��, ��, and�� is replaced by NWR,
which is given by

F
(�)
�

= {(� − �)2 (� + 2�)�3 �2 (3� − 2�)�3 � (� − �)2�2 −�2 (� − �)�2 }�

× NWR

= ΦNWR.
(44)

Motion equations for the overall system are obtained by
assembling (41) to (43) into matrix form as follows:

[
[
�
 ��

M
(�)
]
]

{{{{{{{{{{{

R̈

R̈�
Ẍ(�)�

}}}}}}}}}}}
+ [
[
M	 −M	−M	 M	

C
(�)
]
]
{{{
Ṙ
Ṙ�
Ẋ(�)�

}}}

+ [
[
L	 −L	−L	 L	

K
(�)
]
]
{{{{{{{{{

R

R�
X(�)�

}}}}}}}}}
= {{{

0−2
Φ

}}}
NWR,

(45)

NWR is the function of R�(C) and X(�)� , as shown in (40). 
is
function can be rewritten as follows:

NWR =
{{{{{{{{{
1P
[[[[
[
{0 1 −N}

{{{{{{{{{

R

R�
X(�)�

}}}}}}}}}
− S]]]]

]

}}}}}}}}}

3/2

. (46)

Substituting (46) into (45) yields

[
[
�
 ��

M
(�)
]
]

{{{{{{{{{{{

R̈

R̈�
Ẍ(�)�

}}}}}}}}}}}
+ [
[
M	 −M	−M	 M	

C
(�)
]
]
{{{
Ṙ
Ṙ�
Ẋ(�)�

}}}

+ [
[
L	 −L	−L	 L	

K
(�)
]
]
{{{{{{{{{

R

R�
X(�)�

}}}}}}}}}
−{{{

0−2
Φ

}}}

×
{{{{{{{{{
1P
[[[[
[
{0 1 −N}

{{{{{{{{{

R

R�
X(�)�

}}}}}}}}}
− S]]]]

]

}}}}}}}}}

3/2

= 0.

(47)

Equation (47) is a set of complex nonlinear second-order
ordinary di�erential equations. 
erefore, a mode super-
position method cannot solve the equations. By contrast,
a direct time-integration method can handle this problem
easily. For example, an explicit integration scheme proposed
by Zhai [17] can be used to solve this problem with high
e�ciency. In addition, the master DOFs can be reselected
and the coe�cient matrices in (47) can be recomputed. 
e
procedure is the same as that in the moving load case.

4. Verifying the Models

4.1. Verifying the Moving Load Model. 
e validity of the
model is veri�ed by comparing the dynamic response of
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Table 1: Moving load model parameters.

Notation Parameter Value

J Young’s modulus 210GPa

K Moment of inertia 3090 cm4

a� Cross-section area 77.45m2

I Density 7747 kg/m3

� Beam length 5m

�0 Point force 1 kN

C Time step 1 × 10−6 s
V Velocity 300 km/h

DCM

� Element number 30

� Frequency 20 × 2bHz

IRS method

� Element number 10

SEREP

� Element number 7

; Number of retained modes 6

d
c

(m
m

)
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SEREPOriginaI
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Figure 7: Comparison of de�ection at the impact point�
 calculated
by the condensed models for the full FE and analytical models.

the condensed model obtained using DCM, IRS, and SEREP
with those of the full FE and analytical models. 
e original
model is introduced in Section 2.1.
e analytical model has a
motion that is governed by partial di�erential equations that
employ mode superposition and central di�erence methods
to solve the problem. 
e parameters used in the simulation
are given in Table 1. 
e time response curves of the four
models are compared in Figure 7.

In Figure 7, the dynamic beam de�ection response curve
predicted by the full FE model nearly coincides with the ana-
lytical result.
e three condensedmodels provide results that
are close to the analytical result, as shown in Figure 7.
is �g-
ure demonstrates the validity of the three condensed models

in the given situation. Regarding accuracy and e�ciency, the
models condensed by IRS and SEREP provide high-precision
results that are close to that of the analytical model. 
e
computation times of the three methods are approximately
the same. In terms of reliability, the requirement of SEREP
is more rigid than that of IRS. 
e two parameters involved
in SEREP, that is, the numbers of retained modes and total

beam elements, are limited within a small range and must
be precisely chosen to ensure high accuracy. Consequently,
SEREP is less suitable to handle this problem than IRS, and

IRS is demonstrated to be more feasible than DCM and
SEREP to solve the moving point load problem.

4.2. Verifying the Wheel-Rail Contact Model. 
e prediction
of the moving body responses can be considered to check
the reliability of the introduced theory and the developed
computer program. For example, passing a rail joint at a
constant speed can be compared with the response of the
analytical model, in which the rail motion is ruled by partial
di�erential equations, and the �rst several models are kept.
Formulating the analytical model is theoretically the same as
that of the Zhai model [16]. 
e rail joint irregularity model
adopted in this case is presented in [18]. 
is model is used
as an excitation source to check the dynamic response of the
models.


e parameters used in the simulation are listed in
Table 2.
e dynamic response calculated by the threemodels
is presented in Figure 8.

As shown in Figure 8, the dynamic shock response
calculated by IRS is in good agreement with that of the
analytical model. 
e prediction of impact contact force by
IRS is slightly higher than that of the analytical model. 
e
relative error of the maximum contact force based on the
analytical solution for IRS is 8.4%. 
e maximum de�ection
of the rail at the impact point calculated by IRS is nearly
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Table 2: Wheel-rail contact model parameters.

Notation Parameter Value

�
 Car body mass 9665 kg

�� Wheelset mass 1650 kg

L	 Primary suspension sti�ness 2.36 × 106N/m
M	 Primary suspension damping 8.0 × 104 N × s/m

Z� Wheel radius 0.43m

�� Rail mass per meter 60.8 kg/m

I� Rail density 7747 kg/m3

J� Young’s modulus of rail 210GPa

K� Moment of inertia of rail 3.09 × 10−5m4

L� Rail bed sti�ness 6 × 107N/m
M� Rail bed damping 3.625×104 N × s/m
�	 Rail bed spacing 0.625m

� Rail length 20m

;0 Number of elements between rail beds 4
V Vehicle speed 250 km/h

DCM

ΔC Integration time step 1 × 10−6 s

� Frequency 20 × 2bHz

IRS method

ΔC Integration time step 1 × 10−5 s

SEREP

ΔC Integration time step 1 × 10−5 s

; Number of retained modes 72

Analytical

DCM

IRS

SEREP

P
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R
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N
)

0
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Figure 8: Comparison of (a) wheel-rail contact force NWR and (b) rail de�ection at the contact point �
 predicted by the proposed condensed
models (DCM, IRS, and SEREP) for the analytical model.

the same as the analytical result but with a slight error. 
e
�uctuation of the dynamic response curve is inconsistentwith
the analytical result.

For DCM, the amplitude of the simulated maximum
high-frequency contact force is low, which underestimates

the high-frequency vibration amplitude of wheel-rail inter-
action. 
e vibration period slightly lengthens. 
e relative
error of the maximum contact force is 20%. However, the rail
displacement response curve is not in good agreement with
the analytical solution.
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Table 3: Computation times of the original and condensed moving load models with di�erent beam lengths or numbers of beam elements.

C C
 10 beam elements 20 beam elements 30 beam elements

(C − C
/C) × 100%
5m

1.37 s 1.25 s 2.19 s 1.27 s 4.97 s 1.38 s

8.8% 42% 72.2%

10m
2.61 s 2.42 s 4.50 s 2.46 s — —

7.3% 45%

20m
5.38 s 4.93 s — — — —

8.36%

Table 4: Comparison of the computation times of the analytical model, the original wheel-rail contact FE model, and the condensed model
(IRS).

Rail length
20m 90m

Analytical Original Condensed Analytical Original Condensed

Number of DOFs 22 260 6 92 1158 6

Computation time 3.66 s — 1.18 s 53.55 s — 28.02 s

SEREP exhibits nearly the same accuracy as IRS. How-
ever, the number of retained modes in SEREP must also be
precisely chosen because a large or small number of retained
modes can make the result inaccurate. Hence, SEREP is
inappropriate for practical applications. In addition, the com-
putation time of SEREP is 39.4 s, which is considerably greater
than the computation time of IRS (i.e., 7.6 s). 
is di�erence
is attributed to the resolution of the eigenvalue problemwhen
the mass body moves on to a new element. Consequently,
SEREP is meaningless because a model reduction method
intends to reduce computation time.

Whether in a moving load or a moving body case, IRS
can provide results that are close to that of the analytical
solution with fast speed. By contrast, DCM cannot e�ciently
predict the dynamic response of a moving body case, and
its accuracy for the moving load case is lower than that of
IRS. SEREP is also computationally ine�cient and inconve-
nient for engineering applications. 
erefore, the condensed
wheel-rail contactmodel obtained using IRS can be employed
as a valid and highly e�cient tool to simulate the dynamic
response of the wheel-rail interaction problem.

5. Discussion on Computational Efficiency

5.1. Computational E
ciency of the Moving Load Model. 
e
main objective of amodel reduction technique in implement-
ing this problem is to reduce computation time. Based on
the discussion in the previous section, the model condensed
by IRS performs the best among the three condensation
methods. 
us, the extent to which the condensed model
obtained using IRS can reduce computational burdenmust be
investigated. 
e comparison of computation times between
the original and condensed models with di�erent (i) beam
lengths or (ii) numbers of beam elements adopted is shown in
Table 3. C and C
 denote the computation times of the original
and condensed models, respectively.

Table 3 lists the computation times of the simulations
by the original and condensed moving load models at

di�erent parameters and by the percentage decrease of the
computation time between them. 
e spaces without data
are situations with low accuracy. 
is issue is discussed in
Section 6. 
e condensed model can reduce approximately
three quarters of the computation time of the original model
when the number of elements is 30 and the beam is 5m long.
A large number of elements indicate the great extent to which
the condensed model can reduce time. However, the results
vary slightly as beam length changes.

5.2. Computational E
ciency of the Wheel-Rail Contact
Model. 
e computational accuracy of the wheel-rail contact
model or the moving body model is shown in Table 4.

Solving the original wheel-rail contact model requires
considerable time because of its relatively large DOFs. Data
are not shown in Table 4. 
is table presents two cases with
di�erent rail lengths. 
e two cases provide nearly the same
simulated dynamic results. Computation time can be reduced
by 67.8% and 47.7% compared with the analytical model.
High calculation accuracy is maintained, as discussed in
Section 4.2. 
e proposed model can provide good simu-
lation results with minimal DOFs involved. 
erefore, the
condensed FE model obtained using IRS can be employed
as a highly e�cient tool to simulate wheel-rail interaction
behavior.

6. Discussion on the Moving Point Load Model

Based on the conclusions drawn in the preceding section,
the highly accurate condensed model by IRS is discussed as
follows.


e accuracy of the model may be in�uenced by several
factors, for example, (i) the number of elements used to mesh
the beam, (ii) beam length, and (iii) the velocity of themoving
load.


e response predicted by the condensed FEmodel (IRS)
is compared with that of the analytical solution by discretely
varying the value of the factors to �nd their optimal value.
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Figure 9: Relative error of beam de�ection at the impact point in the moving load case based on the analytical model for the condensed
model (IRS) with varying (a) numbers of elements used to mesh the beam, (b) beam lengths, and (c) velocities of the moving load.


e in�uence of such factors on accuracy is also investigated
and illustrated in Figure 9. A relative error f is cited as the
parameter that describes model accuracy. 
is parameter is
de�ned as the ratio of the absolute value of the de�ection
response di�erence between the solutions of the two models
to the de�ection calculated by the analytical model, and is
given by

f = gggggggggg(
�Analy. − �IRS�Analy. ) × 100%gggggggggg , (48)

where �Analy. and �IRS are the dynamic beamde�ection values
calculated by the analytical model and the condensed model
(IRS), respectively.


e normalized traveling time of the moving load C̃ is
shown at the horizontal axis in Figure 9. 
e scales 0 and
1 represent the beginning and end times, respectively. In
Figure 9, the large errors that occur at the beginning and end
times are the result of the minimal value of beam de�ection

calculated by the analytical model because this value is close
to zero and functions as the denominator of the relative error
expression, which can make it computationally divergent.

Figure 9(a) shows the relative error with 4, 7, 10, and
13 beam elements for the same frequency and velocity. 
e
accuracy of the solution is highest when the beam is meshed
into 7 or 10 beam elements. 
e accuracy of the model
with the other elements is lower because of two reasons.
First, the low mesh density in the moving load-type problem
cannot properly re�ect the deformation between the nodes
and the continuous nature of the beam. Second, the high
mesh density can overcome the aforementioned defects, but
the ratio of the number of master DOFs to that of the
original model is small. Consequently, the representation of
the condensed model for the original model is a�ected. 
e
solution generally becomes accurate when the ratio is high,
except in situations in which the number of DOFs in the
original model is too small.
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Figure 10: Average relative error of the condensed moving load
model (IRS) based on analytical solutions with varying element
numbers, beam lengths, and moving velocities.

Figure 9(b) shows the relative errors with beam lengths
of 2, 5, 10, and 15m for the same number of elements and
velocity. High accuracy is obtained when the beam is 5m or
10m long. When beam length increases, accuracy decreases.

Figure 9(c) shows the relative errors with moving load
velocities of 100, 200, 300, and 400 km/h for the same number
of elements and frequency to construct the model. 
e
highest accuracy is generated when the load moves at a
velocity of 200 km/h to 300 km/h.


e number of elements adopted is the most signi�cant
in�uence factor. 
e optimal number of elements adopted
depends on the beam length and velocity of the moving
load. 
e numerical example shows that a long beam length
permits the minimal number of total elements to be adopted.


erefore, the in�uence of the combined e�ects of these
three factors on the accuracy of the condensed model is
further investigated to determine the optimal number of
elements required in practical applications, as shown in
Figure 10.
e three coordinate axes are beam length, moving
load velocity, and element number. 
e size of the dots

represents the average relative error, f, which is de�ned as
follows:

f = 1;1
�∑
�=1
j�f�, (49)

where f� (
 = 1 ∼ ;) is the relative error at the 
th time step. ;
is the total number of time steps that is determined as follows:

; = �
VC . (50)

j� (
 = 1 ∼ ;) is the coe�cient that is de�ned as follows:

j� = {1, 0.2 < C̃ < 0.8
0, else, (51)

and ;1 is the number of j� with a value of 1. 
e fi at both
sides of the beam is not considered because the numerical
error caused by the small value of beamde�ection is too large,
such that the calculated relative error becomes meaningless,
as discussed earlier.

In Figure 10, the size of the dots is proportional to the

average relative error, f, which is calculated using (49). Small
dots denote an average relative error or high calculation
accuracy. 
e graph shows that when the element number
is approximately 8 or 10, computational accuracy is generally
the highest, which provides a similar result to the aforemen-
tioned statement.


e graph is practically signi�cant because it can help
determine the optimal value of the element number when a
speci�c beam and the moving load velocity are provided. For
example, if the beam is 10m long and the load is moving at
a velocity of 300 km/h, then the highest calculation accuracy
is achieved when the beam is meshed into 10 beam elements
that correspond to the smallest dot along the vertical auxiliary
line.

7. Conclusion

To improve computational e�ciency, three dedicated model
reduction techniques are introduced to condense the FE
model for the dynamic response analysis of a beam-type
structure that is subjected to a moving load. 
e same
methodology is used to reduce the size of the moving body
problem as a practical model to study the wheel-rail contact
behavior in railway engineering.

Applying the model reduction method on a moving
load case is di�erent from applying it on an immobile
load case in several aspects. First, the master DOFs of the
condensed model must be reselected when the load travels
from one element to another, while the number of it remains
unchanged. Correspondingly, the coe�cient matrices should
be recalculated based on the rearrangement of the coordi-
nates in the response vector of the original model. Second,
the value of the nonzero entries in the force vector varies
periodically as the load travels along the beam, and their
position changes as the load moves on to the next beam
element.
ird, to guarantee the continuity of operations, the
initial conditions of the condensed model must be rede�ned
as the load moves on to a new element because of the
reselection of the master DOFs.

To demonstrate the validity of the proposed model,
numerical examples are provided to compare the simulated
solution of the condensed FE models obtained by three
model reduction techniques, namely, DCM, IRS, and SEREP,
with the analytical solution. 
e results indicate that the
condensed model obtained using IRS generally performs the
best among the three condensation models and can provide
reliable results with fast computational speed under given
conditions.


e computational e�ciency of the condensed model
obtained using IRS is investigated. In the moving load
case, the condensed model can reduce computation time by
approximately three quarters of that of the original model on
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the premise that it ensures a su�ciently accurate solution.
In the moving body case, the computational burden of the
full FEmethod is too high. By contrast, the condensedmodel
can reduce computation time by more than half of that of the
analytical model with excellent accuracy.

A de�ciency of the proposed moving load model is that
low accuracy is exhibited when the ratio of the number of
masterDOFs to that of the originalmodel is low and the beam
lengthens. However, the quantitative relation among these
variables is di�cult to achieve. 
is low-accuracy problem
may be solved by increasing the number of master DOFs or
adding several DOFs to the immobile nodes in the master
coordinates. 
is problem will be discussed in a future work.


e model reduction technique is only applied to the
beam element in this study. However, this technique can
theoretically be generalized and adapted to any element
type. Accordingly, further work must be conducted before
this methodology can be considered as suitable for broad
applications.
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