
Model reduction techniques for fast blood flow

simulation in parametrized geometries

Andrea Manzoni♯∗, Alfio Quarteroni♯,†, Gianluigi Rozza♯

June 8, 2011

♯ CMCS - Modelling and Scientific Computing,
MATHICSE - Mathematics Institute of Computational Science and Engineering,

EPFL - Ecole Polytechnique Fédérale de Lausanne,

Station 8, CH-1015 Lausanne, Switzerland.

† MOX– Modellistica e Calcolo Scientifico,
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano,
via Bonardi 9, 20133 Milano, Italy.

Keywords: real-time simulation; model reduction; geometrical and computa-
tional reduction; reduced basis methods; radial basis functions; haemodynamics;
Navier-Stokes equations

Abstract

In this paper we propose a new model reduction technique aimed at
real-time blood flow simulations on a given family of geometrical shapes
of arterial vessels. Our approach is based on the combination of a low-
dimensional shape parametrization of the computational domain and the
reduced basis method to solve the associated parametrized flow equations.
We propose a preliminary analysis carried on a set of arterial vessel geome-
tries, described by means of a radial basis functions parametrization. In
order to account for patient-specific arterial configurations, we reconstruct
the latter by solving a suitable parameter identification problem. Real-
time simulation of blood flows are thus performed on each reconstructed
parametrized geometry, by means of the reduced basis method. We fo-
cus on a family of parametrized carotid artery bifurcations, by modelling
blood flows using Navier-Stokes equations and measuring distributed out-
puts such as viscous energy dissipation or vorticity. The latter are indexes
that might be correlated with the assessment of pathological risks. The
approach advocated here can be applied to a broad variety of (different)
flow problems related with geometry/shape variation, for instance related
with shape sensitivity analysis, parametric exploration, and shape design.
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1 Introduction

Numerical simulation of blood flow problems have become quite popular in the
past two decades, mainly because of (i) increasing computational power, (ii)
progress in imaging and geometry extraction/reconstruction techniques [1] as
well as to (iii) the availability of always more efficient numerical algorithms
[2, 3, 4]. The driving factor behind this development is the awareness that
numerical models can provide quantitative descriptions of blood behaviour in
important vascular districts or in vessel networks, and to explain and assess
the relationships between vessels shape, haemodynamics, and a family of clin-
ical indicators. Among the latters we mention wall shear stresses, vorticity,
viscous energy dissipations: they can be correlated to risk of failure in bypass
grafting [5], or that of artery occlusion in presence of stenosis [6], or the one of
aneurysm rupture [7]. Such kind of analyses can also help in understanding how
different surgical solutions may affect blood circulation; to mention an example,
shape optimization techniques may be used for designing better prosthetic de-
vices [8, 9, 10]. Ideally, numerical simulations ought to be carried out in a very
fast way, to rapidly provide a quantitative output/response on each new patient
specific geometrical configuration. The goal is twofold, since we may be inter-
ested in either (i) a shape sensitivity analysis and evaluation of output related
to blood flows or (ii) spanning a large family of different vessel configurations
and simulating blood flows in simplified reconstructed geometries, where each
configuration can be easily represented as a deformation of a reference configu-
ration. Several examples dealing with the application of the first setting to the
case of a family of carotid bifurcations are presented in [11, 12], while a recent
application of the second framework for fast patient-specific simulations can be
found in [13]. To afford the above computationally intensive tasks, pursuing
computational reduction strategies can be determinant whenever interested in
real-time simulations and/or repeated output evaluations for different values of
some inputs of interest. A large number of model order reduction techniques have
been proposed in the past few years, depending on the mathematical problems
to be faced; basically, these techniques try to quickly capture, in an automatic
way, the essential features, or modes, of a given process. Reduced basis methods
[14, 15] as well as the proper orthogonal decomposition (or, equivalently, prin-
cipal component analysis or, again, Karhunen- Loève transformation) technique
[16] are two important examples in this field. Widely analyzed and developed in
the last two decades, these techniques nowadays provide a rigorous framework
for numerical simulations of complex systems arising not only in life sciences,
but also in many other engineering contexts.

In this work, we apply the reduced basis method for the solution of parame-
trized partial differential equations (PDEs) to provide a preliminary approach
for the real-time simulation of blood flows in a family of carotid artery bifurca-
tions, in order to provide a shape sensitivity analysis of a specific output related
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to blood flows, for example in presence of growing stenoses. We also consider the
problem of geometrical reconstruction from data, ideally suited for the applica-
tion of the proposed methodology in a patient-dependent framework. In order to
achieve a strong geometrical reduction and describe the carotid configurations by
using only a small number of significant parameters, we introduce a general class
of shape parametrizations based on the radial basis function technique, which is
a general interpolation method based on the choice and the displacement of a
small set of control points [17]. In this way, it is possible to span a broad family
of carotid configurations where either a localized variation (such as a stenosis
in one of the branches or at the bifurcation) or a global shape can be described.
Thanks to the reformulation of the original problem in a reference (parameter-
independent) domain, reduced basis approximations of blood flows in different
configurations are obtained by combining previously computed flow solutions,
for a small set of properly selected parameter values. These basis solutions are
computed and stored just once, during the so-called offline computational stage
(a step to prepare a “database” of significant solutions); for each new value of the
input parameters, corresponding to a different geometrical configuration, a new
very small problem has to be solved during the so-called online stage, obtained
by means of a Galerkin projection on the reduced basis space [14, 18]. This com-
putational splitting, provided by suitable assumptions on differential operators
and shape parametrization, entails great savings and real-time flow simulations
by solving a very reduced linear system. Moreover, we discuss a (reduced ver-
sion) of a shape reconstruction problem by introducing a suitable parameter
identification problem, in order to identify the closest parametrized version of
a given geometrical configuration. The interest of the approach presented in
this work goes beyond the preliminary application here addressed. Indeed, our
reduced model can be applied to a broad variety of problems for which real-time
simulation in complex parametrized geometries is the key issue.

The structure of the paper is as follows. In Sect. 2 we introduce the math-
ematical model for the blood flows description, as well as the computational
reduction framework for real-time simulation. In Sect. 3 we discuss a general
class of shape parametrization techniques which allows to obtain quite an ef-
fective geometrical reduction, characterizing the case of the radial basis func-
tions technique, while in Sect. 4 we briefly discuss a simple parameter identi-
fication problem for shape reconstruction through parametrized configurations.
In Sect. 5 we introduce the general reduced basis framework for parametrized
PDEs, focusing on the nonlinear steady Navier-Stokes case; in particular, both
the certification of the methodology through a posteriori error estimations (to
guarantee accuracy and reliability of results) and the offline-online stratagem
for computational reduction are briefly discussed. Then, in Sect. 6 we introduce
the problems related with the real-time description of blood flows in carotid
artery bifurcations. In the end, we present some preliminary numerical results
in Sect. 7, and discuss some possible improvements in Sect. 8.

3



2 Real time flow simulation for haemodynamics

It is recognized that correlation exists between haemodynamic forces and the lo-
cation, development and morphology of plaque deposits within the lumen, which
are responsible of the narrowing of blood vessels (or stenosis) and of serious car-
diovascular diseases, such as atherosclerosis and intimal hyperplasia. Ruptures
of the plaques may induce thrombus formation in the lumen, consequent de-
tachment and occlusion of further smaller branches (thromboembolism), or even
the complete closure of the lumen, implying chronic pathologies as ischemia,
infarction or stroke (in the case of carotid arteries).

It is therefore interesting to analyze the sensitivity of physical outputs re-
lated to flow with respect to shape and shape variations, such as – for example
– wall shear stresses, wall shear stress gradients, vorticity, dissipated energy; all
these quantities are influenced by lumen geometry, characterize local haemody-
namics effects and may assess a risk of artery occlusion. Rather than numerical
simulations on a relatively small number of different configurations, it becomes
crucial to explore a wide family of geometries – thus spanning a broad variety
of shapes – in order to take into account their variability among patients and
provide a more complete representation of blood flows and related outputs with
respect to shape variation. Moreover, given a new geometry, we may be asked
to obtain a numerical approximation of the flow in a very small amount of time,
say order of one second, that can be considered as a real-time condition. Thus,
we need to face both with a real-time problem (because of the rapid evaluation)
and a many-query context (because of the need to span a large set of configu-
ration), for which suitable model reduction techniques are requested, since full
simulations may result very expensive if they have to be carried out for each
new geometry.

With the sole aim of illustrating the use of low order methods for numeri-
cal simulation in parametrized domains, we adopt the steady nonlinear Navier-
Stokes equations for modelling moderate Reynolds flows in mid/large size arter-
ies [2], which in a parametrized domain Ωo(µ) read [19]:































−ν∆ũ(µ) + ∇p(µ) + (ũ(µ) · ∇)ũ(µ) = f in Ωo(µ)
∇ · ũ(µ) = 0 in Ωo(µ)
ũ(µ) = 0 on Γo

w

ũ(µ) = gD on Γo
in

−p(µ)n + ν
∂ũ(µ)

∂n
= gN on Γo

out;

(1)

µ ∈ D ⊂ R
p is a vector of input parameters, (ũ(µ), p(µ)) are the velocity and

the pressure fields, for some given f , gD, gN ; no is the normal unit vector on
the boundary ∂Ωo(µ) = Γo

in ∪ Γo
out ∪ Γo

w, where Γo
in is the inflow boundary, Γo

out

the outflow boundary and Γo
w the boundary corresponding to the arterial wall.

Nevertheless, further extensions of the methodology addressed in this work to
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time-dependent problems – to take into account blood flow pulsatility – and
treatment of fluid-structure interaction are optimistically foreseen in view of an
effective reduction for nonlinear problems.

The weak formulation of problem (1) can be obtained by introducing the
functional spaces X (µ) = (H1

0,ΓD
(Ωo(µ)))2 and Q(µ) = L2(Ωo(µ)) for velocity

and pressure, respectively, being ΓD = Γo
in ∪ Γo

w, H1
0,ΓD

(Ω) = {v ∈ H1(Ω) :
v|ΓD

= 0}, and integrating by parts the expression obtained by multiplying (1)
by a test function w ∈ X (µ). We introduce a lifting function Ro ∈ (H1(Ωo(µ)))2

such that Ro|Γin
= gD and denote u = ũ − Ro, so that u|ΓD

= 0 and ∇u =
∇ũ−∇Ro. Then, denoting Y(Ωo(µ)) = X (µ)×Q(µ) and W = (w, q), the weak
formulation reads: find Y (µ) = (u(µ), p(µ)) ∈ Y(Ωo(µ)) s.t.

Ao(Y (µ),W ;µ) + Co(Y (µ), Y (µ),W ;µ) = Fo(W ;µ), (2)

where

Ao(Y,W ;µ) = ao(u,w;µ) + do(u,w; µ) + bo(p,w; µ) + bo(q,u; µ), (3)

Co(Y, Y,W ;µ) = co(u,u,w;µ), (4)

Fo(W ;µ) = 〈F s
o ,w〉 + 〈F l

o,w〉 + 〈Gl
o, q〉; (5)

the bilinear forms corresponding to viscous and pressure terms are given by

ao(v,w;µ) =

∫

Ωo(µ)

∂v

∂xo,i
νo

ij

∂v

∂xo,j
dΩo, bo(q,w;µ) = −

∫

Ωo(µ)
qχo

ij

∂vi

∂xo,j
dΩo,

where summation over i and j is understood, νo
ij = νδij , χ

o
ij = δij and δij indi-

cates the Kronecker symbol; the trilinear form corresponding to the convective
term is given by

co(u,v,w;µ) =

∫

Ωo(µ)
uiη

o
ij

∂vk

∂xo,j
wkdΩo,

being ηo
ij = χo

ij ; 〈F s
o , ·〉 is a source term given by

〈F s
o ,w〉 =

∫

Ωo(µ)
f · w dΩo +

∫

Γo
out

gN · w dΓo,

while do(·, ·;µ), F o
l and Go

l are terms due to non-homogeneous Dirichlet bound-
ary conditions:

do(v,w;µ) = co(Log
D,v,w) + co(v, Log

D,w),

〈F o
l ,w〉 = −ao(Log

D,w)− co(Log
D, Log

D,w), 〈Go
l , q〉 = −bo(q, Log

D),

is a source term. Moreover, we are interested in the evaluation of a physical
output depending on the field variables, say

so(µ) =

∫

Ωo(µ)
Q(Y (µ)) dΩo,
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being Q = Q(·) a quadratic function of velocity and/or pressure variables. In
particular, we will focus on the viscous energy dissipation, for which we have
Q(Y (µ)) = ν|∇u(µ)|2, and then

so(µ) =

∫

Ωo(µ)
ν|∇u(µ)|2 dΩo ≡ ao(u(µ),u(µ);µ).

2.1 Parametrized formulation of Navier-Stokes equations

Our idea is to describe a given family of geometrical configurations by means
of a suitable shape parametrization; then, we will carry out full flow simulation
only on a small number of configurations – corresponding to the basis solutions –
and exploit the reduced basis method in order to perform real-time reduced sim-
ulations for any new configuration. In order to combine the basis solutions, we
need to introduce a reference (parameter-independent) domain Ω, on which ulti-
mately all the computations are performed (and compared). To do this, problem
(1)-(5) has to be traced back to the reference domain Ω, which is related to the
original domain Ωo(µ) through a parametric mapping T (·;µ); its construction
will be discussed in Sect. 3. By change of variables, we obtain the parametrized
formulation of the Navier-Stokes problem (2): find Y (µ) = (u(µ), p(µ)) ∈ Y s.t.

A(Y (µ),W ;µ) + C(Y (µ), Y (µ),W ;µ) = F(W ; µ), ∀W ∈ Y. (6)

Here Y = X ×Q, being X = (H1
0,ΓD

(Ω))2 and Q = L2(Ω);

A(Y,W ;µ) = a(u,w;µ)+d(u,w;µ)+b(p,w;µ)+b(q,w;µ)+c(u,u,w;µ), (7)

C(Y, Y,W ;µ) = c(u,u,w;µ), (8)

F(W ;µ) = 〈F s(µ),w〉 + 〈F l(µ),w〉 + 〈Gl(µ), q〉. (9)

In this case,

a(v,w;µ) =

∫

Ω

∂v

∂xi
νij(x,µ)

∂w

∂xj
dΩ, ν(x,µ) = J−1

T νoJ−T
T |JT |, (10)

b(p,w;µ) = −
∫

Ω
pχij(x,µ)

∂wj

∂xi
dΩ, χ(x,µ) = J−1

T |JT |, (11)

c(u,v,w;µ) =

∫

Ω
uiηij(x,µ)

∂vk

∂xj
wkdΩ, η(x,µ) ≡ χ(x,µ) = J−1

T |JT |, (12)

being JT = JT (x,µ) the Jacobian of T (x,µ) and |JT | its determinant. In the
same way, we have

〈F s(µ),w〉 =

∫

Ω
f · w|JT |dΩ +

∫

Γout

gN · w|JT t|dΓ,
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while d(·, ·;µ), Fl(µ) and Gl(µ) are terms due to non-homogeneous Dirichlet
boundary conditions:

d(v,w;µ) = c(LgD,v,w; µ) + c(v, LgD,w;µ),

〈Fl(µ),w〉 = −a(LgD,w;µ)−c(LgD, LgD,w;µ), 〈Gl(µ), q〉 = −bo(q, LgD;µ);

as before, LgD ∈ (H1(Ω))2 is a lifting function such that LgD|ΓD
= gD, while t

denotes the unit tangential vector to ∂Ω. In the end, the parametrized form of
the output of interest is given by

s(µ) =

∫

Ω
Q ◦ T (Y (µ))|JT |dΩ, (13)

being Y (µ) the solution of (6). In particular, for the case of the energy dissipa-
tion, s(µ) = a(u(µ),u(µ);µ).

We briefly remind the conditions for the well-posedness of problem (6) and the
existence of nonsingular branches of solutions [20, 21]. Let us endow Y by
the scalar product (·, ·)Y = (·, ·)X + (·, ·)Q, where (u,v)X = (∇u,∇v)(L2(Ω))2 ,
(p, q)Q = (p, q)L2(Ω) for all u,v ∈ X , p, q ∈ Q; the graph norm of Y = (u, p)

is given by ‖Y ‖2
Y = ‖u‖2

X + ‖p‖2
Q, where ‖u‖X = (u,u)

1/2
X , ‖p‖Q = (p, p)

1/2
Q .

Moreover, defining the Navier-Stokes operator G : Y → Y ′ as

G(Y (µ), V ;µ) = A(Y (µ), V ;µ) + C(Y (µ), Y (µ), V ; µ), (14)

its Fréchet derivative (about W ) with respect to the first variable Y is given by

dG(W ; µ)(Y, V ) = A(Y, V ;µ) + C(Y,W, V ; µ) + C(W,Y, V ;µ), ∀µ ∈ D.

We then associate to dG(W ;µ)(·, ·) the Babuška inf-sup and continuity “con-
stants”

β(Y (µ)) = inf
W∈Y

sup
V ∈Y

dG(Y (µ);µ)(W,V )

‖W‖Y‖V ‖Y
,

γ(Y (µ)) = sup
W∈Y

sup
V ∈Y

dG(Y (µ);µ)(W,V )

‖W‖Y‖V ‖Y
;

under the following stability and continuity conditions [22, 23],

β(Y (µ)) ≥ β0 > 0 γ(Y (µ)) < +∞, ∀µ ∈ D,

in the neighborhood of Y (µ) the solution of (6) is unique. We can also verify that
(for homogeneous Dirichlet conditions) γ(Y (µ)) ≤ γa(µ)+γb(µ)(2+ρ2‖Y (µ)‖Y),
being γa(µ) and γb(µ) the continuity constants of a(·, ·;µ) and b(·, ·; µ), respec-
tively, and

ρ =
√

2 sup
v∈X

‖v‖(L4(Ω))2/‖v‖X (15)

a Sobolev embedding constant [24], where ‖v‖(Lp(Ω))2 =
(∫

Ω(vivi)
p/2
)1/p

.
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3 Radial basis functions techniques for

shape parametrization

Efficient shape representation and the description of its deformation is an issue
arising in computational geometry, e.g. in image-based segmentation, tracking
or registration, shape reconstruction. Our goal is to set up a mathematical
model which is flexible – in order to represent complex configurations – and
low-dimensional – i.e. depending on a small number of input parameters. Free
shape representations, obtained by introducing a small set of control points –
and possibly some interpolation strategies – are a good compromise between
flexibility and low-dimensionality and they can be properly coupled with the re-
duced basis method for parametrized PDEs [25, 9]. In particular, control points
can be located either on a regular lattice or scattered in the domain, and their
displacements induce a local deformation of the domain. In this way, a global
deformation mapping T (·;µ) is obtained as a linear combination of the control
points displacements, treated as input parameters. Two strategies in this class
are the Free-Form Deformations (FFD) technique and the method based on Ra-
dial Basis Functions (RBF).

Free-Form Deformations [26, 27] are obtained as the tensor product of defor-
mations performed along each direction on a regular lattice of control points.
Usually, only small subsets of these deformations are selected (by means of
problem-dependent criteria) as input parameters if we want a geometrical re-
duction; in this way, each parameter µ1, . . . , µp identifies a selected directional
displacement of a corresponding control point. This technique has been widely
used in computer graphics and also applied to optimal design and shape op-
timization problems, thanks to its flexibility and easiness of handling (see for
example [28, 9] for two applications in the reduced basis context). However, FFD
suffer from some limitations, since (i) the control points cannot be chosen freely
but must be the nodes of a lattice (ii) it is not possible to perform a boundary
control and (iii) the process is not interpolatory. In particular, using a rectan-
gular lattice to describe deformations of irregular or complex shapes makes the
choice of control points crucially important; for example, control points located
far from the boundary to be optimized have less influence. Choosing the subset
of active points is therefore a critical issue, highly problem-dependent.

In order to overcome these limitations, we introduce a different shape para-
metrization technique, still based on a set of control points, but which is interpo-
latory: the Radial Basis Function (RBF) technique. For a general introduction
see [17, 29], while applications to shape optimization and mesh deformation are
described in [30]. This technique is used for nonlinear interpolation (e.g. of
scattered data); in the two-dimensional case, a map τ : R

2 → R
2 is defined as

8



follows:

τ(x) = P (x) +
k
∑

i=1

wi σ(‖x − Xi‖), (16)

being P (·) a low-degree polynomial function, {wi}k
i=1, wi ∈ R

2, a set of weights
corresponding to the (a-priori selected) k control points, whose reference posi-
tions are [X1, . . . ,Xk], a set of distinct points in R

2, and σ(·) a (translated)
radially symmetric function. Common choices introduced for modelling 2D (or
3D) shapes are, for example,

σ(h) =















exp(−h2/σ2) Gaussian,

(h2 + γ2)1/2 multiquadratic,
hγ power, γ = 1, 3
h2 log(h) thin-plate splines.

The asymptotic behaviour of σ(h) is different among the selected basis functions,
and the choice on the various possibilities is performed according to shape reg-
ularity and to convergence properties of the numerical method used to compute
the coefficients appearing in (16). For example, the linear RBFs exhibit bet-
ter convergence properties, while the cubic RBFs guarantee an enhanced shape
smoothness. Usually, a polynomial function of degree 1 is chosen, P (x) = c+Ax,
being c ∈ R

2 and A ∈ R
2×2; thus, the map can be rewritten as

τ(x) = c + Ax + W
T s(x), (17)

being s(x) = (σ(‖x−X1‖), . . . , σ(‖x−Xk‖))T and W = [w1, . . . ,wk]
T ∈ R

k×2.
In this way, P (·) is the affine part (rotation and/or scaling), while the term
W

T s(x) depending on the control points adds a nonaffine contribution to the de-
formation. The map (17) is function of 2k+6 coefficients in the two-dimensional
case; to compute them we look for a transformation such that each control
point of the initial (or reference) shape is mapped onto the corresponding con-
trol point of the target (or deformed) one. Introducing the initial position
X = [X1, . . . ,Xk]

T ∈ R
k×2 and the deformed position Y = [Y1, . . . ,Yk]

T ∈ R
k×2

of the control points, the weights {wi}k
i=1 in (16) are found by fullfilling the in-

terpolation constraints

τ(Xi) = Yi, ∀i = 1, . . . , k, (18)

When a polynomial term P (x) = c + Ax is included, the system is completed
by the additional constraint [17, 29]

k
∑

i=1

wi = 0

k
∑

i=1

Xi1wi =

k
∑

i=1

Xi2wi = 0, (19)

being Xj = (Xj1, Xj2)
T , which can represent the conservation of total force and

momentum [30]. More in general, if P (x) ∈ Pq = span{p1, . . . , pQ}, space of all
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polynomials of degree up to q ≥ 1 in 2 unknowns, the side constraints can be
expressed as [17]

k
∑

i=1

wipl(Xi) = 0 ∀ l = 1, . . . , Q = dim(Pq).

In order to fit the RBF technique in our parametrized framework, let us express
the deformed positions [Y1, . . . ,Yk]

T of the control points as

Yi(µi) = Xi + µi, i = 1, . . . , k,

being {µi = (µi1, µi2)}k
i=1 the displacements of the k control points, which are

usually chosen on the boundary of the shape which has to be deformed (see
Fig. 1). The input parameters µ = (µ1, . . . , µp) ∈ R

p are then a subset of p ≤
2k degrees of freedom, chosen accordingly to some problem-dependent criteria.
Thus, the parametric mapping T (·; µ) : R

2 → R
2 will be given by

T (x;µ) = c(µ) + A(µ)x + W(µ)T s(x), (20)

where the coefficients c(µ), A(µ), W(µ) satisfy the constraints (18)-(19). By
denoting S the interpolation matrix whose elements are Sij = si(Xj) = σ(‖Xj −
Xi‖) and Ik = [1, 1, . . . , 1]T ∈ R

k, we can rewrite (18)-(19) in a compact form,
where the coefficients are obtained from the solution of a linear system, such
that the parametrization is residing only on the right-hand-side:





S Ik X

I
T
k O O

X
T

O O









W
cT

A
T



 =





Y(µ)
0
0



 .

By adding a polynomial function P (x) in (16) the interpolation problem always
admits a unique solution, since the global matrix appearing in (3) is symmetric
and positive definitea. For a small number of control points, as in our approach,
linear system (3) can be efficiently solved by a suitable direct method (matrix
factorization is not depending on the parameters). Nevertheless, since it may
be badly conditioned and non-sparse (because of the global character of RBF),
difficulties may arise especially when using a large number of control points, as
for example in fluid-structure interaction coupled problems or, more generally,
when dealing with mesh motion through RBF. In these cases, suitable scaling
or preconditioning strategies may help, as discussed for example in [17].

Once the map T (·;µ) has been built, parametrized tensors JT (µ), ν(µ) and
χ(µ) ≡ η(µ) appearing in (10)-(12) are computed symbolically by means of a
Computer Algebra System.

aThe interpolation matrix S is in general symmetric but positive semidefinite; it is positive
definite if σ(r) = φ(r2), being φ : R+ → R a continuous completely monotonic function, i.e.
such that (−1)lφ(l)(t) ≥ 0 for all positive t. By imposing that the only polynomial vanishing
on the control points is zero we obtain a RBF (conditionally) positive definite [17].
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Figure 1: Schematic diagram of the RBF technique: on the left, the reference (or
initial) configuration Ω and the unperturbed control points Xi, i = 1, . . . , k; on the
right, the deformed (or target) configuration Ωo(µ) and the displaced control points
Yi, i = 1, . . . , k. A priori each control point Xi can be translated by a vector µi ∈
R

2; actually, only a subset of the 2k possible degrees of freedom are chosen as input
parameters.

4 Parameter identification for shape reconstruction

Shape reconstruction consists of recovering a trasformation that establishes some
desired correspondences between two geometrical configurations, according to
some similarity/distance measures. This process, and more generally, repre-
sentation of shapes and their deformations, is central in many applications of
image processing and medical image analysis, such as segmentation (extraction
of geometrical structures from images), tracking (recovering the temporal evolu-
tion from consecutive frames), or registration. Our (limited) ambition is to set
a (much simpler) preliminary procedure in order to reconstruct a parametrized
version of a given shape configuration, by means of the RBF technique discussed
in the previous section, on which we aim to perform a flow simulation. In order
to be compatible with the reduced real-time framework, the reconstruction pro-
cedure has to be (i) based on a small number of parameters and (ii) performed
in a very small amount of time. Let us denote S the initial shape which has to be
deformed in order to reconstruct the target shape Td by means of the parametric
map T (·;µ). Moreover, let us introduce a shape representation R(·), a distance
(or similarity/dissimilarity metric) d(·) defined in the space of representations
and a loss function ρ(·). The reconstruction process can be in general expressed
as a minimization problem:

µ̂ = arg min
µ∈Dad

ρ(d(R(T (S;µ)),R(Td))) + βω(µ) (21)

where ω(µ) is a suitable regularization term and β > 0 is a weighting parameter.
A usual choice is ρ(s) = s2 for the loss function and the Euclidean distance for
d(x); more complex transformations or weighting can be introduced in order to
improve the robustness of the matching. The most difficult task is the choice of
the shape representation R(·). Many strategies have been developed [31, 32]. In
view of model reduction, we represent a shape configuration by means of a set
of Nr registration points (or landmarks) {xr

j}Nr

j=1 ∈ S, such that R(T (S;µ)) =
T (xr

j ; µ), r = 1, . . . Nr; in the same way, we suppose to know the target position

R(Td) = {yr
j}Nr

j=1 of these registration points in the target configuration Td.
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Moreover, we introduce a set of control points {Xi}NC

i=1 on the initial shape in
order to define a parametric RBF mapping T (·;µ), whose image is given by
{Yi}NC

i=1 (see Fig. 2 for a summarizing scheme). The idea is that, since the RBF
mapping may fail in matching the two configurations, the registration points can
be used to drive the mapping in order to enhance its fitting capabilities. In this
way, the parameter identification problem (21) becomes a matching problem
between two point-sets, that can be written as a least squares minimization
problem

arg min
µ∈Dad

J(µ) =

Nr
∑

j=1

‖T (xr
j ; µ) − yr

j ‖2 + β

Nc
∑

i=1

‖T (Xc
i ;µ) − Yc

i ‖2, (22)

where the regularization term (a quadratic function of µ) is given by the distance
between the images {T (Xc

i ;µ)} of the control points and their target positions

{Yi}NC

i=1. Note that the introduction of the registration points does not increase
the problem dimension, as the number of input parameters of shape representa-
tion remains unchanged. Regarding instead the control points, they need to be
scattered all over the domain in order to describe a wide family of shapes and
global deformations.

Figure 2: Schematic diagram of the shape reconstruction: on the left, the reference (or
initial) configuration S, the unperturbed control points Xc

i , i = 1, . . . , Nc (in blue), and
the unperturbed registration points xr

j , i = 1, . . . , Nr (in green); on the right, the target
configuration Td, the target control points Yc

i , i = 1, . . . , Nc (in red), and the target
registration points yr

j , i = 1, . . . , Nr (in black).

5 Reduced basis solution of parametrized

Navier-Stokes equations

The general theory of Brezzi, Rappaz, Raviart [20, 21, 33] for approximating non
singular branches of solution of the steady Navier-Stokes equations provides the
framework for the analysis of the reduced basis approximation, as well as a tool
to derive a suitable a posteriori error estimation. In that theory, the solution
was parametrized w.r.t. the (inverse of the) Reynolds number, whereas here
the parametrization is w.r.t. the parameters µ used for shape deformation. We
provide here a quick overview of these issues; deeper analyses can be found in
[34, 23, 35, 36, 37].
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Our starting point is a truth approximation Y N (µ) of problem (6), which can
be obtained by standard Galerkin-Finite Element (FE) Method: find Y N (µ) =
(uN (µ), pN (µ)) ∈ YN s.t.

A(Y N (µ),W ;µ) + C(Y N (µ), Y N (µ),W ; µ) = F(W ;µ), ∀W ∈ YN . (23)

Here YN = XN×QN , being XN ⊂ X , QN ⊂ Q two sequences of FE approxima-
tion spaces of global dimension N = NX +NQ; thus, N will represent a measure
of the computational complexity in the offline stage. Moreover, we assume that
the difference ‖Y N (µ) − Y (µ)‖Y is so small, so that Y N (µ) can be effectively
considered as a “truth” approximation (at least for engineering purposes).
The matrix form corresponding to the FE discretization (23) is given by

[

AN (µ) +DN (µ) + CN (uN (µ);µ) BT
N (µ)

BN (µ) 0

] [

uN (µ)
pN (µ)

]

=

[

Fs
N (µ) + Fl

N (µ)
Gl

N (µ)

]

(24)

where uN (µ) = (uNi (µ))NX

i=1 and pN (µ) = (pNk )
NQ

k=1 are the vectors correspond-
ing to (the nodal values of) velocity and pressure. Here, AN is the stiffness
matrix, BN the gradient matrix, while CN (u) is the nonlinear transport matrix;
DN is the linearization of the nonlinear transport term, evaluated at uN

D , FE
interpolant of non-zero boundary conditions:

(AN (µ))ij = a(ΦN
j ,Φ

N
i ;µ), (BN (µ))ki = b(ϕN

k ,Φ
N
i ;µ),

(CN (w;µ))ij = c

(

NX
∑

k=1

wN
k ΦN

k ,Φ
N
j ,Φ

N
i ;µ

)

,

(DN (µ))ij = c(uN
D ,Φ

N
j ,Φ

N
i ;µ) + c(ΦN

j ,u
N
D ,Φ

N
i ;µ),

for 1 ≤ i, j ≤ NX , 1 ≤ k ≤ NQ, being {ΦN
i }NX

i=1, {ϕN
i }NQ

i=1 two bases of XN and
QN , respectively. On the other hand, Fs

N is the source vector while Fl
N and

Gl
N are the load vectors into which the lifting of nonhomogeneous inflow BCs

has been incorporated. The nonlinear system (24) is solved by means of a fixed-
point iteration, using as initial guess the Stokes solution obtained by dropping
the convective terms.

The reduced basis (RB) method computes an approximation of Y N (µ) =
(uN (µ), pN (µ)) by using global approximation spaces made up of FE solutions
corresponding to specific choices of the parameter values, or snapshots solutions.
Denoting with SN = {µ1, . . . ,µN} a (relatively) small set of parameter values,
we introduce the reduced basis pressure space QN

N ⊂ QN as

QN
N = span{ζ̃n = pN (µn), n = 1, . . . , N};

the reduced basis velocity space XN
N ⊂ XN can be built as

XN
N = span{σ̃n := uN (µn), Tµ

p ζ̃n, n = 1, . . . , N},
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where Tµ

p : QN
N → XN

N is the so-called inner supremizer operator acting on
pressure term,

(Tµ

p q,w)X = b(q,w; µ) ∀ w ∈ XN
N . (25)

The enrichment of the velocity space by means of the supremizer solutions en-
ables to fullfill an equivalent stability (LBB) condition also on the RB spaces;
see [38, 39] for the details. Moreover, an automatic greedy procedure for the
selection of the snapshots {µ1, . . . ,µN} is used [14]. The RB approximation of
the Navier-Stokes problem (6) is thus obtained through a Galerkin projection
onto YN = XN

N ×QN
N : find YN (µ) = (uN (µ), pN (µ)) ∈ YN s.t.

A(YN (µ),W ;µ) + C(YN (µ), YN (µ),W ;µ) = F(W ;µ), ∀W ∈ YN . (26)

By denoting {ζj}2N
j=1 and {ξl}N

l=1 two orthonormal bases for XN
N and QN

N , re-
spectively, the RB approximation can be written as the solution of the following
nonlinear system, whose dimension is now 3N × 3N :

[

AN (µ) +DN (µ) + CN (uN (µ);µ) BT
N (µ)

BN (µ) 0

] [

uN (µ)
p

N
(µ)

]

=

[

Fs
N (µ) + Fl

N (µ)
Gl

N (µ)

]

(27)
where uN (µ) = (uNj(µ))2N

j=1 and p
N

(µ) = (pNl(µ))N
l=1 are the vectors corre-

sponding to the RB velocity and pressure degrees of freedom, respectively. The
matrices appearing in (27) are given by

(AN (µ))mn = a(ζn, ζm;µ), (BN (µ))nl = b(ξl, ζn;µ),

(CN (µ;wN ))mn = c

(

2N
∑

k=1

wNkζ
k, ζn, ζm;µ

)

,

(DN (µ))mn = c(uN
D , ζ

n, ζm;µ) + c(ζn,uN
D , ζ

m;µ),

for 1 ≤ m,n ≤ 2N , 1 ≤ l ≤ N , while the right-hand sides are given by
(Fs

N )n = 〈f , ζn〉, (Fl
N (µ))n = −a(uN

D , ζ
n;µ)−c(uN

D ,u
N
D , ζ

n;µ), for 1 ≤ n ≤ 2N ,
and (Gl

N (µ))l = −b(ξl,uN
D ; µ), for 1 ≤ l ≤ N .

All the FE computations needed for the construction of the RB spaces are
performed on a fixed reference geometrical configuration (and related computa-
tional mesh); thus also the reduced solution of problem (26) lies on this reference
configuration, and has to be mapped back to the original one. In the following
subsections we sketch some important features related to the structure of system
(27), its real-time implementation, as well as to the certification of the reduced
basis solution with respect to the truth FE solution.
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5.1 The key ingredient: Offline-Online decomposition

Real-time simulations are made possible because of a suitable offline-online com-
putational decomposition: if the RB space generation can be fully decoupled
from each subsequent evaluation, then each new query (for any parameter µ ∈ D)
is very cheap, as it involves the solution of a nonlinear system of order N ≪ N .
The key property behind this decomposition is the affine parametric dependence,
i.e. the possibility to write the differential forms (10)-(12), as well as the right-
hand sides, upon isolating the parameter contribution as follows:

a(v,w;µ) =

Qa
∑

q=1

Θq
a(µ)aq(v,w), b(p,w;µ) =

Qb
∑

q=1

Θq
b(µ)bq(p,w), (28)

c(u,v,w;µ) =

Qc
∑

q=1

Θq
c(µ)cq(u,v,w), 〈F s(µ),w〉 =

Qf
∑

r=1

Θr
f (µ)〈F s

r ,w〉 (29)

for suitable integers Qa, Qb = Qc, Qf , being q and r condensed indices for
(i, j, k) and (i, k), with

aq(i,j,k)(u,v) =

∫

Ω
ξi,j
k (x)

∂u

∂xi

∂v

∂xj
dΩ, bq(i,j,k)(p,w) =

∫

Ω
ηi,j

k (x)p
∂wi

∂xj
dΩ, (30)

cq(i,j,k)(u,v,w) =

∫

Ω
uiχ

i,j
k (x)

∂vk

∂xj
wkdΩ, Fr

s (w) =

∫

Ω
ψi

k(x)widΩ. (31)

This affine decomposition is straightforward when the mapping T (·;µ) is affine.
In the more general nonaffine case (such as for the RBF technique), we rely on an
affine approximation obtained through an intermediate empirical interpolation
procedure [40]; see [9] for a detailed description in the analogous case of a Stokes
problem. In any case, we end up with the following (possibly approximated)
affine expansion of the parametrized tensors:

νij(x,µ) =

Ka
ij
∑

k=1

βi,j
k (µ)ξi,j

k (x), χij(x,µ) =

Kb
ij
∑

k=1

γi,j
k (µ)ηi,j

k (x), i, j = 1, 2

(32)
which entails Θq

a(µ) = βi,j
k (µ), Θq

b(µ) = Θq
c(µ) = γi,j

k (µ) in (30)-(31). In the
same way,

fi(x)|detJT (x,µ)| =

Kf
i

∑

k=1

δi
k(µ)ψi

k(x), Θr
f (µ) = δi

k(µ), i = 1, 2, r = 1, . . . , Qf .
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In particular, from the affine parametric expansions (28)-(29), we can write the
FE matrices isolating the parametric contribution as follows:

AN (µ) =

Qa
∑

q=1

Θq
a(µ)Aq

N , Aq
N = aq(ΦN

j ,Φ
N
i ),

BN (µ) =

Qb
∑

q=1

Θq
b(µ)Bq

N , Bq
N = bq(ϕN

k ,Φ
N
i ),

CN (wN ;µ) =

Qc
∑

q=1

Θq
c(µ)Cq

N (wN ), Cq
N (wN ) = cq(

NX
∑

k=1

wN
k (µ)ΦN

k ,Φ
N
j ,Φ

N
i ),

(33)
so that the algebraic structures which do not depend on the parameters can
be computed and stored just once, during the offline stage. Moreover, during
this stage the RB spaces are constructed, obtaining at the end of this procedure
two basis matrices, Z2N ∈ R

NX×2N and ZN ∈ R
NQ×N for the velocity and the

pressure RB space, respectively, given by

(ZN )il = ξl
i, (Z2N )jm = ζm

j , 1 ≤ i ≤ NQ, 1 ≤ j ≤ NX ,

for 1 ≤ l ≤ N , 1 ≤ m ≤ 2N , being the basis functions expressed as

ξl(x) =

NQ
∑

i=1

ξl
iϕ

N
i (x), ζm(x) =

NX
∑

j=1

ζm
j ΦN

j (x), 1 ≤ l ≤ N, 1 ≤ m ≤ 2N.

The basis matrices Z2N and ZN connect the FE and the RB algebraic structures,
by acting as a projection onto the reduced space. In fact, it is straightforward
to show that

AN (µ) =
∑Qa

q=1 Θa
q(µ)Aq

N , Aq
N = Z

T
2N Aq

N Z2N , 1 ≤ q ≤ Qa,

BN (µ) =
∑Qb

q=1 Θb
q(µ)Bq

N , Bq
N = Z

T
N Aq

N Z2N , 1 ≤ q ≤ Qb,

CN (ζ l;µ) =
∑Qc

q=1 Θc
q(µ)Cq

N (ζ l), Cq
N (ζ l) = Z

T
2N Cq

N (ζ l) Z2N , 1 ≤ q ≤ Qc,

(34)
so that, during the offline stage, all the structures required by the RB machinery
can be simply assembled and stored. The construction of the structures corre-
sponding to the right-hand-sides is very similar, while nonlinear terms require
some additional work for constructing the Qc × 2N matrices Cq

N (ζ l), for each of
Qc affine terms and each of 2N basis functions in the velocity space.
Once all this database is built, the solution of the RB problem (26) can be
performed online, for each value of the parameters µ ∈ D, implying only
handling (very) small algebraic structures. This fact entails the possibility
to obtain real-time solutions, at the cost of a very reduced nonlinear system,
yet providing the accuracy of a full FE simulation. We remark that, thanks
to (34), the reduced basis approximation sN (µ) = a(uN (µ),uN (µ);µ) of the
parametric output (13) can be simply evaluated as the matrix-vector product
sN (µ) = uT

N (µ)AN (µ)uN (µ).
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5.2 Reliability of the reduced model: some ingredients for

a posteriori error estimation

In order to certificate the RB solution and provide an a posteriori error bound
w.r.t. the FE truth solution, we can compute a residual-based estimator [22],
specializing the fixed point argument in [33] to the RB framework. Let us denote
r̃(W ;µ) = F(W ;µ)−G(YN (µ),W ;µ) the residual of the Navier-Stokes equation
and its dual norm

‖r(·;µ)‖Y ′ = sup
W∈Y

G(YN (µ),W ; µ)

‖W‖Y
.

Moreover, let us introduce the following adimensionalized residual (or proximity
indicator):

τN (µ) =
2ρ2‖r(·;µ)‖Y ′

βLB(µ)
,

being ρ the Sobolev embedding constant (15) and βLB
N (µ) a lower bound of the

inf-sup stability factor

βN (µ) = βN (YN (µ)) = inf
W∈YN

sup
V ∈YN

dG(YN (µ);µ)(W,V )

‖WN ‖Y‖V ‖Y
;

we require 0 < βLB
N (µ) ≤ βN (YN (µ)) for all µ ∈ D. It is possible to show [23, 36]

that, for τN (µ) < 1, it exists a unique Y N (µ) ∈ BY(YN (µ);βN (YN (µ))/ρ2),
being BY(Z, r) = {Y ∈ Y : ‖Y −Z‖Y ≤ r}. Moreover, the following a posteriori
error estimation is satisfied:

‖Y N (µ) − YN (µ)‖Y ≤ ∆N (µ) :=
βN (µ)

ρ2

(

1 −
√

1 − τN (µ)
)

, (35)

thus providing a rigorous error bound. It is important to remark that also
the computations of (35) can be decoupled following the previous offline-online
stratagem, in order to get an unexpensive evaluation of the error bound for each
µ ∈ D. Moreover, error bound (35) is employed also during the Greedy procedure
for the RB space assemblingb: given a (sufficiently rich) finite training sample
Ξtrain ⊂ D and the first parameter value µ1, the remaining snapshots are chosen
as µn = arg maxµ∈Ξtrain

∆n−1(µ) for n = 2, . . . , N until an error tolerance εRB
tol

is achieved, i.e. when ∆N (µ) ≤ εRB
tol for all µ ∈ Ξtrain.

6 Parametric descriptions of carotidal bifurcations

Geometrical variations strongly influence flow features in arterial vessels, as well
as the occurrence of lesions or pathologies [6, 41, 1, 3]. Typical portions of

bIn this case, the surrogate βN (Y N (µ)) is used, since YN (µ) is of course not yet available
[23].
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cardiovascular network where they may develop are made up by curved vessels
and bifurcations; an important segment where vessel diseases are often clinically
observed is the human carotid artery. The common carotid artery (CCA) bifur-
cates in the lower neck into two branches, the internal and the external carotid
arteries (ICA and ECA, respectively). Stenoses, that is the narrowing of the
inner portion of an artery, manifest quite often in the ICA. It is well known that
(i) the carotid shape yields a complex flow dynamics, (ii) its anatomy changes
considerably among individuals, and (iii) the risk of strokes is directly related
to carotid lesions severity. All that motivates the effort to characterize blood
flows in this arterial tract. Our interest in developing a reduced model aims at:

a) performing real-time simulations of blood flows in different carotid artery
bifurcations, whose parametrized shapes may possibly be reconstructed
from given data (see Sect. 4);

b) investigating the effect of stenosed geometries on flow patterns by spanning
a broad family of stenosed carotid bifurcations and identify severe stenosis
configurations by measuring some indices of occlusion risk, such as the
viscous energy dissipation or the vorticity.

This kind of analysis based on shape sensitivity, as well as shape optimiza-
tion procedures [42], are also relevant for stenting procedures, where carotid
endarterectomy may require the possibility to modify or reconstruct vessel ge-
ometry in order to optimize the flow characteristics therein.
On the one hand, several works have been focused on the numerical simulation of
blood flows in one or few carotid artery bifurcations obtained directly by medical
images, by using computational meshes reconstructed from patient data in a very
precise way; on the other hand, many analyses [11, 43] have tried to investigate
the relashionship between intra-individuals variations of some risk factors and
geometric indices. With this aim, some simplified shape parametrizations of the
carotidal bifurcation have been introduced, mainly based on sections areas or
diameters, curvature of the branches, bifurcation angle and so on. In particular,
we can mention (see Fig. 3):

• Y model: introduced in [44, 45] and derived from biplanar angiograms, it
defines a carotid bifurcation as a function of the diameter D of the CCA,
the diameters di and de of the ICA and ECA outflows, the diameters at
the proximal section dr, mid-sinus section ds of the ICA, the distance ls
between proximal and midsinus sections, the angles αi, αe between the
ICA (resp. ECA) and the CCA. A second version, using inwardly curved
branches instead of straight branches, has been discussed in [6]; here a fur-
ther parameter dm representing the mid-sinus cross section is introduced,
whereas ds represents the diameter of the section where the maximum si-
nus width occurs. Because of the curvature, two angles between CCA and
ICA are considered, at the origin of the branching (αi,o) and at its end
(αi,e).
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• tuning fork model: introduced in [46] and derived from carotid specimens
obtained from autopsy, it represents the carotid bifurcation like a tuning
fork. The geometrical parameters are in this case the five diameters D, di,
de, dr and ds, the bifurcation angle α = αi + αe, the distance ls (as in the
previous case), the distance between the two branches L, and two more
lenghts representing the sectional diameter du of the ICA at the end of the
sinus and the distance G of this section from the divider tip. A parametric
CAD model based on the tuning fork model has been introduced in [42, 11]
and is based on the following parameters: the ICA and ECA angles θi, θe,
the ICA and ECA diameters di, de, the position d of a Bézier curve control
point P , which enables to control the maximum width of the sinus bulb.
In this case, also the inner curve of the bifurcation is described by means
of a Bézier curve.

Figure 3: Parametrized models of the carotid artery bifurcation. From left to right:
Y model with straight branches, Y model with curved branches, tuning fork model and
parametric tuning fork CAD model.

With respect to these models, our approach to define a shape parametriza-
tion is based on a free choice of the input parameters, which are given by the
displacements of some control points located on the boundary of a reference
carotid configuration; hence, deformed shapes will be simply obtained by mov-
ing the control points. In this way, we get a versatile shape parametrization, since
control points may be located either a) on peripheral positions on the branches
for describing global deformations or b) on selected positions for modeling local
modifications such as stenoses or restrictions. Moreover, since we are interested
to perform real-time blood flow simulations, the shape parametrization has to be
low-dimensional, i.e. defined with respect to a small number of input parameters
µ1, . . . , µp: in this way, the complexity of the parametrized problem, given by
the number of terms in operators (28)-(29) and increasing with p, does not grow
too much. For these reasons, a parametrization based on radial basis functions
represents a good compromise: despite its low-dimensionality, its interpolatory
nature enables to track some selected points on the shape boundary, and to ob-
tain a global mapping by combining local deformations of control points.
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With this aim, we introduce a reference configuration Ω, and select a set of
control points and define a RBF mappingc as in Sect. 3. This technique is
applied here to a two-dimensional configuration, even if three-dimensional ge-
ometries can be handled using the same procedure. Hence, we compute the
parametrized tensors appearing in the parametrized forms (7)–(9), get an affine
approximation through the empirical interpolation method [40], assemble the µ-
independent FEM structures appearing in (33), then build the RB spaces, as well
as the µ-independent RB structures appearing in (34). This is the so-called of-
fline stage. During the online stage, for each new carotid configuration we select
the corresponding parameter value µ, evaluate the µ-dependent Θ(µ) functions
and assemble the reduced system (34); its solution gives the RB approxima-
tion (uN (µ), p(µ)) of the flow field, from which we obtain the full velocity and
pressure multiplying by the matrices Z2N and ZN , respectively. In case of a
simulation performed on a reconstructed configuration, the parameter value µ

will be obtained by the solution of the parameter identification problem (22).

7 Numerical results

In this section we present some numerical results obtained within the reduced
framework previously introduced. In particular, we illustrate some examples of
real-time simulations on parametrized geometries reconstructed from surrogate
data, as well as a first shape sensitivity analysis based on viscous energy dissi-
pation on a family of parametrized stenosed configurations.
As reference configuration Ω we consider the geometry depicted in Fig. 4, ob-
tained as a (longitudinal two-dimensional) projection of a carotid configuration
extracted from medical images (MRI). No-slip conditions are imposed on Γw,
while homogeneous (free-stress) Neumann conditions are imposed on the out-
flow sections Γout; on the inflow boundary Γin, we impose a Poiseuille parabolic
profile; inflow peak velocity is ṽ = 30cms−1, while arterial diameter is about
0.7cm. We model blood as an incompressible Newtonian flow, with dynamic
viscosity is µ = 0.04g cm−1 s−1, density ρ = 1g cm−3, thus yielding a kynematic
viscosity ν = µ/ρ = 0.04cm2 s−1 and a Reynolds number Re = ṽD/ν of order
500.

Figure 4: Reference configuration Ω used for all the FE and RB computations.

cAll the details related to the shape parametrization, as well as to the numerical tests, will
be discussed in the next section.
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Two different cases have been investigated, dealing with either (i) global
deformations of the carotid branches, or (ii) stenoses or restrictions near the
carotid sinus. In both cases, the RB method for cutting down the computational
burden – naturally arising in a many-query context – has been coupled to a
RBF mapping for the reduction of geometric complexity. Computationsd for
both cases are based upon a finite element approximation on P

2 − P
1 spaces of

dimension NX = 22, 728 and NQ = 2, 946 respectively, obtained on a mesh of
5, 473 triangular elements.

7.1 Reconstructed geometries

The first case focuses on the capability of our reduced framework to represent
a family of different carotid bifurcations and provide real-time blood flow simu-
lations. In particular, we build a RBF parametrization by using k = 7 control
points and p = 7 input parameters µ1, . . . , µp, given by the horizontal displace-
ments of the control points (see Fig. 5), with µi ∈ [−0.2, 0.2] ∀ i = 1, . . . , 7. In
this case, a cubic function σ(h) = h3 has been chosen as radial kernel, in order to
obtain global deformations by moving the control points located on the branches,
far from the center. The affine approximation of the parametrized tensors (com-
puted through the empirical interpolation method) entails a parametrized ex-
pression of the operators (28)-(29) made by Qa +Qb +Qc = 78 termse.

Figure 5: Case I. (Left) Reference configuration, control points (represented as blue
dots) for the RBF map and registration points (represented as green crosses). (Right)
Different carotid bifurcations obtained through the RBF map by displacing the control
points.

The reduced spaces are built using a greedy procedure [14] based on the a poste-
riori error bound (35); by fixing a tolerance εRB

tol = 2.5×10−3, N = 10 snapshots

dComputations have been executed on a desktop with 2 × 2GHz Dual Core AMD Opteron
(tm) processors 2214 HE and 16 GB of RAM.

eThis complexity is still reasonable for a nonaffine parametrization after empirical interpo-
lation treatment
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are selected, resulting in spaces XN
N , QN

N of dimension 20 and 10, respectively.
This yields the possibility to perform real-time blood flow simulations, each
query µ → (uN (µ), p(µ)) requiring O(1 s). In the case at hand, solving the
nonlinear RB Navier-Stokes problem (27) require about 2.3 s, while the post-
processing for the output ranges between O(10−3 s) (energy output) to 1.5 s
(vorticity output).

Concerning the shape reconstruction, the parameter identification procedure
(22) has been tested on 20 different configurationsf, by considering Nr = 12 reg-
istration points, divided in 6 couples, and placing two couples of points on each
carotid branch. The minimization of the cost functional appearing in the prob-
lem (22) has been performed by means of an automatic version of the sequential
quadratic programming (SQP) algorithm, which takes (average over the 20 run
cases) 5.3 s. We remark that the choice of the weighting parameter β > 0 in
(22) plays an important role (see Fig. 6); on one hand, values of β which are
too small do not allow a good control of the shape at the extremities; on the
other hand, penalizing too much the matching constraint on the control points
and their images on the target shape results in large deformations on the central
sections.
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Figure 6: Case I. Shape reconstruction obtained through parameter identification with
β = 0.01 (left) and β = 0.5 (right). The deformed and target configurations are rep-
resented in black and grey, respectively. Control points are depicted in blue (deformed
positions) and red (target positions); registration points are depicted in green (deformed
positions) and black (target positions).

7.2 Output evaluation for stenosed configurations

The second case deals with the parametrization of stenosed carotid configuration
and a simple, preliminary shape sensitivity analysis based on reduced flow sim-
ulation. Our goal is to characterize the blood flow in a very large number (say,
O(103)) of configurations and investigate the correlation between some outputs
of interest and a few geometrical features. Needless to say, the simulation in
such a many-query context is made possible only by using a reduction strategy,
following the framework set up in the previous sections.

fIn each case, the (surrogate) target configuration to be reconstructed has been generated
as a random free-form deformation of the reference geometry (built on a 8×6 lattice of control
points) in order to avoid a scaling/translation preprocessing.
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Figure 7: Case I. Reduced basis approximation of blood flows in two different recon-
structed configurations. From top to bottom: reconstructed (in black) and target (in
grey) configurations; velocity and pressure fields with velocity profiles; vorticity magni-
tude and velocity gradient squared magnitude, related with shear stresses.

In order to obtain a low-dimensional parametrization of stenoses located
at the bifurcation and at the mid-sinus level of the ICA, we build a RBF
parametrization on 4 control points located on these sections, with a Gaus-
sian radial kernel σ(h) = exp(−h2), so that the effect of the deformation is
localized in these two segments. Nevertheless, in order to avoid (even small)
global deformations, we fix the position of inflow/outflow sections, by consid-
ering as control points also the extrema of these three sections; since they are
not free to move, the effective input parameters are indeed the horizontal dis-
placements µi ∈ [−0.2, 0.2] ∀ i = 1, . . . , 4 of the central control points only (see
Fig. 8). Concerning the parametrized formulation and the reduced basis ap-
proximation of the Navier-Stokes problem, operators (28)-(29) are made in this
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Figure 8: Case II. (Left) Reference configuration and control points (represented as
blue dots) for the RBF map. (Right) Different carotid bifurcations obtained through
the RBF map by displacing the control points.

case by Qa +Qb +Qc = 62 termsg; by fixing a tolerance εRB
tol = 2.5 × 10−3, the

greedy algorithm for the reduced spaces construction selects N = 15 snapshots,
resulting in spaces XN

N , QN
N of dimension 30 and 15, respectively. In Fig. 9

two representative examples of RB approximation of velocity and pressure fields
are represented; the average time for a single flow simulation is around 2.5 s
(all the details concerning computational times and reduction aspects are sum-
marized in the next section). We underline that, thanks to the offline-online
decomposition, we are able to obtain also a rigorous certification of the RB solu-
tion YN (µ) = (uN (µ), pN (µ)) with respect to the “truth” finite element solution
Y N (µ) = (uN (µ), pN (µ)). The online evaluation of the a posteriori error bound
(35) require an average time of about 1.1 s. The average of the error bounds,
computed on a sample of 1000 parameter values, is about 1.5 × 10−4.

Thanks to the strong computational reduction, it is possible to perform a
large number of simulations in a very reduced time with respect to more tradi-
tional discretization techniques, in order to investigate the effect of geometrical
variations on flow features. In Fig. 10 we display the viscous energy dissipation
obtained from the RB flow simulation in 1000 different configurations, as a func-
tion of the diameters dc of the CCA at the bifurcation and db of the mid-sinus
level of the ICA, respectively. As expected, flow disturbances caused by stenoses
lead to higher values of the dissipated energy, the maximum occurring for the
smallest diameters on both sections. The possibility to derive a (nonlinear) re-
gression model – as well as a response surface model – from the computed output
in order to explain quantitatively the relationship between dissipated energy and
geometrical indices is foreseen and currently under investigation.

gAs in the previous case, this complexity is still reasonable for a nonaffine parametrization
after empirical interpolation treatment
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Figure 9: Case II. Reduced basis approximation of blood flows in two different recon-
structed configurations: velocity (left) and pressure fields with velocity profiles (right).
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Figure 10: Case II. (Left) Viscous energy dissipation computed in 1000 configurations,
as a function of the diameters dc = dc(µ1, µ2) of the CCA at the bifurcation and
db = db(µ3, µ4) of the mid-sinus level of the ICA, respectively. (Right) A posteriori
estimation ∆N (µ) of the error between the RB field solution and the corresponding FE
solutions.

7.3 The complete reduction paradygm: computational features

We conclude this section by discussing some computational aspects related to
the two cases presented above, and showing how reduced basis techniques allow a
substantial reduction of computational work. All the details are reported in Ta-
ble 1. Compared to the corresponding FE approximation, RB online evaluations
of field variables enable a computational speedup, defined as S⌋ = tFE/t

online
RB , of

about two orders of magnitude. This is made possible because of the reduction
in linear system dimensions, and finally in the huge dimensional reduction – N
vs. N – between RB spaces and corresponding FE spaces. For the three cases
considered, this ratio goes from 570 (first case) to 860 (second case).

By taking into account also the time spent for the offline construction and
storage, we find the break-even point (given by QBE = toffline

RB /tFE) is of O(102)
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in both cases, which can be considered acceptable whenever interested either in
the real-time context, or in the limit of many queries with O(102) evaluations
(at least).

Approximation data Case 1 Case 2

Number of parameters p 7 4
Affine op. components Qa +Qb +Qc 78 62
Affine rhs components Qf 79 63

FE space dim. NX + NQ 25674 25674
RB space dim. 3N 30 45

RB construction toffline
RB ≈ 12h ≈ 11h

RB evaluation tonline
RB 2.3 s 2.5 s

FE evaluation tFE (s) 210 s 240 s
Computational speedup Sc 96 88
Break-even point QBE 205 165

Table 1: Numerical details for the test cases presented. RB spaces have been built by
means of the greedy procedure, using a tolerance εRB

tol
= 2.5 × 10−3 and a uniform RB

greedy train sample of size ntrain = 1000. A comparison of the computational times
between the online RB evaluations and the corresponding FE simulations is reported.
Here toffline

RB is the time of the offline RB construction and storage, tonline
RB is the time

of an online RB computation, while tFE is the time for a FE computation, once FE
matrices are built.

8 Conclusions and remarks

In this work we have developed a reduced framework for real-time simulations
in parametrized computational domains, which has then been applied to the
blood flow simulation in parametrized carotid configurations. A radial basis
function settting has been presented and applied to carotid bifurcations, for
modeling either global and localized deformations. With respect to more classical
carotid parametrizations, this technique has shown a better flexibility in shape
representation keeping under control the number of parameters and allowing a
better boundary control. A certified and accurate reduced basis approximation
of the steady parametrized Navier-Stokes equations, built upon a finite element
discretization, has been introduced and applied for the blood flow simulations
in parametrized configurations. As shown in the considered cases, it allows a
substantial reduction in computational efforts with respect to classical strategies
based on full finite element simulations.
For more precise investigations, the extension of this framework to unsteady
Navier-Stokes equations and more realistic three-dimensional configurations is
foreseen and represents our current research activity.
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