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Abstract

In formulating mathematical models for dynamical systems, obtaining a high degree of qualitative
correctness (i.e. predictive capability) may not be the only objective. The model must be useful for its
intended application, and models of reduced complexity are attractive in many cases. In Part I of this
paper we provide an exposition of some techniques that are useful in finding models of reduced complexity
for dynamical systems involving flows. The material presented here is not new. The techniques we discuss
are based on classical theory such as the Karhunen-Loeve expansion and the method of Galerkin, and
the more recent concept of “coherent structures”. They have been heavily exploited in a wide range of
areas in science and engineering. The attempt here is to present this collection of important methods
and ideas together, at a high level of detail, in coherent form, and in the context of model reduction for
simulation and control. In this manner we lead in to Part II which illustrates their usefulness in model
reduction by applying them to some elementary examples of distributed parameter systems which are
related to processes found in semiconductor manufacturing.

1 Introduction

Much of the work of an engineer or scientist is that of formulating suitable mathematical models for a
particular physical system. For a dynamical system in continuous time, the model is often some system of
ordinary differential equations or partial differential equations. For instance, we might describe the motion of
a pendulum with the equations of harmonic motion, or fluid flows with the Navier-Stokes equations. When
formulating such models, one of the goals is for the model to maximize qualitative correctness in representing
the dynamics of the physical system. For many types of physical systems (far too many to be mentioned
here) there exist models whose predictive capability has been demonstrated experimentally. For example, if
one solves the Navier-Stokes equations given a set of boundary conditions and initial conditions, the solutions
provide an extremely reliable mathematical description of the given fluid flow.

However, in many cases, correctly representing the dynamics is not the sole objective in formulating
mathematical models for dynamical systems. In particular, the model needs to be useful for its intended
application. For example, if a plant model is required in some kind of real-time feedback control scheme
then a model that is computationally intensive may be unsuitable for this purpose. As another example
consider a computer simulation of a physical process for which we have a reliable model. We may wish to
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sacrifice some of the correctness of the model in order to make the equations easier to solve, or to allow faster
computation of the trajectories. In other words, we have a tradeoff between complexity and correctness.

All of this leads to the following problem. Given a model of a dynamical system that is known to correctly
represent the system dynamics, how do we formulate a model of reduced complexity which retains as much
of the original predictive capability as possible but which is also amenable to the particular application we
have in mind? One classical approach to this problem is via the method of principal components, otherwise
called the proper orthogonal decomposition or the Karhunen-Loeve expansion. In this paper, we describe the
underlying theory behind this approach, and discuss various issues which arise in its use. We then discuss
another classical technique, the method of Galerkin, and show how it is used along with the Karhunen-Loeve
expansion to provide reduced order models for dynamical systems involving flows.

The material presented here is not new. As stated before, the techniques we describe are based on
classical theory. We also discuss some more recent ideas such as “coherent structures” which is often found
in the literature regarding turbulence. Each of the concepts and methods exposed upon here have been
heavily exploited in a wide range of areas such as turbulence [3, 4, 12, 13, 14], image processing [11], rapid
thermal chemical vapor deposition [1], and identification and control of chemical processes [5]. The attempt
here is to present this collection of important methods and ideas together, at a high level of detail, in coherent
form, and in the context of model reduction for simulation and control. In this manner we lead in to Part
II which illustrates their usefulness in model reduction by applying them to some elementary examples of
distributed parameter systems which are related to processes found in semiconductor manufacturing.

I was introduced to the topics covered in this paper by my advisors, P.S. Krishnaprasad and R.A.
Adomaitis, with whom I have had many fruitful discussions about all of these topics. The main ideas
regarding coherent structures and model reduction spring from several papers by Lawrence Sirovich including
[12, 15]. Exposition on random processes and the Karhunen-Loeve expansion is based mainly on Wong’s
treatment in [16]. Discussion of Galerkin’s method is standard and generally follows the treatment in [8]. A
list of references is provided at the end of this paper.

2 Flows and Stochastic Processes

In order to limit the scope of this paper somewhat, we shall consider dynamical systems for which solutions
to the governing equations give a flow, i.e. a function of time and space that describes the evolution of a
particular entity. For example, the quantity of interest could be mass, energy, or momentum. One might be
modeling a fluid flow in a chamber governed by the Navier-Stokes equations or heat diffusion on a flat plate
governed by the diffusion equation.

Some of the theory of stochastic processes is now introduced in order to provide a framework for modeling
these flows which lends itself to formulating models of reduced complexity.

2.1 Modeling the Flow

Let u(t, x) denote a flow. Suppose that the flow is defined on a spatial domain D (e.g. D = [0,M ] × [0, N ];
M,N > 0, for a flat plate) and on a time interval T (e.g. we choose T = [0,∞) for the flows in this paper).
Observe that once the initial conditions and boundary conditions are given, the flow, i.e. the solution to
the governing equations, is a completely deterministic function of time and space. However, in some cases
the flow may still exhibit practically unpredictable behavior. For example, if the evolution of the governing
equations is strongly dependent upon initial conditions, then relatively small perturbations in the initial
conditions might cause relatively significant qualitative effects on the resulting flow. If these perturbations
are undetectable by the available sensors then the exact trajectory of the flow becomes unpredictable. One
way to model such unpredictability is by regarding the flow as a random (stochastic) process parameterized
by time and space. In this manner, we consider an ensemble of realizations of the flow (e.g. each member
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of the ensemble is a trajectory corresponding to a particular initial condition), and introduce a probabilistic
structure on the ensemble. We shall denote the flow process by

{ut,x ; t ∈ [0,∞), x ∈ D}.

Thus the flow is viewed as a two parameter family of real-valued random vectors

{u(t, x, ·) : Ω→ IRk}t∈[0,∞),x∈D.

(Here the flow has been assumed to be k-dimensional, e.g. k = 3 for the velocity field of a fluid in a chamber.)
The sample space Ω can be thought of as the aforementioned ensemble of completely deterministic realizations
of the flow. Nature’s choice of ω ∈ Ω yields one of the possible realizations,

u(·, ·, ω) : [0,∞)×D → IRk.

We note that there are difficulties involved in formulating a suitable mathematical description of the
sample space Ω, associated σ-algebra A, and probability measure P . The task can be accomplished with
some hard work, but, since resolution of these issues is not essential for our purposes, we set them aside for
now and proceed as follows. Concepts like expectation (ensemble average) which rely on choice of probability
space (Ω,A,P) shall simply retain their usual meaning, i.e. E[X] =

∫
ΩX(ω)P(dω), but cannot be computed

without making some further assumptions.

In addition, we define the variation from the mean flow as

vt,x = ut,x −E[ut,x].

Thus {vt,x} is a stochastic process with zero mean.

For the sake of simplicity, and without loss of generality, in this paper we consider only one-dimensional
(k = 1) flow fields, i.e. the flow field is a two parameter family of real-valued random variables

{u(t, x, ·) : Ω→ IR}t∈[0,∞),x∈D

where each ω ∈ Ω represents one particular deterministic flow field

u(·, ·, ω) : [0,∞)×D → IR.

For example we consider a fluid with velocity field component in the horizontal direction only, or heat
diffusion on a long, thin rod.

2.2 Second-Order Processes

In order to proceed we need to make some assumptions regarding the stochastic processes that we use to
model the flows. Some definitions and results from the theory of second-order processes are presented here,
suitably tailored for our purposes. In particular, we discuss second order processes, correlation functions,
stationarity, and continuity as presented in [16].

Definition 2.1 A second-order random variable X is one which satisfies E[|X|2] < ∞. A second-order
stochastic process {Xt} is a one-parameter family of second-order random variables.

Similarly, we can define a two-parameter second-order stochastic process {Xt,x} to be a two-parameter family
of second-order random variables.

We immediately apply this concept to our flow processes by making the following assumption:

Assumption 2.2 Let the flow {ut,x} and deviation from the mean flow {vt,x} be second-order processes.
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This assumption is necessary for the following reason. If {Xt} is a second-order process, then we can
define the mean, correlation function, and covariance function, respectively, as follows:

µ(t) = E[Xt]

R(t, s) = E[XtXs]

R(t, s) = E[(Xt − µ(t))(Xs − µ(s))]

Note that for a process with zero mean, R(t, s) = R(t, s) and the covariance and correlation functions can
be used interchangeably.

Similarly, for the two-parameter second-order process {vt,x} we have

µv(t, x) = E[vt,x]

Rv(t, x, s, y) = E[vt,xvs,y]

Rv(t, x, s, y) = E[(vt,x − µv(t, x))(vs,y − µv(s, y))]

These functions in some sense measure the variation of the flow between different points in space and
time. However, for our purposes we are more interested in measuring the spatial variation only (i.e. we fix
t). To this end, we define the spatial correlation function as

Rv(x, t, y, t) = E[vt,xvt,y].

Similar definitions can be made for the spatial covariance function, temporal correlation function, and
temporal covariance function. Since {vt,x} is a zero mean process we have

Rv(t, x, t, y) = Rv(t, x, t, y).

Before proceeding, one more assumption regarding the correlation functions of the flow processes is
necessary.

Assumption 2.3 Let the flows be time-stationary, i.e. for any (t1, . . . , tn) the joint distribution of
{vt1+t0,x, vt2+t0,x, . . . , vtn+t0,x} does not depend on t0.

One of the reasons we make this assumption is that later we shall want to make some assumptions
regarding the ergodicity of the flow process and time-stationarity is a necessary prerequisite. Another reason
is that we would like the covariance functions to be time independent. However, for this purpose, we only
require the assumption that the flows be wide-sense stationary, i.e. their covariance functions are a function
of only the time difference. This can be written as

E[vt+r,xvs+r,y] = E[vt,xvs,y] ∀r ∈ [0,∞).

Since this weaker assumption is implied by the stronger statement of time-stationarity, the assumption of
time-stationarity suffices. With this assumption we can write the spatial correlation function as

E[vt,xvt,y] = Rv(x, y)

a function independent of time. We call Rv(x, y) the two-point spatial correlation function of the process
{vt,x}.

A covariance function satisfies a number of important properties. Two of great importance for our
purposes are the following.

Proposition 2.4 Every covariance function is Hermitian symmetric, i.e. R(x, y) = R̄(y, x). For a real-
valued process it is symmetric, i.e. R(t, s) = R(s, t).
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Proposition 2.5 Every covariance function is nonnegative definite, i.e. for any finite collection x1, x2, . . . , xn
and complex constants α1, α2, . . . , αn we have

∑n
j=1

∑n
k=1 αjᾱkR(xj , xk) ≥ 0. For a real-valued process the

constants αi simply need be real with no conjugation required.

The concept of continuity for second-order processes will also be useful.

Definition 2.6 A second-order process {Xt} is continuous in quadratic mean (q.m. continuous) at t if
E[|Xt+h −Xt|2] → 0 as h→ 0. If a process is q.m. continuous at every t ∈ T then it is a q.m. continuous
process.

One important fact regarding q.m. continuous processes that we shall use is

Proposition 2.7 If {Xt} is a second-order q.m. continuous process on an interval T then its covariance
function R(·, ·) is continuous at every point on the square T × T .

Once again we apply the result by making an assumption regarding the flow processes.

Assumption 2.8 Let the flows {ut,x} and {vt,x} be q.m. continuous in their spatial argument,
i.e. E[|vt,x+h − vt,x|2]→ 0 as h→ 0.

Therefore, if the spatial domain D is bounded (the proposition requires finite intervals) then the two-
point spatial correlation function Rv(x, y) for the flow process {vt,x} is continuous in its arguments. Bound-
edness of the spatial domain is satisfied in many problems of interest, for example fluid flows in a chamber
or heat diffusion on a finite sheet or rod.

3 Model Reduction

We wish to find models of the flow fields which lend themselves to a reduction in complexity over the partial
differential equation models and which reveal the underlying structure of the flow dynamics. We attempt to
accomplish this by considering expansions of the form

v(t, x) =
∑
n

an(t)φn(x). (1)

The model can then be reduced in complexity (required computations reduced and/or necessary data com-
pressed) by truncating the series at a suitable value of the index or by using related approaches such as
Galerkin’s numerical method. We show that if such an expansion is possible then the spatial structures of
the flow field are revealed in a spectral decomposition of the two-point spatial correlation function of the
process. Also, we show that the desired expansion can be found by employing the Karhunen-Loeve theorem.
Finally, we discuss the optimality (in some sense) of using the stated approach.

The background material on Hilbert spaces mainly follows the presentations contained in [6, 8, 16]. The
material on the Karhunen-Loeve expansion can be found in [2, 10, 16]. The discussion of coherent structures
is based mainly on the treatment by Sirovich in [12]. Discussion of various aspects of this subject can also
be found in [1, 3, 4, 7, 11, 13, 14, 15].

3.1 Hilbert Spaces and Orthogonal Expansions

A Hilbert space H is a vector space over IR or IC together with an inner product < ·, · > which is complete
as a metric space. The norm is defined as ‖φ‖ =

√
< φ, φ > for φ ∈ H and the metric is defined as

d(φ, ψ) = ‖φ− ψ‖ for φ, ψ ∈ H. In this paper, we shall restrict ourselves to Hilbert spaces over IR.

The concepts of orthogonality and orthonormal sets will be crucial.
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Definition 3.1 A set of vectors Φ in a Hilbert space H is an orthonormal set if any two distinct vectors
φ1, φ2 ∈ Φ are orthogonal, i.e. < φ1, φ2 >= 0, and in addition, ‖φ‖ = 1 for each φ ∈ Φ.

Definition 3.2 An orthonormal set Φ in a Hilbert space H is complete in H if there exists no vector in H,
except the zero vector, which is orthogonal to every vector in Φ.

Since we will be considering expansions of the form (1), it makes sense to know under which conditions
the series will converge and of what nature are the coefficients.

Proposition 3.3 If Φ = {φ1, φ2, . . .} is an orthonormal set in H then ∀y ∈ H, the series

∞∑
n=1

< y, φn > φn

converges and if

y =
∑
n

αnφn

then αn =< y, φn >.

We also wish to determine conditions under which every vector in the Hilbert space is guaranteed to
have the stated expansion.

Definition 3.4 A countable orthonormal set Φ = {φ1, φ2, . . .} is an orthonormal basis for H if ∀y ∈ H,
y =
∑
n αnφn for some α1, α2, . . . ∈ IR.

By the previous result we know that αn =< y, φn >. Each < y, φn > is called a Fourier coefficient of
y ∈ H.

Proposition 3.5 The orthonormal set Φ = {φ1, φ2, . . .} is an orthonormal basis for the Hilbert space H if
and only if Φ is complete in H.

So, if we can find a complete orthonormal set in the Hilbert space, then every element of the Hilbert
space can be expanded in terms of the basis vectors and Fourier coefficients. It is logical to now ask under
what conditions a Hilbert space will contain such a complete orthonormal set.

Definition 3.6 A Hilbert space H is separable if H contains a countable set which is dense in H.

Proposition 3.7 A Hilbert space contains an orthonormal basis if and only if it is separable.

Proposition 3.8 Every orthonormal set in a separable Hilbert space is countable.

In summary, we find that those Hilbert spaces that are separable contain a countable, complete, or-
thonormal set of vectors, i.e. an orthonormal basis for the Hilbert space, in which every vector in the Hilbert
space can be expanded. Finally, we note the following result which states that if such an orthonormal basis
exists, it is not unique.

Proposition 3.9 Given a complete orthonormal set of vectors {φn}, the set {ψn} where

ψn =
∑
m

αnmφm

for coefficients satisfying ∑
k

αikαjk = δji

is also a complete orthonormal set of vectors.
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Now we present some important examples of Hilbert spaces which we will use in this paper.

1. ICn, (IRn), the space of n-tuples (x1, . . . , xn) of complex (real) numbers for which
∑n
i=1 |xi|

2 < ∞, is
an n-dimensional Hilbert space.

2. `2, the space of infinite sequences (x1, x2, . . .) of complex (or real) numbers for which
∑∞
i=1 |xi|

2 <∞,
is an infinite-dimensional Hilbert space.

3. L2(D), the space of complex-valued (real-valued) Lebesgue-measurable square-integrable functions on
a domain D, i.e. f ∈ L2(D) if

∫
D |f(x)|2 dx < ∞, is generally an infinite-dimensional Hilbert space.

(This is actually a Hilbert space of equivalence classes of functions but we can treat it as a space of
functions by identifying functions which are equal almost everywhere.) The inner product on L2 is
given by

< f, g >L2=

∫
D
f(x)ḡ(x) dx.

Before presenting the next example we need the following definition.

Definition 3.10 A random variable Y is said to be derived from a linear operation on a second order process
{Xt} if either Y =

∑N
ν=1 ανXtν or Y is the q.m. limit of a sequence of such finite linear combinations.

4. The collection of all such random variables derived from a given process {Xt} is denoted HX . The set
HX is generally an infinite-dimensional Hilbert space. The inner product on HX is given by

< Y,Z >HX= E[Y Z].

We are especially concerned with the following property of the above Hilbert spaces.

Fact 3.11 All of the above Hilbert spaces are separable, i.e. contain a countable orthonormal basis.

Moreover, we have the following result.

Proposition 3.12 Any two separable infinite-dimensional Hilbert spaces are isomorphic.

Actually, we can make the stronger statement that any two separable Hilbert spaces are linearly isometric.
Hence, the last three examples are indistinguishable as Hilbert spaces and we can regard each one as `2 if
we wish.

Let us now see how our flow process {vt,x} fits into the Hilbert space framework. Due to the assumption
of time-stationarity we can consider the time parameter t to be fixed and regard {vt,x} as a continuum of
random variables parameterized by the spatial variable x. When interpreting the flow in this manner we
shall write the flow as {vx(t)}.

The Hilbert space Hv is defined as the collection of random variables derived from linear operations on
the second-order process {vx(t)}, i.e. Y (t) ∈ Hv is a finite linear combination or q.m. limit of finite linear

combinations Y (t) =
∑N
ν=1 ανvxν (t). Clearly vx(t) ∈ Hv for each value of the parameter x. The inner

product on Hv is the two-point spatial correlation function

< Y (t), Z(t) >= E[Yt,xZt,y] = RY Z(x, y).

By a previous result, the Hilbert space Hv has an othonormal basis {Z1(t), Z2(t), . . .}. Therefore we
can write the expansion

vx(t) =
∑
n

σn(x)Zn(t)
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where σn(x) =< vx(t), Zn(t) > are the Fourier coefficients. Observe that the orthonormal basis consists of
time-dependent random variables while the Fourier coefficients are completely deterministic L2 functions of
space.

Another way to look at the problem is to recall the ω-dependence of the continuum of random variables
{vx(t)}, i.e. vx(t, ·) : Ω→ IR. Hence for each ω ∈ Ω and for each t ∈ [0,∞) we get a deterministic function of
x ∈ D, i.e. v(t, ·, ω) : D → IR. Due to the assumption of q.m. continuity we can conclude that the function
v(t, ·, ω) is square integrable in its spatial argument and therefore v(t, ·, ω) ∈ L2(D). (When interpreting the
flow in this manner we shall write the flow as v(t, ·).)

By a previous result, the Hilbert space L2(D) has an orthonormal basis {φ1, φ2, . . .}. Therefore we can
write the expansion

v(t, x) =
∑
n

an(t)φn(x)

where an(t) =< v(t, ·), φn(·) >L2 are the Fourier coefficients. Observe that the orthonormal basis consists
of completely deterministic L2-functions of space while the Fourier coefficients are time-dependent random
variables.

Note that since Hv and L2(D) are isomorphic it does not matter which approach is taken. Both
approaches result in an expansion of the flow into a sum of products of pure spatial and pure temporal
functions where the time-dependent functions represent a continuum of random variables over the parameter
t and the spatial functions are completely deterministic L2-functions.

3.2 Coherent Structures - Decomposing the Spatial Correlation Function

In order to write the desired expansion

v(t, x) =
∑
n

an(t)φn(x)

we first must select a set of basis functions for the Hilbert space that contains v. If we take the approach
that v ∈ L2 then we must select a basis, {φn}, for L2. Similarly, if we take the approach that v ∈ Hv then
we must select a basis, {an}, for Hv. By previous results we know that each of these Hilbert spaces contains
an orthonormal basis, and that in fact an infinite number of such orthonormal basis sets exist for both L2
and Hv. Fortunately, the following result leads us to a particular choice.

Proposition 3.13 If {φn} is a complete orthonormal set of functions in L2(D) such that If the flow process
is written as the expansion

v(t, x) =
∑
n

an(t)φn(x) (2)

where both of the sets {an} and {φn} are orthonormal, i.e.

< ak, al >Hv= E[ak(t)al(t)] = δlk, (uncorrelated modes) (3)

and

< φk, φl >L2=

∫
D
φk(x)φl(x) = δlk, (4)

then the {φn} are found in a spectral decomposition of the two-point spatial correlation function

R(x, y) =
∑
n

φn(x)φn(y). (5)

(In his treatment of this subject, Sirovich requires only that the set {an} be orthogonal, i.e.
E[ak(t)al(t)] = λkδ

l
k. In this case the spectral decomposition becomes R(x, y) =

∑
n λnφn(x)φn(y). The

only difference is whether or not the weights λn are subsumed into the basis functions φn.) We now have an
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attractive candidate for the orthonormal basis to use for our expansion. We choose the particular orthonormal
basis for which the Fourier coefficients of the expansion (2) are also orthonormal (if such a basis exists).
Thus, our goal now is to show that this particular orthonormal basis does exist, and to find a practical
method for its construction.

The functions {φn} in the spectral decomposition of the spatial correlation functions shall be called the
coherent structures of the flow.

3.3 The Karhunen-Loeve Expansion

The existence of the expansion (2) which satisfies the orthonormality conditions (3) and (4) is guaranteed
under certain conditions by the Karhunen-Loeve expansion theorem. Moreover, the Karhunen-Loeve ex-
pansion theorem provides us with a method for constructing the orthonormal set of functions {φn} and the
uncorrelated set of random variables {an}. The proof depends upon the existence of the aforementioned
spectral decomposition of the spatial correlation function (5) which is guaranteed under certain conditions
by Mercer’s theorem. Thus, we state Mercer’s theorem, the Karhunen-Loeve expansion theorem, and show
that the desired conditions hold.

Theorem 3.14 (Mercer) Let k(·, ·) be a continuous, Hermitian symmetric, nonnegative definite function
on [a, b]× [a, b]. If {φn}, {λn} is a basic system of eigenvectors and eigenvalues of the integral operator with
kernel k(·, ·) then ∀s, t ∈ [a, b],

k(s, t) =
∞∑
n=1

λnφn(t)φn(s).

The series converges absolutely and uniformly on [a, b]× [a, b].

Now we state the Karhunen-Loeve expansion theorem which allows us to express the continuum of
random variables by a countable number of orthonormal random variables as presented by Wong in [16].

Theorem 3.15 (Karhunen-Loeve Expansion) Let {Xt , t ∈ [a, b]} be a q.m. continuous second-order
process with covariance function R(t, s).

If {φn} are the orthonormal eigenfunctions of the integral operator with kernel R(·, ·), and {λn} the
corresponding eigenvalues , i.e.

∫ b
a

R(t, s)φn(s) ds = λnφn(t) t ∈ [a, b] (6)

then

X(t, ω) = lim
N→∞

N∑
n=1

√
λn an(ω)φn(t) uniformly for t ∈ [a, b] (7)

where the limit is taken in the q.m. sense and the {an} satisfy

an(ω) = (
√
λn)−1

∫ b
a

φn(t)X(ω, t) dt (8)

and
E[aman] = δnm. (9)

Conversely, if X(t, ω) has an expansion of the form (7) with

∫ b
a

φm(x)φn(x) dx = δnm

9



and
E[aman] = δnm

then {φn} and {λn} must be eigenfunctions and eigenvalues respectively of the integral operator with kernel
R(·, ·), i.e. satisfy (6).

Proof

Suppose that all functions in the set {φn} satisfy the integral equation (6) and that the set of random
variables {an} is defined by (8) so that the orthonormality condition (9) holds.

Let SN (t) =
∑N
n=1

√
λnanφn(t).

In order to show that the expansion (7) holds, we must show that

limN→∞‖Xt − SN(t)‖2HX = limN→∞E[|Xt − SN (t)|2] = 0.

Observe that
E[|Xt − SN (t)|2] = E[|Xt|

2] +E[|SN (t)|2]− 2E[XtSN (t)] (10)

and
E[|Xt|

2] = R(t, t) (11)

Computing the above terms we get,

E[|SN (t)|2] = E[
N∑
n=1

√
λnanφn(t)

N∑
m=1

√
λmamφm(t)]

= E[
N∑
n=1

N∑
m=1

√
λnanamφn(t)

√
λmφm(t)]

=
N∑
n=1

N∑
m=1

√
λn
√
λmφn(t)φm(t)E[anam]

=
N∑
n=1

N∑
m=1

√
λn
√
λmφn(t)φm(t)δmn

=
N∑
n=1

λn|φn(t)|2

E[XtSN (t)] = E[Xt

N∑
n=1

√
λnanφn(t)]

=
N∑
n=1

√
λnE[Xtanφn(t)]

=
N∑
n=1

√
λnφn(t)E[Xtan]

=
N∑
n=1

√
λnφn(t)E[Xt(

√
λn)−1

∫ b
a

φn(s)Xs ds]

=
N∑
n=1

φn(t)

∫ b
a

φn(s)E[XtXs] ds

=
N∑
n=1

φn(t)

∫ b
a

R(t, s)φn(s) ds

10



=
N∑
n=1

φn(t)(λnφn(t))

=
N∑
n=1

λn|φn(t)|2

Now, we know from previous results that R(·, ·) is Hermitian symmetric and nonnegative definite. We also
know that since {Xt} is q.m. continuous, R(·, ·) is continuous on [a, b] × [a, b]. Therefore, application of
Mercer’s theorem results in R(t, s) =

∑∞
n=1 λnφn(t)φn(s) and consequently

R(t, t) =
∞∑
n=1

λn|φn(t)|2 uniformly fort ∈ [a, b]. (12)

Substituting into (10) we get

E[|Xt − SN (t)|2] = R(t, t) +
N∑
n=1

λn|φn(t)|2 − 2
N∑
n=1

λn|φn(t)|2 (13)

= R(t, t)−
N∑
n=1

λn|φn(t)|2 (14)

So by (12) we have the desired result limN→∞E[|Xt − SN (t)|2] = 0.

Conversely, suppose Xt has the stated expansion. Then,

R(t, s) = E[XtXs] =
∞∑
n=0

λnφn(t)φn(s)

Hence, ∫ b
a

R(t, s)φn(s) ds =

∫ b
a

∞∑
m=0

λmφm(t)φm(s)φn(s) ds

=
∑
m

λmφm(t)

∫
φm(s)φn(s)ds

=
∑
m

λmφm(t)δnm

= λnφn(t)

In order to apply the result to our flow process {vt,x}, we invoke the previously stated assumption of
time-invariance and get the one-parameter process vx(t) with two-point spatial covariance R(x, y). The flow
is then expanded using the Karhunen-Loeve theorem,

v(t, x) =
∞∑
n=1

√
λnan(t)φn(x) (15)

where the limit is in the qm sense and

an(t) = (
√
λn)−1

∫
D
φn(x)v(t, x) dx (16)

and
E[am(t)an(t)] = δnm. (17)

The orthonormal basis functions {φn} are found via the integral equation∫
D
Rv(x, y)φn(y) dy = λnφn(x) x ∈ D. (18)

11



3.3.1 Expansion of Sampled Data Processes

In many practical applications, the flow process will be measured in discrete time, i.e. the available data
is sampled at discrete values of time. Therefore, we now present an analogous Karhunen-Loeve expansion
theorem for sampled data processes. The proof of this theorem relies on the spectral theorem for real
symmetric matrices which is the finite-dimensional analogue to Mercer’s theorem.

Theorem 3.16 Let {Xi(ω), i ∈ \} be a discrete parameter second-order process with covariance matrix R
given by (R)ij = E[XiXj].

If {φn} are the orthonormal eigenvectors of the matrix R, i.e. satisfy

Rφn = λnφn n = 1, 2, . . . (19)

and {λn} are the corresponding eigenvalues then

Xi(ω) = lim
N→∞

N∑
n=1

√
λn bn(ω)(φn)i (20)

where the limit is taken in the q.m. sense and the {bn} satisfy

bn(ω) = (
√
λn)−1

∞∑
i=1

(φn)iXi(ω) (21)

and
E[bmbn] = δnm (22)

Conversely, if Xi(ω) has an expansion of the form (20) with
∑∞
i=1(φm)i(φn)i = δnm = E[bmbn], then

{φn} and {λn} must be eigenfunctions and eigenvalues respectively of the matrix R, i.e. satisfy (19).

Proof

Let (SN )i =
∑N
n=1

√
λn(φn)ibn.

E[|(SN )i −Xi|
2] = E[|(Sn)i|

2] +E[|Xi|
2]− 2E[Xi(SN )i]

=
N∑
n=0

λn|(φn)i|
2 + (R)ii − 2

N∑
n=0

λn|(φn)i|
2

= (R)ii −
N∑
n=0

λn|(φn)i|
2

Now, by the spectral theorem for real symmetric matrices, we know that the symmetric positive definite
matrix R can be decomposed into the linear combination of dyads of eigenvectors, R =

∑N
n=1 λnφnφ

T
n .

Hence, (R)ii =
∑N
n=0 λn|(φn)i|2 and we are done.

To prove the converse, suppose Xi has the stated expansion. Then,

R =
N∑
n=1

λnφnφ
T
n

or

(R)ij =
N∑
n=1

λn(φn)i(φn)j

12



Hence,

Rφm =
N∑
n=1

λnφnφ
T
nφm

=
N∑
n=1

λnφnδ
n
m

= λmφm

3.4 Optimality of the Karhunen-Loeve Expansion

We wish to demonstrate that the Karhunen-Loeve theorem provides an expansion of the flow which is in
some sense optimal for modeling or reconstructing the original solution. Consider the eigenvalues {λn} that
correspond to the eigenfunctions {φn}. These eigenvalues may be interpreted as “the mean energy of the
flow {vt,x} projected on the φn-axis in function space.” To see this, we define this mean energy projection
as E[| < φn, v > |2]. Now,

E[ | < φn, v > |
2 ] = E[ |

∫
φn(x)v(t, x) dx|2 ]

= E[

∫
φn(x)v(t, x) dx

∫
φn(y)v(t, y) dy ]

= E[

∫ ∫
φn(x)v(t, x)φn(y)v(t, y) dy dx ]

=

∫ ∫
φn(x)E[v(t, x)v(t, y)]φn(y) dy dx

=

∫
φn(x)

∫
R(x, y)φn(y) dy dx

=

∫
φn(x)(λnφn(x)) dx

= λn

∫
|φn(x)|2 dx

= λn

We can also gain some insight by invoking the ergodic hypothesis.

Assumption 3.17 Let the flow processes be ergodic, i.e. time average equals ensemble average for each
fixed value of x.

We can state this mathematically as

E[vt,x] = lim
T→∞

1

T

∫ T
0

v(t, x) dt ∀ fixed x.

By adopting this assumption of ergodicity then we can also interpret the eigenvalues as the average relative
time spent by the flow along the φn-axis, i.e.

λn = lim
T→∞

1

T

∫ T
0

| < φn, v > |
2 dt.

13



Now, assume that the eigenvalues {λn} corresponding to {φn} have been ordered so that λi+1 > λi ∀i.
It can be shown [3] that if {ψn} is some arbitrary set of basis functions in which we expand v(t, x) then

N∑
n=1

E[| < φn, v > |
2] =

N∑
n=1

λn ≥
N∑
n=1

E[| < ψn, v > |
2]

for any value of N . Therefore, among all linear decompositions of the flow field, the Karhunen-Loeve
expansion is the most efficient in the sense that for a given number of modes N the projection on the
subspace used for modeling the flow will on average contain the most energy possible.

There are other approaches to the question of optimality. For example, we may wish to minimize the
norm of the difference between the actual solution and the truncated series. Taking this approach we find

‖v −
N∑
1

anφn‖
2 = ‖v‖2 + ‖

N∑
1

anφn‖
2 − 2 < v,

N∑
1

anφn > .

So the original minimization problem amounts to nothing more than maximizing the sum of projections∑N
1 < v, φn >. Thus, this “error minimization” notion of optimality turns out to be equivalent to the

previous “data compression” approach.

3.5 Practical Construction of the Coherent Structures

From a practical point of view, difficulties immediately appear in the determination of the eigenfunctions
(coherent structures). For computational purposes we must discretize the spatial domainD. Even a relatively
coarse discretization of D results in a very large empirically determined spatial correlation matrix R(x, y).
One approach to solving this problem is to sample the empirical flow data at equally spaced time intervals
and use a suitable number of these samples in an appropriate manner to perform the required computations.
Sirovich refers to this approach as the method of snapshots [12].

3.5.1 Method of Snapshots

Suppose that a simulation or physical experiment is performed which provides us with an empirically de-
termined flow field v(t, x). Let v(n) = v(nτ, x), τ fixed, represent ”snapshots” or samples of the empirically
determined flow field, i.e. a sampled data representation of the flow.

Recall that if the ergodic hypothesis is invoked we can write the spatial correlation function as

R(x, y) = lim
T→∞

1

T

∫ T
0

v(x, t)v(y, t) dt. (23)

As an approximation, we use the available sampled data to form the empirically determined spatial
correlation function

R̃(x, y) = lim
M→∞

1

M

M∑
n=1

v(n)(x)v(n)(y). (24)

Since for all practical purposes our empirical data set is limited to a finite number of snapshots, say M
samples, we use the approximation

R̃M (x, y) =
1

M

M∑
n=1

v(n)(x)v(n)(y). (25)

We shall call R̃M (x, y) the empirically determined spatial correlation function. From the K-L theorem we
know that the integral operator with kernel R(x, y) is of great importance in computing the basis functions

14



for an expansion of the flow process. Therefore we examine the integral operator of the approximation
R̃M (x, y) as follows.

∫
D
R̃M (x, y)φ(y) dy =

∫
D

1

M

M∑
n=1

v(n)(x)v(n)(y)φ(y) dy (26)

=
1

M

M∑
n=1

v(n)(x)

∫
D
v(n)(y)φ(y) dy (27)

=
M∑
n=1

αnv
(n)(x) (28)

Therefore, the span of the integral operator with kernel R̃M (·, ·) is at most a M -dimensional subspace

of L2(D). The eigenfunctions of the integral operator with kernel R̃M (·, ·) must satisfy

M∑
n=1

αnv
(n)(x) = λφ(x). (29)

Therefore, the empirical eigenfunctions can be written

φ(x) =
M∑
n=1

Anv
(n)(x) (30)

for some constants A1, . . . , AM . We have the remarkable result that the empirical eigenfunctions of the
integral operator with kernel R̃M(·, ·) are linear combinations of the samples (snapshots) v(1), . . . , v(M) of
the flow.

Recall that our goal is to find a practical method for computing these empirical eigenfunctions, i.e.
solving the eigenfunction equation ∫

D
R̃M (x, y)φ(y) dy = λφ(x). (31)

Substituting (25) for the empirically determined spatial correlation and (30) for the empirical eigen-
functions yields,

∫
D

1

M

M∑
n=1

v(n)(x)v(n)(y)
M∑
m=1

Amv
(m)(y) dy = λ

M∑
n=1

Anv
(n)(x)

1

M

M∑
n=1

v(n)(x)
M∑
m=1

Am

∫
D
v(n)(y)v(m)(y) dy = λ

M∑
n=1

Anv
(n)(x)

which we shall write as
(CA)TV = λATV

where the matrix C is defined by

Cij =
1

M

∫
D
v(i)(x)v(j)(x) dx,

and A = [A1, . . . , AM ]T , V = [v(1)(x), . . . , v(M)(x)]T .

Assumption 3.18 Let the set of snapshot data samples {v(1), . . . , v(M)} be a linearly independent set.
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With this assumption we guarantee that the Grammian∫
D
V (x)V T (x) dx

is positive definite and therefore (CA)TV (x) = λATV (x) iff CA = λA. This result means that solutions to
the equation (31) are equivalent to solutions of

CA = λA

and we only need to solve the M ×M matrix eigenvector problem. Invertibility of C guarantees M solutions
for A. Substituting the constants {An} which form the eigenvectors A into (30) gives us the desired empirical
eigenfunctions.

Note that the quality of the approximation depends upon the choice of the parameter M , the number
of data samples.

3.6 Galerkin’s Method

In this section, we look at some applications of the theory and model reduction techniques we have discussed.
We limit the discussion to consideration of flows governed by systems of PDEs and satisfying given BCs and
ICs. We also observe that in this context, the Karhunen-Loeve expansion is strongly related to separation
of variables solution methods for transient BVPs. We take the view of Sirovich [12] and MacCluer [8] to
recast the BVPs describing the flows into operator format, and see how the ideas presented in this paper are
applied to the method of separation of variables and the numerical method of Galerkin.

Suppose we have a system described by the PDEs (in symbolic form)

∂v

∂t
= D(v) (32)

with appropriate boundary conditions. We recast this BVP into operator format

v̇ = Av (33)

where A is the implied spatial differential operator belonging naturally to the problem, defined by the spatial
partial derivatives and the boundary conditions. Thus, v in (33) may actually be in a vectorial Hilbert space
which incorporates the original boundary conditions. Note that time partial differentiation has been replaced
by v̇, the time rate of change in the energy sense, i.e.

˙v(t0) = lim
t→t0

v(t) − v(t0)

t− t0
.

The solution v(t, x) to the BVP with IC v(0, x) = f(x) is thought of as a time-varying norm continuous
shape with initial shape f(x), i.e. a trajectory in the Hilbert space L2(D) whose tangent v̇ for each t > 0 is
Av.

MacCluer [8] presents results regarding conditions on the operator A and its resolvent operator
(λI −A)−1 for the existence and uniqueness of a separation of variables solution

v(t, x) =
∞∑
n=1

an(t)φn(x)

where the φn are the orthogonal eigenfunctions of the operator A. However, in keeping with the thrust
of this paper, we shall employ our stochastic model of the flow v and rely on the theory of empirical
eigenfunction expansions. I.e. we expand the flow in terms of the empirically determined eigenfunctions, not
the eigenfunctions of the operator A.
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Suppose we obtain empirical data via experiment or simulation and generate the empirically determined
spatial correlation and empirically determined eigenfunctions and Karhunen-Loeve expansion of the flow

v(t, x) =
∞∑
n=1

an(t)φn(x)

One obvious method for implementing this solution is truncation, where the series solution is merely lopped
off to an N term series,

v(t, x) =
N∑
n=1

an(t)φn(x)

One advantage of this approach is complete control over the error, which is orthogonal to the approximate so-
lution. However, so far we have not indicated a method for finding the an(t). This motivates the introduction
of the Galerkin method.

Define the residual (error) as

r(t, x) =
∂v

∂t
−D(v).

Clearly we wish the residual to be as close to zero as possible. We know that if we can force the residual to be
orthogonal to every vector φn in the orthonormal basis then the residual must be zero since the orthonormal
basis is complete in the Hilbert space. More realistically, we can force the residual to be orthogonal to a
suitable finite number of basis functions,

< r(t, x), φn(x) >= 0 n = 1, . . . , N.

We have already shown that these projections represent the energy of the residual in the directions of
the basis functions. Moreover, by the optimality property of the Karhunen-Loeve expansion, the energy in
the residual vanishes in those directions for which the energy in the flow is extremized.

Now let’s compute these projections.

∂v

∂t
=

∂

∂t

N∑
n=1

an(t)φn(x)

=
N∑
n=1

ȧn(t)φn(x).

Hence,

r(t, x) =
N∑
n=1

ȧn(t)φn(x) −D(
N∑
m=1

am(t)φm(x))

and

< r(t, x), φi(x) > =

∫
[
N∑
n=1

ȧn(t)φn(x)−D(
N∑
m=1

am(t)φm(x))]φi(x) dx

=
N∑
n=1

ȧn(t)

∫
φn(x)φi(x)−

∫
D(

N∑
m=1

am(t)φm(x))φi(x) dx

= ȧi(t)−

∫
D(

N∑
m=1

am(t)φm(x))φi(x) dx

so

ȧi(t) =

∫
D(

N∑
m=1

am(t)φm(x))φi(x) i = 1, . . . , N.
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Thus, insisting that the residual be orthogonal to the first N spatial basis functions yields a system of
N ordinary differential equations in t. The reduced model is a system of N ordinary differential equations

ȧ = F (a)

where a = (a1, . . . , aN ), F : IRN → IRN . We can choose N appropriately for our purposes. This approach is
known as Galerkin’s method.

Remark 3.19 The trial solution usually has an extra term so that it exactly satisfies the boundary conditions
of the problem,

v(t, x) = v0(t, x) +
N∑
n=1

an(t)φn(x)

Remark 3.20 The initial conditions for the resulting system of ODEs are determined by a second application
of the Galerkin approach. We force the residual I(x) = v(0, x) − v0(x) of the initial conditions to also be
orthogonal to the first N basis functions. We obtain a system of N linear equations

ai(0) =< φi, I(x) > .

4 Conclusions

In this paper we have presented techniques that will be useful in finding models of reduced complexity for
dynamical systems involving flows. In Part II of this paper [9] we exhibit the usefulness of these methods by
applying them to the modeling and simulation of distributed parameter systems such as heat diffusion and
other physical phenomena related to semiconductor manufacturing.
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