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SUMMARY

This article presents a switched MRAC controller for diseréme piecewise linear systems. In the spirit
of the work by Landau 1], the proof of asymptotic stability of the correspondingsgd-loop error is
carried out recasting its dynamics as a feedback system tzowlirey the appropriate passivity features
of the feedforward and the feedback paths. The challengeotiehe fact that both loops can be piecewise
linear. Numerical results show excellent performance efgftoposed controller even in the face of sudden
variations of the plant parameters. Copyright2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the appearance of the pioneering work by Landlpi/odel Reference Adaptive Controllers
(MRAC) have been used in a wide range of practical applioatiMRAC is a powerful approach,
yet simple to implement, which can guarantee robustnessatanpeter variations, noise and
unmodelled dynamics. Given the increasing interest in tredyais and control of switched and
hybrid systemsZ], it is natural to seek an extension of the MRAC approach tx&wise Affine
(PWA) plants. Examples of MRAC schemes for PWA systems cdotoad in [3, 4, 5].

When considering MRAC schemes for Piecewise Smooth (PW&gms, a major difficulty is
to find appropriate tools to prove the asymptotic stabiliftyttee closed-loop error system which
cannot be guaranteed using the classical approach bedaieeswitched nature of the plant and,
possibly, the control input and reference model. The reegt@nsion of passivity theory to PWS
systems presented if,[7] has made it possible to generalize to this class of systeotgpavailable
for their smooth counterparts (see for example the proo8jrapd [5] for continuous-time PWA
systems).

In this paper, we present a novel switched MRAC controllerdigcrete-time Piecewise Linear
(PWL) systems. The controller extends to this class of systthe family of so-called Minimal
Control Synthesis (MCS) algorithmS][also available for smooth systenig)] and continuous-time
PWA models p]. The adaptive control law is based on three adaptive astimsmooth feedforward
term, a smooth feedback term and a switching adaptive fe&dhetion. It can be used to make
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a PWL plant track asymptotically the states of a smooth or Réference model. As shown in
the paper, a proof of asymptotic stability can be obtaineldaitih cases under the assumption that
the reference model is quadratically stable (Q-stallé), that is, it admits a common quadratic
Lyapunov function when unforced. Indeed, when this is vedlifiit is possible to follow the steps
of Landaus’ passivity-based classical proof and recastlibeed-loop error system as a feedback
system. The notable difference is that in our case, bothetbaférward and feedback paths of such
system can be PWA. Then, by using the notion of passivity fecrdte-time Linear Time-Varying
(LTV) systems in 2], we show that the MRAC scheme proposed in this paper rertersrigin

of the error system globally asymptotically stable.

The MRAC controller presented in the paper is validated on t@presentative examples: one
where the reference model is Linear Time Invariant (LTI) ehthe plant is PWL and the other
where both are PWL. In both cases, the controller guarareeallent performance even in the
presence of sudden variations of the plant parameters.

We wish to emphasize that other approaches are indeed [gossiiynthesize adaptive controllers
for PWA systems. For example, in the case of matched nomnltre=ait might be possible to use
backstepping algorithmd4.g]. The control strategy presented in this paper is to addhesexisting
gap in the theory of MRAC control approaches which makeg g unviable when the plant is
not modelled by a smooth dynamical system. We believe eiigritie use of such controllers to
nonsmooth systems is indeed theoretically relevant bataflpractical use given the wide range of
systems in applications affected by discontinuous evemtsmacroscopic timescal&4, 15, 16).

The rest of the paper is outlined as follows. Sectibegontains the problem statement and
introduces notation and a set of basic definitions. The neanlt of the article is in Sectid®) where
a switched adaptive strategy for MRAC control of discréteetPWL plants is proposed. The proof
of asymptotic stability of the corresponding closed-loopedynamics is presented in Sectién
The assumption of Q-stability, which might be too strictg@neric PWL reference models because
it does not take into account this switching nature, is redebo Piecewise Quadratic stability (PWQ-
stability) in Sectionb. The numerical validation of the control algorithm is cadiout in Section
6, while conclusions are drawn in Secti@nFinally, for the sake of completeness, basic results on
passivity for discrete-time LTV systems are collected irpApdixA.

2. PROBLEM STATEMENT AND DEFINITIONS

Let the Euclidean spac®™ be partitioned intd/ domains{€;},. . M = {0,1,..., M — 1}, i.e.
UM Q= R andQ; N Q; = Oforalli, j € M, i # j.
We assume the plant to be described by a discrete time n-dioreal multi-modal PWL system
of the form:
x(k+1)=Ax(k)+Bu(k) if z(k)eQ; ieM 1)
wherez € IR" is the state vector, € IR is the scalar input, and the matricds B, are assumed to
be in the control canonical form given by

0 1 - 0 0
0 0o . 0

A; = _ _ , B=| .|, VieM, (2)
: : 1 :
a,fl) a§2) N G b

with b > 0. Apart from this hypothesis on the sign &@fall the entries on the last row of the plant
matricesA; and B may be completely unknown to the designer.
Let us also assume a multi-modal, PWL reference model foplgngt of the form:

T(k+1)=AZ(k)+ Br(k) if T(k)e; (3)

wherez € R", Z(0) = Zy, r € IR is the input to the reference model, a{u@?}A o with M 2
i€

{0, 1,. M- 1} being a partition ofiR" defined in an analogous way &8;},.,. As for the
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MRAC OF DISCRETE-TIME PIECEWISE LINEAR SYSTEMS 3

plant, the matrices of the reference model are chosen to the icompanion form given by:

o

L) )
Il
(an)
(an)
&)
Il
(an)
)

Vi € M. (4)
: : 1
6,5_1) 65-2) o A(_n)

a~
%

(S DI

We assume that the reference mo@lhas a unique solution given an initial condition

Itis also worth remarking that, whereas the partitions dhlibe plant and reference model phase
spaces are assumed to be known, no specific structure on sresauimed. In fact, generically one
may have that/ # M, so the plant and reference model can be characterizedfeyatif numbers
of phase space regions and associated vector fields.

The problem is to find an adaptive, state feedback controkl@swy so as to ensure that the state
variables of the plant;(k), track asymptotically the stateg(k), of the reference model.

The remainder of the Section is devoted to introduce notati@ basic definitions used hereafter.

Leto;(k), i € M, andg;(k), i € M, be defined as

o1 (k) e, Sy 1 Fk) e,
i (k)_{ 0 elsewhere 7 (k)_{ 0 elsewhere ®)

Note that, by the assumption of state measurements aaylghie value ofs; (k) is known at every
discrete-time instant, for every mode

3. CONTROL STRATEGY

The control problem posed in Secti@rcan be solved by means of the switched adaptive strategy
described in this Section.

Essentially, the control adaptation law presented in Témaadr below includes: (i) two smooth
adaptive gains, that remain switched on whatever the modakich the plant and reference model
are evolving in (note that they have the same structure oMBS gains proposed inL[] for
discrete-time linear systems); (ii) a set of switching did@pgains that take into account the PWS
nature of the plant and the reference model: thus, they atmlgcswitched on only when their
trajectories enter certain phase-space domains.

Before stating the main result, let us establish the follmpassumption on the reference model.

Assumption 1
The reference modeB) is Q-stable [ 1], i.e. there exists a symmetric, positive definite maftix- 0
such that the following Linear Matrix Inequality (LMI) is vified:

ATPA.—P <0, YieM. (6)
Theorem 1

Given systemX) and a reference model of the for®) Guch that Assumptioh holds, the adaptive
law:

u(k) = Lrp (k)x (k) + Lr (k)7 (k), ()
where
k
Lr(k) = a) ye(m+1)r(m)+ By (k+1)r(k), (8)
m=0
Lep (k) = Lo(k)+ Ly (k) + Lg (k) , ©)
Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2011)
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4 M. DI BERNARDO, U. MONTANARO, J. M. OLM, S. SANTINI

with
k
Lo(k) = o) ge(m+1)a" (m)+ By (k+1)a" (k), (10)
m=0
M-1 R M-1 R
Lu(k) = Y o) Lik), Lg(k) = &k L (h), (11)
i=1 i1
k N k
Li(k) = Y xi(m), L;y(k)= % (m), (12)
m=0 m=0
and
. B oye (m+1)2T (m), if x(m)e
xi(m) = { 0, elsewhere ’ (13)
- _ e m+ )2 (m), i F(m)e:
Xp(m) = { 0, elsewhere ’ (14)
with , 3, p > 0 and
Ye 2 B 'Pa., z.2%-2, B.=(0,...,0,1)" € R", (15)

guarantees the global asymptotic stability of the closegblerror dynamics.

Remark 1

Note that Assumptiond is not as restrictive as it might appear at first, since theresfce model

is typically selected by design. Indeed, in many practieales the aim of the control action is to
compensate the PWS nature of the plant. Hence, an LTI systarauially selected as reference
model and, for such a case, Assumptibsimply reduces to demand that the reference model
matrix A be Hurwitz. Moreover, for LTI reference models, the progbsentrol law improves that

of [10], because the former does not require slow variation of taetparameters with respect to
the adaptive gains.

4. PROOF OF THEOREM

In what follows, Theoreni is proved using passivity theory. For the sake of completgnsome
fundamental results about discrete-time LTV passive systare collected in Appendi.

The main idea is to show that the closed-loop system can lastras a feedback loop of two
passive switched systems without input. In so doing, theaeddoop error system is passive and
therefore stable. Furthermore, exploiting the passivigpprties of the feedforward and feedback
blocks, we prove the asymptotic convergence of the traokiray dynamics towards the origin from
any initial condition.

The proof is based on the following four steps:

1. Recast the error dynamics as a feedback system.

2. Prove strict passivity of the feedforward dynamics.

3. Prove passivity of the feedback block.

4. Prove asymptotic convergence of the closed-loop erstesy.

The next subsections are devoted to each one of the aboveatedisteps. Assumptiahis
supposed to be fulfilled throughout the proof.

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2011)
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Figure 1. Schematization of the closed loop error dynamics

4.1. Step 1: Recast the error dynamics as a feedback system.

Given the plant and the reference dynamitsdnd @), respectively, using the definition of the
control strategy in{) and the expression of the tracking error 1b), we obtain

M-—1 M 1
Te (k+1) :A\(k')me (k)+Be [¢(k)w( ) Z ¢U Z ¢v , (16)
where R R R R
A(k) = A(@(k)) == A when Z(k) € (0, (17)
and
oK) = [BZ (o - o) —bLo(l) - bLRaf)} W 2T em]T, @8)
o (k) 20y (k) [BIAA, —bL, (k)], AA, £Ag—A,, v=12...,M-1, (19)

b5 (k) 2 5 () [BZA/AL?, —bTs (k)} L OAAAA Ay, ©=1,2,..M-1. (20
It is worth emphasizing that the key point that yield§)(is that the matriced;, /T; are assumed

to be in control canonical form (recall) and @), respectively), which entails thaty — Ao, AA,
and AA; are matrices with null elements everywhere but in the last fFeurther mathematical
details can be found in Appendik

From (L6), the error dynamics can be easily represented as the feledipstem shown in Figurke
Here the feedforward block is described by:

_f we(k+1) = A(k)ae(k) + Bk + 1),
R R .

while the feedback block has input(k) and output-¢(k), with

M—1 M-1

€+ =¢k)wk)+ > ¢u () (k) + > o5 (k) (k). (22)

4.2. Step 2: Passivity of the feedforward dynamics.

We want to prove passivity of the feedforward bloEk given by @1)-(17). To this aim, let us
consider the following systems:

Fe(k+1) = A(k)Ze(k) + A(k)B&(k)
5, = Tl 23
! { ya(k) = BIPE.(k)+ 1BT PB.£(R), 23)
1
Yo 1= yea(k) = QBZPBef(k)- (24)
Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2011)
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6 M. DI BERNARDO, U. MONTANARO, J. M. OLM, S. SANTINI

Lemma 1
The parallel connection of systeriig and¥:; is input-output equivalent to systehy.

Proof
The change of variables
e(k) = Ze(k) + Beg(k) (25)
in Xo (21) yields R R
Te(k+1) = A(k)Zc(k)+ A(k)B:L(R),
ye(k) = BlIPic(k)+ Bl PBE(K).
Then, it is straightforward to show that; (k) + ye2 (k) = ye (k). O

Lemma 2
The parallel connection of systerdy and X, is input strictly passive, with common quadratic
storage function

V(2(k)) = %a?T(k)P:Zc(k). (26)

Proof

We can prove passivity af; using LemmaB.i in AppendixA. Notice that Assumptiof yields
AT (k)PA(k) — P = —Q(k),

with Q(k) positive definite, which means thatq) is fulfilled. Indeed, {7) allows to define

Q(k) = @Q; =P — ATPA; wheni(k) € O, (27)
with Q(k) being trivially symmetric. MoreoverBQ) and 81) are also verified with:
~ T
ST(k) = BIP - (AW)B.) PA(K) = BIQ(K),
1, 1, T T .
R(k) = $BIPB.+(3BIPB.) - (A(k;)Be) PA(k)B. = BTQ(k)B..

Then matrix) (k) in (82) can be obtained as:

Q) QT(K)B. Qk) QKB
M(k):<BeTQ(k) BZQ(k)Be):<BZQ(k) BeTQ(k)Be>’ 7k 2 0.

Finally, the positive semidefinite characterdf(k), Vk > 0, is shown as follows:

0 e Mo | T | = 1w+ Bl 0w e+ Beth)

= g ()Q(k)ze(k) 20, Ve (k),&(k). (28)

Hence, Lemma.i in AppendixA yields passivity ob; and, consequently, Lemn&ai entails:
yer (R)E(R) = V (3l + 1)) = V(Ee(k) + T (DQUE)z (K (29)

Now, for the parallel connection af; andX,, from (24) and @9) we have:
Ye(R)E(k) = yer(k)E(F) 4 yea(k)§ (k) = V(Ze(k + 1)) = V(Ze(k)) +
ST (B)QU)e (k) + € ()BT PBLE(R).
Then,

BelR)E(R) = V(Eell 1)) = V(E () + 52T (DR (k) + 5pun€ (), (30

wherep,,,, denotes the matrix element @f located in the(n,n) position. Notice thap,,, > 0
becauseP is positive definite and, ag)(k) is also positive definite for alk > 0, the result
follows. .
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MRAC OF DISCRETE-TIME PIECEWISE LINEAR SYSTEMS 7

4.3. Step 3: Passivity of the feedback dynamics.

Let us first introduce notation and basic definitions usetiéngroof.
For the switching instants of both the plant and the refexenodel we use the standard notation
adopted in 17]. More precisely, the activation sequence of the plantismgby:

2:{ 20, (g0, ko) s (q1, k1), (ap, kp) ... | @p € MpE N }7 (31)

in which k, = 0 is the initial discrete time ang, is the initial state. Then, wheine [k, ; kp4+1) it
is z(k) € g, by definition, that is, the,-th subsystem is active. The sequedtmay or may not
be infinite; in the finite case we may takg, ; = cc.

For anyi € M we denote

Z/i:{kil,kiz,...kis,... | qiS:i,SEW}, (32)
the sequence of switching times when ikt subsystem is activated, and thus
{ ki1+1*17ki2+1*17~-~ki5+1*1;-~- | Qi :i,SEN } (33)

is the sequence of the discrete time instants wheri-thesubsystem was last active. Analogously,
we define

i\):{ f();(é\();/];());(Z]\lv/k\jl)v"'((/]\pv/k;p)"' | E]\pej/\/jvpew } (34)
as the activation sequence of the reference modelyith 0. Moreover, for any € M,

ls

Sfi={ bk ke | & =hselN |, (35)

is defined as the sequence of switching times when-thesubsystem of the reference model is
activated, and analogously,

-~ ~

{k;l_H71,]17’2.\2_‘_171,...]17’2.\5_‘_171,... | %:',SEW} (36)

is the sequence of time instants when #tle subsystem was last active.

Finally, given a generic vectay = [ m N2 o Nm ]T e IR™ we denote ag' (1) the m-
dimensional vector defined as:

f‘(n)Z[O m M2 o Nm—t ]T- (37)

Passivity of the feedback block depicted in Figlingill be proved showing that Popov inequality
[1] is fulfilled. Namely, that for some finite constamnt

l
D ove b+ 1) [=E(k+1)] > V>0,

k=0
i.e. that
l M-1 M-1 R
S e (k+1) [p(R)wk)+ Y du(k)a(k)+ Y dg(k)z (k)| > > (38)
k=0 v=1 =1
The previous inequality can be recast as:
So+S5+5> -2 (39)
Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2011)
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8 M. DI BERNARDO, U. MONTANARO, J. M. OLM, S. SANTINI

where

&
I
MN

e (k+1) 6 (k) w (k) (40)
k=0
M-1 l

S = ) Su Se=) —velk+1)u (k) (k), (41)
v=1 k=0

R M-1 R 1 R

§ = 5 S5=) e (k+1) o5 (k) x (k) (42)

k=(

o

<)
Il
—

Now, since¢ (k) does not switch, by choosing the adaptive gdinsand L, as in @) and (L0),
from the proof of the discrete time MCS ia(), it follows that:

l
> —ve(k+1) 6 (k)w (k) > - (43)

k=0

with v, being some real finite constant. Notice also that, indeed(/asdoes not depend oA(k)
but on 4, (see (8)), the slow variation of the plant parameters with respedhe adaptive gains
assumed inJQ] to prove @3) is not required here, as claimed in Remark

It is then evident that, if we prove that, > —+2 in (4]) withv =1,2... M —1 andS; > -2
in(42) withv =1,2.. M -1, wherey, andy; are some scalar constants, tha#) (s verified and
consequently the proof of the theorem is completed.

Now we consider the terrfi in (41) and focus onto a generic addefigwhich can be written as:

n l
S =S80, 89 23y (k4 16 (k)2 (k) (44)
j=1

withj=1,2...n,v=1,...M —1and

o) (k) = 0, () [ 89 —bLY) ()], 39 £ o — o). (45)

v

Considering §) and the notation adopted to describe the switching instasid throughout the
paper, the terns’) has the following form:

0, kvg+1—1 . ) )
S e (k4 ) [0 b1 (0)] 2 (R), i 2 () ¢ 2,

s=1 k=ko,

. 0y Kus+1—1 . . )
Y = —ye (b + 1) [o8) = bLY (k)] 2@ (k)+ (46)

s=1 k=ky,
l . .

+ Y gkt [55,”be5,” (k)} 20 (k) if 2 (1) € Qu,

k=Fv(9,+1)

whered, is the generic number of times the trajectory [@ft.
Let us now focus on the most complex casg) < ,: from (12) and (3) we have

LY (k) = LY (k= 1) = pye (k + 1) 2 (k) =

= —y. (k+1) 2z (k) = % [bLgﬁ (k—1) —bLY (k;)] . (47)

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2011)
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MRAC OF DISCRETE-TIME PIECEWISE LINEAR SYSTEMS 9

The substitution of47) in (46) for = (1) € Q, yields:

, 1y Frerit , , , ,
SO = p—; P {Lm (k—1) — bLY) (k)} [@gﬁ —pLW) (k)}
P zl: [bLm (k—1) — bLY) (k)] [5,0‘) —bLW) (k)]. (48)
pb k= k"(e +1) ' ) ) '
Defining now
Y0 (k) =69 =LV (k), v=1,2,...M —1,/j=1,2,...n, (49)

the generic terns”) in (48) can be expressed as:

0, kuvs41—1
9 = [0 () = 9 (k= )] 49 () + (50)
s=1 k=ky,
l
e I CUCE UL (51)
F=kuo, +1)

Taking into account the definition irL®), it is evident that when the state of the plant does not
belong toQ;, with i € M \ {0}, the gainL; is not varied. Similarly, when the reference state does
not belong toﬂA with i e M \ {0}, the galnlp is kept constant. Hence, in accordance with the
notation used to describe the switching instants, we have:

L; (k’ZS — 1) = I (ki‘g_l—f—l — 1) , s€IN \ {1}, (52)
Lilk, =1) = Li(k 1), seN\(1) (53)

Therefore, notice that, fronbg), we have:
YD (ky, — 1) = PP (ky, 41— 1), s=2,3,...0,+ 1. (54)

Collecting all the samples in the vectot’ , defined as

L [ D (k) 0D (hoy +1) - 9 (k1 — 1)
7 (ken) D oy 1) 9 (ki — 1)
. . . (55)
O (ko) 0 (b, 1) (kg0 = 1) T
SJ]) (kv(9u+1)) w"(’j) (k’“<0v+1> + 1) T w'l(’j) (l - 1) 7/}1(1]) (Z)] ’
and taking into account definitioB7), we have:
(@Y » , ,
P) = 0 @ ) 0 Gt 1) o (ko —2)
7/)'L()j) (k'ul—i-l - 1) 7/)1()j) (k’U2) T 7/)’1()j) (kv2+1 - 2)
. . (56)
O g =1 6 () o 0 (kg1 - 2) .
D (kg1 =1 0 (ko) - w02 e -]
v vg, +1 v V(gy+1) v v .
Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2011)
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10 M. DI BERNARDO, U. MONTANARO, J. M. OLM, S. SANTINI

From (64), expressiong6) can be written as:

PE9) = 0 o () 6@ (b +1) o 68 (s —2)
9 (k1) D ko) 0 (b1 — 2)
W (o = 1) 0 (k) e 08 (o1 —2) O
wi(’j) (k”<ev+1> - 1) 1(}]') (kv<9v+1>) o wi()j) (1-2) Tﬁgj) (1— 1)]T
Now, from (65) and £7), the generic addend &f, can be rewritten as:
S$>;%[HWWHQfT(wyﬁﬂé”¢§>@mn¢§>wmﬂ. (58)
Considering thaiT" (n) || < [|n]I:
() < [ (o0 ) < 17 (o) o < o -
N _ﬁ(mw)qwz_W4>? (59)
hence, replacing@) into (58), we have:
S92 == 09 (s = DV (k). (60)

In so doing we have shown that each tefid satisfies the Popov inequality wheiil) € Q,.
Notice that the same procedure can be used to showabis(still verified whenz (1) ¢ €, simply

by choosing?!?’ as

V= [ k) 0 e ) ) (e - )
i (kv,) W (ko + 1) 0 (kupr = 1)
: , : (61)
v (k“wv-l)) v (k“wu—m + 1) S (k”wv*l)“ B 1)
. . . . T
S)]) (k’vev) ’L/JE,]) (k‘vev + 1) w'g]) (kvgu-kl - 2) w'g]) (kvgu-kl - 1)} .

Since S5 verifies the Popov inequality for all time instants, it falle thatS, and.S in (41)
satisfy the Popov inequality as well for some proper scalastants.

Finally the same procedure can be used to prove thatalsoifies the Popov inequality. Indeed,
this can be proved by replacing in the previous derivafidhl with f(ﬁj), Q, with O, the indexv
with the indexs ands’) with o5 £ G — G0,

4.4. Asymptotic convergence of the closed loop error system

We know from Subsectiof.3that there exists € IR such that:

k
Y ou(I+1E(I+1) <, Vk>0.
=0
Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2011)
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MRAC OF DISCRETE-TIME PIECEWISE LINEAR SYSTEMS 11

Hence, summing.(0)£(0) to both sides, summing up fo— 1 and using21) and @5), one gets:

>y (DEW) <97+ 4e(0)€(0) =72 + 27 (0) P (0) — 2 (0)" P (0) =
=0

T
=+ (00— 32.0) P (00 - J2.0) - JEOP5 0. (62)
Let us now consider3(0). Summing up fron® to & results in:
1. 1
D veWEW) = SE (k+ )Pk +1) — 55 (0)PE(0) +
=0
1< R
T 2
+3 ; L (DQR)ze(l) + FPan ;g (0. (63)
Moreover, recallingZ7), we define
Ag:=_ min_  {)dy,..., N, det (QAf )\]I) =0}, (64)
1=0,...,M—1

which is positive due to the fact that all the matricgsare positive definite by AssumptidnThen,
taking again into account th&t is positive definite, it follows from&3) that:

Zye(ng(mzi T(0)Pz.(0) + AQZI ) + pm252 (65)

Now, putting togetherg2) and ©5), rearranging terms and taking limits fbr— +oo we obtain:

4 (000 - %mm)T P (xe<o> - %@(0)) + T O)PE(0) 2

S 1
= kBI—{loo [ )\Q Z T + pnn Z € (66)
Furthermore, letting(P) stand for the spectral radius 6f one gets fromg6) that
) S| S
77 | |[2e(0) = 52 (0))) + 7 1Ze(O)] ) p(P) 2
1. < R
> kETOO l?\@ Z llze()]” + 5 Pnn 252(1) (67)
=0 =0

As both\g andp,,, are positive, it follows immediately that:

lim |[ze (k)] =0,  Vae(0),Z(0),

k——+o00

which proves the convergence of all error trajectories tda#he origin from any initial condition.
Additional results derived, respectively, frog) and @1), also for any initial conditions, are:

lim 0, lim k) =0.
k~>+oo§( ) k—4o00 ye( )
Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2011)
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5. FURTHER EXTENSIONS

Assumptionl, aimed at ensuring the passivity of subsystemin the sense of equatio29), is
equivalent to requiring Q-stability of the reference modéénce, according to Remafk when
the reference model is LTI this is equivalent to its dynarhicatrix being Hurwitz. Nevertheless,
for generic PWL reference models, Assumptibibecomes a stronger requirement, namely, the
existence of a common quadratic Lyapunov function for thioreed reference model system,
which may yield the unfeasibility of the LMI problen,

Such a constraint can be relaxed taking advantage of thetsngtnature of the reference model.

Hence, for a generic partitio{mA} — of IR", we can seek for a PWQ Lyapunov function, while

a further relaxation can be achleved when the partition ighgalral. The latter is inspired on the
approach introduced irv], where sufficient LMI conditions for PWQ passivity of PWAstgms
are derived taking into account only allowed transitionsieen switching regions in one time-step
(see also18]). Thus, it is possible to state the following results.

Theorem 2
Assume that the reference modé)I (s PWQ-stablel1]], i.e. there exists a set of symmetric, positive

definite matrices? > 0, for alli € M, such that the following LMI is verified:
A'P.A: -~ P <0, ¥ (?,3) e Mx M. (68)
Then, given systeml] and a reference model of the for®) (the adaptive law7)-(14) with
ye 2 BT Px,, z. 2%z, when (k)€

renders the origin of the closed-loop error dynamics glglzdymptotically stable.

Proof
The proof follows that of Theorer, the main differences being:

e The common quadratic storage functi@®)in Lemma2 becomes a PWQ functioff] of the
form

V(Ze(k)) = la”cT(k)P(k)fce(k), with P(k) = P when z(k) € ﬁ;.
e Matrix Q(k) defined in 7) becomes
Q(k) = Q= P;— ATP-A; when &(k) € Oy, 2(k+1) € O,
and)\q defined in 64) changes to:

Ag = fnin :{)\j;‘f]?,l,...,)\‘]n, det(%—)\H)ZO},

e The matrix element,,,, in (30) becomes
Pan(k) =p;. . when Z(k) € O,

wherep;  denotes the matrix element £f located in then, n) position. Correspondingly,
pnn @ppearing in§6) is to be re-defined as:

Pnn = Min {p« ) ?e M\} R
and it is positive due to the positive definiteness of the ivegi.

e Matrix P in (66) is replaced byP(0).

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2011)
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e The spectral radiug(P) in (67) is to be replaced by

pi=max {p(F;)} .
ieM

O

The fulfillment of the LMI ©8) implicitly assumes that a state transition in one time sgep
possible between all regions of the partition, but this it ugually true. Then, if one is able to

compute the subsef of ordered pairs(?, 3) with 3,7 =0,1,...,M — 1, such that a transition

from the regiorﬁ; at any timek to Q- at timek + 1 is allowed to occur along system trajectories,
(68) is to be required only fof". This is precisely the case with polyhedral partitions,atrallows
the computation of” via reachability analysis7]. Hence, the following result is straightforward:

Corollary 1
Assume that{ﬁ;}A __is defined as:
ieM

ﬁ?:{feﬂ%": FAx>f} Pi=0 1,...,]/\2—1,

F:, f; being constant matrices and vectors, respectively, whike inequality is to be met
componentwise. Then, let

T = {(?,}) e MxM; 3z R", r € IR suchthat? € O, A%+ Bre ﬁ;}

Assume now that the reference mod@) (s T-PWQ stable, i.e. there exists a set of symmetric
positive definite matrice#: > 0, for alli € M, such that the following LMI is verified:

A\%P/J\A\/J\ - P? <0, V (ll\, 3\) eT. (69)
Then, the adaptive lawr}-(14) with
ye 2 B'Px,, z. 2%z, when Z(k)e Q.

guarantees global asymptotic stability of the closed-lewpr dynamics ofX)-(3). O

6. NUMERICAL VALIDATION

The effectiveness of the proposed discrete-time MCS algaris shown in this Section through
representative numerical examples. In particular, theagmh will be tested here both in the case
of a linear and a piecewise linear reference model.

The plant is a PWL system in canonical form:

[0 1 0
| —0.05 0.6 }x(’“)‘L { 1

}u(k) it (k) € Q,
0 1 }x(k)%ﬂu(k) it a(k) € 0,

~0.12 08
a(k+1)=q (70)
_ —09175 0.195 ]“’“(k) + [ (1) ]“(’“) it z(k) €,

i —00.32 1%2 }x(k) + { (1) }“(M it z(k) € s,

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2011)
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Figure 2. LTI ref. model. (a), (b): Time history of the trangierrors.

1000

where
Qoé{m:HOTx<0}ﬁ{x:H1Tx20},
Qlé{m:HoTxEO}ﬁ{x:HlTxEO},
Qgé{m:HoTxEO}ﬁ{x:HlTx<0},
Qgé{:c:HOTa:<0}ﬁ{:r:H1Ta:<0},
WithHOT:[fl 1, Hf =1 1]andz(0)=1[2 1]7.

Note that, as is typical with MRAC approaches, particulaecaust be taken when implementing
the controller with the so-called one-delay probleth [The problem arises when computing the
control gains at the current time instan&ccording to equations§)-(9), which depend on the value
of y. atk + 1. To solve this problem, Landau himself proposed as a peldatution to use instead
a running estimate af. (k + 1) [1]. Here we follow precisely the same approach by setting:

- ye(k)

Vel ) g peb(a + BT (k)

Despite its simplicity, this choice yields a successful liempentation of the control strategy.
Concerning the estimation of the unknown param&tand again in accordance with Landdi p
can be replaced by a value that falls within its range of @ which is assumed to be known.

Finally we remark that, as always happens when dealing WaghMCS approach, the parameters
of the controller are chosen heuristically as a trade offveeth convergence time and reactivity
of the control actions. Our choice herepis= 100, o = 100 and3 = 10, which yields the standard
empiric ratioa/3 = 10 suggested ind].

(71)

6.1. Case 1: LTI reference model

As a first attempt for the validation of the adaptive switcleedtrol law, an LTI reference model
is adopted. Hence, the target is to make the PWS plant belsawvasmooth reference model of the
form:

pk+1) = [ 78.1 0%7 ] (k) + [ 1(.)2 }T(k)’

the input signal- being sinusoidal, namely = 2sin (2k), while the initial conditions are set to
Z(0) = [0 0]T. Assumptionl is fulfilled, since the dynamic matrix of the reference motel
Hurwitz.

(72)

Copyright© 2011 John Wiley & Sons, Ltd.
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Figure 3. LTI ref. model. Adaptive gains related to plant meda)Lo: Lél) (blue soIid),LéQ) (red dashed);
(0) Lg; () Ly: L$Y (blue solid),L{* (red dashed); (d)o: LS (blue solid),L (red dashed); (e)s: L{"
(blue solid),L{* (red dashed).

Figure2 shows the tracking error evolution for both the state vdeisland their convergence to
zero. Notice that, in order to numerically test the robussnaf the control approach, the presence
of a perturbation in the plant parameters has been alsocéipiconsidered in the simulation

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2011)
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Figure 4. PWL ref. model. (a), (b) Time history of the traakierrors.

scenario. Specifically, the behavior in case of a sudden andltaneous change of 20in all
plant parameters values, with respect to their nominal ,amasurring at00 [s], is investigated. In
Figure2 it is evident that the control algorithm is able to rejecsthnexpected parameter variations
and, through adaptation, to achieve again excellent tnggkérformance.

All the adaptive gains converge asymptotically to a finiteigaonce the tracking error reduces to
zero (see Figurg) and, in the presence of a disturbance, converge to steathwalues after it has
been rejected (see Figuse Notice also that the switching part of the controlley,, depends only
on those switching terms associated with commutationseptant, since the reference model is
smooth.

6.2. Case 2: PWL reference model

The piecewise adaptive feedback law has been designedltwidegeneric multimodal reference
models characterized by a number of modes that can be diffén@n the ones of the plant. To
show the effectiveness of the control approach in this caseselect the following bimodal system
as reference model:

00w [ 5] 0 swea,

Bk +1) = (73)
0 Ldsm+!| O e if 20 e
~0.008 024 |* 12 |" v 1
where
ﬁ() é 7 i‘.\rOTi'\ >0¢,
O 2z Hfz<0},

with HT = [0.5 1], (k) = 2sin (0.5k) andZ(0) = 2 — 1]7. The fulfillment of Assumptiorl
can be verified solving off-line the LMI problend) by means of MATLAB’s LMI toolbox, which

yields
s 2.8860 —0.2580
P=10 <—0.2580 7.5618 )

The new adaptive controller guarantees, through adaptatixcellent tracking performance of
the state variables of the reference model as confirmed ar&iythat shows the error tracking
evolution for both the state variables.

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2011)
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Figure 5. PWL ref. model. Adaptive gains related to plant emda)L: L(()l) (blue solid),L(()Q) (red dashed);

(0) Lg; (¢) L1z L8V (blue solid),L{?) (red dashed); (d}2: L (blue solid),L$? (red dashed); (e)s: L."
(blue solid),L.{? (red dashed); (f£1: Z{") (blue solid),L{* (red dashed).

As in the previous case of study, the effect of a sudden andl&ineous change of 20in the
parameters values is also investigated in the numericdysiaaAs shown in Figuré the control
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algorithm is robust with respect to these abrupt parametgations occurring a8500 [s]. The
presence of a negligible residual relative error is due ¢auke of the simple approach proposed by
Landau in [L] to solve the one-delay problem, as discussed above.

All adaptive gains, both switching and continuous, remainriled (see Figur®. Note that the
gains converge again to a finite steady state value, withiterdance being effectively rejected.

7. CONCLUSIONS

We have addressed an existing gap in the theory of MRAC appesaby proposing a switched
MRAC scheme to control discrete-time PWL plants. The ide¢a cnsider a control law composed
of three different adaptive action. Namely, a smooth adgepfeedforward term and a smooth
adaptive feedback term are complemented by a switched ise€lagitions. Using the theory of
passivity, we have shown that, under appropriate conditisimch a controller can guarantee global
asymptotic stability of the error system. The proposedradler was tested on two representative
examples showing excellent performance not only when tfegeece model is LTI but also when
it is itself a PWL system.

We envisage that our controller could be practically usealirof those applications where,
for example, there is the need to make a PWL plant behave a®atisraystem. In that case, it
suffices to choose an LTI reference model and implement thé®Bontroller proposed in this
paper to guarantee good performance and robustness to @uyzarameter variations, noise and
unmodelled dynamics.
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A. BASICS OF DISCRETE-TIME PASSIVITY

The material in this section has been mainly extracted frb%h4nd [12]. Consider a generic state-space
system>: of the form:
. { x(k+1)

F((k), u(k))
y(k) (74)

Definition 1
Y is passive if there exists a nhonnegative function R" — IR, with V(0) = 0, such that the following
dissipation inequality holds along any of its possibledctpries:

Viz(k+1)) — V(zk) <y’ (k)u(k), Yu(k), Vk > 0. (75)

V is known as a storage function far.
Notice that {5) holds if and only if
k
V(e(k+1)) = V(z(0) <Y y" ()u(i), Vu(k), Ya(0) andvk > 0. (76)
1=0
Let us now define subclasses of passive systems where thelitggnay be strict:

Definition 2
Let 3 be a passive system with storage functionAssume that there exist, 6o > 0 such thatyu(k) and
vk >0,

V(z(k+1)) = V(zk) <y (Rulk) — 612" (k)z(k) — Sau” (k)u(k).

e If 61 > 0, thenX is state strictly passive.
e If 52 > 0, thenX is input strictly passive.

WhenX is an input-output system, the definition of passivity i©refulated from 76) as follows:

Definition 3
Y is passive if there exists € IR such that

Input strict passivity can be equivalently stated.
Consider now the discrete linear time-varying system

e(k+1) = Ak)a(k) + Bu(k) 77)
y(k) = C(k)a(k) + D(k)u(k). (78)

Lemma 3
[12] System [ 7)-(78) is passive if one of the following equivalent conditiondcho

i) There exist time-varying matricé3(k), Q(k), R(k), S(k), with P(k) positive definite and)(k), R(k)
positive semidefinite, such that:

AT (K)P(k + 1) A(k) — P(k) = —Q(k), (79)
C(k) — BT (k)P(k + 1)A(k) = ST (k), (80)
D(k) + DT (k) — BT (k)P(k + 1)B(k) = R(k), (81)
M(k) = < SQT((k ,3) ;ig > >0, (82)

with P(0) bounded.
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i) The following equality is satisfiedyk > 0:

o (kyu(k) — %mT(k S DP(k+ D)ok +1) — %xT(k)P(k)x(k) +
+% [ 2T (k) uT(k) | M(k) [ igg } : (83)

It is immediate from Lemma that (77)-(78) is passive if it admits a quadratic storage function of the
form

B. MATHEMATICAL DERIVATION OF THE ERROR DYNAMICS

In order to obtain the error dynamics equatid®)( let us first rewrite the plant model and the reference
model introduced in eqsl) and @) as:

z(k+1) = A(k)z(k)+ Bu(k), (84)
T(k+1) = A(k)Z(k)+Br(k), (85)
where
Ak)=A(z(k)=A4; if =z(k) e, (86)
A(k) = AE(k) = A if Z(k)e (87)
The tracking error dynamics are given by:
ze(k+1) = Zk+1)—zk+1)=
= A(Kk)ze (k) + Br(k) + (/T(k) —A (k)) « (k) — Bu (k). (88)
From 86), matrix A(k) can be written as
M—1
A(k) = Ag — Z ov (k) AAy | AAy=Ag— Ay, v=1,...,M—1, (89)
v=1

where functions,, are defined ing). Notice that ifz(k) € Q;, theno;(k) = 1 ando, (k) = 0 whenv # i;
hence,
A(k) =Ap — AA; = Ag — (Ao — A;) = Ay,

as defined in&6). Analogouslyﬁ(k) can be rewritten as:

M-1
Z(k):go—f—zag(k)AA\ﬁ ,AZ@\:E@—Z@, v=1...,M—1, (90)

v=1

with &3 also defined inX) in an analogous way as,.
Replacing 89), (90) in (88) and rearranging terms we have:

M-—1
ve(k+1) = A(k) e (k)+ (ﬁo - Ao) (k) + (Z v (k) AAy) (k) +

M-1
+ ( > G5 (k) AA}) z (k) + Br (k) — Bu (k) . (91)

=1

Now, sinceA; and% are assumed to be in control canonical form (reclland @), respectively), the
first (n — 1) rows of these matrices are identical. Hence:

0 0o - 0 0
0o 0 - ; 0 _ _ _
Ag—Ag = : . . . ) 6(()j) :a(()J) 7a(()j)7 Jj=1...,n (92)
0 o - 0 0
681) (552) L 6571—1) 6571)
Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2011)

Prepared usingncauth.cls DOI: 10.1002/rnc



MRAC OF DISCRETE-TIME PIECEWISE LINEAR SYSTEMS 21

On the other hand, recalling th&t = (0,...,0, 1), itis immediate that:
Ay — A= B.BT (Zxo - A) . (93)

Moreover, as the matrices A, andA A; introduced in 89) and ©0), respectively, exhibit the structurg2)
because of the canonical form assumption, we also have that:

AA, = BeBIAA,, v=1,...,M—1, (94)

AA; = BeBIAA;, ©=1,...,M—1. (95)
Substituting ©3)-(95) in (91) and noticing tha? = bB. and B = bB. we get:

ze(k+1) = A(k)ze(k)+ BeBE (,ZO - AO) 2 (k) + bBer (k) — bBeu (k) +

M-1 M-1
+ (Z ov (k) BeBeTAA1,> z(k)+ | > G5 (k) BeBI AAy |z (k).
=1

v=1
The control strategy defined im)¢(15) yields:
Lpp (k)x (k) + Lg (k)7 (k) =
[Lo (0) + Ly (0) + Lg (0)] @ (k) + Lr ()7 (k) =

M-—1 —1
Lo(k)+ Y ov(k) Lo (k) + > G5 (k) Ly (k) | @ (k) + L (k) (k)
1

I
)

<)
Il

v=1
Replacingu(k) in the former expression far. (k) and rearranging terms we have that:
ze(b+1) = A(R)we(b)+ Be [BI (Ao - Ao) = bLo (h)] = (k) +

+B. [E- bLg (k)} r (k) +

M—1
+Be | Y 0w (k) (BZ AAy — bLy (k))m(k) n
v=1
M-1
1B | Y 55 (k) (BCTA/T@fbf;,(k))x(k) . (96)
=1

Finally, the closed-loop tracking dynamic$6j follows easily after introducing in96) the functions
defined in (8)-(20).
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