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SUMMARY

This article presents a switched MRAC controller for discrete-time piecewise linear systems. In the spirit
of the work by Landau [1], the proof of asymptotic stability of the corresponding closed-loop error is
carried out recasting its dynamics as a feedback system and showing the appropriate passivity features
of the feedforward and the feedback paths. The challenge lies on the fact that both loops can be piecewise
linear. Numerical results show excellent performance of the proposed controller even in the face of sudden
variations of the plant parameters. Copyrightc© 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the appearance of the pioneering work by Landau [1], Model Reference Adaptive Controllers
(MRAC) have been used in a wide range of practical applications. MRAC is a powerful approach,
yet simple to implement, which can guarantee robustness to parameter variations, noise and
unmodelled dynamics. Given the increasing interest in the analysis and control of switched and
hybrid systems [2], it is natural to seek an extension of the MRAC approach to Piecewise Affine
(PWA) plants. Examples of MRAC schemes for PWA systems can befound in [3, 4, 5].

When considering MRAC schemes for Piecewise Smooth (PWS) systems, a major difficulty is
to find appropriate tools to prove the asymptotic stability of the closed-loop error system which
cannot be guaranteed using the classical approach because of the switched nature of the plant and,
possibly, the control input and reference model. The recentextension of passivity theory to PWS
systems presented in [6, 7] has made it possible to generalize to this class of systems proofs available
for their smooth counterparts (see for example the proof in [8] and [5] for continuous-time PWA
systems).

In this paper, we present a novel switched MRAC controller for discrete-time Piecewise Linear
(PWL) systems. The controller extends to this class of systems the family of so-called Minimal
Control Synthesis (MCS) algorithms [9] also available for smooth systems [10] and continuous-time
PWA models [5]. The adaptive control law is based on three adaptive actions: a smooth feedforward
term, a smooth feedback term and a switching adaptive feedback action. It can be used to make
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a PWL plant track asymptotically the states of a smooth or PWLreference model. As shown in
the paper, a proof of asymptotic stability can be obtained inboth cases under the assumption that
the reference model is quadratically stable (Q-stable) [11], that is, it admits a common quadratic
Lyapunov function when unforced. Indeed, when this is verified, it is possible to follow the steps
of Landaus’ passivity-based classical proof and recast theclosed-loop error system as a feedback
system. The notable difference is that in our case, both the feedforward and feedback paths of such
system can be PWA. Then, by using the notion of passivity for discrete-time Linear Time-Varying
(LTV) systems in [12], we show that the MRAC scheme proposed in this paper rendersthe origin
of the error system globally asymptotically stable.

The MRAC controller presented in the paper is validated on two representative examples: one
where the reference model is Linear Time Invariant (LTI) while the plant is PWL and the other
where both are PWL. In both cases, the controller guaranteesexcellent performance even in the
presence of sudden variations of the plant parameters.

We wish to emphasize that other approaches are indeed possible to synthesize adaptive controllers
for PWA systems. For example, in the case of matched nonlinearities it might be possible to use
backstepping algorithms [13]. The control strategy presented in this paper is to addressthe existing
gap in the theory of MRAC control approaches which makes their use unviable when the plant is
not modelled by a smooth dynamical system. We believe extending the use of such controllers to
nonsmooth systems is indeed theoretically relevant but also of practical use given the wide range of
systems in applications affected by discontinuous events on a macroscopic timescale [14, 15, 16].

The rest of the paper is outlined as follows. Section2 contains the problem statement and
introduces notation and a set of basic definitions. The main result of the article is in Section3, where
a switched adaptive strategy for MRAC control of discrete-time PWL plants is proposed. The proof
of asymptotic stability of the corresponding closed-loop error dynamics is presented in Section4.
The assumption of Q-stability, which might be too strict forgeneric PWL reference models because
it does not take into account this switching nature, is relaxed to Piecewise Quadratic stability (PWQ-
stability) in Section5. The numerical validation of the control algorithm is carried out in Section
6, while conclusions are drawn in Section7. Finally, for the sake of completeness, basic results on
passivity for discrete-time LTV systems are collected in AppendixA.

2. PROBLEM STATEMENT AND DEFINITIONS

Let the Euclidean spaceIRn be partitioned intoM domains{Ωi}i∈M
, M , {0, 1, . . . ,M − 1}, i.e.⋃M−1

i=0 Ωi = IRn andΩi ∩ Ωj = ∅ for all i, j ∈ M, i 6= j.
We assume the plant to be described by a discrete time n-dimensional multi-modal PWL system

of the form:
x (k + 1) = Aix (k) +Bu (k) if x (k) ∈ Ωi, i ∈ M (1)

wherex ∈ IRn is the state vector,u ∈ IR is the scalar input, and the matricesAi, B, are assumed to
be in the control canonical form given by

Ai =




0 1 · · · 0

0 0
. . .

...
...

... 1

a
(1)
i a

(2)
i · · · a

(n)
i



, B =




0
0
...
b


 , ∀i ∈ M, (2)

with b > 0. Apart from this hypothesis on the sign ofb, all the entries on the last row of the plant
matricesAi andB may be completely unknown to the designer.

Let us also assume a multi-modal, PWL reference model for theplant of the form:

x̂ (k + 1) = Â
î
x̂ (k) + B̂r (k) if x̂ (k) ∈ Ω̂

î
(3)

wherex̂ ∈ IRn, x̂(0) = x̂0, r ∈ IR is the input to the reference model, and
{
Ω̂

î

}
î∈M̂

, with M̂ ,
{
0, 1, . . . M̂ − 1

}
being a partition ofIRn defined in an analogous way as{Ωi}i∈M

. As for the
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plant, the matrices of the reference model are chosen to be inthe companion form given by:

Â
î
=




0 1 · · · 0

0 0
. ..

...
...

... 1

â
(1)

î
â
(2)

î
· · · â

(n)

î



, B̂ =




0
0
...
b̂


 , ∀̂i ∈ M̂. (4)

We assume that the reference model (3) has a unique solution given an initial conditionx̂0.
It is also worth remarking that, whereas the partitions of both the plant and reference model phase

spaces are assumed to be known, no specific structure on them is assumed. In fact, generically one
may have thatM 6= M̂ , so the plant and reference model can be characterized by different numbers
of phase space regions and associated vector fields.

The problem is to find an adaptive, state feedback control lawu(k) so as to ensure that the state
variables of the plant,x(k), track asymptotically the states,x̂(k), of the reference model.

The remainder of the Section is devoted to introduce notation and basic definitions used hereafter.
Let σi(k), i ∈ M, andσ̂i(k), î ∈ M̂, be defined as

σi (k) =

{
1 if x (k) ∈ Ωi,
0 elsewhere,

σ̂̂
i
(k) =

{
1 if x̂ (k) ∈ Ω̂

î
,

0 elsewhere.
(5)

Note that, by the assumption of state measurements availability, the value ofσi(k) is known at every
discrete-time instant, for every modei.

3. CONTROL STRATEGY

The control problem posed in Section2 can be solved by means of the switched adaptive strategy
described in this Section.

Essentially, the control adaptation law presented in Theorem 1 below includes: (i) two smooth
adaptive gains, that remain switched on whatever the modes in which the plant and reference model
are evolving in (note that they have the same structure of theMCS gains proposed in [10] for
discrete-time linear systems); (ii) a set of switching adaptive gains that take into account the PWS
nature of the plant and the reference model: thus, they are actually switched on only when their
trajectories enter certain phase-space domains.

Before stating the main result, let us establish the following assumption on the reference model.

Assumption 1
The reference model (3) is Q-stable [11], i.e. there exists a symmetric, positive definite matrixP > 0
such that the following Linear Matrix Inequality (LMI) is verified:

ÂT

î
PÂ

î
− P < 0, ∀̂i ∈ M̂. (6)

Theorem 1
Given system (1) and a reference model of the form (3) such that Assumption1 holds, the adaptive
law:

u (k) = LFB (k)x (k) + LR (k) r (k) , (7)

where

LR (k) = α

k∑

m=0

ye (m+ 1) r (m) + βye (k + 1) r (k) , (8)

LFB (k) = L0 (k) + LΣ (k) + L̂Σ̂ (k) , (9)

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2011)
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with

L0 (k) = α

k∑

m=0

ye (m+ 1)xT (m) + βye (k + 1)xT (k) , (10)

LΣ (k) =

M−1∑

i=1

σi (k)Li (k), L̂Σ̂ (k) =

M̂−1∑

î=1

σ̂̂
i
(k) L̂

î
(k), (11)

Li (k) =

k∑

m=0

χi (m), L̂
î
(k) =

k∑

m=0

χ̂̂
i
(m), (12)

and

χi (m) =

{
ρye (m+ 1)xT (m) , if x (m) ∈ Ωi

0, elsewhere
, (13)

χ̂̂
i
(m) =

{
ρye (m+ 1)xT (m) , if x̂ (m) ∈ Ω̂

î

0, elsewhere
, (14)

with α, β, ρ > 0 and

ye , BT
e Pxe, xe , x̂− x, Be = (0, . . . , 0, 1)

T ∈ IRn, (15)

guarantees the global asymptotic stability of the closed-loop error dynamics.

Remark 1
Note that Assumption1 is not as restrictive as it might appear at first, since the reference model
is typically selected by design. Indeed, in many practical cases the aim of the control action is to
compensate the PWS nature of the plant. Hence, an LTI system is usually selected as reference
model and, for such a case, Assumption1 simply reduces to demand that the reference model
matrix Â be Hurwitz. Moreover, for LTI reference models, the proposed control law improves that
of [10], because the former does not require slow variation of the plant parameters with respect to
the adaptive gains.

4. PROOF OF THEOREM1

In what follows, Theorem1 is proved using passivity theory. For the sake of completeness, some
fundamental results about discrete-time LTV passive systems are collected in AppendixA.

The main idea is to show that the closed-loop system can be recast as a feedback loop of two
passive switched systems without input. In so doing, the closed-loop error system is passive and
therefore stable. Furthermore, exploiting the passivity properties of the feedforward and feedback
blocks, we prove the asymptotic convergence of the trackingerror dynamics towards the origin from
any initial condition.

The proof is based on the following four steps:

1. Recast the error dynamics as a feedback system.
2. Prove strict passivity of the feedforward dynamics.
3. Prove passivity of the feedback block.
4. Prove asymptotic convergence of the closed-loop error system.

The next subsections are devoted to each one of the above indicated steps. Assumption1 is
supposed to be fulfilled throughout the proof.
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(
Â

î
, Be, Cêi

)
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+ ξ0 ye

Adaptive
Block

−

[
φw +

M−1∑
v=1

φvx+
M̂−1∑
v̂=1

φ̂v̂x

]

Figure 1. Schematization of the closed loop error dynamics

4.1. Step 1: Recast the error dynamics as a feedback system.

Given the plant and the reference dynamics (1) and (3), respectively, using the definition of the
control strategy in (7) and the expression of the tracking error in (15), we obtain

xe (k + 1) = Â (k)xe (k) +Be


φ (k)w (k) +

M−1∑

v=1

φv (k)x (k) +

M̂−1∑

v̂=1

φ̂v̂ (k)x (k)


 , (16)

where
Â(k) = Â(x̂(k)) := Â

î
when x̂(k) ∈ Ω̂

î
, (17)

and

φ(k) =

[
BT

e

(
Â0 −A0

)
− bL0(k)

... b̂− bLR(k)

]
, w(k) ,

[
xT (k) r(k)

]T
, (18)

φv (k) , σv (k)
[
BT

e ∆Av − bLv (k)
]
, ∆Av , A0 −Av, v = 1, 2, . . . ,M − 1, (19)

φ̂v̂ (k) , σ̂v̂ (k)
[
BT

e ∆Âv̂ − bL̂v̂ (k)
]
, ∆Âv̂ , Âv̂ − Â0, v̂ = 1, 2, . . . M̂ − 1. (20)

It is worth emphasizing that the key point that yields (16) is that the matricesAi, Âî
are assumed

to be in control canonical form (recall (2) and (4), respectively), which entails that̂A0 −A0, ∆Av

and∆Âv̂ are matrices with null elements everywhere but in the last row. Further mathematical
details can be found in AppendixB.

From (16), the error dynamics can be easily represented as the feedback system shown in Figure1.
Here the feedforward block is described by:

Σ0 :=

{
xe(k + 1) = Â(k)xe(k) + Beξ(k + 1),
ye(k) = BT

e Pxe(k),
(21)

while the feedback block has inputye(k) and output−ξ(k), with

ξ(k + 1) = φ (k)w (k) +

M−1∑

v=1

φv (k)x (k) +

M̂−1∑

v̂=1

φ̂v̂ (k)x (k). (22)

4.2. Step 2: Passivity of the feedforward dynamics.

We want to prove passivity of the feedforward blockΣ0 given by (21)-(17). To this aim, let us
consider the following systems:

Σ1 :=

{
x̃e(k + 1) = Â(k)x̃e(k) + Â(k)Beξ(k),
ye1(k) = BT

e P x̃e(k) +
1
2B

T
e PBeξ(k),

(23)

Σ2 := ye2(k) =
1

2
BT

e PBeξ(k). (24)
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6 M. DI BERNARDO, U. MONTANARO, J. M. OLM, S. SANTINI

Lemma 1
The parallel connection of systemsΣ1 andΣ2 is input-output equivalent to systemΣ0.

Proof
The change of variables

xe(k) = x̃e(k) +Beξ(k) (25)

in Σ0 (21) yields
x̃e(k + 1) = Â(k)x̃e(k) + Â(k)Beξ(k),
ye(k) = BT

e P x̃e(k) +BT
e PBeξ(k).

Then, it is straightforward to show thatye1(k) + ye2(k) = ye(k).

Lemma 2
The parallel connection of systemsΣ1 andΣ2 is input strictly passive, with common quadratic
storage function

V (x̃(k)) =
1

2
x̃T (k)P x̃(k). (26)

Proof
We can prove passivity ofΣ1 using Lemma3.i in AppendixA. Notice that Assumption1 yields

ÂT (k)PÂ(k)− P = −Q(k),

with Q(k) positive definite, which means that (79) is fulfilled. Indeed, (17) allows to define

Q(k) = Q
î
= P − ÂT

î
PÂ

î
when x̂(k) ∈ Ω̂

î
, (27)

with Q(k) being trivially symmetric. Moreover, (80) and (81) are also verified with:

ST (k) = BT
e P −

(
Â(k)Be

)T
PÂ(k) = BT

e Q(k),

R(k) =
1

2
BT

e PBe +

(
1

2
BT

e PBe

)T

−
(
Â(k)Be

)T
PÂ(k)Be = BT

e Q(k)Be.

Then matrixM(k) in (82) can be obtained as:

M(k) =

(
Q(k) QT (k)Be

BT
e Q(k) BT

e Q(k)Be

)
=

(
Q(k) Q(k)Be

BT
e Q(k) BT

e Q(k)Be

)
, ∀k ≥ 0.

Finally, the positive semidefinite character ofM(k), ∀k ≥ 0, is shown as follows:

[
x̃Te (k) ξ(k)

]
M(k)

[
x̃e(k)
ξ(k)

]
= [x̃e(k) +Beξ(k)]

T
Q(k) [x̃e(k) +Beξ(k)]

= xTe (k)Q(k)xe(k) ≥ 0, ∀x̃e(k), ξ(k). (28)

Hence, Lemma3.i in AppendixA yields passivity ofΣ1 and, consequently, Lemma3.ii entails:

ye1(k)ξ(k) = V (x̃e(k + 1))− V (x̃e(k)) +
1

2
xTe (k)Q(k)xe(k) (29)

Now, for the parallel connection ofΣ1 andΣ2, from (24) and (29) we have:

ye(k)ξ(k) = ye1(k)ξ(k) + ye2(k)ξ(k) = V (x̃e(k + 1))− V (x̃e(k)) +

1

2
xTe (k)Q(k)xe(k) +

1

2
ξT (k)BT

e PBeξ(k).

Then,

ye(k)ξ(k) = V (x̃e(k + 1))− V (x̃e(k)) +
1

2
xTe (k)Q(k)xe(k) +

1

2
pnnξ

2(k), (30)

wherepnn denotes the matrix element ofP located in the(n, n) position. Notice thatpnn > 0
becauseP is positive definite and, asQ(k) is also positive definite for allk ≥ 0, the result
follows.
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MRAC OF DISCRETE-TIME PIECEWISE LINEAR SYSTEMS 7

4.3. Step 3: Passivity of the feedback dynamics.

Let us first introduce notation and basic definitions used in the proof.
For the switching instants of both the plant and the reference model we use the standard notation

adopted in [17]. More precisely, the activation sequence of the plant is given by:

Σ =
{
x0, (q0, k0) , (q1, k1) , . . . (qp, kp) . . . | qp ∈ M, p ∈ IN

}
, (31)

in which k0 = 0 is the initial discrete time andx0 is the initial state. Then, whenk ∈ [kp ; kp+1) it
is x(k) ∈ Ωqp by definition, that is, theqp-th subsystem is active. The sequenceΣ may or may not
be infinite; in the finite case we may takekp+1 = ∞.

For anyi ∈ M we denote

Σ/i =
{
ki1 , ki2 , . . . kis , . . . | qis = i, s ∈ IN

}
, (32)

the sequence of switching times when thei-th subsystem is activated, and thus
{
ki1+1 − 1, ki2+1 − 1, . . . kis+1 − 1, . . . | qis = i, s ∈ IN

}
(33)

is the sequence of the discrete time instants when thei-th subsystem was last active. Analogously,
we define

Σ̂ =
{
x̂0,
(
q̂0, k̂0

)
,
(
q̂1, k̂1

)
, . . .

(
q̂p, k̂p

)
. . . | q̂p ∈ M̂, p ∈ IN

}
(34)

as the activation sequence of the reference model withk̂0 = 0. Moreover, for anŷi ∈ M̂,

Σ̂/̂i =
{
k̂̂
i1
, k̂̂

i2
, . . . k̂̂

is
, . . . | q̂̂

is
= î, s ∈ IN

}
, (35)

is defined as the sequence of switching times when theî-th subsystem of the reference model is
activated, and analogously,

{
k̂̂
i1+1 − 1, k̂̂

i2+1 − 1, . . . k̂̂
is+1 − 1, . . . | q̂̂

is
= î, s ∈ IN

}
(36)

is the sequence of time instants when theî-th subsystem was last active.
Finally, given a generic vectorη =

[
η1 η2 · · · ηm

]T
∈ IRm we denote as̃Γ (η) them-

dimensional vector defined as:

Γ̃ (η) =
[
0 η1 η2 · · · ηm−1

]T
. (37)

Passivity of the feedback block depicted in Figure1 will be proved showing that Popov inequality
[1] is fulfilled. Namely, that for some finite constantγ,

l∑

k=0

ye (k + 1) [−ξ (k + 1)] ≥ −γ2, ∀l ≥ 0,

i.e. that

l∑

k=0

−ye (k + 1)


φ (k)w (k) +

M−1∑

v=1

φv (k)x (k) +

M̂−1∑

v̂=1

φ̂v̂ (k)x (k)


 ≥ −γ2. (38)

The previous inequality can be recast as:

S0 + S + Ŝ ≥ −γ2, (39)

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2011)
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where

S0 =

l∑

k=0

−ye (k + 1)φ (k)w (k) (40)

S =

M−1∑

v=1

Sv, Sv =

l∑

k=0

−ye (k + 1)φv (k)x (k), (41)

Ŝ =

M̂−1∑

v̂=1

Ŝv̂, Ŝv̂ =

l∑

k=0

−ye (k + 1) φ̂v̂ (k)x (k) (42)

Now, sinceφ (k) does not switch, by choosing the adaptive gainsLR andL0 as in (8) and (10),
from the proof of the discrete time MCS in [10], it follows that:

l∑

k=0

−ye (k + 1)φ (k)w (k) > −γ21 (43)

with γ1 being some real finite constant. Notice also that, indeed, asφ(k) does not depend onA(k)
but onA0 (see (18)), the slow variation of the plant parameters with respect to the adaptive gains
assumed in [10] to prove (43) is not required here, as claimed in Remark1.

It is then evident that, if we prove thatSv ≥ −γ2v in (41) with v = 1, 2 . . .M − 1 andŜv̂ ≥ −γ̂2
v̂

in (42) with v̂ = 1, 2 . . . M̂ − 1, whereγv andγ̂v̂ are some scalar constants, then (38) is verified and
consequently the proof of the theorem is completed.

Now we consider the termS in (41) and focus onto a generic addendSv which can be written as:

Sv =

n∑

j=1

S(j)
v , S(j)

v ,
l∑

k=0

−ye (k + 1)φ(j)v (k)x(j) (k) (44)

with j = 1, 2 . . . n, v = 1, . . .M − 1 and

φ(j)v (k) = σv (k)
[
δ(j)v − bL(j)

v (k)
]
, δ(j)v , a

(j)
0 − a(j)v . (45)

Considering (5) and the notation adopted to describe the switching instants used throughout the
paper, the termS(j)

v has the following form:

S(j)
v =





θv∑
s=1

kvs+1−1∑
k=kvs

−ye (k + 1)
[
δ
(j)
v − bL

(j)
v (k)

]
x(j) (k) , if x (l) /∈ Ωv,

θv∑
s=1

kvs+1−1∑
k=kvs

−ye (k + 1)
[
δ
(j)
v − bL

(j)
v (k)

]
x(j) (k)+

+
l∑

k=kv(θv+1)

−ye (k + 1)
[
δ
(j)
v − bL

(j)
v (k)

]
x(j) (k) if x (l) ∈ Ωv,

(46)

whereθv is the generic number of times the trajectory leftΩv .
Let us now focus on the most complex casex (l) ∈ Ωv: from (12) and (13) we have

L(j)
v (k)− L(j)

v (k − 1) = ρye (k + 1)x(j) (k) ⇒

⇒ −ye (k + 1)x(j) (k) =
1

ρb

[
bL(j)

v (k − 1)− bL(j)
v (k)

]
. (47)

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2011)
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The substitution of (47) in (46) for x (l) ∈ Ωv yields:

S(j)
v =

1

ρb

θv∑

s=1

kvs+1−1∑

k=kvs

[
bL(j)

v (k − 1)− bL(j)
v (k)

] [
δ(j)v − bL(j)

v (k)
]

+
1

ρb

l∑

k=kv(θv+1)

[
bL(j)

v (k − 1)− bL(j)
v (k)

] [
δ(j)v − bL(j)

v (k)
]
. (48)

Defining now

ψ(j)
v (k) = δ(j)v − bL(j)

v (k) , v = 1, 2, . . .M − 1, /j = 1, 2, . . . n, (49)

the generic termS(j)
v in (48) can be expressed as:

S(j)
v =

1

ρb

θv∑

s=1

kvs+1−1∑

k=kvs

[
ψ(j)
v (k)− ψ(j)

v (k − 1)
]
ψ(j)
v (k) + (50)

+
1

ρb

l∑

k=kv(θv+1)

[
ψ(j)
v (k)− ψ(j)

v (k − 1)
]
ψ(j)
v (k). (51)

Taking into account the definition in (12), it is evident that when the state of the plant does not
belong toΩi, with i ∈ M \ {0}, the gainLi is not varied. Similarly, when the reference state does
not belong toΩ̂

î
, with î ∈ M̂ \ {0}, the gainL̂

î
is kept constant. Hence, in accordance with the

notation used to describe the switching instants, we have:

Li (kis − 1) = Li

(
kis−1+1 − 1

)
, s ∈ IN \ {1}, (52)

L̂
î

(
k̂
is
− 1
)

= L̂
î

(
k̂
is−1+1 − 1

)
, s ∈ IN \ {1}. (53)

Therefore, notice that, from (52), we have:

ψ(j)
v (kvs − 1) = ψ(j)

v

(
kvs−1+1 − 1

)
, s = 2, 3, . . . θv + 1. (54)

Collecting all the samples in the vectorΨ
(j)
v , defined as

Ψ(j)
v ,

[
ψ
(j)
v (kv1) ψ

(j)
v (kv1 + 1) · · · ψ

(j)
v (kv1+1 − 1)

...

ψ
(j)
v (kv2) ψ

(j)
v (kv2 + 1) · · · ψ

(j)
v (kv2+1 − 1)

...
· · · · · · · · · · · · · · ·

ψ
(j)
v

(
kvθv

)
ψ
(j)
v

(
kvθv + 1

)
· · · ψ

(j)
v

(
kvθv+1 − 1

) ...

ψ
(j)
v

(
kv(θv+1)

)
ψ
(j)
v

(
kv(θv+1)

+ 1
)

· · · ψ
(j)
v (l − 1) ψ

(j)
v (l)

]T
,

(55)

and taking into account definition (37), we have:

Γ̃
(
Ψ

(j)
v

)
= [0 ψ

(j)
v (kv1) ψ

(j)
v (kv1 + 1) · · · ψ

(j)
v (kv1+1 − 2)

...

ψ
(j)
v (kv1+1 − 1) ψ

(j)
v (kv2) · · · ψ

(j)
v (kv2+1 − 2)

...
· · · · · · · · · · · · · · ·

ψ
(j)
v

(
kv(θv−1)+1 − 1

)
ψ
(j)
v

(
kvθv

)
· · · ψ

(j)
v

(
kvθv+1 − 2

) ...

ψ
(j)
v

(
kvθv+1 − 1

)
ψ
(j)
v

(
kv(θv+1)

)
· · · ψ

(j)
v (l − 2) ψ

(j)
v (l − 1)

]T
.

(56)
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From (54), expression (56) can be written as:

Γ̃
(
Ψ(j)

v

)
= [0 ψ

(j)
v (kv1) ψ

(j)
v (kv1 + 1) · · · ψ

(j)
v (kv1+1 − 2)

...

ψ
(j)
v (kv2 − 1) ψ

(j)
v (kv2) · · · ψ

(j)
v (kv2+1 − 2)

...
· · · · · · · · · · · · · · ·

ψ
(j)
v

(
kvθv − 1

)
ψ
(j)
v

(
kvθv

)
· · · ψ

(j)
v

(
kvθv+1 − 2

) ...

ψ
(j)
v

(
kv(θv+1)

− 1
)

ψ
(j)
v

(
kv(θv+1)

)
· · · ψ

(j)
v (l − 2) ψ

(j)
v (l − 1)

]T
.

(57)

Now, from (55) and (57), the generic addend ofSv can be rewritten as:

S(j)
v =

1

ρb

[∥∥∥Ψ(j)
v

∥∥∥
2

− Γ̃T
(
Ψ(j)

v

)
Ψ(j)

v − ψ(j)
v (kv1 − 1)ψ(j)

v (kv1)

]
. (58)

Considering that
∥∥Γ̃ (η)

∥∥ 6 ‖η‖:

Γ̃T
(
Ψ(j)

v

)
Ψ(j)

v ≤
∣∣∣Γ̃T

(
Ψ(j)

v

)
Ψ(j)

v

∣∣∣ ≤
∥∥∥Γ̃T

(
Ψ(j)

v

)∥∥∥
∥∥∥Ψ(j)

v

∥∥∥ ≤
∥∥∥Ψ(j)

v

∥∥∥
2

⇒

⇒ −Γ̃T
(
Ψ(j)

v

)
Ψ(j)

v ≥ −
∥∥∥Ψ(j)

v

∥∥∥
2

, (59)

hence, replacing (59) into (58), we have:

S(j)
v ≥ −

1

ρb

∣∣∣ψ(j)
v (kv1 − 1)ψ(j)

v (kv1)
∣∣∣ . (60)

In so doing we have shown that each termS(j)
v satisfies the Popov inequality whenx(l) ∈ Ωv.

Notice that the same procedure can be used to show that (60) is still verified whenx(l) /∈ Ωv simply
by choosingΨ(j)

v as

Ψ
(j)
v =

[
ψ
(j)
v (kv1 ) ψ

(j)
v (kv1 + 1) · · · ψ

(j)
v (kv1+1 − 1)

...

ψ
(j)
v (kv2) ψ

(j)
v (kv2 + 1) · · · ψ

(j)
v (kv2+1 − 1)

...
· · · · · · · · · · · · · · ·

ψ
(j)
v

(
kv(θv−1)

)
ψ
(j)
v

(
kv(θv−1)

+ 1
)

· · · ψ
(j)
v

(
kv(θv−1)+1 − 1

) ...

ψ
(j)
v

(
kvθv

)
ψ
(j)
v

(
kvθv + 1

)
· · · ψ

(j)
v

(
kvθv+1 − 2

)
ψ
(j)
v

(
kvθv+1 − 1

)]T
.

(61)

SinceS(j)
v verifies the Popov inequality for all time instants, it follows thatSv andS in (41)

satisfy the Popov inequality as well for some proper scalar constants.
Finally the same procedure can be used to prove that alsoŜ verifies the Popov inequality. Indeed,

this can be proved by replacing in the previous derivationL
(j)
v with L̂(j)

v̂
, Ωv with Ω̂v̂, the indexv

with the index̂v andδ(j)v with δ̂(j)
v̂

, â
(j)
v̂

− â
(j)

0̂
.

4.4. Asymptotic convergence of the closed loop error system

We know from Subsection4.3 that there existsγ ∈ IR such that:

k∑

l=0

ye (l + 1) ξ (l+ 1) ≤ γ2, ∀k ≥ 0.
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Hence, summingye(0)ξ(0) to both sides, summing up tok − 1 and using (21) and (25), one gets:

k∑

l=0

ye (l) ξ (l) ≤ γ2 + ye(0)ξ(0) = γ2 + xTe (0)Pxe(0)− xe(0)
TP x̃e(0) =

= γ2 +

(
xe(0)−

1

2
x̃e(0)

)T

P

(
xe(0)−

1

2
x̃e(0)

)
−

1

4
x̃Te (0)P x̃e(0). (62)

Let us now consider (30). Summing up from0 to k results in:

k∑

l=0

ye (l) ξ (l) =
1

2
x̃Te (k + 1)P x̃e(k + 1)−

1

2
x̃Te (0)P x̃e(0) +

+
1

2

k∑

l=0

xTe (l)Q(k)xe(l) +
1

2
pnn

k∑

l=0

ξ2(l). (63)

Moreover, recalling (27), we define

λQ := min
î=0,...,M̂−1

{λ̂
i1, . . . , λ̂in; det

(
Q

î
− λI

)
= 0}, (64)

which is positive due to the fact that all the matricesQ
î
are positive definite by Assumption1. Then,

taking again into account thatP is positive definite, it follows from (63) that:

k∑

l=0

ye (l) ξ (l) ≥ −
1

2
x̃Te (0)P x̃e(0) +

1

2
λQ

k∑

l=0

xTe (l)xe(l) +
1

2
pnn

k∑

l=0

ξ2(l). (65)

Now, putting together (62) and (65), rearranging terms and taking limits fork → +∞ we obtain:

γ2 +

(
xe(0)−

1

2
x̃e(0)

)T

P

(
xe(0)−

1

2
x̃e(0)

)
+

1

4
x̃Te (0)P x̃e(0) ≥

≥ lim
k→+∞

[
1

2
λQ

k∑

l=0

xTe (l)xe(l) +
1

2
pnn

k∑

l=0

ξ2(l)

]
. (66)

Furthermore, lettingρ(P ) stand for the spectral radius ofP , one gets from (66) that

γ2 +

(∥∥∥∥xe(0)−
1

2
x̃e(0)

∥∥∥∥
2

+
1

4
‖x̃e(0)‖

2

)
ρ(P ) ≥

≥ lim
k→+∞

[
1

2
λQ

k∑

l=0

‖xe(l)‖
2
+

1

2
pnn

k∑

l=0

ξ2(l)

]
. (67)

As bothλQ andpnn are positive, it follows immediately that:

lim
k→+∞

‖xe(k)‖ = 0, ∀xe(0), x̃e(0),

which proves the convergence of all error trajectories towards the origin from any initial condition.
Additional results derived, respectively, from (66) and (21), also for any initial conditions, are:

lim
k→+∞

ξ(k) = 0, lim
k→+∞

ye(k) = 0.
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5. FURTHER EXTENSIONS

Assumption1, aimed at ensuring the passivity of subsystemΣ1 in the sense of equation (29), is
equivalent to requiring Q-stability of the reference model. Hence, according to Remark1, when
the reference model is LTI this is equivalent to its dynamical matrix being Hurwitz. Nevertheless,
for generic PWL reference models, Assumption1 becomes a stronger requirement, namely, the
existence of a common quadratic Lyapunov function for the unforced reference model system,
which may yield the unfeasibility of the LMI problem (6).

Such a constraint can be relaxed taking advantage of the switching nature of the reference model.

Hence, for a generic partition
{
Ω̂

î

}
î∈M̂

of IRn, we can seek for a PWQ Lyapunov function, while

a further relaxation can be achieved when the partition is polyhedral. The latter is inspired on the
approach introduced in [7], where sufficient LMI conditions for PWQ passivity of PWA systems
are derived taking into account only allowed transitions between switching regions in one time-step
(see also [18]). Thus, it is possible to state the following results.

Theorem 2
Assume that the reference model (3) is PWQ-stable [11], i.e. there exists a set of symmetric, positive
definite matricesP̂

i
> 0, for all î ∈ M̂, such that the following LMI is verified:

ÂT

î
P
ĵ
Â

î
− P̂

i
< 0, ∀

(
î, ĵ
)
∈ M̂ × M̂. (68)

Then, given system (1) and a reference model of the form (3), the adaptive law (7)-(14) with

ye , BT
e P̂i

xe, xe , x̂− x, when x̂ (k) ∈ Ω̂
î
,

renders the origin of the closed-loop error dynamics globally asymptotically stable.

Proof
The proof follows that of Theorem1, the main differences being:

• The common quadratic storage function (26) in Lemma2 becomes a PWQ function [7] of the
form

V (x̃e(k)) =
1

2
x̃Te (k)P (k)x̃e(k), with P (k) = P̂

i
when x̂(k) ∈ Ω̂

î
.

• Matrix Q(k) defined in (27) becomes

Q(k) = Q
î̂j
= P̂

i
− ÂT

î
P
ĵ
Â

î
when x̂(k) ∈ Ω̂

î
, x̂(k + 1) ∈ Ω̂

ĵ
,

andλQ defined in (64) changes to:

λQ := min
î,̂j=0,...,M̂−1

=
{
λ̂
iĵ,1, . . . , λ̂iĵ,n; det

(
Q

î̂j
− λI

)
= 0
}
,

• The matrix elementpnn in (30) becomes

pnn(k) = p̂
i,nn

when x̂(k) ∈ Ω̂
î
,

wherep̂
i,nn

denotes the matrix element ofP̂
i

located in the(n, n) position. Correspondingly,
pnn appearing in (66) is to be re-defined as:

pnn := min
{
p̂
i,nn

, î ∈ M̂
}
,

and it is positive due to the positive definiteness of the matricesP̂
i
.

• Matrix P in (66) is replaced byP (0).
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• The spectral radiusρ(P ) in (67) is to be replaced by

ρ̃ := max
î∈M̂

{
ρ(P̂

i
)
}
.

The fulfillment of the LMI (68) implicitly assumes that a state transition in one time stepis
possible between all regions of the partition, but this is not usually true. Then, if one is able to

compute the subsetT of ordered pairs
(
î, ĵ
)

, with î, ĵ = 0, 1, . . . , M̂ − 1, such that a transition

from the region̂Ω
î

at any timek to Ω̂
ĵ

at timek + 1 is allowed to occur along system trajectories,
(68) is to be required only forT . This is precisely the case with polyhedral partitions, which allows
the computation ofT via reachability analysis [7]. Hence, the following result is straightforward:

Corollary 1

Assume that
{
Ω̂

î

}
î∈M̂

is defined as:

Ω̂
î
=
{
x̂ ∈ IRn : F̂

i
x̂ ≥ f̂

i

}
, î = 0, 1, . . . , M̂ − 1,

F̂
i
, f̂

i
being constant matrices and vectors, respectively, while the inequality is to be met

componentwise. Then, let

T :=
{(
î, ĵ
)
∈ M̂ × M̂; ∃x̂ ∈ IRn, r ∈ IR such thatx̂ ∈ Ω̂

î
, Â

î
x̂+ B̂r ∈ Ω̂

ĵ
.
}
.

Assume now that the reference model (3) is T -PWQ stable, i.e. there exists a set of symmetric
positive definite matricesP̂

i
> 0, for all î ∈ M̂, such that the following LMI is verified:

ÂT

î
P
ĵ
Â

ĵ
− P̂

i
< 0, ∀

(
î, ĵ
)
∈ T . (69)

Then, the adaptive law (7)-(14) with

ye , BT
e P̂i

xe, xe , x̂− x, when x̂ (k) ∈ Ω̂
î
.

guarantees global asymptotic stability of the closed-looperror dynamics of (1)-(3).

6. NUMERICAL VALIDATION

The effectiveness of the proposed discrete-time MCS algorithm is shown in this Section through
representative numerical examples. In particular, the approach will be tested here both in the case
of a linear and a piecewise linear reference model.

The plant is a PWL system in canonical form:

x(k + 1) =





[
0 1

−0.05 0.6

]
x(k) +

[
0
1

]
u(k) if x(k) ∈ Ω0,

[
0 1

−0.12 0.8

]
x(k) +

[
0
1

]
u(k) if x(k) ∈ Ω1,

[
0 1

−0.175 0.95

]
x(k) +

[
0
1

]
u(k) if x(k) ∈ Ω2,

[
0 1

−0.32 1.2

]
x(k) +

[
0
1

]
u(k) if x(k) ∈ Ω3,

(70)

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2011)
Prepared usingrncauth.cls DOI: 10.1002/rnc



14 M. DI BERNARDO, U. MONTANARO, J. M. OLM, S. SANTINI

0 200 400 600 800 1000
−4

−3

−2

−1

0

1

2

3

4

t

x
(1

)
e

(a)

0 200 400 600 800 1000
−4

−3

−2

−1

0

1

2

3

4

t

x
(2

)
e

(b)

Figure 2. LTI ref. model. (a), (b): Time history of the tracking errors.

where

Ω0
∆
=
{
x : HT

0 x < 0
}
∩
{
x : HT

1 x ≥ 0
}
,

Ω1
∆
=
{
x : HT

0 x ≥ 0
}
∩
{
x : HT

1 x ≥ 0
}
,

Ω2
∆
=
{
x : HT

0 x ≥ 0
}
∩
{
x : HT

1 x < 0
}
,

Ω3
∆
=
{
x : HT

0 x < 0
}
∩
{
x : HT

1 x < 0
}
,

with HT
0 = [−1 1],HT

1 = [1 1] andx(0) = [2 1]T .
Note that, as is typical with MRAC approaches, particular care must be taken when implementing

the controller with the so-called one-delay problem [1]. The problem arises when computing the
control gains at the current time instantk according to equations (8)-(9), which depend on the value
of ye atk + 1. To solve this problem, Landau himself proposed as a practical solution to use instead
a running estimate ofye(k + 1) [1]. Here we follow precisely the same approach by setting:

ye(k + 1) ≈
ye(k)

1 + pnnb(α+ β)w>(k)w(k)
. (71)

Despite its simplicity, this choice yields a successful implementation of the control strategy.
Concerning the estimation of the unknown parameterb, and again in accordance with Landau [1], b
can be replaced by a value that falls within its range of variation, which is assumed to be known.

Finally we remark that, as always happens when dealing with the MCS approach, the parameters
of the controller are chosen heuristically as a trade off between convergence time and reactivity
of the control actions. Our choice here isρ = 100, α = 100 andβ = 10, which yields the standard
empiric ratioα/β = 10 suggested in [9].

6.1. Case 1: LTI reference model

As a first attempt for the validation of the adaptive switchedcontrol law, an LTI reference model
is adopted. Hence, the target is to make the PWS plant behave as a smooth reference model of the
form:

x̂(k + 1) =

[
0 1

−0.1 0.7

]
x̂(k) +

[
0
1.2

]
r(k), (72)

the input signalr being sinusoidal, namelyr = 2 sin (2k), while the initial conditions are set to
x̂(0) = [0 0]T . Assumption1 is fulfilled, since the dynamic matrix of the reference modelis
Hurwitz.
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Figure 3. LTI ref. model. Adaptive gains related to plant modes. (a)L0: L(1)
0 (blue solid),L(2)

0 (red dashed);

(b)LR; (c)L1: L(1)
1 (blue solid),L(2)

1 (red dashed); (d)L2: L(1)
2 (blue solid),L(2)

2 (red dashed); (e)L3: L(1)
3

(blue solid),L(2)
3 (red dashed).

Figure2 shows the tracking error evolution for both the state variables and their convergence to
zero. Notice that, in order to numerically test the robustness of the control approach, the presence
of a perturbation in the plant parameters has been also explicitly considered in the simulation
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Figure 4. PWL ref. model. (a), (b) Time history of the tracking errors.

scenario. Specifically, the behavior in case of a sudden and simultaneous change of 20% in all
plant parameters values, with respect to their nominal ones, occurring at500 [s], is investigated. In
Figure2 it is evident that the control algorithm is able to reject this unexpected parameter variations
and, through adaptation, to achieve again excellent tracking performance.

All the adaptive gains converge asymptotically to a finite value once the tracking error reduces to
zero (see Figure2) and, in the presence of a disturbance, converge to steady-state values after it has
been rejected (see Figure3). Notice also that the switching part of the controller,LΣ, depends only
on those switching terms associated with commutations of the plant, since the reference model is
smooth.

6.2. Case 2: PWL reference model

The piecewise adaptive feedback law has been designed to deal with generic multimodal reference
models characterized by a number of modes that can be different from the ones of the plant. To
show the effectiveness of the control approach in this case,we select the following bimodal system
as reference model:

x̂(k + 1) =





[
0 1

−0.1 0.7

]
x̂(k) +

[
0
1.2

]
r(k) if x̂(k) ∈ Ω̂0,

[
0 1

−0.008 0.24

]
x̂(k) +

[
0
1.2

]
r(k) if x̂(k) ∈ Ω̂1,

(73)

where

Ω̂0
∆
=
{
x̂ : ĤT

0 x̂ > 0
}
,

Ω̂1
∆
=
{
x̂ : ĤT

0 x̂ ≤ 0
}
,

with ĤT = [0.5 1], r(k) = 2 sin (0.5k) and x̂(0) = [2 − 1]T . The fulfillment of Assumption1
can be verified solving off-line the LMI problem (6) by means of MATLAB’s LMI toolbox, which
yields

P = 108
(

2.8860 −0.2580
−0.2580 7.5618

)
.

The new adaptive controller guarantees, through adaptation, excellent tracking performance of
the state variables of the reference model as confirmed in Figure 4 that shows the error tracking
evolution for both the state variables.
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Figure 5. PWL ref. model. Adaptive gains related to plant modes. (a)L0:L(1)
0 (blue solid),L(2)

0 (red dashed);

(b)LR; (c)L1: L(1)
1 (blue solid),L(2)

1 (red dashed); (d)L2: L(1)
2 (blue solid),L(2)

2 (red dashed); (e)L3: L(1)
3

(blue solid),L(2)
3 (red dashed); (f)̂L1: L̂(1)

1 (blue solid),L̂(2)
1 (red dashed).

As in the previous case of study, the effect of a sudden and simultaneous change of 20% in the
parameters values is also investigated in the numerical analysis. As shown in Figure4 the control
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algorithm is robust with respect to these abrupt parameter variations occurring at3500 [s]. The
presence of a negligible residual relative error is due to the use of the simple approach proposed by
Landau in [1] to solve the one-delay problem, as discussed above.

All adaptive gains, both switching and continuous, remain bounded (see Figure5). Note that the
gains converge again to a finite steady state value, with the disturbance being effectively rejected.

7. CONCLUSIONS

We have addressed an existing gap in the theory of MRAC approaches by proposing a switched
MRAC scheme to control discrete-time PWL plants. The idea isto consider a control law composed
of three different adaptive action. Namely, a smooth adaptive feedforward term and a smooth
adaptive feedback term are complemented by a switched adaptive actions. Using the theory of
passivity, we have shown that, under appropriate conditions, such a controller can guarantee global
asymptotic stability of the error system. The proposed controller was tested on two representative
examples showing excellent performance not only when the reference model is LTI but also when
it is itself a PWL system.

We envisage that our controller could be practically used inall of those applications where,
for example, there is the need to make a PWL plant behave as a smooth system. In that case, it
suffices to choose an LTI reference model and implement the MRAC controller proposed in this
paper to guarantee good performance and robustness to unwanted parameter variations, noise and
unmodelled dynamics.

ACKNOWLEDGEMENT

J.M. Olm is partially supported by the spanish Ministerio deCiencia e Innovación under project DPI2010-
15110.

REFERENCES

1. Landau ID.Adaptive Control. The Model Reference Approach. Marcel Dekker, 1979.
2. di Bernardo M, Budd CJ, Champneys AR, Kowalczyk P.Piecewise-Smooth Dynamical Systems: Theory and

Applications. Springer-Verlag, 2007.
3. di Bernardo M, Montanaro U, Santini S. Novel switched model reference adaptive control for continuous piecewise

affine systems.47th IEEE Conference on Decision and Control, 2008; 1925–1930.
4. Sang Q, Tao G. Adaptive control of piecewise linear systems: the state tracking case.American Control Conference,

2010; 4040–4045.
5. di Bernardo M, Montanaro U, Santini S. Minimal control synthesis adaptive control of continuous bimodal

piecewise affine systems.SIAM Journal on Control and Optimization2010;48(7):4242–4261.
6. Zhao J, Hill DJ. Dissipativity theory for switched systems. IEEE Transactions on Automatic Control2008;

53(4):941–953.
7. Bemporad A, Bianchini G, Brogi F. Passivity analysis and passification of discrete-time hybrid systems.IEEE

Transactions on Automatic Control2008;53(4):1004–1009.
8. di Bernardo M, Montanaro U, Santini S. Novel hybrid MRAC-LQ control schemes: synthesis, analysis and

applications.International Journal of Control2008;81(6):940–961.
9. Stoten DP, Benchoubane H. Robustness of minimal controller synthesis algorithm.International Journal of Control

1990;51(4):851–861.
10. di Bernardo M, di Gennaro F, Olm JM, Santini S. Discrete-time minimal control synthesis adaptive algorithm.

International Journal of Control2010;83(4):2641–2657.
11. Mignone D, Ferrari-Trecate G, Morari M. Stability and stabilization of piecewise affine and hybrid systems: An

LMI approach.39th IEEE Conference on Decision and Control, 2000; 504–509.
12. Landau ID, Lozano R, M’Saad M.Adaptive Control. Springer-Verlag, London, 1998.
13. Tao G, Lewis FF.Adaptive Control of Nonsmooth Dynamic Systems. Springer, London, 2001.
14. Liberzon D.Switching in Systems and Control. Birkhäuser, 2003.
15. Brogliato B.Nonsmooth Mechanics: Models, Dynamics and Control. Springer-Verlag, 1999.
16. van der Schaft AJ, Schumacher H.An Introduction to Hybrid Dynamical Systems. Springer, 2000.
17. Branicky MS. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems.IEEE

Transactions on Automatic Control1998;43(4):475–482.
18. Lee JW, Dullerud GE. Uniform stabilization of discrete-time switched and Markovian jump linear systems.

Automatica2006;42(2):205–218.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2011)
Prepared usingrncauth.cls DOI: 10.1002/rnc



MRAC OF DISCRETE-TIME PIECEWISE LINEAR SYSTEMS 19

19. Byrnes CI, Lin W. Losslessness, feedback equivalence, and the global stabilization of discrete-time nonlinear
systems.IEEE Transactions on Automatic Control1994;39(1):83–98.

A. BASICS OF DISCRETE-TIME PASSIVITY

The material in this section has been mainly extracted from [19] and [12]. Consider a generic state-space
systemΣ of the form:

Σ :=

{
x(k + 1) = f(x(k), u(k))
y(k) = h(x(k), u(k))

(74)

Definition 1
Σ is passive if there exists a nonnegative functionV : IRn −→ IR, with V (0) = 0, such that the following
dissipation inequality holds along any of its possible trajectories:

V (x(k + 1)) − V (x(k)) ≤ y
T (k)u(k), ∀u(k), ∀k ≥ 0. (75)

V is known as a storage function forΣ.

Notice that (75) holds if and only if

V (x(k + 1))− V (x(0)) ≤

k∑

i=0

y
T (i)u(i), ∀u(k), ∀x(0) and∀k ≥ 0. (76)

Let us now define subclasses of passive systems where the inequality may be strict:

Definition 2
Let Σ be a passive system with storage functionV . Assume that there existδ1, δ2 ≥ 0 such that,∀u(k) and
∀k ≥ 0,

V (x(k + 1))− V (x(k)) ≤ y
T (k)u(k)− δ1x

T (k)x(k)− δ2u
T (k)u(k).

• If δ1 > 0, thenΣ is state strictly passive.
• If δ2 > 0, thenΣ is input strictly passive.

WhenΣ is an input-output system, the definition of passivity is reformulated from (76) as follows:

Definition 3
Σ is passive if there existsγ ∈ IR such that

k∑

i=0

y
T (i)u(i) ≥ −γ

2
, ∀k ≥ 0.

Input strict passivity can be equivalently stated.
Consider now the discrete linear time-varying system

x(k + 1) = A(k)x(k) +Bu(k) (77)
y(k) = C(k)x(k) +D(k)u(k). (78)

Lemma 3
[12] System (77)-(78) is passive if one of the following equivalent conditions hold:

i) There exist time-varying matricesP (k), Q(k), R(k), S(k), withP (k) positive definite andQ(k),R(k)
positive semidefinite, such that:

A
T (k)P (k + 1)A(k)− P (k) = −Q(k), (79)

C(k)−B
T (k)P (k + 1)A(k) = S

T (k), (80)

D(k) +D
T (k)−B

T (k)P (k + 1)B(k) = R(k), (81)

M(k) =

(
Q(k) S(k)

ST (k) R(k)

)
≥ 0, (82)

with P (0) bounded.
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ii) The following equality is satisfied,∀k ≥ 0:

y
T (k)u(k) =

1

2
x
T (k + 1)P (k + 1)x(k + 1)−

1

2
x
T (k)P (k)x(k) +

+
1

2

[
xT (k) uT (k)

]
M(k)

[
x(k)
u(k)

]
. (83)

It is immediate from Lemma3 that (77)-(78) is passive if it admits a quadratic storage function of the
form

V (x(k)) =
1

2
x
T (k)P (k)x(k).

B. MATHEMATICAL DERIVATION OF THE ERROR DYNAMICS

In order to obtain the error dynamics equation (16), let us first rewrite the plant model and the reference
model introduced in eqs. (1) and (3) as:

x (k + 1) = A (k) x (k) +Bu (k) , (84)

x̂ (k + 1) = Â (k) x̂ (k) + B̂r (k) , (85)

where

A (k) = A(x(k)) = Ai if x (k) ∈ Ωi, (86)

Â (k) = Â(x̂(k)) = Â
î

if x̂ (k) ∈ Ω̂
î
. (87)

The tracking error dynamics are given by:

xe (k + 1) = x̂ (k + 1)− x (k + 1) =

= Â (k) xe (k) + B̂r (k) +
(
Â (k)− A (k)

)
x (k)−Bu (k) . (88)

From (86), matrixA(k) can be written as

A (k) = A0 −

M−1∑

v=1

σv (k)∆Av ,∆Av = A0 −Av, v = 1, . . . ,M − 1, (89)

where functionsσv are defined in (5). Notice that ifx(k) ∈ Ωi, thenσi(k) = 1 andσv(k) = 0 whenv 6= i;
hence,

A (k) = A0 −∆Ai = A0 − (A0 − Ai) = Ai,

as defined in (86). Analogously,Â(k) can be rewritten as:

Â (k) = Â0 +

M̂−1∑

v̂=1

σ̂v̂ (k)∆Âv̂ ,∆Âv̂ = Âv̂ − Â0, v̂ = 1 . . . , M̂ − 1, (90)

with σ̂v̂ also defined in (5) in an analogous way asσv.
Replacing (89), (90) in (88) and rearranging terms we have:

xe (k + 1) = Â (k) xe (k) +
(
Â0 − A0

)
x (k) +

(
M−1∑

v=1

σv (k)∆Av

)
x (k) +

+




M̂−1∑

v̂=1

σ̂v̂ (k)∆Âv̂


x (k) + B̂r (k)−Bu (k) . (91)

Now, sinceAi andÂ
î

are assumed to be in control canonical form (recall (2) and (4), respectively), the
first (n− 1) rows of these matrices are identical. Hence:

Â0 −A0 =




0 0 · · · 0 0

0 0 · · ·
... 0

...
...

...
...

...
0 0 · · · 0 0

δ
(1)
0 δ

(2)
0 · · · δ

(n−1)
0 δ

(n)
0



, δ

(j)
0 = â

(j)
0 − a

(j)
0 , j = 1, . . . , n (92)
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On the other hand, recalling thatBT
e = (0, . . . , 0, 1), it is immediate that:

Â0 − A = BeB
T
e

(
Â0 −A

)
. (93)

Moreover, as the matrices∆Av and∆̂Av̂ introduced in (89) and (90), respectively, exhibit the structure (92)
because of the canonical form assumption, we also have that:

∆Av = BeB
T
e ∆Av, v = 1, . . . ,M − 1, (94)

∆̂Av̂ = BeB
T
e ∆̂Av̂, v̂ = 1, . . . , M̂ − 1. (95)

Substituting (93)-(95) in (91) and noticing thatB = bBe andB̂ = b̂Be we get:

xe (k + 1) = Â (k)xe (k) +BeB
T
e

(
Â0 − A0

)
x (k) + b̂Ber (k)− bBeu (k) +

+

(
M−1∑

v=1

σv (k)BeB
T
e ∆Av

)
x (k) +




M̂−1∑

v̂=1

σ̂v̂ (k)BeB
T
e ∆Âv̂


x (k) .

The control strategy defined in (7)-(15) yields:

u(k) = LFB (k) x (k) + LR (k) r (k) =

=
[
L0 (k) + LΣ (k) + L̂

Σ̂
(k)
]
x (k) + LR (k) r (k) =

=


L0 (k) +

M−1∑

v=1

σv (k)Lv (k) +

M̂−1∑

v̂=1

σ̂v̂ (k) L̂v̂ (k)


 x (k) + LR (k) r (k)

Replacingu(k) in the former expression forxe(k) and rearranging terms we have that:

xe (k + 1) = Â (k) xe (k) +Be

[
B

T
e

(
Â0 − A0

)
− bL0 (k)

]
x (k) +

+Be

[
b̂− bLR (k)

]
r (k) +

+Be

[
M−1∑

v=1

σv (k)
(
B

T
e ∆Av − bLv (k)

)
x (k)

]
+

+Be



M̂−1∑

v̂=1

σ̂v̂ (k)
(
B

T
e ∆Âv̂ − bL̂v̂ (k)

)
x (k)


 . (96)

Finally, the closed-loop tracking dynamics (16) follows easily after introducing in (96) the functions
defined in (18)-(20).
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