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1 IntroductionIn this paper we develop a model reference adaptive control (MRAC) scheme for rather broadclasses of, in general, nonlinear distributed parameter systems. By a distributed parametersystem we mean one in which the state space is in�nite dimensional such as occurs in the caseof partial and functional (i.e. hereditary and neutral) di�erential equations. In the context of�nite dimensional systems, model reference adaptive control is one of the standard approachestaken in designing a control law for a plant with unknown parameters. A complete descriptionand analysis of a variety of approaches to MRAC can be found in any one of a number ofstandard texts on adaptive control (see, for example, [2], [13], [29], and [34]). The objectiveof a MRAC scheme is to determine a feedback control law which forces the state of the plantto asymptotically track the state of a given reference model. At the same time, the unknownparameters in the plant model are estimated and used to update the control law. Typically, theresulting closed loop system consisting of the plant, the reference model, and the estimator, willbe nonlinear. This is true even if the underlying plant and reference models, and the estimator,are linear. The nonlinearity arises in the coupling. Consequently, the scheme requires a carefulstability analysis to ensure that all signals (both input and output) remain, in some sense,bounded. It is also desirable, although not necessarily essential, that some sort of parameterconvergence be achieved.The focus of the e�ort we describe here is the extension of one approach to �nite dimensionalMRAC to in�nite dimensional systems. We consider nonlinear plants with the restriction thattheir dependence on the unknown parameters be a�ne. The operator describing the dynamics ofthe reference model is assumed to be linear and strongly V -coercive (in a Gelfand triple setting).The parameter space can be either �nite or in�nite dimensional, and the estimator dynamicsfor the unknown parameters, which are linear, are chosen in a fashion which renders the closedloop error equations skew-self-adjoint. This is analogous to what is done in �nite dimensionsand has the e�ect of facilitating both tracking error and parameter convergence by forcing thetime derivative of a certain energy functional to be negative semi-de�nite. We establish theglobal well-posedness of the closed loop system via two di�erent approaches. First we argueexistence of a local solution and then its continuation by treating the closed loop system assemilinear (i.e. a nonlinear perturbation of a linear system) with the linear component of thedynamics being the in�nitesimal generator of an analytic semigroup. The second approach in-volves the application of an abstract version of the Implicit Function Theorem to obtain a globalsolution when the initial tracking and parameter error are su�ciently small. Using an analogof Barb�alat's lemma, we establish that the tracking error approaches zero asymptotically. Wealso establish regularity results for both the input and output signals. In particular, we estab-lish a boundedness result for the control signal. With the additional assumption of persistenceof excitation, a richness condition on the plant, reference model, and input reference signal,we establish parameter convergence. Since the reference model and estimator are, in general,in�nite dimensional, implementation requires some form of �nite dimensional approximation.Consequently, we develop an abstract �nite dimensional approximation and convergence theory.Finally, we illustrate the application of our general theory on a number of examples involvingdistributed parameter systems of various types (e.g. parabolic, hyperbolic, linear, nonlinear,etc.).One drawback of our approach is that it requires (as do the analogous �nite dimensional1



schemes, see, for example, [29]) measurement of the full state, and distributed input. Eliminatingeither of these restrictions represents a formidable challenge. For example, if only a partial statemeasurement is available, a coupled adaptive observer would be required. The correspondinganalysis would be signi�cantly more complicated than the already rather technical argumentswe present here. We are currently looking at the extension of our treatment here to includepartial measurements and �nite dimensional input.Our e�ort here is related to our earlier treatment of adaptive identi�cation for distributedparameter systems in [6], [7], and [8]. In fact, we employ the same estimator here to identify theunknown parameters in the plant, and the arguments used below (in�nite dimensional analogs ofthe �nite dimensional theory presented in [28] and [30]) to demonstrate the asymptotic conver-gence of the tracking and parameter error to zero, are similar to the ones employed to establishstate and parameter convergence for the identi�cation schemes. However, in the case of theidenti�cation schemes, the resulting estimator equations are linear. In the case of MRAC, theresulting closed loop system is nonlinear. Consequently, certain aspects of the analysis, in par-ticular, those dealing with the well-posedness of the closed loop system and the convergence ofthe �nite dimensional approximation, are more delicate. Other related treatments of on-line oradaptive identi�cation for distributed parameter systems can be found in [1], [5], [15], [16], [17],and [36].Recently there has been some attention given to the adaptive control of distributed parametersystems. First, with respect to approaches other than model reference, indirect adaptive controlalgorithms for a class of in�nite dimensional stochastic evolution equations have been developedby Duncan, Pasik-Duncan, and their co-workers in a recent series of papers [10], [11], [12],and [31]. Their approach involves the use of a least squares based estimator together with alinear quadratic control design. Parameter convergence together with a continuous dependenceresult (with respect to the unknown parameters) for the solutions to the operator algebraicRiccati equations yield convergence of the adaptive control law to the nonadaptive optimal LQcontroller. Also, Kobayashi in [20], [21], [22], [23], and [24] has proposed a number of directschemes based upon an input/output formulation. His approach is primarily directed towardsthe case of unknown input and/or output operators (i.e. the B and C operators) and places anumber of restrictions on the A operator (for example, that it be self-adjoint, its eigenvalues beknown, that only a �nite number of modes be unstable, etc.).In [39] and [40] a �nite dimensional approach to model reference adaptive control based uponthe so-called command generator tracker, is extended to in�nite dimensions. The commandgenerator tracker theory deals with the problem of a mis-match in the dimensionality of theplant and the reference model by assuming that there is an in�nite dimensional system that isinput/output equivalent to the reference model. The authors establish closed loop stability (androbustness properties) via a Lyapunov argument (which in in�nite dimensions must be donewith care) under a number of rather technical assumptions.In a recent e�ort by Hong and Bentsman [18] the authors consider the model referenceadaptive control of linear parabolic partial di�erential equations. Formally, and only formally,with respect to the choice of the control and parameter adaptation laws, and the argumentestablishing state error convergence, their approach and ours are the same. Of course since bothstudies involve model reference adaptive control, the desired objectives (i.e. the convergenceof the state tracking and parameter errors to zero with closed loop input and output signalsremaining, in some sense, bounded) both here and in [18] are the same. Both treatments2



assume full state measurement and distributed input. However, in all other respects, the twotreatments have nothing in common. In particular, the results in [18] apply only to plantsand reference models which are linear parabolic partial di�erential equations with Dirichletboundary conditions. Other portions of their analysis are only carried out under additionalrestrictions such as one dimensional spatial domain. On the other hand, in the present treatment,the plant and reference model are independent and must only satisfy a few relatively mildabstract assumptions. In particular, we consider general nonlinear plants and require only thatthe reference model dynamics be strongly V -coercive (in a Gelfand triple sense). In [18] theauthors make the rather restrictive assumption that the reference signal and the plant andreference model parameters are analytic. We again require only minimal abstract assumptionson the parameter and reference signal spaces. The primary reason for these di�erences is thatour approach and analysis is entirely functional analytic/abstract operator theoretic in nature,whereas in [18] the treatment has a more classical avor. In [18] the authors provide a parameterconvergence result based upon a very di�erent notion of persistence of excitation than the onewe de�ne here. They seem to establish that if the spatial gradient of the plant is zero only on aset of measure zero (their de�nition of persistence of excitation) and the state tracking error isidentically zero then the parameter error is identically zero. It is unclear to these authors why thisresult is useful and, moreover, what it has to do with the usual notion of parameter convergence.On the other hand, our de�nition of persistence of excitation for in�nite dimensional systemsis the natural extension of the analogous result for �nite dimensional systems as given in, forexample, [28], [29] and [30]. With this assumption, we are able to establish that the parameterspace norm of the parameter error tends to zero asymptotically. Hong and Bentsman alsoprovide state tracking error and parameter convergence results (exponential stability of thetrivial solution to the error equations) via an averaging technique. However, it seems thatthese results, as is also the case for our parameter convergence result, can only be applied(i.e. the requisite hypotheses checked) in very simple cases. For example, plants and referencemodels that consist of one or two dimensional heat equations with constant coe�cients. Finally,we have developed a �nite dimensional approximation theory and have established associatedconvergence results. This has not been included in [18].An outline of the remainder of the paper is as follows. In Section 2 we de�ne the plant,reference model, and estimator, we derive the closed loop system and establish well posedness.In Section 3 we establish the convergence of the tracking error to zero, we de�ne persistenceof excitation and demonstrate parameter convergence. The �nite dimensional approximationand convergence theory is discussed in Section 4, and examples and the results of our numericalstudies are presented in Section 5.2 The Model Reference Adaptive Control ProblemLet fH; h�; �i; j � jg be a Hilbert space over R, and let fV; k � kg be a reexive Banach space overR which is densely and continuously embedded in H . Then (see, for example, [26], [37], or [38])V ,! H ,! V �;with the embeddings dense and continuous where V � denotes the continuous dual of V . Letk � k� denote the usual norm on V �, and let K > 0 be such thatj'j � Kk'k; ' 2 V: (2:1)3



Let V̂ � be a subspace of V �, and let fQ; h�; �iQ; j � jQg be a real Hilbert space.For each q 2 Q, let A1(q) : V ! V � be an, in general, nonlinear operator, and for q 2 Q, letDom(A1(q)) = f' 2 V : A1(q)' 2 Hg. Also, we let A2 : V ! V � be an, in general, nonlinearoperator, and we make the following standing assumptions.(A1) (V -V �-Boundedness) There exist �1; �2 > 0 such thatjhA1(q)';  ij � �1jqjQk'kk k; ';  2 V; q 2 Q;and jhA2';  ij � �2k'kk k; ';  2 V:(A2) (Q-Linearity) For each ' 2 V , the map q ! A1(q)' from Q into V � is linear.For each q 2 Q, let A(q) : V ! V � be given byA(q)' = A1(q)'+A2'; ' 2 V: (2:2)We are interested in adaptively controlling the nonlinear plant given byDtu(t) +A(q)u(t) = f(t); a:e: t > 0; (2:3)u(0) = u0; (2:4)where q 2 Q is unknown, u0 2 H , the operator A(q) is given by (2.2) with q = q, and the controlinput f is assumed to satisfy f 2 L2(0; T ;V �) for all T > 0 with f(t) 2 V̂ �, a.e. t > 0. Weassume minimally, that the system (2.3),(2.4) is well-posed in at least some sense. That is, weassume that for su�ciently regular initial data, u0, and input, f , there exists a weak solution.More precisely, we assume that for each T > 0, and each u0 2 H and f 2 L2(0; T ;V �) su�cientlyregular, there exists a unique V -valued function u which is V �-absolutely continuous on (0; T ),u 2 C(0; T ;H)\ L2(0; T ;V ); Dtu 2 L2(0; T ;V �);and which satis�eshDtu(t); 'i+ hA(q)u(t); 'i = hf(t); 'i; ' 2 V; a:e: t > 0; (2:5)u(0) = u0: (2:6)Theorem III.2.6 in [4] provides su�cient conditions for the existence of such a solution. In-deed, we would require that the operator A(q) be hemicontinuous (i.e. lim�!0hA(q)f'+ � g�A(q)'; �i = 0, � 2 V , for any ';  2 V ), monotone (i.e. hA(q)' � A(q) ; '�  i � 0, for all';  2 V ), bounded (i.e. there exists � > 0 for which kA(q)'k� � �f1 + k'kg, for all ' 2 V )and coercive (i.e. there exist � > 0 and � 2 R for which hA(q)'; 'i � �k'k2+ �, for all ' 2 V ).We are interested in designing a model reference adaptive controller for the plant, or system,(2.3),(2.4). That is, we wish to �nd a control input f in feedback form which forces the state ofthe unknown plant, u, to track the state of a given linear reference model,hDtv(t); 'i+ hA0v(t); 'i= hg(t); 'i; ' 2 V; a:e: t > 0; (2:7)v(0) = v0; (2:8)where v0 2 H , the input reference signal g is assumed to satisfy g 2 L2(0; T ;V �), for all T > 0,with g(t) 2 V̂ �, a.e. t > 0, and the operator A0 2 L(V; V �) is assumed to satisfy the followingconditions. 4



(A3) (V -V �-Boundedness) There exists �0 > 0 such thatjhA0';  ij � �0k'kk k; ';  2 V:(A4) (V -Coercivity) There exists �0 > 0 for whichhA0'; 'i � �0k'k2; ' 2 V:(A5) (V̂ �-Range) For all q 2 Q we have R(A(q)�A0) � V̂ �.It is well known (see, for example, [26], [37], or [38]) that Assumptions (A3) and (A4) aresu�cient to conclude that the system (2.7),(2.8) admits a unique solution v satisfying v 2C(0; T ;H)\L2(0; T ;V ) with Dtv 2 L2(0; T ;V �), for all T > 0. Let D0 = Dom(A0) = f' 2 V :A0' 2 Hg. Then assumptions (A3) and (A4) also imply (see, for example, [32], [38], or [37])that the operator �A0 restricted to the subspace D0 is the in�nitesimal generator of an analyticsemigroup, fT0(t) : t � 0g, of bounded linear operators on H . It can also be shown (see [38])that the operator �A0 is the in�nitesimal generator of an analytic semigroup on V �, and thatappropriately restricted, �A0 generates an analytic semigroup on V (see [3]). Recalling (2.1),it follows that jT0(t)'j � e��0K�2tj'j; ' 2 H; (2:9)and kT0(t)'k �Me��0K�2tk'k; ' 2 V; (2:10)for some M > 0. The solution to the initial value problem (2.7),(2.8) is given byv(t) = T0(t)v0 + Z t0 T0(t� s)g(s)ds; t � 0: (2:11)The primary motivation for the inclusion of Assumption (A5) is to allow us to apply ourabstract framework to second order systems (i.e. abstract wave equations and the like). Therelevance of Assumption (A5) in this regard will become clearer when we discuss an exampleinvolving the control of a one dimensional wave equation in Section 5 below.We have the following regularity result for the reference model, (2.7),(2.8).Theorem 2.1 For the reference model given by (2.7),(2.8), we have the following results.(i) If g 2 L1(0;1;H) then v 2 L1(0;1;H).(ii) If g 2 L1(0;1;V ) and v0 2 V , then v 2 L1(0;1;V ).(iii) If g 2 L2(0;1;V �) then v 2 L1(0;1;H)\ L2(0;1;V ).(iv) If g 2 L2(0;1;H) is H�older continuous, i.e.jg(t)� g(s)j � Cjt� sj�; 0 � t; s; <1; (2:12)for some C > 0 and � 2 (0; 1], and v0 2 V , and if the operator A0 is symmetric in thesense that hA0';  i= hA0 ; 'i; ';  2 V; (2:13)then v 2 L1(0;1;V ), v(t) 2 D0, a:e: t > 0, and A0v 2 L2(0;1;H).5



Proof. Statements (i) and (ii) follow immediately from (2.9), (2.10), and (2.11). To verify(iii), for almost every t > 0 we have that12Dtjv(t)j2 = h�A0v(t) + g(t); v(t)i (2.14)� ��0kv(t)k2+ kg(t)k�kv(t)k� ��02 kv(t)k2+ 12kg(t)k2�:Integrating both sides of the estimate (2.14) from 0 to t, it follows thatjv(t)j2 + Z t0 kv(s)k2ds � jv0j2 + kgk2L2(0;1;V �); t > 0;from which the result is immediately obtained.To verify (iv), �rst note that A0 : D0 � H ! H is positive de�nite and self adjoint. Itfollows that the square root of A0, A 120 , can be de�ned with Dom(A 120 ) = V (see, for example,[38]). Moreover, for ' 2 V , k'k0 = jA 120 'j de�nes a norm on V and, by Assumptions (A3) and(A4), we have that�0k'k2 � hA0'; 'i = hA 120 ';A 120'i = k'k20 = hA0'; 'i � �0k'k2; (2:15)for all ' 2 V . Thus the two norms k � k and k � k0 on V are equivalent.The assumption of H�older continuity on g and the fact that fT0(t; q) : t � 0g, the semigroupof bounded linear operators on H generated by the operator �A0, is analytic, are su�cient toconclude that A0v(t) 2 H for almost all t > 0. It follows that v(t) 2 D0, a:e: t > 0, and from(2.7), we obtain thathDtv(t); A0v(t)i+ jA0v(t)j2 = hg(t); A0v(t)i; a:e: t > 0;and therefore that12Dtkv(t)k20 + jA0v(t)j2 � jg(t)jjA0v(t)j � 12 jg(t)j2+ 12 jA0v(t)j2; a:e: t > 0:Integrating the above estimate from 0 to t, and recalling (2.8), we �nd thatkv(t)k20 + Z t0 jA0v(s)j2ds � kv0k20 + Z t0 jg(s)j2ds � kv0k20 + kgk2L2(0;1;H) t � 0;from which the desired conclusion follows. 2For each t > 0, let e(t) = u(t)� v(t). We would like to �nd a control input, f , such thatlimt!1 je(t)j = 0; (2:16)with f remaining, in some sense, bounded (for example, bounded energy; f 2 L2(0;1;V �)). Ifthe plant (i.e. q) were known, the convergence in (2.16) could be achieved by settingf(t) = A(q)u(t)�A0u(t) + g(t); a:e: t > 0: (2:17)For then e would satisfyhDte(t); 'i+ hA0e(t); 'i = 0; ' 2 V; a:e: t > 0;6



e(0) = e0;where e0 = u0 � v0 2 H . It follows from Assumption (A4) and (2.1) thatje(t)j � e��0K�2tje0j; t � 0;and consequently that (2.16) is satis�ed. The closed loop system is given byhDtu(t); 'i+ hA0u(t); 'i = hg(t); 'i; ' 2 V; a:e: t > 0; (2:18)u(0) = u0; (2:19)Theorem 2.2 For the non-adaptive closed loop system given by (2.5), (2.6), (2.17), or equiva-lently, (2.18), (2.19), we have f(t) 2 V̂ � for a:e: t > 0, and the following results.(i) If g 2 L2(0;1;V �), then u 2 L1(0;1;H)\L2(0;1;V ) and, moreover, f 2 L2(0;1;V �).(ii) If g 2 L1(0;1;V ) and u0 2 V , then u 2 L1(0;1;V ) and f 2 L1(0;1;V �).(iii) If the operator A0 is symmetric in the sense of (2.13), u0 2 V , and g 2 L2(0;1;H) andsatis�es (2.12), then u(t) 2 D0, a:e: t > 0, u 2 L1(0;1;V ) and A0u 2 L2(0;1;H). If,in addition,(a) g 2 L1(0;1;V �), then f 2 L1(0;1;V �),or(b) for ' 2 D0, A(q)' 2 H andjA(q)'j � jA0'j; ' 2 D0;for some  > 0, then f 2 L2(0;1;H).Proof. The fact that f(t) 2 V̂ �, a:e: t > 0, follows immediately from Assumption (A5) andthe assumption that g(t) 2 V̂ �, a:e: t > 0.To establish (i), as in the proof of Theorem 2.1, for almost every t > 0, (2.18) implies that12Dtju(t)j2 = h�A0u(t) + g(t); u(t)i� ��0ku(t)k2 + kg(t)k�ku(t)k� ��02 ku(t)k2 + 12kg(t)k2�;and hence that ju(t)j2 + �0 Z t0 ku(s)k2ds � ju0j2 + kgk2L2(0;1;V �); t > 0:Consequently, u 2 L1(0;1;H)\ L2(0;1;V ). Assumptions (A1) and (A3) and the de�nitionof the control input f given in (2.17) yieldkf(t)k� � f�1jqjQ + �2 + �0gku(t)k+ kg(t)k�; a:e: t > 0; (2:20)from which it follows that f 2 L2(0;1;V �). 7



The result given in (ii) follows immediately from (2.10), the fact that (2.18) and (2.19) implythat u(t) = T0(t)u0 + Z t0 T0(t � s)g(s)ds; t � 0;and (2.20).To verify the claim in (iii), following the proof of Theorem 2.1, we �rst have that u(t) 2 D0,a:e: t > 0. Then, (2.18) yieldshDtu(t); A0u(t)i+ jA0u(t)j2 = hg(t); A0u(t)i; a:e: t > 0;and therefore that12Dtku(t)k20 + jA0u(t)j2 � jg(t)jjA0u(t)j � 12 jg(t)j2+ 12 jA0u(t)j2; a:e: t > 0: (2:21)Integrating (2.21) from 0 to t, and recalling (2.19) and (2.15), we �nd that�0ku(t)k2 + Z t0 jA0u(s)j2ds � �0ku0k2 + Z t0 jg(s)j2ds t � 0: (2:22)Clearly, the above estimate, (2.22), together with g 2 L2(0;1;H) imply that u 2 L1(0;1;V )and A0u 2 L2(0;1;H). The result given in (iii) (a) then follows immediately from (2.20), whilethe estimate jf(t)j � f + 1gjA0u(t)j+ jg(t)j; a:e: t > 0;yields the result given in (iii) (b). 2The importance of Theorem 2.2 lies in the fact that it serves as an upper bound for theresults we can hope to obtain for a corresponding adaptive scheme wherein the plant, q, isunknown and is estimated in real time.Since q is in fact unknown, we setf(t) = A(q(t))u(t)�A0u(t) + g(t); a:e: t > 0; (2:23)or hf(t); 'i = hA(q(t))u(t); 'i� hA0u(t); 'i+ hg(t); 'i; ' 2 V; a:e: t > 0; (2:24)where for each t > 0, q(t) 2 Q denotes an adaptively updated estimate for q. Once again,f(t) 2 V̂ �, a:e: t > 0 follows from Assumption (A5) and the fact that g(t) 2 V̂ �, a:e: t > 0.By analogy to the �nite dimensional case, and for the purpose of forcing an appropriate energyfunctional which will be de�ned in the next section when we consider convergence, we let theadaptation law for q be given byhDtq(t); piQ+ hA1(p)u(t); e(t)i = 0; p 2 Q; a:e: t > 0; (2:25)q(0) = q0; (2:26)where q0 2 Q, and e(t) = u(t)� v(t), t > 0. The closed loop system is then given byhDtu(t); 'i+ hA0u(t); 'i+ hA1(q � q(t))u(t); 'i= hg(t); 'i; ' 2 V; a:e: t > 0; (2:27)hDtv(t); 'i+ hA0v(t); 'i= hg(t); 'i; ' 2 V; a:e: t > 0; (2:28)hDtq(t); piQ+ hA1(p)u(t); u(t)� v(t)i = 0; p 2 Q; a:e: t > 0; (2:29)u(0) = u0; v(0) = v0; q(0) = q0: (2:30)8



We are interested in showing that the nonlinear system (2.27)-(2.30) is, at least in somesense and under some set of minimally realizable assumptions, well posed. Recalling that u(t) =e(t) + v(t), and de�ning the parameter error, r, to ber(t) = q(t)� q; t > 0; (2:31)we consider instead the equivalent problem of establishing a well posedness result for the non-linear systemhDte(t); 'i+ hA0e(t); 'i � hA1(r(t))fe(t) + v(t)g; 'i= 0; ' 2 V; a:e: t > 0; (2:32)hDtv(t); 'i+ hA0v(t); 'i= hg(t); 'i; ' 2 V; a:e: t > 0; (2:33)hDtr(t); piQ+ hA1(p)fe(t) + v(t)g; e(t)i= 0; p 2 Q; a:e: t > 0; (2:34)e(0) = e0; v(0) = v0; r(0) = r0; (2:35)where r0 = q0 � q 2 Q. In the discussion to follow, we present two approaches to demon-strating the well-posedness of the closed-loop system, (2.32)-(2.35). We will �rst demonstratethe existence of a unique strong solution using the theory of semilinear equations with analyticsemigroups. The second approach is based upon an application of an implicit function theorem.Necessarily, each of the two approaches will require its own set of additional hypotheses whichmust be satis�ed in order for there to exist a unique solution. We note that the nonlinearsystem (2.32)-(2.35) is the one we will be using to establish the tracking error and parameterconvergence in the next section. We note also that the skew-self-adjoint-like structure of thesystem (2.32)-(2.35) plays an essential role in the analysis to follow in Sections 2.1 and 2.2.2.1 An Analytic Semigroup Approach to Closed-Loop Well-PosednessLet X = H �H �Q be endowed with the inner producth('1;  1; q1); ('2;  2; q2)iX = h'1; '2i+ h 1;  2i+ hq1; q2iQ; ('i;  i; qi) 2 X; i = 1; 2;and let j � jX denote the corresponding induced norm. Thus fX; h�; �iX; j � jXg is a Hilbert space.Let Y = V � V � Q be endowed with the normk(';  ; q)kY = (k'k2 + k k2 + jqj2Q) 12 ; (';  ; q) 2 Y:Then fY; k � kY g is a reexive Banach space which is densely and continuously embedded in X .It follows that Y ,! X ,! Y �; (2:36)with the embeddings dense and continuous. For � > 0, de�ne the linear operator A� : Y ! Y �by hA�(e; v; r); ('; ; q)iY �;Y = hA0e; 'i+ hA0v;  i+ h�r; qiQ;for (e; v; r); ('; ; q) 2 Y . In the above de�nition, h�; �iY;Y � denotes the duality pairing betweenY � and Y induced by the X-inner product via the dense and continuous embeddings given in(2.36). Recalling that D0 = Dom(A0) = f' 2 V : A0' 2 Hg, for � > 0, de�ne the operatorA� : Dom(A�) � X ! X byDom(A�) = f(';  ; q)2 Y : A�(';  ; q) 2 Xg = D0 �D0 � Q;9



A�(';  ; q) = A�(';  ; q); (';  ; q) 2 Dom(A�):Note that Dom(A�) = Dom(A) is independent of � > 0, that for � > 0, �A� is the in�nitesimalgenerator of a uniformly exponentially stable analytic semigroup, fT�(t) : t � 0g, on X , Y , andY �, and that 0 2 �(�A�), the resolvent set of �A�.For ' 2 V , de�ne the operator B(') : Q! V � byhB(')q;  i= hA1(q)';  i q 2 Q;  2 V: (2:37)Assumptions (A1) and (A2) imply that for ' 2 V , B(') 2 L(Q; V �) with kB(')k � �1k'k.Recalling that V was assumed to be reexive, and that Q is a Hilbert space, for ' 2 V , letB(')0 2 L(V;Q) denote the Banach space adjoint of B('). That is, for ' 2 V , we havehB(')0 ; qiQ = hB(')q;  i= hA1(q)';  i;  2 V; q 2 Q: (2:38)For � > 0, de�ne G� : R+ � Y ! Y � byhG�(t;�);	iY �;Y = hB(e+ v)r; 'i+ hg(t);  i+ h�r� B(e+ v)0e; qiQ;where t � 0, � = (e; v; r) 2 Y and 	 = (';  ; q) 2 Y .We consider the system (2.32)-(2.35) written ashDtx(t);�iY �;Y + hA�x(t);�iY �;Y = hG�(t; x(t));�iY �;Y ; � 2 Y; a:e: t > 0; (2:39)x(0) = x0; (2:40)where � > 0, and for each t � 0, x(t) = (e(t); v(t); r(t)). Under appropriate additional as-sumptions on the input reference signal, g, the initial data, e0, v0, and r0, and the plant (i.e.the operator A1(q), for q 2 Q) we establish the existence of a unique solution to the system(2.39),(2.40) by �rst establishing the existence of a unique local strong solution to the initialvalue problem in X given byDtx(t) + A�x(t) = G�(t; x(t)); a:e: t > 0; (2:41)x(0) = x0; (2:42)and then showing that it is possible to continue this solution for all t > 0. By a strong (orclassical) solution on the interval [0; T ) to the initial value problem (2.41),(2.42) we mean afunction x : [0; T ) ! X which is continuous on [0; T ), continuously di�erentiable on (0; T ),x(t) 2 Dom(A) = Dom(A�) for t 2 (0; T ), (2.41) is satis�ed for t 2 (0; T ), and (2.42) issatis�ed.To establish that the initial value problem (2.41),(2.42) is well posed, we require the followingadditional assumptions.(A6) (q-Independent Domain) The subset of V , D1 = Dom(A1(q)) is independent of q 2 Q andfor some � 2 (0; 1), Dom(A�0 ) � D1.(A7) (A�0 -Boundedness) There exist �1 > 0 such that for � as in Assumption (A6), we havejA1(q)'j � �1jqjQjA�0'j; q 2 Q; ' 2 Dom(A�0 ); (2:43)(A8) (A�0 -Lipschitz) There exist 1 > 0 such that for � as in Assumption (A6), we havejA1(q)'� A1(q) j � 1jqjQjA�0'�A�0 j; q 2 Q; ';  2 Dom(A�0 ); (2:44)10



(A9) (H�older Continuity) For t � 0, g(t) 2 H , and there exists � 2 (0; 1] and � > 0 such thatjg(t)� g(s)j � �jt� sj� ; t; s � 0: (2:45)Note that Assumptions (A3) and (A4) are su�cient for fractional powers of the operator A0to be well de�ned (see, for example, [32]).Theorem 2.3 Suppose that Assumptions (A1)� (A9) hold, and that e0; v0 2 Dom(A�0 ), where� 2 (0; 1) is as in Assumption (A6). Then there exists a T = T (x0) > 0 such that the initialvalue problem (2.41), (2.42) has a unique local solution x 2 C([0; T );X)\ C1((0; T );X).Proof. For � 2 (0; 1), the linear operator A�0 is closed and invertible with domain, Dom(A�0 ),dense in H . For the � in Assumption (A6), let H� denote the space Dom(A�0 ) endowed withthe graph norm, k � k�, corresponding to A�0 . That is, for ' 2 Dom(A�0 ), k'k� = j'j+ jA�0'j.Note that since A�0 is closed, H� is a Banach space, and since A�0 is invertible, the norm k � k�is equivalent to the norm j � j� on Dom(A�0 ) given by j'j� = jA�0'j, for ' 2 Dom(A�0 ). De�nethe Banach space fX�; j � jX�g by X� = H� �H� � Q with j�jX� = j'1j� + j'2j� + j'3jQ, for� = ('1; '2; '3) 2 X�.The theorem will follow at once from Theorem 6.3.1 in [32] once we have established thatfor some � > 0 and any neighborhood, U � X�, of x0, U = fx 2 X� : jx � x0jX� < "g, thereexists a constant L = L(U; �) = L("; x0; �) > 0, such thatjG�(t;�)� G�(s;	)jX (2.46)� Lfjt� sj� + jA�0'1 �A�0 1j+ jA�0'2 �A�0 2j+ j'3 �  3jQg;= Lfjt� sj� + j'1 �  1j� + j'2 �  2j� + j'3 �  3jQg; t; s > 0;for all � = ('1; '2; '3);	 = ( 1;  2;  3) 2 U . Let � > 0 and � = ('1; '2; '3);	 = ( 1;  2;  3) 2U , and consider for t; s > 0,jG�(t;�)� G�(s;	)j2X = jB('1 + '2)'3 �B( 1 +  2) 3j2+ (2.47)jg(t)� g(s)j2 + j�f'3 �  3g � fB('1 + '2)0'1 � B( 1 +  2)0 1gj2Q:Now, Assumptions (A7) and (A8) imply thatjB('1 + '2)'3 � B( 1 +  2) 3j (2.48)� jB('1 + '2)'3 � B('1 + '2) 3j+ jB('1 + '2) 3 �B( 1 +  2) 3j� �1j'3 �  3jQfjA�0'1j+ jA�0'2jg+ 1j 3jQfjA�0'1 �A�0 1j+ jA�0'2 � A�0 2jg= �1j'3 �  3jQfj'1j� + j'2j�g+ 1j 3jQfj'1 �  1j� + j'2 �  2j�g:Assumption (A9) implies thatjg(t)� g(s)j � �jt� sj� ; t; s � 0; (2:49)for some � > 0. Finally, using Assumptions (A7) and (A8), we obtainj�f'3�  3g � fB('1 + '2)0'1 �B( 1 +  2)0 1gjQ (2.50)� �j'3 �  3jQ + supjqjQ�1 jhfB('1 + '2)0'1 �B( 1 +  2)0 1g; qiQj11



= �j'3 �  3jQ + supjqjQ�1 jhA1(q)f'1+ '2g; '1i � hA1(q)f 1 +  2g;  1ij� �j'3 �  3jQ + supjqjQ�1 jhA1(q)f'1+ '2g � A1(q)f 1 +  2g; '1ij+ supjqjQ�1 jhA1(q)f 1+  2g; '1 �  1ij� �j'3 �  3jQ + supjqjQ�1 jA1(q)f'1 + '2g � A1(q)f 1+  2gjj'1j+ supjqjQ�1 jA1(q)f 1 +  2gjj'1 �  1j� �j'3 �  3jQ + 1j'1jfjA�0'1 �A�0 1j+ jA�0'2 �A�0 2jg+�1fjA�0 1j+ jA�0 2jgj'1�  1j� �j'3 �  3jQ + 1��j'1j�fj'1 �  1j� + j'2 �  2j�g+�1��fj 1j� + j 2j�gj'1 �  1j�;where �� is such that j'j � k'k� � ��j'j�, for ' 2 H�. Combining (2.47)-(2.50), we obtain(2.46), and the theorem is proved. 2In order to extend the local solution guaranteed to exist in Theorem 2.3 we require theestimate given in the following lemma.Lemma 2.4 Let x = (e; v; r) be the unique solution to the initial value problem (2.41),(2.42)guaranteed to exist on the interval [0; T ) by Theorem 2.3. It then follows thatjx(t)j2X + �0 Z t0 nke(s)k2 + kv(s)k2ods � jx0j2X + 1�0 Z t0 kg(s)k2�ds; 0 � t < T: (2:51)Proof. For s 2 [0; T ), using (2.41), we obtain12Dtjx(s)j2X = hDtx(s); x(s)iX (2.52)= �hA�x(s); x(s)iX + hG�(s; x(s)); x(s)iX= �hA0e(s); e(s)i � hA0v(s); v(s)i+ hg(s); v(s)i� ��0ke(s)k2 � �0kv(s)k2 + kg(s)k�kv(s)k� ��02 nke(s)k2 + kv(s)k2o+ 12�0kg(s)k2�:Integrating both sides of (2.52) from 0 to t, and using (2.42), we obtain (2.51), and the lemmais proved. 2Note that the proof of Lemma 2.4 given above does not explicitly require that the additionalassumptions (A6)-(A9) be satis�ed.Theorem 2.5 Suppose that Assumptions (A1)-(A9) hold, and that e0; v0 2 Dom(A�0 ), where� 2 (0; 1) is as in Assumption (A6). Then the initial value problem (2.41),(2.42) has a uniquesolution, x = (e; v; r), which exists for all t � 0.Proof. The local solution, x, to the initial value problem (2.41),(2.42) guaranteed to exist byTheorem 2.3 can be continued so long as jx(t)jX� remains bounded. We show that this is in factthe case by using Lemma 2.4 to argue that jx(t)jX� remains bounded as t " T .12



For t 2 [0; T ) we have thatx(t) = T�(t)x0 + Z t0 T�(t� s)G�(s; x(s))ds;and therefore that A��x(t) = A��T�(t)x0 + Z t0 A��T�(t� s)G�(s; x(s))ds:Equivalently, we haveA�0 e(t) = A�0T0(t)e0 + Z t0 A�0T0(t� s)B(e(s) + v(s))r(s)ds;A�0 v(t) = A�0T0(t)v0 + Z t0 A�0T0(t� s)g(s)ds;and ��r(t) = ��e��tr0 + Z t0 ��e��(t�s)f�r(s)�B(e(s) + v(s))0e(s)gds:It follows from Assumptions (A7) and (A9), (2.9), and Theorem 2.6.13 in [32] thatje(t)j� � e��0K�2tje0j� + Z t0 M�(t� s)��e��0K�2(t�s)�1jr(s)jQfje(s)j�+ jv(s)j�gds� je0j� +M��1 Z t0 (t� s)��jr(s)jQjx(s)jX�ds; (2.53)jv(t)j� � e��0K�2tjv0j� + Z t0 M�(t� s)��e��0K�2(t�s)jg(s)jds (2.54)� e��0K�2tjv0j� + Z t0 M�(t� s)��e��0K�2(t�s)fjg(0)j+ jg(s)� g(0)jgds� jv0j� +M� Z t0 (t � s)��fjg(0)j+ �s�ds� jv0j� +M�fjg(0)j+ �T �gT 1��1� �;and jr(t)jQ � jr0jQ + Z t0 e��(t�s)f�jr(s)jQ+ jB(e(s) + v(s))0e(s)jQgds (2.55)� jr0jQ + Z t0 f�jr(s)jQ+ supjqjQ�1 jhA1(q)fe(s) + v(s)g; e(s)ijgds� jr0jQ + Z t0 f�jr(s)jQ+ �1je(s)jfjA�0e(s)j+ jA�0v(s)jgds� jr0jQ + Z t0 f�jr(s)jQ+ �1je(s)jfje(s)j�+ jv(s)j�gds� jr0jQ + T� Z t0 maxf�; �1je(s)jg(t� s)��jx(s)jX�ds;13



whereM� is a positive constant. Now Lemma 2.4 implies that for s 2 [0; T ), jx(s)jX is bounded.It follows that s 2 [0; T ), je(s)j and jr(s)jQ are bounded. Combining (2.53), (2.54), and (2.55),we obtain jx(t)jX� � jx0jX� +M�fjg(0)j+ �T �gT 1��1� � + C Z t0 (t� s)��jx(s)jX�ds; (2:56)where C > 0. It follows from Theorem 5.6.7 in [32] that jx(t)jX� � C1 on [0; T ) for some C1 > 0,and the theorem is proved. 2Theorem 2.5 yields the following regularity result for the controller f . We state it as aCorollary.Corollary 2.6 Suppose that Assumptions (A1)-(A9) hold, and that e0; v0 2 Dom(A�0 ), where� 2 (0; 1) is as in Assumption (A6). If the operator A2 is such that D2 = Dom(A2) = f' 2V : A2' 2 Hg � Dom(A�0 ), where � 2 (0; 1) is as in Assumption (A6), and satis�es a Lipschitzcondition of the form jA2'�A2 j � 2j'�  j�; ; ';  2 Dom(A�0 ); (2:57)then the control law given in (2.23) or (2.24) satis�es f(t) 2 H, t > 0, and f 2 C((0;1);H).Proof. For t > 0, the controller, f , satis�esf(t) = A(q(t))u(t)� A0u(t) + g(t) = Dtu(t) +A(q)u(t): (2:58)Theorem 2.5 implies that u(t) 2 Dom(A0), t > 0. It follows, therefore, that u(t) 2 Dom(A�0 ),t > 0, and therefore that u(t) 2 Dj , j = 1; 2, t > 0. Consequently, A(q)u(t) 2 H , t > 0, andhence, f(t) 2 H , t > 0. Theorem 2.5 also implies that Dtu 2 C((0;1);H), and for s; t > 0,Assumption (A8) together with (2.57) imply thatjA(q)u(t)�A(q)u(s)j � jA1(q)u(t)�A1(q)u(s)j+ jA2u(t)�A2u(s)j� f1jqjQ + 2gju(t)� u(s)j�:Inspection of the proof of Theorem 6.3.1 in [32] immediately reveals that u is continuous in H�.It follows from (2.58) and (2.59) that f 2 C((0;1);H), which establishes the corollary.2We provide a simple example which satis�es Assumptions (A1) - (A9). Let H = L2(0; 1),and let it be endowed with the standard inner product, h�; �i, and corresponding induced norm,j � j. Let V = H1L(0; 1) = f' 2 H1(0; 1) : '(0) = 0g, and let it be endowed with the norm k � kgiven by k'k = �Z 10 jD'(x)j2dx�12 ; ' 2 H1L(0; 1):Then fV; k � kg is a reexive Banach space, and in fact, a Hilbert space, which is densely andcontinuously embedded in H . We have j'j � k'k, ' 2 H1L(0; 1). Let V̂ � = V �, and let Q = R1with jqjQ = jqj, for q 2 R. We are interested in controlling the �rst order plant given by@u@t (t; x) + q @u@x(t; x) = f(t; x); 0 < x < 1; t > 0; (2:59)together with the boundary conditionu(t; 0) = 0; t > 0; (2:60)14



and initial condition u(0; x) = u0(x); 0 � x � 1; (2:61)where q > 0, u0 2 L2(0; 1), and t! f(t; �) 2 L2(0; T ;H), for each T > 0.For each q 2 R1, let the operator A1(q) : Dom(A1(q)) � H ! H be given byA1(q)' = qD'; ' 2 D1;where D1 = Dom(A1(q)) = V . For each q 2 Q, let A(q) = A1(q). It follows that A2 is the zerooperator, that D1 is independent of q 2 Q, and that A1(q) : V ! V �. Moreover, for q 2 Q, and';  2 V , we have thatjhA1(q)';  ij= jqjQj Z 10 D'(x) (x)dxj � jqjQjD'jj j= jqjQk'kj j � jqjQk'kk k:Consequently Assumption (A1) is satis�ed with �1 = 1. Assumption (A2) is trivially satis�ed.It is not di�cult to show that the Hilbert space adjoint of the operator A1(q) is given byA1(q)�' = �qD'; ' 2 D�1;where D�1 = Dom(A1(q)�) = H1R(0; 1) = f' 2 H1(0; 1) : '(1) = 0g. For ' 2 H1L(0; 1), we havethat hA1(q)'; 'i = q Z 10 D'(x)'(x)dx = q2 Z 10 D'(x)2dx = q2'(1)2 � 0; (2:62)and for ' 2 H1R(0; 1), thathA1(q)�'; 'i = �q Z 10 D'(x)'(x)dx= �q2 Z 10 D'(x)2dx = q2'(0)2 � 0:It follows that (see, for example, [25], Theorem I.4.5) the operator �A1(q) is maximal dissipativeand therefore that it is the in�nitesimal generator of a C0-semigroup of bounded linear operators(in fact, contractions), fS(t; q) : t � 0g, on H = L2(0; 1). For each t � 0, the unique mildsolution, u(t) = u(t; �) to the system (2.59)-(2.61) is given byu(t) = S(t; q)u0 + Z t0 S(t� s; q)f(s)ds; (2:63)where for each t � 0, f(t) = f(t; �) 2 L2(0; 1). When u0 2 H1L(0; 1), and f is strongly continu-ously di�erentiable for t � 0, the function u given by (2.63) is a strong solution. Such a solutioncertainly satis�es our minimal well-posedness requirement on the plant.For the reference model, we consider the one dimensional heat equation given by@v@t (t; x)� a0 @2v@x2 (t; x) = g(t; x) 0 < x < 1; t > 0;together with the boundary conditionsv(t; 0) = 0; and @v@x(t; 1) = 0; t > 0;and the initial conditions v(0; x) = v0(x); 0 � x � 1;15



where a0 > 0, v0 2 L2(0; 1), and t ! g(t; �) 2 L2(0; T ;V �), for each T > 0. In this case we haveA0 2 L(V; V �) given byhA0';  i= a0 Z 10 D'(x)D (x)dx; ';  2 H1L(0; 1):It is immediately clear that Assumptions (A3) and (A4) are satis�ed with �0 = �0 = a0.Moreover, we have D0 = Dom(A0) = f' 2 H1L(0; 1) : ' 2 H2(0; 1); D'(1) = 0g, and that A0 asan operator from V into V � is symmetric, or as an operator on H is self-adjoint. Assumption(A5) is trivially satis�ed with the choice of V̂ � = V �.Since A0 is symmetric, V = Dom(A 120 ) (see [38]). Consequently, we have Dom(A 120 ) = V =Dom(A1(q)) = D1. It follows that Assumption (A6) is satis�ed with � = 12 . Moreover, for' 2 H1L(0; 1) = V , we have thatjA1(q)'j2 = jqD'j2 = jqj2QjD'j2 = jqj2Qk'k2= jqj2Q 1a0 hA0'; 'i = 1a0 jqj2QhA 120 ';A 120'i = 1a0 jqj2QjA 120 j2:It follows that Assumptions (A7) and (A8) are satis�ed with �1 = 1 = 1pa0 . Thus, if u0; v0 2H1L(0; 1), and g is su�ciently regular (i.e. Assumption (A9) being satis�ed), then the resultingclosed-loop system will be well-posed.2.2 Closed-Loop Well-Posedness via an Implicit Function TheoremAssumptions (A6)-(A9) can be rather restrictive and may preclude the consideration of certainclasses of problems of interest. In particular, Assumption (A7) does not include the class ofproblems in which the plant and reference model dynamics are of the same order (i.e. � 2 (0; 1)).Thus, for example the above theory does not allow for both a plant and reference model describedby a di�usion (or heat) equation. To remedy this, we propose a somewhat di�erent approach todemonstrating the well-posedness of the closed loop system, (2.27)-(2.7). Our argument is basedupon an application of the Implicit Function Theorem (see, for example, [9]). Of course thisapproach requires additional assumptions as well. Indeed, in this case, we can only guaranteewell-posedness for initial data which is su�ciently small in norm. That is, the plant mustinitially be close to the reference model, and we require a reasonably good initial guess for theunknown parameters. Also, to simplify the presentation, we make the following assumption onthe linearity of the plant.(A10) (Linearity of the Plant) For each q 2 Q, A1(q) : V ! V � is linear.Note that Assumptions (A1) and (A10) together imply that A1(q) 2 L(V; V �), for each q 2Q. We note that Assumption (A10) can be weakened quite a bit to allow for certain classesof nonlinear plants. However, the required technical assumptions would only complicate theexposition without signi�cantly a�ecting its substance. Consequently, we opt for clarity, andleave the generalization to the reader.We also require the following regularity assumption on the state, v, of the reference model,(2.7), (2.8).(A11) (Regularity of the Reference Model) The solution v to the system (2.7), (2.8) satis�esv 2 L2(0;1;V ):16



Theorem 2.1 (ii) provides su�cient conditions for Assumption (A11) to be satis�ed.We consider v to be an exogenous signal, and consider the initial value problem given byhDte(t); 'i+ hA0e(t); 'i � hA1(r(t))fe(t) + v(t)g; 'i= 0; ' 2 V; a:e: t > 0; (2:64)hDtr(t); piQ+ hA1(p)fe(t) + v(t)g; e(t)i= 0; p 2 Q; a:e: t > 0; (2:65)e(0) = e0; r(0) = r0; (2:66)Theorem 2.7 Suppose that Assumptions (A1)-(A5) and Assumptions (A10) and (A11) hold.Suppose further that e0 2 V . Then there exists a constant C > 0 such that ifke0k+ jr0jQ < C; (2:67)then the initial value problem (2.64)-(2.66) has a unique solution (e; r) with e 2 L2(0;1;V ) \H1(0;1;V �) and r 2 L1(0;1;Q)\W 1;1(0;1;Q).Proof. The proof follows from an application of the Implicit Function Theorem (see, forexample, [9]). We begin with the de�nition of the following Banach spaces. LetX = V �Qwith norm k('; q)kX = k'k+ jqjQ; ' 2 V; q 2 Q; (2:68)let Y = nL2(0;1;V ) \H1L(0;1;V �)o� nL1(0;1;Q)\W 1;1L (0;1;Q)owith normk('; q)kY = �Z 10 k'(t)k2dt� 12 + �Z 10 kDt'(t)k2�dt� 12 + ess supt2R+ jq(t)jQ + Z 10 jDtq(t)jQdt;(2:69)for ' 2 L2(0;1;V ) \H1L(0;1;V �) and q 2 L1(0;1;Q)\W 1;1L (0;1;Q), and letZ = L2(0;1;V �)� L1(0;1;Q);with norm k('; q)kZ = �Z 10 k'(t)k2�dt� 12 + Z 10 jq(t)jQdt; (2:70)for ' 2 L2(0;1;V �) and q 2 L1(0;1;Q). The subscript L in the above spaces denotes homo-geneous boundary conditions at the left endpoint of the interval.De�ne the function F : X � Y ! Z byF(x; y) = (F1(x; y);F2(x; y)) ; x = (x1; x2) 2 X; y = (y1; y2) 2 Y;where F1 : X � Y ! L2(0;1;V �) is given byF1(x; y) = Dty1+A0 fy1 + x1g�B(y1+x1+v) fy2 + x2g ; x = (x1; x2) 2 X; y = (y1; y2) 2 Y;and F2 : X � Y ! L1(0;1;Q) is given byF2(x; y) = Dty2 +B(y1 + x1 + v)0 fy1 + x1g ; x = (x1; x2) 2 X; y = (y1; y2) 2 Y;17



where for ' 2 V , the operator B(') 2 L(Q; V �) and its Banach space adjoint, B(')0 2 L(V;Q)are given in (2.37) and (2.38), respectively.The hypotheses of the theorem clearly imply that F(0; 0) = 0, and that F 2 C(X � Y; Z);that is, F is a continuous mapping from X � Y into Z. We show next that DyF(0; 0) =(DyF1(0; 0); DyF2(0; 0)) is a linear homeomorphism of Y onto Z. We do this by demonstratingthat for each z = (z1; z2) 2 Z, z1 2 L2(0;1;V �) and z2 2 L1(0;1;Q), there exist a uniquey = (y1; y2) 2 Y , y1 2 L2(0;1;V ) \ H1L(0;1;V �) and y2 2 L1(0;1;Q) \ W 1;1L (0;1;Q)satisfying the linear initial value problemDty1 +A0y1 �B(v)y2 = z1 t > 0; (2:71)Dty2 + B(v)0y1 = z2; t > 0; (2:72)y1(0) = 0 and y2(0) = 0; (2:73)and by providing estimates which establish the continuous dependence of y on z. If we assumethat V is separable, then the argument establishing the existence of a unique solution to thesystem (2.71)-(2.73) is the same as the one used to prove Theorem III.1.2 in [26]. Galerkinapproximation is used to de�ne a sequence of �nite dimensional initial value problems whichapproximate the system (2.71)-(2.73). Of course each of the �nite dimensional systems admitsa unique solution, yn = (yn1 ; yn2 ). One then argues that these approximating solutions lie in abounded subset of Y , that yn ! y, weakly in Y , and that y is the unique solution to the initialvalue problem (2.71)-(2.73). The key step in the proof depends upon the estimate for kykY interms of kzkZ which we now derive. This estimate, which is given in (2.78) below, establishesthe continuous dependence of y on z as well.Taking the inner product of (2.71) with y1 and (2.72) with y2, and then adding, we obtain12 nDtjy1j2 + jy2j2Qo+ hA0y1; y1i = hz1; y1i+ hz2; y2iQ:For any " > 0, Assumption (A4) implies that12 nDtjy1j2 + jy2j2Qo+ �0ky1k2 (2.74)� kz1k�ky1k+ jz2jQjy2jQ� 12"kz1k2� + "2ky1k2 + 12 jz2jQ n1 + jy2j2Qo :Choosing " < 2�0, setting c0 = 2�0 � " > 0 and c1 = 1=", integrating (2.74) from 0 to t, andrecalling (2.73), we obtainjy1(t)j2 + jy2(t)j2Q + c0 Z t0 ky1(s)k2ds� c1 Z t0 kz1(s)k2�ds+ Z t0 jz2(s)jQds+ Z t0 jz2(s)jQjy2(s)j2Qds� c1kzk2Z + kzkZ + Z t0 jz2(s)jQjy2(s)j2QdsAn application of the Generalized Gronwall inequality (see [14]) yieldsjy1(t)j2 + jy2(t)j2Q + c0 Z t0 ky1(s)k2ds (2.75)18



� nc1kzk2Z + kzkZo�1 + Z t0 jz2(s)jQeR ts jz2(�)jQd�ds�� nc1kzk2Z + kzkZon1 + kzkZekzkZo ; t � 0:Equation (2.71) and Assumptions (A1), (A3), and (A11) yieldkDty1(t)k� � kz1(t)k� + �0ky1(t)k+ �1kv(t)kjy2(t)jQ; a:e: t > 0:Consequently there exists a constant c2 = c2(kvkL2(0;1;V )) > 0 such thatky1k2H1L(0;1;V �) � c2 nkz1k2L2(0;1;V �) + ky1k2L2(0;1;V ) + jy2j2L1(0;1;Q)o : (2:76)Similarly, (2.72) yieldsjDty2(t)jQ � jz2(t)jQ + �1kv(t)kky1(t)k; a:e: t > 0;and therefore thatkDty2kL1(0;1;Q) � kz2kL1(0;1;Q) + �1kvkL2(0;1;V )ky1kL2(0;1;V ): (2:77)Combining (2.75), (2.76), and (2.77), we obtain thatkykY � h(kzkZ); (2:78)where h : R+ ! R+ is continuous and monotone increasing.The following estimates for the dependence on z on y can also be obtained. Once again,(2.71) and Assumptions (A1), (A3), and (A11) imply thatkz1(t)k� � kDty1(t)k� + �0ky1(t)k+ �1kv(t)kjy2(t)jQ; a:e: t > 0;and therefore, thatkz1k2L2(0;1;V �) � c2 nky1k2H1L(0;1;V �) + ky1k2L2(0;1;V ) + jy2j2L1(0;1;Q)o : (2:79)Also (2.72) yields jz2(t)jQ � jDty2(t)jQ + �1kv(t)kky1(t)k; a:e: t > 0;and therefore thatkz2kL1(0;1;Q) � kDty2kL1(0;1;Q) + �1kvkL2(0;1;V )ky1kL2(0;1;V ): (2:80)Combining (2.79) and (2.80), we obtain thatkzkZ � h0kykY ;where h0 > 0.It follows from the Implicit Function Theorem that there exists a C > 0, such that if x0 =(e0; r0) 2 X satis�es (2.67), then there exists a unique y = y(x0) = (y1(x0); y2(x0)) 2 Y , whichis continuously di�erentiable in x0 and which satis�es F(x0; y) = (F1(x0; y);F2(x0; y)) = 0.Setting e = y1 + e0 and r = y2 + r0, we obtain the desired result.2Under additional hypotheses a similar approach can used to obtain a somewhat strongerresult providing L1 estimates. 19



Theorem 2.8 Suppose that Assumptions (A1)-(A5) and Assumption (A10) are satis�ed. Sup-pose further that(i) D1 = Dom(A1(q)) is independent of q 2 Q, D1 � D0, and there exists 0 > 0 for whichjA1(q)'j � 0jqjQjA0'j, q 2 Q, and ' 2 D1,(ii) A0 is symmetric (A0 : D0 � H ! H is self adjoint),(iii) v 2 L1(0;1;V ), v(t) 2 D0, a:e: t > 0, A0v 2 L2(0;1;H), and(iv) e0 2 D0.Then there exists a constant C > 0 such that ifjA0e0j+ jr0jQ < C;then the initial value problem (2.64)-(2.66) has a unique solution (e; r) with e 2 L1(0;1;V ) \H1(0;1;H) and r 2 L1(0;1;Q) \ W 1;1(0;1;Q). Moreover, e(t) 2 D0, a:e: t > 0, andA0e 2 L2(0;1;H).Proof. Let D0 be endowed with the graph norm. Then the proof is completely analogous tothe one given above for Theorem 2.7 based upon the Implicit Function Theorem. However inthis case, we take the Banach spaces X , Y , and Z to beX = D0 �Q;Y = nL2(0;1;D0) \H1L(0;1;H)o� nL1(0;1;Q)\W 1;1L (0;1;Q)o ;and Z = L2(0;1;H)� L1(0;1;Q);respectively. The norms on these spaces are chosen analogously to (2.68), (2.69), and (2.70).2We note that conditions su�cient to guarantee that hypothesis (iii) in the statement ofTheorem 2.8 above holds, are given in Theorem 2.1 (iv).As an example of the kinds of systems to which the theory in this section applies, let 
 � Rnbe a bounded domain. Let H = L2(
), V = H10(
), and let Q be a closed subspace ofHs(
)n2 �Hs(
)n�Hs(
) with s > n=2. Let V̂ � = V � = H�1(
). Let A0 2 L(V; V �) be givenby A0' = � nXi;j=1Dj fai;jDi'g+ nXi=1 biDi'+ c'; ' 2 V;where ai;j 2 L1(
), ai;j(x) = aj;i(x), a:e: x 2 
, i; j = 1; 2; : : : ; n,�0j�j2 � nXi;j=1 ai;j(x)�i�j � �1j�j2; � 2 Rn; a:e: x 2 
;for some constants �0; �1 > 0, bi 2 W 1;n2 (
), i = 1; 2; : : : ; n withnXi=1Dibi(x) � 0; a:e: x 2 
;and c 2 Ln2 (
) with c(x) � 0, a:e: x 2 
. 20



For q = (fqi;jg; fqig; q0) 2 Q, let A1(q) 2 L(V; V �) be given byA1(q)' = � nXi;j=1Dj fqi;jDi'g+ nXi=1 qiDi'+ q0'; ' 2 V:Note that these are not the most general conditions possible to guarantee that Assumptions(A1)-(A5) hold for the general class of second order elliptic plants and reference models.3 Tracking and Parameter Error ConvergenceIn this section we argue that the control objective is achieved (i.e. that the tracking error,e(t), converges to zero as t! 1 and that the feedback control, f , is, in some sense, bounded),and that under an additional richness condition on the reference model, parameter convergenceis obtained (i.e. that q(t) ! q as t ! 1). We require that our standing assumptions (A1)-(A5) continue to hold, and that the error equations, (2.32)-(2.35), admit a unique solution(e; v; r), with e; v 2 L2(0; T ;V ) \ C([0; T ];H), Dte;Dtv 2 L2(0; T ;V �), r 2 C([0; T ];Q), andDtr 2 L2(0; T ;Q), for all T > 0.De�ne E : [0;1)! R+ byE(t) = 12fje(t)j2 + jr(t)j2Qg; t � 0: (3:1)Lemma 3.1 For (e; v; r) the solution to the initial value problem (2.32)-(2.35), the functionE : [0;1)! R+ given by (3.1) is non-increasing, and we have thatE(t) + �0 Z t0 ke(s)k2ds � �0; t � 0; (3:2)where �0 = E(0) = 12fje0j2 + jr0j2Qg.Proof. Using (2.32), (2.34), and Assumption (A4), we obtainDtE(t) = hDte(t); e(t)i+ hDtr(t); r(t)iQ (3.3)= �hA0e(t); e(t)i� ��0ke(t)k2; a:e: t > 0:The estimate in (3.3) implies that E is non-increasing. Integrating this expression from 0 to t,t > 0, we obtain the result given in (3.2). 2The above lemma yields the following immediate corollary.Corollary 3.2 For (e; v; r) the solution to the initial value problem (2.32)-(2.35), we have e 2L1(0;1;H)\ L2(0;1;V ) and r 2 L1(0;1;Q).Lemma 3.3 Let (e; v; r) be the solution to the initial value problem (2.32)-(2.35). Then, ifg 2 L1(0;1;H), it follows thatZ t2t1 kv(t)k2dt � c1 + c2(t2 � t1);for all t2 � t1 � 0, where c1 and c2 are positive constants which do not depend on t1 and t2.21



Proof. It follows from (2.9) and (2.11) that if g 2 L1(0;1;H) then v 2 L1(0;1;H). Then,integrating (2.14) from t1 to t2, we obtainjv(t2)j2 + �0 Z t2t1 kv(t)k2dt � jv(t1)j2 + Z t2t1 kg(t)k2�dt: (3:4)Recalling (2.1), it follows from (3.4) thatZ t2t1 kv(t)k2dt � 1�0 jvj2L1(0;1;H) + K�0 jgj2L1(0;1;H)(t2 � t1): 2In the theorem that follows, we establish that the desired control objective is achieved. Theproof we provide is in the spirit of the argument used to verify Barb�alat's Lemma in [33].Theorem 3.4 For (e; v; r) the solution to the initial value problem (2.32)-(2.35) and f theadaptive feedback control law given by (2.23) or (2.24), we have the following results.(i) If g 2 L2(0;1;V �) [ L1(0;1;H), then limt!1je(t)j = 0.(ii) If g 2 L2(0;1;V �), then u 2 L1(0;1;H)\ L2(0;1;V ) and f 2 L2(0;1;V �).(iii) If the operator A0 is symmetric in the sense of (2.13), u0; v0 2 V , g 2 L2(0;1;H) andsatis�es (2.12), and for ' 2 D0 and q 2 Q, we have A(q)' 2 H andjA1(q)'j � 1jqjQjA0'j;for some 1 > 0 for which 1jrjL1(0;1;Q) < 1, then u(t) 2 D0, a:e: t > 0, u 2 L1(0;1;V ),A0u 2 L2(0;1;H). If, in addition,(a) g 2 L1(0;1;V �), then f 2 L1(0;1;V �),or if, in addition,(b) for ' 2 D0 we have A2' 2 H and jA2'j � 2jA0'j, for some 2 > 0, then f 2L2(0;1;H).Proof. Let t2 � t1 � 0 and note that Assumptions (A1) and (A4), (2.32), and Lemma 3.1imply thatje(t2)j2 � je(t1)j2 = Z t2t1 ddt je(t)j2dt (3.5)= 2 Z t2t1 hDte(t); e(t)idt= �2 Z t2t1 hA0e(t); e(t)idt� 2 Z t2t1 hA1(r(t))fe(t) + v(t)g; e(t)idt� �2�0 Z t2t1 je(t)j2dt+ 2�1 Z t2t1 jr(t)jQfke(t)k+ kv(t)kgje(t)jdt� 2�1 Z t2t1 fke(t)k+ kv(t)kgE(t)dt� 2�1�0(t2 � t1) 12 �Z t2t1 fke(t)k+ kv(t)kg2dt�12� 2p2�1�0(t2 � t1) 12 �Z t2t1 ke(t)k2dt+ Z t2t1 kv(t)k2dt� 12 :22



If g 2 L2(0;1;V �), then Theorem 2.1 implies thatZ t2t1 kv(t)k2dt � �0;for some �0 > 0, for all t2 � t1 � 0. It then follows from Lemma 3.1 and (3.5) thatje(t2)j2 � je(t1)j2 � �0(t2 � t1) 12 ; (3:6)where �0 = 2p2�1�0f �0�0 + �0g 12 . On the other hand, if g 2 L1(0;1;H), then Lemma 3.1,Lemma 3.3, and (3.5) imply thatje(t2)j2 � je(t1)j2 � �1(t2 � t1) 12 + �2(t2 � t1); (3:7)where �1 = 2p2�1�0f �0�0 + c1g 12 and �2 = 2p2�1�0pc2.Now suppose that limt!1 je(t)j 6= 0. Then there exist " > 0 and a sequence ftig1i=1 withlimi!1 ti =1 for which je(ti)j2 > "; i = 1; 2; : : : : (3:8)If g 2 L2(0;1;V �), then (3.6) and (3.8) imply that for � > 0 and i = 1; 2; : : :, we haveZ titi�� je(t)j2dt = Z titi�� je(ti)j2dt� Z titi��fje(ti)j2 � je(t)j2gdt> "� � �0 Z titi��(ti � t) 12 dt= "� � 23�0� 32 :Choosing � = 9"16�20 , and replacing the sequence ftig1i=1 by a subsequence, ftijg1j=1, for whichtij+1 � tij > �, j = 1; 2; : : :, we obtainZ tijtij�� je(t)j2dt � "�2 ; j = 1; 2; : : : : (3:9)If g 2 L1(0;1;H), then (3.7) and (3.8) imply that for � > 0 and i = 1; 2; : : :, we haveZ titi�� je(t)j2dt = Z titi�� je(ti)j2dt� Z titi��fje(ti)j2 � je(t)j2gdt> "� � Z titi��f�1(ti � t) 12 + �2(ti � t)gdt= "� � 23�1� 32 � 12�2�2:Choosing � = 0@s49 ��1�2�2 + "�2 � 23 ��1�2�1A2 ;we once again obtain (3.9). But (3.9) contradicts the fact that Lemma 3.1 implies thatZ 10 je(t)j2dt � K2 Z 10 ke(t)k2dt � K2 �0�0 <1:23



Consequently, limt!1 je(t)j2 = 0, and therefore, limt!1 je(t)j = 0, which establishes (i).Corollary 3.2 above implies that e 2 L1(0;1;H) \ L2(0;1;V ), and if g 2 L2(0;1;V �),then Theorem 2.1 implies that v 2 L1(0;1;H)\ L2(0;1;V ) as well. Consequently, it followsthat u = e + v 2 L1(0;1;H)\ L2(0;1;V ). To establish that f 2 L2(0; T ;V �), we note that(2.24), Assumptions (A1) and (A3), and (2.31) imply that for a:e: t > 0kf(t)k� = supk'k�1 jhf(t); 'ij= supk'k�1 jhA(q(t))u(t)�A0u(t) + g(t); 'ij= supk'k�1 jhA1(q(t))u(t) +A2u(t)�A0u(t) + g(t); 'ij� f�1jq(t)jQ + �2 + �0gku(t)k+ kg(t)k�� f�1fjr(t)jQ + jqjQg+ �2 + �0gku(t)k+ kg(t)k�� �ku(t)k+ kg(t)k�;where � = �1fp�0 + jqjQg+ �2 + �0. It follows thatkf(t)k2� � 2�2ku(t)k2 + 2kg(t)k2�; a:e: t > 0: (3:10)The fact that g 2 L2(0;1;V �) and u 2 L2(0;1;V ) immediately yields (ii).To establish (iii), we �rst note that under the present assumptions, Theorem 2.1 impliesthat v 2 L1(0;1;V ), v(t) 2 D0, a:e: t > 0, and A0v 2 L2(0;1;H). Also, Corollary 3.2 impliesthat r 2 L1(0;1;Q). Now, recalling the de�nition of the norm k � k0 on V from Section 2,(2.32) with ' = A0e(t) implies thathDte(t); A0e(t)i+ jA0e(t)j2 = hA1(r(t))fe(t) + v(t)g; A0e(t)i; a:e: t > 0;and therefore, for any " > 0, that12Dtke(t)k20 + jA0e(t)j2 � jA1(r(t))fe(t) + v(t)gjjA0e(t)j (3.11)� 1jr(t)jQjA0e(t) + A0v(t)jjA0e(t)j� 1jrjL1(0;1;Q)jA0e(t)j2 + 1jrjL1(0;1;Q)"2 jA0e(t)j2+1jrjL1(0;1;Q) 12" jA0v(t)j2; a:e: t > 0:Integrating (3.11) from 0 to t, recalling (2.35), (2.15), and our assumption that 1jrjL1(0;1;Q) <1, and choosing " > 0 su�ciently small, we �nd that�0ke(t)k2 + �0 Z t0 jA0e(s)j2ds � �0ke0k2 + 1jrjL1(0;1;Q) 12" Z t0 jA0v(s)j2ds t � 0; (3:12)for some �0 > 0. It follows from (3.12) that e 2 L1(0;1;V ), e(t) 2 D0, a:e: t > 0, andA0e 2 L2(0;1;H). Consequently, u = e + v 2 L1(0;1;V ), u(t) 2 D0, a:e: t > 0, andA0u 2 L2(0;1;H). This, together with (3.10) establishes the claim in (a). To establish theclaim in (b), we have the estimatejf(t)j = supj'j�1 jhf(t); 'ij 24



= supj'j�1 jhA(q(t))u(t)� A0u(t) + g(t); 'ij= supj'j�1 jhA1(q(t))u(t) + A2u(t)� A0u(t) + g(t); 'ij� f1jq(t)jQ + 2 + 1gjA0u(t)j+ jg(t)j� f1fjrjL1(0;1;Q) + jqjQg+ 2 + 1gjA0u(t)j+ jg(t)j; a:e: t > 0;from which the desired result immediately follows. 2We note that the condition that 1jrjL1(0;1;Q) < 1 can be satis�ed with an appropriatechoice of the reference model dynamics, A0, the initial estimate of the unknown parameters, q0,(i.e. that it be su�ciently close to the true parameters, q, and the initial state of the referencemodel, v0, (i.e. that it be su�ciently close to the initial state of the plant, u0). The last twosu�cient conditions are a consequence of Lemma 3.1.In addition to meeting the designated control objective, it is also desirable to have an adaptivecontrol scheme provide parameter convergence as well. In order to establish that the scheme weconsider here yields convergence of the parameters, q(t), to the true parameters, q, as t ! 1,we require the following additional richness condition on the reference model.De�nition 3.5 The reference model, (2.7), (2.8), or the triple, fA0; g; v0g, consisting of thereference model dynamics operator A0, the input reference signal, g, and the initial state of thereference model, v0, will be said to be persistently exciting, or, su�ciently rich, if there existpositive constants �0, �0, and "0, such that for each p 2 Q with jpjQ = 1 and t � 0 su�cientlylarge, there exists ~t 2 [t; t+ �0] for whichk Z ~t+�0~t A1(p)u(�)d�k� � "0;where u is the closed loop state of the plant as given by the system (2.27)-(2.30).Theorem 3.6 If either g 2 L2(0;1;V �) or g 2 L1(0;1;V ) and v0 2 V , and if the referencemodel, (2.7),(2.8), is persistently exciting, then limt!1jr(t)jQ = 0.Proof. If g 2 L2(0;1;V �), then Theorem 3.4 implies that u 2 L2(0;1;V ). Corollary 3.2 im-plies that r 2 L1(0;1;Q), and Lemma 3.1 together with Theorem 3.4 imply that limt!1 jr(t)jQexists. If we assume that limt!1 jr(t)jQ 6= 0, then there exists ftkg1k=1, an increasing sequenceof positive numbers for which limk!1 tk =1 andjr(tk)jQ � �; k = 1; 2; : : : ; (3:13)for some � > 0. If the reference model, (2.7),(2.8) is persistently exciting, it then follows fromAssumption (A1) that for each k = 1; 2; : : : and some ~tk 2 [tk; tk + �0], we have0 < �"0 � jr(tk)jQk Z ~tk+�0~tk A1( r(tk)jr(tk)jQ )u(t)dtk� (3.14)= k Z ~tk+�0~tk A1(r(tk)u(t)dtk�� �1jrjL1(0;1;Q)p�0 (Z ~tk+�0~tk ku(t)k2dt) 12 : (3.15)25



Letting k! 1 in (3.14), and using the fact that u 2 L2(0;1;V ) implies thatlimk!1 Z ~tk+�0~tk ku(t)k2dt = 0;we obtain a contradiction.Now suppose that g 2 L1(0;1;V ) and v0 2 V . We �rst recall that Theorem 2.1 impliesthat v 2 L1(0;1;V ). Now, for t2 > t1, (2.32), Assumption (A3), and (2.1) imply thatk Z t2t1 A1(r(t))u(t)dtk� = k Z t2t1 A1(r(t))fe(t) + v(t)gdtk� (3.16)� ke(t2)k� + ke(t1)k� + Z t2t1 kA0e(t)k�dt� Kje(t2)j+Kje(t1)j+ �0(t2 � t1) 12 �Z t2t1 ke(t)k2dt� 12 :Also, from (2.34), Assumption (A1), and Lemma 3.1 it follows thatjr(t2)� r(t1)jQ = supjpjQ�1 jhr(t2)� r(t1); piQj (3.17)= supjpjQ�1 jhZ t2t1 Dtr(t)dt; piQj� Z t2t1 supjpjQ�1 jhA1(p)fe(t) + v(t)g; e(t)ijdt� �1 Z t2t1 fke(t)k+ kv(t)kg ke(t)kdt� �1 Z t2t1 ke(t)k2dt+ �1kvkL1(0;1;V ) Z t2t1 ke(t)kdt� �1 Z t2t1 ke(t)k2dt+ �1kvkL1(0;1;V )(t2 � t1) 12 �Z t2t1 ke(t)k2dt� 12 :Once again assume that limt!1 jr(t)jQ 6= 0, and let ftkg1k=1 be an increasing sequence ofpositive numbers for which limk!1 tk =1 and for which (3.13) holds for some � > 0. Assumefurther that the reference model, (2.7),(2.8), is persistently exciting, and for each k = 1; 2; : : :,let ~tk 2 [tk; tk + �0] be such thatk Z ~tk+�0~tk A1( r(tk)jr(tk)jQ )u(t)dtk� � "0: (3:18)Then, using (3.13), (3.16), (3.17), (3.18), and Assumptions (A1) and (A2), we obtain the estimate0 < �"0 � jr(tk)jQk Z ~tk+�0~tk A1( r(tk)jr(tk)jQ )u(t)dtk� = k Z ~tk+�0~tk A1(r(tk))u(t)dtk� (3.19)� k Z ~tk+�0~tk A1(r(t))u(t)dtk�+ k Z ~tk+�0~tk A1(r(tk)� r(t))fe(t) + v(t)gdtk�� Kje(~tk + �0)j+Kje(~tk)j+ �0p�0(Z ~tk+�0~tk ke(t)k2dt) 1226



+�1 Z ~tk+�0~tk jr(t)� r(tk)jQ fke(t)k+ kv(t)kgdt� Kje(~tk + �0)j+Kje(~tk)j+ �0p�0(Z ~tk+�0~tk ke(t)k2dt) 12+�210@Z ~tk+�0+�0~tk ke(t)k2dt+ kvkL1(0;1;V )p�0 + �0 (Z ~tk+�0+�0~tk ke(t)k2dt) 121A� Z ~tk+�0~tk fke(t)k+ kv(t)kgdt� Kje(~tk + �0)j+Kje(~tk)j+ �0p�0(Z ~tk+�0~tk ke(t)k2dt) 12+�210@Z ~tk+�0+�0~tk ke(t)k2dt+ kvkL1(0;1;V )p�0 + �0 (Z ~tk+�0+�0~tk ke(t)k2dt) 121A�0@p�0(Z ~tk+�0~tk ke(t)k2dt) 12 + �0kv(t)kL1(0;1;V )1A :Now Lemma 3.1 implies that for any L > 0limt!1 Z t+Lt ke(s)k2ds = 0:Therefore, letting k!1 in (3.19), Lemma 3.1 and Theorem 3.4 imply that0 < �"0� K limk!1 je(~tk + �0)j+K limk!1 je(~tk)j+ �0p�0 limk!1(Z tk+�0+�0tk ke(t)k2dt) 12+�210@ limk!1 Z ~tk+�0+�0~tk ke(t)k2dt+ kvkL1(0;1;V )p�0 + �0 ( limk!1 Z ~tk+�0+�0~tk ke(t)k2dt) 121A�0@p�0 ( limk!1 Z ~tk+�0~tk ke(t)k2dt) 12 + �0kv(t)kL1(0;1;V )1A= 0;which is contradiction, and the theorem is proved. 2We note that the persistence of excitation condition de�ned in De�nition 3.5 is, in practice,di�cult, if not impossible, to verify. However, this condition is analogous to a similar conditionused to establish parameter convergence in an on-line identi�cation scheme developed in [6]. In[8] a careful study and analysis of the persistence of excitation condition was carried out yieldingvaluable insight into how to recognize (based upon its performance) whether an adaptive schemesuch as the one we treat here is either over-damped (i.e. the operator �A0 is too stable) orunder-damped (i.e. the persistency of excitation is insu�cient). This information can then beused to tune the scheme (i.e. tune the reference model and reference input signal, g) so as to27



achieve a balance between the tracking error convergence (i.e. limt!1 je(t)j = 0) and parameterconvergence (i.e. limt!1 jq(t)� qjQ = limt!1 jr(t)jQ = 0). We note also that it is possible toestablish a weaker parameter convergence result in either the absence of persistence of excitation,or the presence of partial persistence of excitation. The result and its proof are analogous to thecorresponding notions in the case of a strict identi�cation scheme (see [6] and [8]).4 Finite Dimensional ApproximationThe reference model, (2.7), (2.8), and the estimator, or adaptation law for q, (2.25), (2.26), residein the memory of a computer. Moreover, they are both, in general, in�nite dimensional evolutionequations. Consequently their real-time, or on-line, integration requires some form of �nitedimensional approximation. This results in an approximating closed loop system. In this sectionwe consider the �nite dimensional approximation of the reference model and the adaptation law,and establish well-posedness and convergence results for the resulting approximating closed loopsystems.For each n = 1; 2; : : :, let Hn be a �nite dimensional subspace of H with Hn � V , andlet Qn be a �nite dimensional subspace of Q. Let Pn : H ! Hn denote the orthogonal (withrespect to the standard inner product on H) projection of H onto Hn. We then use a Galerkinapproach to approximate (2.7), (2.8) and (2.25), (2.26). For each n = 1; 2; : : :, we consider theapproximating reference model,hDtvn(t); 'ni+ hA0vn(t); 'ni = hg(t); 'ni; 'n 2 Hn; a:e: t > 0; (4:1)vn(0) = vn0 ; (4:2)where vn(t); vn0 2 Hn, and the approximating adaptation law,hDtqn(t); pniQ + hA1(pn)u(t); u(t)� vn(t)i = 0; pn 2 Qn; a:e: t > 0; (4:3)qn(0) = qn0 ; (4:4)where qn(t); qn0 2 Qn. Recalling the de�nition of the adaptive control law given in (2.23) or(2.24), for each n = 1; 2; : : :, we de�ne an approximating adaptive feedback control law, fn, byfn(t) = A(qn(t))u(t)� A0u(t) + g(t); a:e: t > 0; (4:5)or hfn(t); 'i = hA(qn(t))u(t); 'i � hA0u(t); 'i+ hg(t); 'i; ' 2 V; a:e: t > 0; (4:6)where qn is determined by the system (4.1)-(4.4). Combining (4.1)-(4.4) and either (4.5) or(4.6) together with the plant, (2.3), (2.4), or (2.5), (2.6), we obtain what we will refer to as theapproximating closed loop systemhDtun(t); 'i+ hA0un(t); 'i+ hA1(q � qn(t))un(t); 'i = hg(t); 'i; ' 2 V; a:e: t > 0; (4:7)hDtvn(t); 'ni+ hA0vn(t); 'ni = hg(t); 'ni; 'n 2 Hn; a:e: t > 0; (4:8)hDtqn(t); pniQ + hA1(pn)un(t); un(t)� vn(t)i = 0; pn 2 Qn; a:e: t > 0; (4:9)un(0) = u0; vn(0) = vn0 ; qn(0) = qn0 : (4:10)We begin by establishing a well-posedness result for the system (4.7)-(4.10). Our approach issimilar to the one taken earlier in Section 2 when we considered the well posedness of the closed28



loop system (2.27)-(2.30). We assume that Assumptions (A1)-(A9) are satis�ed, and we �rstnote that the equation for the reference model, (4.8), can be solved independently of equations(4.7) and (4.9). The solution, vn 2 C([0;1);H)\ C1((0;1);H), is given by (see, for example,[19]) vn(t) = Tn0 (t)vn0 + Z t0 Tn0 (t� s)Png(s)ds; t � 0; (4:11)fTn0 (t) : t � 0g is the uniformly exponentially stable analytic semigroup of bounded linearoperators on Hn generated by the Galerkin approximation, �An0 2 L(Hn; Hn), to the operator�A0. That is, for each n = 1; 2; : : :, An0 2 L(Hn; Hn) is the operator de�ned by An0'n =  n, for'n 2 Hn, where  n 2 Hn is the unique element in Hn satisfyinghA0'n; �ni = h n; �ni; �n 2 Hn;guaranteed to exist by the Riesz Representation Theorem. Since Hn was assumed to be �nitedimensional, we have that Tn0 (t) = exp(�An0 t) = e�An0 t; t � 0:Let X̂ = H � Q be endowed with the inner producth('; q); ( ; p)iX̂ = h';  i+ hq; piQ; ('; q); ( ; p) 2 X̂;and let j � jX̂ denote the corresponding induced norm. It follows that fX̂; h�; �iX̂; j � jX̂g is a Hilbertspace. Moreover, as was done in the proof of Theorem 2.3, for the � 2 (0; 1) in Assumption(A6), de�ne the Banach space fX̂�; j � jX̂�g by X̂� = H� � Q with j('; q)jX̂� = j'j� + jqjQ, for('; q) 2 X̂�.For � > 0 and  2 C([0;1);H) de�ne the mapping Ĝ�(�; �; ) : [0;1)� X̂� ! X̂ byĜ�(t; ('; q); ) = (g(t)�B(')fq � qg; �q� B(')0f'�  (t)g); t � 0; ('; q) 2 X̂�; (4:12)where for ' 2 V the operators B(') 2 L(Q; V �) and its Banach space adjoint B(')0 2 L(V;Q)are de�ned in (2.37) and (2.38), respectively. We note that since in the above de�nition, since' 2 H�, Assumption (A6) implies that the operator B(') in fact has range in H , and that theoperator B(')0 is well de�ned on H . Consequently the mapping Ĝ�(�; �; ) given by (4.12) aboveis well de�ned on [0;1)� X̂� with range in X̂.For � > 0, de�ne the operator Â� : Dom(Â�) � X̂ ! X̂ byDom(Â�) = D0 � Q; (4:13)Â�('; q) = (A0'; �q); ('; q) 2 Dom(Â�): (4:14)The operator �Â� is the in�nitesimal generator of a uniformly exponentially stable analyticsemigroup, fT̂�(t) : t � 0g, on X̂, and 0 2 �(�Â�).For n = 1; 2; : : :, let X̂n = H�Qn, and let PnQ : Q! Qn denote the orthogonal (with respectto the standard inner product on Q, h�; �iQ) projection of Q onto Qn. For n = 1; 2; : : :, � > 0and  2 C([0;1);H) de�ne the mapping Ĝn�(�; �; ) : [0;1)� X̂� ! X̂n byĜn�(t; ('; q); ) = (g(t)�B(')fq� qg; �PnQq�PnQB(')0f'� (t)g); t � 0; ('; q) 2 X̂�: (4:15)For n = 1; 2; : : : and t � 0, let x̂n(t) = (un(t); qn(t)) and consider the system (4.7), (4.9) and(4.10) written in the form of an initial value problem in X̂n asDtx̂n(t) + Â�x̂n(t) = Ĝn�(t; x̂n(t); vn); a:e: t > 0; (4:16)29



x̂n(0) = x̂n0 ; (4:17)where � > 0, Ĝn� is given by (4.15), Â� is given by (4.13) and (4.14), vn is given by (4.11), andx̂n0 = (u0; qn0 ) 2 X̂n.In Theorem 4.1 to follow, we establish that the initial value problem, (4.16), (4.17), has aunique local strong solution.Theorem 4.1 If u0 2 Dom(A�0 ), then for each n = 1; 2; : : :, there exists a T > 0 and a uniquefunction x̂n 2 C([0; T ); X̂) \ C1((0; T ); X̂) satisfying (4.16) and (4.17). Moreover, x̂n satis�esthe integral equationx̂n(t) = T̂�(t)x̂n0 + Z t0 T̂�(t� s)Ĝn�(s; x̂n(s); vn)ds; 0 � t < T: (4:18)Proof. For each n = 1; 2; : : :, let X̂n� = Dom(A�0 )�Qn be considered as a subspace of X̂�, andlet Ûn � X̂n� be the neighborhood of x̂n0 given by Ûn = fx̂n 2 X̂n� : jx̂n� x̂n0 jX̂� < "g. Let T > 0and � > 0 be �xed. We show that there exists a constant L̂n = L̂n("; x̂n0 ; �; T) > 0, such thatjĜn�(t; �̂n; vn)� Ĝn�(s; 	̂n; vn)jX̂ � L̂nfjt� sj� + j'�  j�+ jqn � pnjQg; (4:19)for 0 � t; s � T , and �̂n = ('; qn); 	̂n = ( ; pn) 2 Ûn. The desired result will then follow as inthe proof of Theorem 6.3.1 in [32].Let 0 � t; s � T , and let �̂n = ('; qn); 	̂n = ( ; pn) 2 Ûn. ThenjĜn�(t; �̂n; vn)� Ĝn�(s; 	̂n; vn)j2̂X (4.20)� 2jg(t)� g(s)j2 + 2jB(')fq � qng �B( )fq � pngj2+2�2jqn � pnj2Q + 2jB(')0f'� vn(t)g � B( )0f � vn(s)gj2Q:Now Assumption (A9) implies thatjg(t)� g(s)j � �jt� sj� ; t; s � 0: (4:21)Assumptions (A7) and (A8) imply thatjB(')fq � qng � B( )fq � pngj (4.22)� jB(')q �B( )qj+ jB(')qn �B(')pnj+ jB(')pn �B( )pnj� 1jqjQj'�  j�+ �1j'j�jqn � pnjQ + 1jpnjQj'�  j�:Now jB(')0f'� vn(t)g � B( )0f � vn(s)gjQ (4.23)� supjqjQ�1 jhB(')0'�B( )0 ; qiQj+ supjqjQ�1 jhB(')0vn(t)� B( )0vn(s); qiQj:Assumptions (A7) and (A8) imply thatjhB(')0'�B( )0 ; qiQj (4.24)� jhB(')0'�B(')0 ; qiQj+ jhB(')0 �B( )0 ; qiQj� ��f�1j'j� + 1j j�gj'�  j�jqjQ;30



where, recalling that the space fH�; j � j�g is densely and continuously embedded in H , �� issuch that j�j � ��j�j�, for � 2 H�. Assumptions (A7) and (A8) also imply thatjhB(')0vn(t)�B( )0vn(s); qiQj (4.25)� jhB(')0vn(t)�B(')0vn(s); qiQj+ jhB(')0vn(s)�B( )0vn(s); qiQj� �1j'j�jvn(t)� vn(s)jjqjQ+ 1jvn(s)jj'�  j�jqjQ� �1j'j�jt� sj� jqjQ + �2j'�  j�jqjQ;for some positive constants �1 and �2, where in the �nal estimate in (4.25) above, we haveapplied a regularity result for mild solutions to systems governed by analytic semigroups given inTheorem 4.3.1 in [32], and the fact that vn 2 C([0; T];H) and is therefore H-bounded uniformlyon [0; T ].Combining (4.20)-(4.25), we obtain (4.19), and the theorem is proved.2It is also possible to establish a global existence result for the solution to the system (4.16),(4.17). However to do this we require the following additional assumption.(A12) The operator A1(q) : V ! V � is monotone in the sense thathA1(q)'�A1(q) ; '�  i � 0; ';  2 V:We note that Assumption (A12) is not excessively restrictive in that monotonicity can bedemonstrated for relatively large classes of nonlinear operators. It corresponds physically tosome form of energy dissipation in the plant. In particular, we note that the operator A1(q)appearing in the example presented in Section 2.1 satis�es Assumption (A12) (see (2.62)).Theorem 4.2 Suppose that Assumptions (A1)-(A9) and (A12) hold and that u0 2 Dom(A�0 ).Then for each n = 1; 2; : : :, the initial value problem (4.16),(4.17) has a unique solution x̂n =(un; qn) which exists for all t � 0.Proof. As in the proof of Theorem 2.5, we show that for each n = 1; 2; : : :, the local solution,x̂n to the initial value problem (4.16), (4.17) shown to exist in Theorem 4.1 can be continuedby arguing that jx̂n(t)jX̂� remains bounded as t " T . For t 2 [0; T ) we havejx̂n(t)jX̂� = jun(t)j� + jqn(t)jQ:We begin by determining a bound for jqn(t)jQ as t " T . From (4.7) and (4.9), and Assump-tions (A1), (A2), (A4), and (A12), for t 2 (0; T ), and � the zero vector in V , we obtain theestimate12fDtjun(t)j2 +Dtjqn(t)j2Qg (4.26)= hDtun(t); un(t)i+ hDtqn(t); qn(t)iQ= �hA0un(t); un(t)i � hA1(q)un(t); un(t)i+ hg(t); un(t)i+ hA1(qn(t))un(t); vn(t)i= �hA0un(t); un(t)i � hA1(q)un(t)�A1(q)�; un(t)i � hA1(q)�; un(t)i+hg(t); un(t)i+ hA1(qn(t))un(t); vn(t)i� �hA0un(t); un(t)i+ jhA1(q)�; un(t)ij+ hg(t); un(t)i+ hA1(qn(t))un(t); vn(t)i� ��0kun(t)k2 + kg(t)k�kun(t)k+ �1jqn(t)jQkun(t)kkvn(t)k:31



Now vn 2 C([0; T ];H). But vn(t) 2 Hn, t 2 [0; T ], and Hn � V �nite dimensional imply thatvn 2 C([0; T ];V ), and therefore that kvn(t)k is bounded for t 2 [0; T ]. Consequently, for " > 0,(4.26) yields12fDtjun(t)j2 +Dtjqn(t)j2Qg� ��0kun(t)k2 + 12"kg(t)k2�+ "2kun(t)k2 + �n2" jqn(t)j2Q + �n"2 kun(t)k2;or 12fDtjun(t)j2 +Dtjqn(t)j2Qg+ f�0 � (1 + �n)"2gkun(t)k2 � 12"kg(t)k2�+ �n2" jqn(t)j2Q;for some �n > 0. Choosing " = "n = 2�0=(1 + �n), we obtainDtjun(t)j2 +Dtjqn(t)j2Q � �1kg(t)k2�+ �n2 jqn(t)j2Q; 0 � t < T; (4:27)for some �1; �n2 > 0. Integrating both sides of the estimate in (4.27) from 0 to t, we �nd thatfor 0 � t < T jun(t)j2 + jqn(t)j2Q (4.28)� ju0j2 + jqn0 j2Q + �1 Z t0 kg(s)k2�ds+ �n2 Z t0 jqn(s)j2Qds:Applying the generalized Gronwall inequality (see, for example, [14]) to (4.28) above, we obtainjun(t)j2 + jqn(t)j2Q � �n(t) + �n2 Z t0 e�n2 (t�s)�n(s)ds: (4.29)� (1 + �n2Te�n2T )�n(T );= �nT ; 0 � t < T;where for each n = 1; 2; : : :, �n is the monotone increasing function on [0; T ] given by�n(t) = ju0j2 + jqn0 j2Q + �1 Z t0 kg(s)k2�ds; 0 � t � T:Now for t 2 [0; T ), from (4.18) we obtainA�0un(t) = A�0T0(t)u0 + Z t0 A�0T0(t� s)fg(s)� B(un(s))fq � qn(s)ggds: (4:30)It follows from (4.30) and Assumptions (A4) and (A7), that for t 2 [0; T ), we havejun(t)j�� e��0K�2tju0j� + Z t0 M�(t� s)��e��0K�2(t�s)fjg(s)j+ �1fjqjQ + jqn(s)jQgjun(s)j�gds;for some positive constant M� (see [32]). Assumption (A9) and (4.29) then imply thatjun(t)j� (4.31)� ju0j� +M�kgkC([0;T ];H)T 1��1� � +M��1fjqjQ +q�nT g Z t0 (t � s)��jun(s)j�ds;32



for 0 � t < T . An application of Lemma 5.6.7 in [32] to the estimate given in (4.31) above, thenyields the existence of a constant, �nT > 0, for whichjun(t)j� � �nT ; 0 � t < T: (4:32)Combining (4.29) and (4.32), we obtain the desired result, and the theorem is proved.2Before we present our convergence result, we discuss some computational considerations,and in particular, the matrix representations for the �nite dimensional approximating referencemodel, (4.1), (4.2), and adaptation law, (4.3), (4.4). For each n = 1; 2; : : : let f'nj gknj=1 be a basisfor Hn and let fpnj g`nj=1 be a basis for Qn. Letvn(t) = knXj=1 ~vnj (t)'nj ; t � 0;qn(t) = `nXj=1 ~qnj (t)pnj ; t � 0: (4:33)That is, for each t � 0, let ~vn(t) 2 Rkn and ~qn(t) 2 R`n be, respectively, the vector representa-tions for vn(t) 2 Hn and qn 2 Qn with respect to the bases f'nj gknj=1 and fpnj g`nj=1. We choosevn0 = Pnv0 2 Hn and qn0 = PnQq0 2 Qn.The matrix form of the approximating reference model, (4.1), (4.2), then becomesMnDt~vn(t) +Kn~vn(t) = gn(t); t > 0; (4:34)Mn~vn(0) = ~vn0 ; (4:35)where the kn � kn matrices Mn and Kn are given by[Mn]i;j = h'nj ; 'ni i and [Kn]i;j = hA0'nj ; 'ni i i; j = 1; 2; : : : ; kn;respectively, and[~vn0 ]i = hv0; 'ni i and [gn(t)]i = hg(t); 'ni i i = 1; 2; : : : ; kn; t � 0:Note that since f'nj gknj=1 is a basis for Hn, the matrix Mn is nonsingular.For u(t) 2 V , the output of the plant, (2.3), (2.4), or (2.5), (2.6), at time t � 0, the matrixform of the approximating adaptation law, (4.3), (4.4), is given byMnQDt~qn(t)� Ln(u(t))~vn(t) = �hn(u(t)); t > 0; (4:36)MnQ~qn(0) = ~qn0 ; (4:37)where the `n � `n matrix MnQ is given by[MnQ]i;j = hpnj ; pni iQ; i; j = 1; 2; : : : ; `n;for ' 2 V , the `n � kn matrix Ln(') and the `n-vector hn(') are given by[Ln(')]i;j = hA1(pni )'; 'nj i and [hn(')]i = hA1(pni )'; 'i; i = 1; 2; : : : ; `n; j = 1; 2; : : : ; kn;respectively, and the `n-vector ~qn0 is given by[~qn0 ]i = hq0; pni iQ; i = 1; 2; : : : ; `n:33



Once again, since fpnj g`nj=1 is a basis for Qn, the matrix MnQ is nonsingular.Combining (4.34), (4.35) and (4.36), (4.37), for u(t) 2 V , the output of the plant, (2.3),(2.4), or (2.5), (2.6), at time t � 0, the kn + `n dimensional linear system" Dt~vn(t)Dt~qn(t) # + " (Mn)�1Kn 0�(MnQ)�1Ln(u(t)) 0 #" ~vn(t)~qn(t) # = " (Mn)�1gn(t)�(MnQ)�1hn(u(t)) # t > 0;" ~vn(0)~qn(0) # = " (Mn)�1~vn0(MnQ)�1~qn0 #must be integrated to determine the state of the approximating reference model, vn(t), and theapproximating parameter estimator, qn(t), at time t > 0. The estimate for the parameters isgiven by (4.33), and the control input is given byfn(t) = A0@ `nXj=1 ~qnj (t)pnj1A u(t)�A0u(t) + g(t); t � 0:We are now ready to turn to our convergence result. We require the following rather standardassumptions on the approximation properties of the �nite dimensional subspaces Hn and Qn.(A13) The subspace Hn is such that for each n = 1; 2; : : :, there exists a mapping �n 2 L(V; V )for which �n' 2 Hn, ' 2 V , andlimn!1 k�n'� 'k = 0; ' 2 V:(A14) The subspace Qn is such thatlimn!1 jPnQq � qjQ = 0; q 2 Q:We note that Assumption (A13) together with the dense and continuous embedding of V inH is su�cient to conclude that limn!1 jPn'� 'j = 0; ' 2 H:We note further that in many cases it is possible to choose �n = Pn. Indeed, this is in fact thecase for polynomial spline based subspaces. Assumption (A13) can then be veri�ed using theestimates found in, for example, [35].The following theorem concerning the convergence of the approximating semigroups fTn0 (t) :t � 0g to the semigroup fT0(t) : t � 0g is established in [3] using the well known Trotter-Katotheorem (see, for example, [19] and [32]).Theorem 4.3 Under Assumptions (A3), (A4), and (A13), for each T > 0 we have the followingresults.(i) There exists a constant M0 > 0, independent of n, for whichkTn0 (t)'nk �M0k'nk; 'n 2 Hn:34



(ii) For ' 2 H and t 2 [0; T ] limn!1 jTn0 (t)Pn'� T0(t)'j = 0;uniformly in t for t in compact subintervals of [0; T ].(iii) For ' 2 V and t 2 [0; T ] limn!1 kTn0 (t)�n'� T0(t)'k = 0;uniformly in t for t in compact subintervals of [0; T ].(iv) For ' 2 H and t 2 (0; T ] limn!1 kTn0 (t)Pn'� T0(t)'k = 0;uniformly in t for t in compact subintervals of (0; T ].Once (i) has been established, the essence of the proof of (ii)-(iv) is demonstrating resolventconvergence in V . Let � > 0 and ' 2 V , and set  = (�I +A0)�1' and  n = (�I +An0 )�1�n',n = 1; 2; : : :. The triangle inequality yieldsk �  nk � k � �n k+ k�n �  nk: (4:38)Assumption (A13) implies that the �rst term on the right hand side of the estimate in (4.38)tends to zero as n!1. With regard to the second term, using Assumptions (A3) and (A4) weobtain, for any " > 0,�0k n � �n k2 � hA0f n � �n g;  n� �n i= h(�I + An0) n � (�I + A0) ;  n� �n i+ �h � �n ;  n � �n i��h n � �n ;  n� �n i+ hA0f � �n g;  n� �n i� Kk'� �n'kk n � �n k+ �k � �n kk n� �n k � �j�n �  nj2+�0k � �n kk n� �n k� K2"k'� �n'k2 + �+ �02" k � �n k2 + 12fK + �+ �0g"k n � �n k2:Choosing " > 0 su�ciently small, we �nd thatk n � �n k2 � �1k'� �n'k2 + �2k � �n k2;for some constants �1; �2 > 0. Invoking Assumption (A13), and recalling (4.38), we obtainlimn!1 k(�I +An0 )�1�n'� (�I +A0)�1'k = 0; ' 2 V:We will require the following corollary to Theorem 4.3 above.Corollary 4.4 If v0 2 V and vn0 = �nv0, then under Assumptions (A3), (A4), (A9), and (A13),for each T > 0 we have the following results.(i) For each t 2 [0; T ] limn!1 kvn(t)� v(t)k = 0:35



(ii) There exists a constant �vn = �vn(T ) > 0, independent of n for whichkvn(t)k � �vn ; 0 � t � T:Proof. From (2.11) and (4.11) for t 2 [0; T ], we obtainkvn(t)� v(t)k� kTn0 (t)�nv0 � T0(t)v0k+ Z t0 kTn0 (t � s)Png(s)� T0(t� s)g(s)kds:Statement (iii) of Theorem 4.3 implies that the �rst term on the right hand side of the aboveexpression tends to zero as n!1. Statement (iv) of Theorem 4.3 implies that the term underthe integral sign tends to zero for almost every s 2 [0; T ]. Moreover, Lemma 3.6.2 in [38] impliesthat kTn0 (t� s)Png(s)� T0(t� s)g(s)k � C(t� s) 12 jg(s)j; 0 � s < t:It follows that an application of the Lebesgue Dominated Convergence Theorem then yields (i).Statement (ii) is established analogously. Indeed, for t 2 [0; T ], (4.11) yieldskvn(t)k � kTn0 (t)�nv0k+ Z t0 kTn0 (t� s)Png(s)kds� M0��kv0k+ Z t0 C(t � s) 12 jg(s)jds� M0��kv0k+ 2CkgkC([0;T ];H)pT= �vn(T );where �� > 0 is the uniform bound on the operators �n 2 L(V; V ), n = 1; 2; : : :, guaranteed toexist by Assumption (A13) and the Uniform Boundedness Principle. This proves the theorem.2Using Corollary 4.4, the next corollary follows immediately by inspection.Corollary 4.5 Suppose that Assumptions (A1)-(A9) and (A12)- (A14) hold, and that u0 2Dom(A�0 ). Suppose further that v0 2 V , vn0 = �nv0, and that qn0 = PnQq0. Then the constants�nT and �nT de�ned in the proof of Theorem 4.2 above are in fact independent of n.The implication of Corollary 4.5 is that for T > 0 �xed, jun(t)j� and jqn(t)jQ are boundeduniformly in n and t for t 2 [0; T ], where for each n = 1; 2; : : : un and qn satisfy (4.7)-(4.10).That is there exist constants �T > 0 and �T > 0, independent of n for whichjx̂n(t)jX̂� = jun(t)j� + jqn(t)jQ � �T +p�T ; 0 � t � T; (4:39)where for each n = 1; 2; : : : x̂n is the solution to the initial value problem (4.16), (4.17).Our convergence result is given in Theorem 4.7 below. Its proof requires the following lemma.Lemma 4.6 If Dom(A�0 ) � V for some � 2 (0; 1), then the Banach space fH�; j � j�g de�nedby H� = Dom(A�0 ) and j'j� = jA�0'j, ' 2 Dom(A�0 ) is continuously embedded in V . That is,there exists a constant, KV > 0, for whichk'k � KV j'j�; ' 2 Dom(A�0 ):36



Proof. It can be shown (see [27], page 11) that there exists a linear, self adjoint, and positiveoperator � : Dom(�) � H ! H , for which Dom(�) = V and for which the norm k � k� on Vgiven by k'k� = nj'j2 + j�'j2o 12 ; ' 2 V;is equivalent to the standard norm, k � k, on V . Then, for ' 2 Dom(A�0 ), Corollary 2.6.11 in [32]implies that k'k2 � K1 nj'j2 + j�'j2o � K2 nj'j2+ jA�0'j2o � K2k'k2� � K2V j'j2�;for some constants K1; K2; KV > 0, where the norm k � k� on H� was de�ned and discussed inthe proof of Theorem 2.3.2Theorem 4.7 Suppose that Assumptions (A1)-(A9) and Assumptions (A12)-(A14) hold, thatu0 2 Dom(A�0 ), � 2 (0; 1) as in Assumption (A6), and that vn0 = �nv0 and qn0 = PnQq0. Thenlimn!1 jun(t)� u(t)j� = limn!1 jA�0un(t)�A�0u(t)j = 0; (4:40)and limn!1 jqn(t)� q(t)jQ = 0; (4:41)uniformly in t, for t 2 [0; T ], where un, qn satisfy (4.7)-(4.10), and u and q satisfy (2.27)-(2.30).Moreover, if, in addition, the operator A2 satis�es a Lipschitz condition of the formkA2'�A2 k� � 2j'�  j�; ';  2 Dom(A�0 ); (4:42)for some 2 > 0, where � 2 (0; 1) is as in Assumption (A6), then we havelimn!1 fn(t) = f(t) (4:43)in V � uniformly in t, for t 2 [0; T ], and therefore thatlimn!1 fn = fin L2(0; T ;V �), for each T > 0, where for each n = 1; 2; : : :, fn is given by (4.5) or (4.6), andf is given by (2.23) or (2.24).Before we prove Theorem 4.7, we note that (4.40) implies thatlimn!1 jun(t)� u(t)j � limn!1 kun(t)� u(t)k� � �� limn!1 jun(t)� u(t)j� = 0;uniformly in t for t 2 [0; T ]. Moreover, (4.40) together with Lemma 4.6 also imply thatlimn!1 kun(t)� u(t)k � KV limn!1 jun(t)� u(t)j� = 0; (4:44)uniformly in t for t 2 [0; T ].Proof of Theorem 4.7. For each t � 0, let x̂(t) = (u(t); q(t)), where u and q satisfy (2.27)-(2.30). Then for each � > 0, x̂ satis�esx̂(t) = T̂�(t)x̂0 + Z t0 T̂�(t � s)Ĝ�(s; x̂(s); v)ds; t � 0; (4:45)37



where Ĝ� is given by (4.12), fT̂�(t) : t � 0g is the uniformly exponentially stable semigroup ofbounded linear operators on X̂ generated by the operator �Â� de�ned in (4.13) and (4.14), andv satis�es (2.7), (2.8) and is given by (2.11). Subtracting (4.45) from (4.18) and taking normsin X̂�, for each t � 0, we �nd thatjx̂n(t)� x̂(t)jX̂�� e��tjPnQq0 � q0jQ + Z t0 jA�0T0(t� s) fB(un(s))fqn(s)� q(s)g+B(u(s))fq � q(s)gg j+e��(t�s)j�fqn(s)� q(s)g+ B(u(s))0fu(s)� v(s)g�PnQB(un(s))0fun(s)� vn(s)gjQds� jPnQq0 � q0jQ + Z t0 M�(t� s)��f1jqQjun(s)� u(s)j� + 1jqn(s)jQjun(s)� u(s)j�+�1jqn(s)� q(s)jQju(s)j�g+ �jqn(s)� q(s)jQ + 1jun(s)� u(s)j�jun(s)j+1jun(s)� u(s)jju(s)j�+ 1jun(s)� u(s)j�jvn(s)j+1ju(s)j�jvn(s)� v(s)j+ jfI � PnQgB(u(s))0fu(s)� v(s)gjQds;where in the above estimate we have invoked Assumptions (A7) and (A8). Assumption (A14),Corollary 4.4, (2.56) and (4.39) then imply thatjx̂n(t)� x̂(t)jX̂� � "n + � Z t0 (t � s)��jx̂n(s)� x̂(s)jX̂�ds; (4:46)where � > 0 and limn!1 "n = 0. The estimate given in (4.46) together with a careful inspectionof the proof of Lemma 5.6.7 in [32] then yield thatjx̂n(t)� x̂(t)jX̂� � "nKT ; 0 � t � T;where KT = T 1��1�� > 0. This establishes (4.40) and (4.41).We now turn our attention to establishing (4.43). For t 2 [0; T ] and ' 2 V , Assumptions(A2), (A3), (A6), (A7) and (A8), (2.1), (4.42) and Lemma 4.6 (or, equivalently, (4.44)) implythat jhfn(t)� f(t); 'ij= jhA(qn(t))un(t)�A0un(t)� A(q(t))u(t) +A0u(t); 'ij� jhA1(qn(t))un(t)� A1(q(t))un(t); 'ij+ jhA1(q(t))un(t)� A1(q(t))u(t); 'ij+jhA2un(t)� A2u(t); 'ij+ jhA0un(t)� A0u(t); 'ij� K�1jqn(t)� q(t)jQjun(t)j�k'k+K1jq(t)jQjun(t)� u(t)j�k'k+kA2un(t)�A2u(t)k�k'k+ �0kun(t)� u(t)kk'k� K�1jqn(t)� q(t)jQjun(t)j�k'k+K1jq(t)jQjun(t)� u(t)j�k'k+2jun(t)� u(t)j�k'k+ �0KV jun(t)� u(t)j�k'k:Recalling (2.56), (4.39), (4.40), and (4.41), we obtainlimn!1 kfn(t)� f(t)k� = 0;uniformly in t for t 2 [0; T ], and the theorem is proved.238



5 Examples and Numerical ResultsIn this section we describe and discuss four di�erent examples which illustrate the applicationof the general theory developed in the previous sections. We consider the example involvinga �rst order hyperbolic plant and a di�usion equation reference model discussed in Section2.1, an example involving the identi�cation of a spatially varying thermal conductivity in aheat equation plant, an example involving the identi�cation of a damped wave equation, andan example in which we identify the nonlinearity in a quasi-linear heat equation. All of thecomputations to be described below were carried out via codes written in Fortran and run oneither a SUN SPARCstation 10 in the Department of Mathematics at the University of SouthernCalifornia, or an IBM RISCSystem 6000 at the Center for Research in Scienti�c Computationat North Carolina State University. The closed loop system (2.27)-(2.30) was discretized usinga spline based Galerkin scheme. The resulting �nite dimensional system of nonlinear ordinarydi�erential equations were integrated using either the sti� ODE solver from the NAG Library,routine D02NBF (at USC), or a fourth order Runge-Kutta scheme (at NCSU). All requiredintegrals were computed numerically via a composite two point Gauss-Legendre quadraturerule.Example 5.1 We consider the example discussed in Section 2.1. In particular, we use thisexample to illustrate the approximation results obtained in Section 4. Recall from Section 2.1that H = L2(0; 1), V = H1L(0; 1) = f' 2 H1(0; 1) : '(0) = 0g, V̂ � = V �, and Q = R1. Theinner product on Q was chosen to be hq; piQ = ! q � p for q; p 2 R1. The weighting factor ! > 0serves as an adaptive gain which can be used to tune the estimator. The plant is given by@u@t (t; x) + q @u@x(t; x) = f(t; x); 0 < x < 1; t > 0;u(t; 0) = 0; t > 0;u(0; x) = u0(x); 0 � x � 1;where q > 0, u0 2 L2(0; 1), and t ! f(t; �) 2 L2(0; T ;H), for each T > 0. The reference modelis given by @v@t (t; x)� a0 @2v@x2 (t; x) = g(t; x) 0 < x < 1; t > 0;v(t; 0) = 0; and @v@x(t; 1) = 0; t > 0;v(0; x) = v0(x); 0 � x � 1;where a0 > 0, v0 2 L2(0; 1), and t! g(t; �) 2 L2(0; T ;V �), for each T > 0.We approximate using linear B-splines. For n = 1; 2; : : :, let f'nj gnj=0 be the standard linearB-splines on the interval [0; 1] de�ned with respect to the uniform mesh f0; 1n ; 2n ; : : : ; 1g. Thatis, for i = 0; 1; 2; : : : ; n 'ni (x) = ( 1� jnx� ij; x 2 [ i�1n ; i+1n ];0; elsewhere on [0; 1]: (5:1)Set Hn = span f'nj gnj=1 � V . Since Q is �nite dimensional, we simply set Qn = Q = R1,n = 1; 2; : : :. For each n = 1; 2; : : : ; let Pn denote the orthogonal projection of H onto Hn and39



setting �n = Pn, standard approximation results for spline functions (see [35]) can be used toestablish that Assumption (A13) is satis�ed. Thus the conclusions of Theorem 4.7 hold.We set q = 1:0, a0 = :1, ! = :02, and q0 = 0:0. We also setu0(x) = 0:0; and v0(x) = sin(�2x); 0 � x � 1;and g(t; x) = 5 sin��2 t��[:215;:315](x); 0 < x < 1; t > 0:We simulated the plant using a 64 linear spline based Galerkin scheme, and approximated thereference model in Hn with n = 8; 16 and 32. In Figure 5.1a we have plotted the parameterestimator trajectories, qn(t), along with the trajectory of the in�nite dimensional estimator (i.e.n = 64), q(t), for 0 � t � 100. In Figure 5.1b we plot the L2 norms of the corresponding statetracking errors, jen(t)j = ju(t) � vn(t)j, for 0 � t � 100. It is clear from the �gures that thescheme performed well for n as small as 8. We note that the scheme even performed reasonablywell for n = 4, although we have not plotted these results here.
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(a) (b)Figure 5.1: Results for Example 5.1: (a) the parameter estimates, (b) the tracking error.Example 5.2 In this example we consider the control of the one dimensional heat or di�usionequation @u@t (t; x) = @@x �q(x)@u@x(t; x)�+ f(t; x); t > 0; 0 < x < 1;together with the Dirichlet boundary conditionsu(t; 0) = 0 = u(t; 1); t > 0:We take the reference model to be given by@v@t (t; x)� a0 @2v@x2 (t; x) = g(t; x) 0 < x < 1; t > 0; (5:2)v(t; 0) = 0; and v(t; 1) = 0; t > 0; (5:3)v(0; x) = v0(x); 0 � x � 1; (5:4)40



where a0 > 0, v0 2 L2(0; 1), and t! g(t; �) 2 L2(0; T ;V �), for each T > 0.In this case we have H = L2(0; 1) and V = H10(0; 1), each endowed with its usual innerproduct and corresponding induced norm. We set V̂ � = V �, and we let Q = H1(0; 1) and takeit to be endowed with the weighted inner producthq; piQ = !1 Z 10 q(x)p(x)dx+ !2 Z 10 Dq(x)Dp(x)dx; p; q 2 H1(0; 1);where the weights !1 and !2, assumed to be positive, serve as adaptive gains, or tuning param-eters. For q 2 Q, the operator A(q) = A1(q) 2 L(V; V �) is given byhA(q)';  i= hA1(q)';  i= Z 10 q(x)D'(x)D (x)dx; ';  2 H1(0; 1):The operator A0 2 L(V; V �) given byhA0';  i = a0 Z 10 D'(x)D (x)dx; ';  2 H10(0; 1): (5:5)It is easily veri�ed that Assumptions (A1)� (A5) are satis�ed, and that the theory in Section2.2 applies.To simulate the closed loop system, we discretized equations (2.27)-(2.30) using a linearspline based Galerkin scheme. We approximated the plant and reference model state spaceH by Hn = span f'nj gn�1j=1 , where the linear B-splines, 'nj , are given by (5.1). We also usedlinear B-splines to discretize the parameter space Q. We set Qm = spanf'mj gmj=0, where thelinear spline basis, f'mj gmj=0 is again given by (5.1) with n replaced by m. Note that dimHn = n� 1 and dim Qm = m+ 1. Consequently the dimension of the approximating estimatoris n� 1 +m+ 1 = n+m.We set a0 = 0:1, !1 = 0:1, !2 = 0:0001,q(x) = 110 �1� 12 sin�2�fx� 14g�� ; 0 < x < 1;q0(x) = 0:1, u0(x) = 0:3(0:5� j0:5� xj) and v0(x) = �0:1 sin(�x), for 0 � x � 1. We chose theinput reference signal, g, to be given byg(t; x) = :1�sin� �24 t�+ cos� �50 t�+ 12 cos� �30t���[:4;:6](x); 0 < x < 1; t > 0:The results of our numerical study with n = 24 and m = 16 are displayed in Figures 5.2a and5.2b. In Figure 5.2a we have plotted q0, q, and the estimate for q, q(t), at t = 25. In Figure 5.2bwe have plotted the L2 norm of the state tracking error, je(t)j = ju(t)� v(t)j for 0 � t � 50. Itis clear that the control objective has been met, and that an excellent estimate for q has beenobtained.
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for ' = ('1; '2);  = ( 1;  2) 2 H , where  > 0. It is not di�cult to argue that if  >maxf1; a�10 ; b�10 g, then the norm induced by this inner product is equivalent to the standardnorm on H . The inner product on H is chosen in this way so that Assumption (A4) will besatis�ed by the operator A0 to be de�ned below. We note that this choice of an inner producta�ects the form of the estimator equation, (2.25). Thus in practice,  serves as an additionaltuning parameter or adaptive gain.We let Q = R2 with the weighted inner product given byhq; pi = qT
p; q; p 2 R2;where 
 is the 2� 2 diagonal matrix given by
 = " !1 00 !2 # ;with !1; !2 > 0.For q = (q1; q2)T 2 Q, we de�ne the operator A(q) 2 L(V; V ) by A(q) = A1(q) +A2, wherehA1(q)';  i= q2hD'2; D 2i+ q1hD'1; D 2i; ' = ('1; '2);  = ( 1;  2) 2 V;and hA2';  i= �a0hD'2; D 1i; ' = ('1; '2);  = ( 1;  2) 2 V:We take the operator A0 2 L(V; V �) to be given by A0 = A(q�), where q� = (a0; b0) 2 Q. Weset f = (0; f1), g = (0; g1), u0 = (u01; u02), and v = (v01; v02). Thus we have rewritten the plant,(5.6)-(5.8), in the form (2.5), (2.6), and the reference model, (5.9)-(5.11), in the form (2.7), (2.8),with u = (u1; Dtu1) and v = (v1; Dtv1). It can be veri�ed that Assumptions (A1) - (A5) aresatis�ed with V̂ � = f(0; ') : ' 2 H�1(0; 1)g � V � = H10(0; 1)�H�1(0; 1).To simulate the closed loop system, we again approximate using the linear spline basis givenin (5.1) and a Galerkin scheme. We set Hn1 = spanf'nj gn�1j=1 and set Hn = Hn1 �Hn1 . We tookq = (0:0308; 0:01), q� = (a0; b0) = (0:0056; 0:0028), and q0 = (0:02; 0:005). We setu01(x) = 0:01 sin(�x) and u02(x) = 0:001 sin(4�x); 0 � x � 1;v01(x) = 0 and v02(x) = 0; 0 � x � 1;and g1(t; x) = f4 sin(4�t) + cos(�t) + 2g�[:215;:315](x); t > 0; 0 < x < 1:We chose the adaptive gains to be !1 = !2 = 1600=3 and  = 100 + 1=b0 = 457:15. We thensimulated the closed loop system with n = 16. In Figure 5.3 we have plotted the estimate for q1q1(t), and the estimate for q2, q2(t), for t 2 [0; 20]. In Figure 5.4 we have plotted the V1-normof the displacement tracking error, ke(t)k1 = ku1(t)� v1(t)k1, and the H1-norm of the velocitytracking error, jDte(t)j1 = jDtu1(t)�Dtv1(t)j1, for t 2 [0; 100].43
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(a) (b)Figure 5.4: Results for Example 5.3: (a) the V1-norm of the displacement tracking error, (b)the H1-norm of the velocity tracking error.Example 5.4 In this example we consider the control of the one dimensional nonlinear (strictlyspeaking, quasi-linear) heat equation@u@t (t; x)� @@x �q �min�M; j@u@x(t; x)j�� @u@x(t; x)� = f(t; x); 0 < x < 1; t > 0; (5:12)together with the Dirichlet boundary conditionsu(t; 0) = 0 and u(t; 1) = 0; t > 0; (5:13)44



and the initial conditions u(0; x) = u0(x); 0 � x � 1: (5:14)We assume that M 2 [0;1), u0 2 L2(0; 1) and f(t; � ) 2 L2(0; 1) for t � 0. We assume that thenonlinearity, q, is unknown, and is to be identi�ed as the system (5.12)-(5.13) is being adaptivelycontrolled. Once again, we take the reference model to be given by (5.2)-(5.4).We let H = L2(0; 1) be endowed with the standard inner product, we let V = H10(0; 1) beendowed with the usual norm, and de�ne the Hilbert space Q as follows. Let Q̂ = H1(R+) andde�ne the inner product, h�; �iQ, on Q̂ byhq; piQ = Z 10 !0(�)q(�)p(�)d� + Z 10 !1(�)Dq(�)Dp(�)d�; q; p 2 Q̂; (5:15)where !0; !1 2 L1(R+) are positive weighting functions. Let j � jQ denote the norm inducedby the inner product given in (5.15), and de�ne the Hilbert space Q to be the completion ofthe inner product space fQ̂; h�; �iQ; j � jQg. For q 2 Q, the operator A(q) : V ! V � is given byA(q) = A1(q), where A1(q) : V ! V � is de�ned byhA1(q)';  i= Z 10 q(minfM; jD'(x)jg)D'(x)D (x)dx; ';  2 V:The operator A0 2 L(V; V �) is once again given by (5.5). We set V̂ � = V � = H�1(0; 1). It isnot di�cult to verify that Assumptions (A1)-(A5) are satis�ed.To simulate the closed loop system, we again approximate the plant and reference modelstate space, H , and the parameter space, Q, using linear B-spline functions. We approximate Hby Hn = spanf'nj gn�1j=1 , where for each n = 2; 3; : : : and j = 1; 2; : : :n� 1, 'nj is given by (5.1).For each m = 1; 2; : : :, and each r > 0, let f ̂m;rj gmj=0 be the standard linear B-splines on theinterval [0; r] de�ned with respect to the uniform mesh f0; rm ; 2rm ; : : : ; rg. We approximate Q byQm;r = spanf m;rj gmj=0, where m;rj = (  ̂m;rj ; j = 0; 1; 2; : : : ; m� 1; ̂m;rm + �[r;1); j = m;with �J denoting the characteristic function for the interval J . In the simulations to be describedbelow, only q is discretized. The true value of q,q(�) = 0:9�1� 12e� 12 �2� ; � � 0;is used. We chose g to be given byg(t; x) = 1� 10�4 fsin(100�t) + sin(250�t) + sin(450�t) + sin(550�t)+ sin(650�t) + sin(850�t) + cos(150�t) + cos(350�t)+ cos(500�t) + cos(700�t)g�[0:6;0:8](x); 0 < x < 1; t > 0;and set u0(x) = 5� 10�5 and v0(x) = �0:1 (0:5� j0:5� xj) ; 0 < x < 1:We set a0 = :1, r = 3:5, M = 10:0,!0(�) = !1(�) = ( 1 0 � � < r12e�20� r < � <1; ;45



and q0(�) = 1; 0 < � <1:We simulated the closed loop system over the time interval [0; 20] using n = 32 and m = 24. InFigure 5.5a we have plotted our �nal (i.e. at time t = 20) estimate for q, and in Figure 5.5bwe have plotted the H-norm of the tracking error, je(t)j = ju(t)� v(t)j, for t 2 [0; 20]. We notethat convergence of the parameter estimates actually occured at about t = 5. Our estimatefor q in this example is not quite as good as the estimate obtained in Example 5.2. However,both the nonlinearity and the in�nite domain of q (and therefore the need for an additionaldegree of approximation in the form of truncation) contribute to making this example a farmore signi�cant challenge for our scheme than the linear example discussed in Example 5.2.
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