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ABSTRACT In the design process of the controller, the adaptive gain of model reference adaptive control 
(MRAC) often requires a tradeoff between the adaptive ability, robustness and stability of the control 
system. The tradeoff of adaptive gain leads to poor control performance and increase design difficulty. 
Aiming at this problem, the iterative learning idea is introduced into the model reference adaptive control 
strategy. The control parameter adaptive law based on the parameters of the previous control process is 
designed. For scalar systems, a new control strategy is constructed, which is the combination of MRAC and 
iterative learning control (ILC). The adaptive ability of the model reference adaptive controller is improved 
by using learning ability of ILC. An appropriate composite energy function is designed to prove the 
uniform convergence of the proposed control strategy and the boundedness of the control quantity. The 
proposed control strategy is applied to the ultrasonic motor. The effectiveness of the proposed control 
strategy is verified by experiments and simulations. The controller is designed by using the first-order 
model that is large different from the actual object. It verifies that the control strategy has strong robustness 
to model deviation and online time-varying characteristics. 

INDEX TERMS Ultrasonic motor, iterative learning control, model reference control, composite energy 
function 

I. INTRODUCTION 
Since the model reference adaptive control (MRAC) strategy 
was proposed, it has been widely used in various practical 
control systems due to its adaptive ability to changing 
controlled objects and the stability guaranteed by the design 
process based on the Lyapunov function[1]-[6]. In particular, 
MIT control strategy with the simplest form [7]-[8] and 
MRAC strategy based on input and output variables [9] are 
widely used. In more and more practical applications, 
researchers and users are aware of the benefits of applying 
MRAC strategy, but also more clearly aware of its 
shortcomings. In MRAC strategy, the adaptive gain (matrix) 
is usually the only control parameter to be set. A larger value 
of the adaptive gain can accelerate the adaptive rate and 
make the dynamic process of the system closer to the 
expected state specified by the reference model. However, it 
also reduces the robustness to random disturbances such as 
noise, resulting in overshoot and oscillation convergence 
process. Excessive adaptive gain also causes the system to 
lose stability. Therefore, the value of the adaptive gain often 
requires a tradeoff between the adaptive ability, robustness 

and stability of the control system. The more obvious the 
change of the controlled object during operation, the more 
this compromise choice tends to maintain the stability of the 
system. It is necessary to select a sufficiently small adaptive 
gain value to sacrifice system control performance to 
maintain stability and the necessary degree of robustness. In 
this case, the adaptive ability of MRAC strategy is weakened. 
So, the system performance is more dependent on the initial 
parameters. The fluctuation amplitude of control 
performance caused by the change of object also increases. 
How to keep the adaptive ability of the MRAC strategy in 
this case, and how to avoid the influence of the tradeoff of 
the adaptive gain on the control performance of the MRAC 
controller. This is a fundamental problem that must be solved 
in order to improve the practical application performance and 
reduce the design complexity of MRAC strategy. 

In order to meet application requirements, MRAC is 
improved in some literatures [10]-[13]. In [10], it is shown 
that under the same MRAC design conditions without the 
knowledge of the plant parameters, an MRAC system 
ensures that the tracking error has the stronger higher order 
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convergence property. Such a new MRAC system property 
leads to several new results of adaptive stabilization and 
tracking control using either state feedback or output 
feedback. In [11], a novel result for adaptive asymptotic 
tracking control of uncertain switched linear systems is 
established. The result exploits stability condition for 
switched systems. A time-varying positive definite Lyapunov 
function is used to develop a novel piecewise continuous 
model-reference adaptive law and a dwell-time switching law. 
In [12], piecewise linear reference model systems are used 
for generating desired state trajectories and their stability 
properties are studied. Adaptive state feedback control 
schemes are developed.  

Iterative learning control (ILC) [14]-[17] is a completely 
different control method from model reference adaptive 
control. Based on previous information, ILC adopts the 
iterative method to gradually improve control performance. 
ILC introduces simple learning ideas into the control 
system. Moreover, the learning goal is the control signal 
rather than the structure or parameters of the object model, 
which makes it essential different from the classical control 
methods such as model reference adaptive control. 

In this paper, the iterative learning control (ILC) idea is 
introduced into the MRAC strategy. A new control strategy 
is constructed, which is the combination of MRAC and ILC. 
This control strategy is used for scalar systems. The learning 
ability of ILC is used to improve the adaptive ability of 
model reference adaptive controller. Improve and maintain 
system control performance in line with expectations through 
online self-learning. Compared with the MRAC strategy, the 
online computation of the new control strategy increases little, 
but the control performance is significantly improved. By 
means of the composite energy function [18]-[21], the 
uniform convergence of the proposed control strategy is 
proved. The control strategy is applied to the speed control 
system of ultrasonic motor. A first-order ultrasonic motor 
model that is large different from the actual object is used for 
controller design, so as to verify the robustness of the control 
method to model deviations. The simulation and 
experimental research are carried out. Simulation and 
experimental results indicate the effectiveness of the 
proposed control strategy. The experimental results show that 
we only need to set the adaptive gain of model reference 
adaptive controller to a small value which can ensure the 
stability of the system. The subsequent iterative learning 
control process can improve the control performance and 
make it gradually approach the desired control state specified 
by the reference model. Therefore, the influence of the 
tradeoff of adaptive gain on the control performance is 
avoided. A simple and effective method is provided to 
improve the practical application performance of MRAC. 

This article is organized as follows. In Section II, the 
model reference adaptive iterative learning control algorithm 
is presented. In Section III, the convergence of model 
reference adaptive iterative learning control algorithm is 

analyzed. In Section IV and Section V, the proposed 
algorithm is applied to speed control for ultrasonic motor. 
The simulation results and the experiment results are given in 
Section IV and Section V respectively. 
II. MODEL REFERENCE ADAPTIVE  ITERATIVE 
LEARNING CONTROL ALGORITHM 
Assuming that the controlled object can be described by 
differential equation as 

   p p p p( , ) ( ) ( , ) ( , )y k i a i y k i k u k i                (1) 

Where, yp(k,i) and u(k,i) are the output and input of the 
controlled object at time i in the kth cycle respectively, ap(i) 
is unknown bounded time-varying parameter, kp is unknown 
bounded constant parameter. It is assumed that kp>0. 

It is assumed that the reference model to be tracked is a 
linear time-invariant system with the same structure as the 
controlled object, that is 

m m m m r( , ) ( , ) ( , )y k i a y k i k y k i               (2) 

Where, ym(k,i) and yr(k,i) are the output and bounded given 
input of the reference model respectively, am and kp are 
constants greater than 0. 

The tracking error of the kth iterative learning control is 
defined as 

p m( , ) ( , ) ( , )e k i y k i y k i                   (3) 

It is assumed that the controlled system satisfies the same 
initial conditions under the condition of repeatable operation. 
That is to say, for 1k  , the following equation is satisfied. 

 ( ,0) 0e k                                (4) 

The control goal is to obtain the appropriate control input 
u(k,i) to adapt to the unknown time-varying inertial 
parameters by using the model reference adaptive iterative 
learning control (MRAILC) algorithm, so that the output 
yp(k,i) can converge uniformly to the reference model output 
ym(k,i) when the number of iterations approaches to infinity, 
that is

[0, ]
lim sup ( , ) 0
k i T

e k i
 

 . In addition, ensure that all signals 

in the controlled system are bounded in each iteration process. 
In order to achieve the above control goals, the model 
reference adaptive control and iterative learning control are 
combined. The control law is designed as 

  p r
ˆˆ( , ) ( , ) ( , ) ( , ) ( , )u k i a k i y k i b k i y k i                  (5) 

Where, ˆ( , )a k i  and ˆ( , )b k i  are adjustable parameters in the 
kth cycle. It is updated by the parameter iterative learning 
adaptive law shown in (6). 

ˆ ˆ( , ) ( 1, ) ( , ) ( , )k i k i w k i e k i                       (6) 
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Where, 
Tˆˆ ˆ( , ) ( , ) ( , )k i a k i b k i  

   is parameter 

estimation vector, 
T

p r( , ) ( , ) ( , )w k i y k i y k i    is 
regression vector,   is constant positive definite symmetric 
matrix. The initial value of parameter ˆ(0, )i  is bounded for 

[0, ]i T  . It can be seen that the form of the control law (5) 
is the same as the commonly used form of the control law in 
the MRAC strategy. 

Taking the derivation on both sides of (3), the tracking 
error equation of the kth iterative learning control can be 
obtained as follows. 

p m

p p p m m m r

p p p p r

m m m r

p m
m p p

p

m

p

( , ) ( , ) ( , )
( ) ( , ) ( , ) ( , ) ( , )

ˆˆ( ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , )
( )

ˆ( , ) [( ( , ) ) ( , )

ˆ( ( , ) )]

e k i y k i y k i

a i y k i k u k i a y k i k y k i

a i y k i k a k i y k i b k i y k i

a y k i k y k i

a i a
a e k i k a k i y k i

k

k
b k i

k

 

    

     
 


   

 

  

   (7) 

Defined that ( ) ( ) ( )i a i b i      , where, 

p m p( ) ( ( ) )a i a i a k  , m p( )b i k k  . The parameter 

error vector is defined as 
T

( , ) ( , ) ( , )k i a k i b k i   
  , 

where, ˆ( , ) ( , ) ( )a k i a k i a i  , ˆ( , ) ( , ) ( )b k i b k i b i  . 
Then the tracking error equation can be rewritten as 

 
T

m p( , ) ( , ) ( ( , )) ( , )e k i a e k i k k i w k i                     (8) 

III.CONVERGENCE ANALYSIS OF MODEL REFERENCE 
ADAPTIVE ITERATIVE LEARNING CONTROL 
ALGORITHM 
For controlled object (1) and reference model (2), for k Ζ , 
the reference input r(k,i) is continuously bounded over the 
finite time interval [0, ]i T . The identical initial condition 
(4) is satisfied. The control law is designed as (5) and (6). 
The following conclusions are satisfied. 
1) The tracking error e(k,i) is bounded and satisfies 

[0, ]
lim sup ( , ) 0
k i T

e k i
 

  for [0, ]i T  and 1k  ; 

2) The parameter estimation vector ˆ( , )k i  is bounded for 

[0, ]i T  and 1k  . ˆ( , )k i  converges to bounded 
vector ( , )i   pointwisely along the cycle index, that is 

ˆlim ( , ) ( , )
k

k i i 


  . 

3) The control quantity u(k,i) is bounded for [0, ]i T  and 
1k  . 

Proof: 
The composite energy function (CEF) is designed as 

2 T 1
0

p

1 1( , ) ( , ) ( , ) ( , )
2 2

t

E k i e k i k k d
k

                (9) 

First, derive the difference of CEF between two adjacent 
iterations. In order to make the expression more concise, the 
time variable i of the function is omitted in the following 
proof process without affecting the readability. 

Define the difference of ( , )E k i  at the kth iteration as 

2 2

p p

T 1 T 1
0

( , ) ( , ) ( 1, )
1 1( ) ( 1)

2 2
1 ( ) ( ) ( 1) ( 1)
2

t

E k i E k i E k i

e k e k
k k

k k k k d



       

  

  

         

      (10) 

Where 

2 2
0

p p p

T
m p0

p

2 T
m 0 0

p

1 1 1( ) ( ) ( ) ( ,0)
2 2

1 ( ) ( ) ( ( )) ( )

1 ( ) ( ( )) ( ) ( )

t

t

t t

e k e k e k d e k
k k k

e k a e k k k w k d
k

a e k d k w k e k d
k



 

  

 

    

  





 







 (11) 

T 1 T 1
0

T 1 T 1

0

T 1 T 1 T

T T 20

T

1 ( ) ( ) ( 1) ( 1)
2

[ ( ) ( ) ( ( ) ( ) ( )) ( ( )1
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[ ( ) ( ) ( ) ( ) ( ) ( ) ( )1
2 ( ) ( ) ( ) ( ) ( ) ( )]

( )

t

t

t

k k k k d

k k k w k e k k
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w k e k
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 T 2
0 0

1( ) ( ) ( ) ( ) ( )
2

t t

w k e k d w k w k e k d         
(12) 

Substituting (11) and (12) into (10) yields 

 

2 T
0 0

p

2 T
0

p

T 2
0

1( , ) ( ) ( )) ( ) ( )

1 ( 1) ( ) ( ) ( )
2
1 ( ) ( ) ( )
2

t t

m

t

t

E k i a e k d k w k e k d
k

e k k w k e k d
k

w k w k e k d

   

 

 

  

     

   

 







  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3029106, IEEE

Access

 

VOLUME XX, 2017 9 

2 T 2
0 0

p

2

p

2

p

1 1( ) ( ) ( ) ( )
2

1 ( 1)
2

1 ( 1)
2

0

t t

ma e k d w k w k e k d
k

e k
k

e k
k

       

 

  



 

 (13) 

Because ( , ) 0E k i  , so as long as (1, )E i  is bounded, 
for all 1k   and [0, ]i T  , ( , )E k i  is bounded. In the 
following, it is further proved that the parameter adaptive 
learning law (6) can guarantee (1, )E i  bounded. 

2 T 1
0

p

1 1(1, ) (1) (1) (1)
2 2

t

E i e d
k

                 (14) 

Derivation of both sides of (14) with respect to time can be 
obtained. 

 

T 1

p

T
p

p

T 1

2 Tm

p

T 1 T

T

1 1(1, ) (1) (1) (1) (1)
2

1 (1) (1) (1) (1)

1 ( (0) (1) (1)) ( (0) (1) (1))
2

(1) ( (0) (1) (1)) (1) (1)

1 1(0) (0) (1) (0) (1)
2 2
1 (0) (1) (1)
2

m

E i e e
k

e a e k w
k

w e w e

a
e w e w e

k

w e

w e

  



    

 

   









 

    

  

   

 

 

  



 



  

 T 2

2 T 2 T 1m

p

T 1

1 (1) (1) (1)
2

1 1(1) (1) (1) (1) (0) (0)
2 2

1 (0) (0)
2

w w e

a
e w w e

k



   

  





   



 

 

     (15) 

Because ˆ(0, ) (0, ) ( )i i i     , ˆ(0, )i  is bounded, so 

(0, )i  is bounded. Therefore there exists a finite constant 

T 1
0 [0, ]

1max (0, ) (0, )
2i T

M i i  



    
   greater than 0, so that 

T 1
0

1 (0, ) (0, )
2

i i M      and 0(1, )E i M . From the 

definition and the assumption of the same initial conditions, 
we can see that (1,0) 0E  . Therefore, for [0, ]i T , it is 
satisfied that 0(1, )E i M T , that is, (1, )E i  is bounded. 
Hence, for all [0, ]i T  and k Ζ , ( , )E k i  is bounded. 

Second, prove the uniform convergence of tracking error 
e(k,i) along cycle index, that is 

[0, ]
lim sup ( , ) 0
k i T

e k i
 

 , and the 

parameter error ( , )k i  converges to bounded vector 
pointwisely along the cycle index. 

According that for all [0, ]i T  and k Ζ , ( , )E k i  is 
bounded, it can be derived that each item of ( , )E k i is 
bounded on [0, ]i T , hence ( , )e k i  is bounded on 

[0, ]i T . According to (13), the following CEF at the kth 
iteration can be obtained. 

2

2

2 p

( , ) (1, ) ( , )

1(1, ) ( 1, )
2

k

j

k

j

E k i E i E j i

E i e j i
k





  

  




            (16) 

Because 
1

2

1 p

1lim ( , ) lim ( , ) (1, )
2

k

k k
j

E k i e j i E i
k



  

   and 

(1, )E i  and lim ( , )
k

E k i


is bounded, so 
1

2

1 p

1lim ( , )
2

k

k
j

e j i
k



 
  is 

bounded. It can be obtained from Barbalat's lemma that for 

[0, ]i T , 2

p

1lim ( , ) 0
k

e k i
k

 . Because p 0k  , it can be 

derived that 

lim ( , ) 0, [0, ]
k

e k i i T


                       (17) 

Equation (17) indicates that the tracking error e(k,i) 
converges to zero pointwisely when the iteration number 
approaches to infinity. 

It can be known from assumption that yr(k,i) is bounded, 
so ym(k,i) is bounded. Knowing that for all [0, ]i T  and 
k Ζ , ( , )e k i  is bounded, then 
because p m( , ) ( , ) ( , )y k i y k i e k i  , yp(k,i) is bounded. 
Therefore, the regression vector ( , )w k i  is bounded. The 
terms on the right side of (8) are bounded. For all [0, ]i T  
and k Ζ , ( , )e k i  is bounded. So the sequence ( , )e k i  is 
equicontinuous. According to (17), it can be obtained that 

[0, ]
lim sup ( , ) 0
k i T

e k i
 

 , that is, the tracking error uniform 
converges to zero over [0, ]i T  when the iteration number 
approaches to infinity. 

According to (6), it can be derived that for [0, ]i T , 
ˆ ˆlim ( , ) lim ( 1, ) ( , ) ( , )

k k
k i k i w k i e k i  

 
     . 

Substituting (17) into it, the following can be obtained. 

 ˆ ˆlim ( , ) lim ( 1, ) ( , )
k k

k i k i i  
 

                (18) 

Because lim ( , )
k

E k i


 is bounded, so ( , )i   is bounded 

vector. For [0, ]i T  and 1k  , the parameter estimation 
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ˆ( , )k i  is bounded and converges to ( , )i   pointwisely 
along cycle index. 

Third, prove the control quantity u(k,i) is bounded over 
[0, ]i T . 

It can be obtained from (5) that ˆ( , ) ( , ) ( , )Tu k i w k i k i . 
For [0, ]i T  and k Ζ , ( , )w k i , ˆ( , )k i  and ( , )e k i  are 
bounded, so ( , )u k i  is bounded. 

IV.  SIMULATION STUDY ON MODEL REFERENCE 
ADAPTIVE ITERATIVE LEARNING SPEED CONTROL OF 
ULTRASONIC MOTOR 
In this section, the control law (5) and the parameter iterative 
learning adaptive law (6) are applied to the speed control of 
ultrasonic motor. The control parameters are designed by 
simulation analysis. Using the identification modeling 
method based on differential evolution algorithm [22], the 
first-order Hammerstein model of the ultrasonic motor is 
established, which is consistent with the object model (1) 
given above. It should be pointed out that the dynamic 
characteristic of ultrasonic motor is relatively complex. Its 
dynamic model is usually third-order or fourth-order [22-24]. 
Because the proposed controller is designed based on the 
object model, so reducing the order of the ultrasonic motor 
model to the first order can significantly reduce the 
complexity of the controller. It can also greatly reduce the 
amount of online computation, and thus reduce the 
implementation cost. However, if low-order models are used 
to simulate high-order objects, the difference between the 
model and the actual ultrasonic motor will inevitably increase. 
This is a challenge to the proposed control strategy. From 
another point of view, it can also better demonstrate the 
controller's online adaptive capability and robustness by 
using a model which is big different from the actual object to 
design a controller. 

The model reference adaptive iterative learning controller 
is designed by simulation analysis method. The linear 
dynamic part of Hammerstein model of ultrasonic motor 
system is as follow. 

p p( , ) 148.7 ( , ) 155.1 ( , )y k i y k i u k i        (19) 

As a commonly used form of nonlinear model, the 
Hammerstein model consists of two parts: a nonlinear part 
and a linear dynamic part, which are connected in series. This 
model structure makes the nonlinear part of the model be 
used to express the nonlinearly changing object gain. 
Therefore, in the case of using the Hammerstein model to 
describe the ultrasonic motor, because the change of the gain 
is expressed by the nonlinear part, so the gain of the linear 
dynamic part of the model can be considered as fixed. That is 
to say, the coefficient 155.1 in (19) is a fixed value, which is 
consistent with the assumptions made in the previous proof 
process. 

m
m

1( )
1

G s
s




                    (20) 

Where, τm is the first-order inertial time constant. Take the 
time constant τm of the reference model as 0.04s. The step 
response of the reference model has no overshoot, and the 
adjustment time is about 0.12s. 

Transforming (20) into (2) form, the following can be 
obtained: 

r( , ) 25 ( , ) 25 ( , )m my k i y k i y k i             (21) 

In order to be used in digital control system, the reference 
model (21) is transformed into a recursive calculation 
formula. 

 
m m r( , ) 0.72 ( , 1) 0.28 ( , )y k i y k i y k i           (22) 

According to the performance of the speed step response 
obtained by the simulation, the appropriate value of   and 
initial value of â  and b̂  are determined. In the simulation 
process, the number of continuous iterative learning is six. In 
order to provide initial learning information for the 
subsequent iterative learning control process, the MRAC 
controller is used for the first step response control. The 
initial value of control quantity is set to 10.5328. It is 
consistent with the initial value of the control quantity in the 
actual ultrasonic motor control system. The control law and 
parameter update law of the model reference adaptive 
controller used for the first control are shown in (23) and (24), 
respectively. 

p r
ˆˆ( , ) ( , ) ( , ) ( , ) ( , )u k i a k i y k i b k i y k i          (23) 

1
ˆ ˆ( , ) ( , 1) ( , ) ( , )k i k i w k i e k i                (24) 

Take Γ1 as the following positive definite diagonal matrix. 

1
1

1

0
0
r

r


 
  
 

                            (25) 

Where, the adaptive gain r1 is a positive real number and a 
constant. 

In the following, it attempts to select different values of â  
and b̂ . According to simulation results, the initial values of 
â  and b̂  are set to 0.4 and 0.3, respectively. Parameter 
iterative learning adaptive law (6) Γ takes the positive 
definite diagonal matrix in the form of (25). According to (5) 
and (6), the value of matrix Γ determines the adaptive 
adjustment rate of controller parameters â  and b̂ . The larger 
the value of Γ, the larger the parameter adjustment amount. 
The control quantity given by the control law can adapt to the 
unknown time-varying inertia parameters faster. The larger 
the value of Γ, the larger the adjustment range relative to the 
previous iteration, which helps to reach the learning 
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convergence faster. Conversely, the smaller the value of Γ, 
the smaller the parameter adjustment amount, and the smaller 
the adjustment range relative to the previous iteration. The 
learning effect is not obvious. The speed of learning 
convergence is slower. The number of iterations required to 
track the reference trajectory is larger. It can be seen that the 
value of Γ directly affects the control performance and 
iterative learning effect of the system. By comparing the 
simulation results under different values, the value of Γ can 
be determined according to the expected control performance. 

The given value of speed step response is set as 
30r/min.The control parameter values are r1=0.00002 and 
r=0.0002. The corresponding simulation result is shown in 
Fig. 1. 
 

 

 

 

 
FIGURE 1. Simulation results of MRAILC speed control (r1=0.00002, 
r=0.0002, 30r/min). (a) Curve of speed step response. (b) Changing 
curve of control quantity. (c) Changing curve of the value of coefficient 
a. (d) Changing curve of the value of coefficient b. 
 

The adjustment time of step response obtained by using 
MRAC is 0.5240s, which is significantly longer than the 
adjustment time of the reference model 0.12s. Comparing 
the step response curve obtained from the six iterations, it 
can be seen that as the iteration progresses, the step 
response curve gets closer and closer to the curve of 
reference step response output by the reference model. The 
adjustment time is gradually reduced, and the step response 
has no overshoot. The results show that the proposed 
MRAILC strategy is effective. 

The changing curve of control quantity corresponding to 
Fig. 1(a) is shown in Fig. 1(b). It can be seen that the change 
trend of the control quantity is consistent with the speed step 
response curve. With the increase of the number of iterations, 
the change rate of the control quantity is accelerated, so that 
the step response speed is accelerated. According to (5) and 
(6), it can be seen that the acceleration of the change rate of 
the control quantity must be related to the change of the 
coefficients a and b. The corresponding changing curve of a 
and b are shown in Fig. 1(c) and Fig. 1(d), respectively. The 
change trend of a and b are consistent with the speed step 
response curve. It can be seen from (6) that based on the 
previous iteration, the values of coefficients a and b are 
updated according to the values of ym(k,i), r(k,i) and e(k,i). As 
the number of iterations increases, the value of e(k,i) 
decreases, and the increase amount of coefficients a and b 
relative to the previous iteration decrease. After reaching the 
steady state, the value of e(k,i) is zero. The values of 
coefficients a and b are also stable at a certain fixed value, so 
that the control quantity no longer changes. 

V. EXPERIMENTAL STUDY ON MODEL REFERENCE 
ADAPTIVE ITERATIVE LEARNING SPEED CONTROL OF 
ULTRASONIC MOTOR 
Experiments are conducted for the control strategy proposed 
in the previous section. The ultrasonic motor used in the 
experiment is USR60 two-phase traveling wave ultrasonic 
motor produced by Shinsei Company. The specifications of 
the motor are shown in Table I. The speed adjustable range 
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of the experimental motor is 0r/min to 120r/min. The 
structure of the experimental test rig is shown in Fig. 2. The 
photo of the experimental test bench is shown in Fig. 3. The 
main structure of its driving circuit is H-bridge. Phase-shift 
PWM method is adopted to adjust the amplitude1, phase 
angle and frequency of the driving voltage. In Fig. 2, yr is the 
given value of speed. ‘E’ is a photoelectric encoder, HEDM-
5540, used to measure the motor speed to form the closed-
loop control. The speed controller is programmed by DSP 
chip. The output of the controller is the frequency of driving 
voltage, and the motor speed can be controlled by adjusting 
the frequency. 

TABLE 1 
THE SPECIFICATIONS OF USR60 ULTRASONIC MOTOR 

Definition Value/Units 
Driving frequency About 40kHz 

Driving voltage About 130Vrms 
Rated torque 0.5Nm 
Rated output 5W 
Rated speed 100r/min 

Maximum torque 1Nm 
Retention torque 1Nm 

Temperature range -10℃-55℃ 
Weight 275g 

 

 
FIGURE 3.  Photo of the experimental test bench. (a) Driving 
and control circuits. (b) Ultrasonic motor. 

Six consecutive speed step response experiments are 
carried out to study the effect of iterative learning. The 
experimental results of the first step response are the 
experimental results of the MRAC controller. It can be used 
to compare with the control strategy proposed in this paper to 
show its control performance. The second to sixth step 
response process adopts MRAILC controller to gradually 
improve the control performance by iterative learning. The 
given value of speed step response is set as 30r/min, and the 
control parameters are the same as the parameters designed 
by simulation above. The experimental results are shown in 
Fig. 4. For comparison, the experimental results 
corresponding to r=0.0003 and r=0.0004 are shown in Fig. 5 
and Fig. 6, respectively. 
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FIGURE 2.  Structure of the experimental test rig for the ultrasonic motor’s speed control system 
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FIGURE 4.  Experiment results of MRAILC speed control (r1=0.00002, 
r=0.0002, 30r/min). (a) Curve of speed step response. (b) Changing 
curve of control quantity. (c) Changing curve of the value of coefficient 
a. (d) Changing curve of the value of coefficient b 

 
As can be seen from Fig. 4, the speed step response curve 

gradually approaches the curve of the reference model output 
without overshoot. With the progress of iterative learning, the 
adjustment time decreased from 0.5502s to 0.1310s, with a 
decrement of 76.19%. The adjustment time of six step 
responses is shown in Table II. It indicates that the proposed 
control strategy is effective, and the method of designing 
control parameters according to simulation is also effective. 

Comparing Fig. 4 to Fig. 6 and Table II, it can be seen that 
the increase of r can accelerate the learning convergence 
speed. Fig. 6 has reached the state of convergence at the fifth 
iteration, and the learning effect is obvious. However, the 
step response shown in Fig. 6 shows a small amplitude 
oscillation, and the absolute average of steady-state 
fluctuations of the fifth and sixth speed step responses are 
significantly larger than those in Fig. 4(a) and Fig. 5. 

 

 
FIGURE 5.  Curve of speed step response (r1=0.00002, r=0.0003) 
 

The changing curves of a and b shown in Fig. 4(c) and Fig. 
4(d) are consistent with the speed step response curve, and 
the steady-state values are close to the simulation results. 
However, there is a little difference in the steady-state values 
of a and b in each iteration in Fig. 4(c) and Fig. 4(d), while 
the steady-state values of a and b in each iteration are the 
same in the simulation results. The reason is that ultrasonic 
motor is controlled objects with obvious time-varying 
characteristics. As the iteration progresses and time goes by, 
its characteristics will change. Therefore, the value of a and b 
corresponding to the given speed also have differences. It 
reflects the adaptability of the controller. In simulation, the 
time-varying characteristics of the ultrasonic motor are not 
considered, so the steady-state values of a and b are the same. 
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TABLE II 
THE INDEX VALUES OF CONTROL PERFORMANCE FOR THE STEP RESPONSES UNDER DIFFERENT VALUES OF Γ (EXPERIMENTAL RESULTS) 

Fig. 4(a) Fig. 5 Fig. 6 

Cycle Adjustment 
time (5%, s) 

The absolute 
average of the 
steady speed 

fluctuation (r/min) 

Adjustment 
time (5%, s) 

The absolute 
average of the 
steady speed 

fluctuation (r/min) 

Adjustment 
time (5%, s) 

The absolute 
average of the 
steady speed 

fluctuation (r/min) 

1 0.5502 0.21740 0.4978 0.31195 0.4716 0.35152 

2 0.3930 0.27541 0.3668 0.27241 0.3275 0.31678 

3 0.3144 0.36989 0.2227 0.26918 0.1965 0.23440 

4 0.2096 0.37768 0.1572 0.29524 0.1441 0.23846 

5 0.1572 0.25330 0.1441 0.26962 0.1310 0.31095 

6 0.1310 0.30981 0.1310 0.28838 0.1310 0.52267 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3029106, IEEE

Access

 

VOLUME XX, 2017 9 

 

 
FIGURE 6.  Curve of speed step response (r1=0.00002, r=0.0004) 

 
The loading experiment is carried out, and the speed step 

response is obtained as shown in Fig. 7. The adjustment time 
of the first to sixth step responses in Fig. 7 are 0.4061s, 
0.3799s, 0.3275s, 0.3013s, 0.2882s, and 0.2227s, 
respectively. With the progress of iterative learning, the 
adjustment time continues to decrease, with a decrement of 
45.16%. It shows that the proposed iterative learning control 
strategy has strong robustness. 

 

 
FIGURE 7.  Curve of speed step response (r1=0.00006, r=0.0002, load 
0.2Nm) 

 
The given value of speed step response is changed to 

60r/min, and the experimental result is obtained as shown in 
Fig. 8. The speed step response curve also gradually 
approaches to the curve of the given value with no overshoot. 
The adjustment time of the first to sixth step responses in Fig. 
8 are 0.2751s, 0.2358s, 0.1965s, 0.1572s, 0.1441s, and 
0.1310s, respectively. With the progress of iterative learning, 
the adjustment time continues to decrease, with a decrement 
of 52.38%. It shows that the proposed iterative learning 
control strategy is applicable to different speeds. 

In [25], predictive iterative learning speed control strategy 
with on-line identification for ultrasonic motor is presented. 
Six consecutive speed step response experiments are carried 
out using the control strategy in [25]. The adjustment time of 

the first to sixth step responses are 0.3799s, 0.2358s, 0.2096s, 
0.1834s, 0.1703s, and 0.1572s, respectively. The adjustment 
time of the first step response is less than that of Fig. 4(a), but 
the adjustment time of the sixth step response is longer than 
that of Fig. 4(a). The comparison of their sixth step response 
is shown in Fig. 9. It shows that after six iterations, the 
adjustment time reduction rate of the control strategy 
proposed in this paper is larger, and the improvement of 
control performance is greater. It further demonstrates the 
effectiveness of the proposed control algorithm. 

 

 
FIGURE 8.  Curve of speed step response (r1=0.00002, r=0.00005, 
60r/min) 

 
FIGURE 9.  Curve of the sixth speed step response  

VI. CONCLUSION 
In MRAC, the tradeoff of adaptive gain leads to poor control 
performance and increase design difficulty. Aiming at this 
problem, the iterative learning idea is introduced into MRAC. 
The control parameter adaptive law based on the parameters 
of the previous control process is constructed. It attempts to 
use iterative learning method to improve the adaptive ability 
of the model reference adaptive controller and enhance the 
robustness of the control object under time-varying 
conditions. An appropriate composite energy function is 
designed to prove the uniform convergence of the proposed 
control strategy and the boundedness of the control quantity.  

The control strategy is applied to speed control of 
ultrasonic motor. The experimental results under different 
speed conditions show that the speed response process is fast, 
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smooth and steady without overshoot. The iterative learning 
item introduced in the parameter adaptive law enables the 
control system to inherit the control experience from the 
previous process in the continuous control process. The 
speed control performance of motor is improved effectively. 
It is able to achieve the desired control state. The controller 
design based on low order model has no effect on the system 
performance, and the speed control performance is good. It 
indicates that the proposed control strategy has strong 
robustness to model deviation and online time-varying 
characteristics. 

In the future, further work will be done to extend this idea 
beyond scalar systems. 
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