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Abstract

In obtaining a regression tit to a set of data, ordinary least squares regression depends

directly on the parametric model formulated by the researcher. Ifthis model is incorrect, a

least squares analysis may be misleading. Altematively, nonparametric regression (kemel

or local polynomial regression, for example) has no dependence on an underlying

parametric model, but instead depends entirely on the distances between regressor

coordinates and the prediction point of interest. This procedure avoids the necessity of a

reliable model, but in using no information from the researcher, may Ht to irregular

pattems in the data. The proper combination of these two regression procedures can

overcome their respective problems. Considered is the situation where the researcher has

an idea of which model should explain the behavior of the data, but this model is not

adequate throughout the entire range of the data. An extension ofpartial linear regression

and two methods ofmodel robust regression are developed and compared in this context.

These methods involve parametric tits to the data and nonparametric tits to either the data

or residuals. The two tits are then combined in the most efficient proportions via a mixing

parameter. Performance is based on bias and variance considerations.
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Chapter 1: Introduction and Motivation

Historically, the regression problem of describing the behavior of some response

variable y via a combination of explanatory, or regressor variables X2, X2,...,X2, has

received a tremendous amount of attention. All of the regression problem scenarios, and

the vast number of solutions presented for these problems are too numerous to mention.

The research presented in this paper retums to the basic foundations of many of these

regression procedures--the simple idea of iitting a curve to a scatter ofpoints. The goal is

a procedure for completing this task which displays better performance and is more

versatile than the popular solutions that currently exist.

1.A Statement of the Problem

The basic regression problem involves a variable y whose response in a particular

process is explained by one or more regressor variables X2, X2, . . . , Xk according to a

model ofthe form

y=_f(X],X2,...,Xk)+8.

The term 6 is a random error from the process, often assumed to have mean 0 and

variance 62. The classical parametric regression viewpoint is that the timctionfis assumed

to have a known parametric form, where the parameters are estimated from the data.

Important inferences made from the resulting regression analysis depend heavily on the

validity of the chosen function forf Clearly, iff is misspecitied, even over only portions

of the data, these inferences may be misleading. Thus, knowledge of the appropriate

model is crucial when applying the classical parametric regression procedures (such as

ordinary least squares).
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At the opposite extreme from these parametric procedures are the aptly named

nonparametric procedures. Here the functionf is considered to be unknown and the user

has no parametric specification as to its form. Hence, nonparametric regression must rely

totally on the data itself to determine a fit to the scatter of points. Many of these

procedures exist, but kemel regression (and local polynomial regression) receive the

emphasis in this current work. To see how nonparametric procedures fit the data,

consider a point Ko = (X10,...,X1,0)’where the prediction of E(y) = j(x0) is desired.

The basic idea is that iff is at least somewhat smooth, then the best information onf(xo)

should come from the y-values at regressor locations x; that are closest to xo. This is

exactly what is done in kemel regression--the prediction ofj(x0) at x0 is obtained as a

weighted sum of y observations, with the weights dependent on the distances of the

respective regressor locations from the point of prediction. The greater the distance from

x0, the smaller the weight assigned to the observation at that location. Once this

procedure is applied to get predictions at all of the regressor locations, a nonparametric lit

to the data is obtained. No closed form expression forf is achieved, but the üt obtained

may suggest to the user such a form to study.

Just as in the parametric case, the nonparametric procedures have their

disadvantages. Since no information is included from the user, nonparametric fits may Ht

to superfluous or irregular pattems in the data. This may result in misleading inferences

about the process. Also, nonparametric fits tend to be more variable than parametric fits

because they rely so much on the scatter of data itself and do not have the underlying

stability of a specified functional form. A third drawback, which is intimately connected

with the first two, is the problem of how best to determine the weighting scheme to be

used. This is discussed later in detail as the problem of bandwidth (or smoothing

parameter) selection.

In practice, rarely does the researcher know the exact form of the true fimctionfin

the regression equation. However, often he may have an idea, or at least be suspicious, of

how the data may behave. For instance, if studying the growth rate of adolescents ages
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10-20 (regressing growth rate vs. age), the researcher may strongly suspect some

quadratic behavior in the data. In this case, a quadratic model would be specified and a

parametric procedure used. However, the researcher may also suspect some deviation in

the data from the quadratic model due to the "growth spurt" that occurs over two or three

years in a teenager (around age 14 for girls and age 16 for boys). This phenomenon

would create an abnormality (a "bump" or peak area) in the quadratic structure of the

data. So the researcher has a dilemma. Using a (parametric) quadratic model would

explain most of the data, but would be inadequate in capturing the growth spurt

phenomenon, whereas using a nonparametric fit would ignore the information that the

researcher has about the underlying structure. The usual solution to this problem would

be to just settle for the nonparametric fit. A second possible solution would be to fit the

quadratic model, perform a test for lack of fit, and use this model if no lack of fit is

detected (if lack of fit is detected, use the nonparametric fit). It is very possible that even

with the presence ofthe growth spurt deviation from the quadratic, a lack ofHt test would

conclude that the specified model is adequate. Thus, the parametric fit would be used and

the resulting inferences would likely be misleading due to the inability of the procedure to

detect the growth spurt.

1. B Direction of Research

The research presented in this paper provides a solution to the problem described

above. That is, how does the researcher obtain a fit that both incorporates his knowledge

about a parametric model and is able to detect specific deviations in the data from this

model? The solution to this problem should also be versatile enough to handle the

following two cases: (1) the researcher believes in a parametric model that is a gross

misspeciiication of the true model (i.e., robusmess to a misspecified model), and (2) the

specified model is adequate throughout all of the data and no specific deviations need to

be detected (i.e., a simple procedure that would just perform ordinary parametric

regression when that is all that is needed). Actually, three possible solutions are studied
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and compared to ordinary least squares (OLS) and kemel (or local polynomial) regression.

All three procedures involve the combination of a parametric Ht and a nonparametric fit.

The parametric fitting technique used throughout this work is OLS. For the

nonparametric fitting technique, kemel regression is used when introducing and explaining

the three proposed procedures. However, the final form of the procedures (for

implementation) involves the better perforrning local linear regression as the

nonparametric fitting technique.

The first ofthese procedures was developed by Einspom (1987) and Einspom and

Birch (1993) and was entitled HATLINK. Here an OLS fit to the data and a kemel fit to

the data are combined in a convex combination via a mixing parameter X. This X ranges

fiom O to 1 based on the amount of rnisspecification ofthe specified model. That is, X = 0

gives the usual OLS fit (when the model is appropriate), and X = 1 gives the kemel üt

(when the model is badly misspecified). Due to its ability to handle the varying degrees of

model misspecification, this procedure is called Model Robust Regression 1 (MRR1). The

second procedure is an adaptation of the semiparametric procedure of partial linear

regression (PLR) developed by Speckman (1988). Here the underlying model for the y,

(i = 1, . . ., n) is thought of as being composed of a linear parametric part (x;’ß) and a

nonparametric part (m(x;’)), where xi' = (XM, XM,...,XM), ß is a vector of unlmown

parameters, and m is an unknown function. The idea, related to partial correlation analysis

of a subset of independent variables in OLS, is to estimate ß based on the matrix of

regressors X and the vector of responses y after "adjusting" them both for partial

information from thenonparametric portion, and to estimate m based on a nonparametric

fit to the residuals from the resulting parametric Ht. These two fits are added to give the

final fit. PLR uses simultaneous fitting techniques and involves the use of residuals to üne

tune the Ht.

The final procedure to be studied is a proposed method which combines the

techniques of these first two procedures. The simplicity of the MRR1 fit is maintained,

but the method itself is improved by introducing the use of residuals to fine tune the fit, as

4



in PLR. This method, denoted MRR2 (Model Robust Regression 2), begins by obtaining

a parametric (OLS) fit to the data, based on the user’s specified model. A nonparametric

(kemel) fit is then obtained on the residuals Hom the initial OLS fit. A portion of this

residual fit is then added back to the OLS fit to give the final MRR2 üt. The residual fit

provides the extra structure in the data that the OLS fit cannot capture. What "portion" of

the fit to add back is determined by a parameter 7L6[0,1], as in the MRRI procedure.

Inherent in the development and comparison of these three procedures are several

other topics that need to be addressed. These include the method of bandwidth choice in

kemel regression, the method of choosing the mixing parameter X, the development of a

criterion for comparing the performance of the diüerent methods, the methods of

obtaining predictions at points other than data locations, and the development of

diagnostics such as error variance estimates and confidence intervals. These issues are

addressed in the context of a one-regressor model, keeping in mind the desire to later

extend the results to the multiple regression case.

The next chapter gives a brief discussion of parametric regression (OLS in

particular), while Chapter 3 gives a detailed review of nonparametric regression (with

most emphasis on kemel regression). Also discussed in Chapter 3 is local polynomial

regression and its benefits over kemel regression. Chapter 4 provides some discussion of

semiparametric procedures, including the introduction of the partial linear model. Then in

Chapter 5 the three model robust regression methods--PLIL MRR1, and MRR2--are

developed. Chapter 6 presents several comparisons among the three procedures based on

a mean squared error criterion. Comparisons are made on several sets of generated and

actual data. Chapter 7 contains a preliminary study ofdata-driven methods that could be

used to obtain the tits for the various techniques. Simulation results are given in Chapter

8 in order to substantiate the findings in Chapters 6 and 7. Included in these simulations is

a check on the validity of the mean squared error criterion used in making the key

comparisons in this work. Finally, Chapter 9 outlines some additional developments of the

procedures and some areas for further research.
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Chapter 2: Ordinary Least Squares

Consider again the problem of predicting the value of a response variable y which

is explained by one or more regressor variables according to the model

yi=f(XIi»X2i»'�‘rXki)+éI>
· un:

where the errors 6, are assumed to be iid with mean 0 and variance 62. The most common

parametric approach to this problem is to express the model above as a (parametric) linear

model, written in matrix notation as

y = Xß + 6,

where y is an n dimensional vector of responses, X is an nx(k+l) matrix of k regressor

variables augmented with a colunm of ones, B is a k+l dimensional vector of unknown

parameters, and 6 is an n dimensional vector of unknown errors. Note here that a

regressor variable may be a function of other regressors, such as a polynonrial term. The

current work emphasizes the "single regressor model", having one explanatory variable X

in the model, with all other possible terms deüned to be polynomial expressions of this

regressor (X2, X6, . . .). The goal of this parametric approach is to obtain the estimate B

of the unknown ß in order to achieve estimates of mean response y = XB. A common

technique for obtaining this estimate is that of ordinary least squares (OLS). OLS

minirnizes the sum of squared residuals — y,)2 ), which results in the estimate
|=

Bol, = (X'X)"X' y. Assuming that 6 is N(0, 62I), where I is the nxn identity matrix, Bd,
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is the optimal (uniform minimum variance unbiased (UMVU)) estimator of ß. Thus, the

tits at the data locations are obtained as

9.,,, = xé„,, = x(x·X)'lX'y = H<°‘*>y, (2.1)

where HMS) is the OLS "hat" matrix.

This hat matrix plays a crucial role in many inferences that are based on the OLS

regression Ht, and several of the properties of the OLS hat matrix are extended to the

other procedures in this current work. Some of these properties of HMS) = (h„MS)) are as

follows:

(1) -1 S
hi‘°‘*)

S 1 , (2.2)

(ii) tr(HMS)) = §}rf°") = p, where tr = trace andp = k+1 , (2.3)

(iii) ihif°") = 1 for each i (row sums equal 1) , (2.4)
j=I

(iv) Var(9„,,) = Var(1ar<°‘*>y) = ¤“11<°“‘>H·<°‘=> =
¤“r1<°“>

(2.5)

(since
HMS) is symmetric and idempotent) ,

(v) residuals
eMS) =y —

yoiii = (I
— HMS))y , (2.6)

. „ Zeimk) Ze?(°")
(V1) Özols = n

_pForthe development and further discussion of these properties, see Myers (1990) and

Hoaglin and Welsch (1978). Also, consider again equation (2.1), and notice that the tit

foryi at xi can be expressed as

7



P?°"’
=§h§°"’y)·— (2.8)

Thus, the fitted value jf is obtained as a weighted sum of the observations }g,j = 1, . . ., n,

and an observation with a large hä has a significant influence on the fit. The value of each

hg is directly related to the choice of model by the user. For instance, in simple linear

regression,

(2.8)
gßü — Y)2

so
hÜ(°‘“)

reflects the distance that Jg- is from the mean E . For fitting at xf, data points at

locations Jg far from the mean have heavy influence, while some data points relatively close

to xf may have almost no influence at all (especially ifxf is near E).

With the weighting scheme being a direct consequence of the prescribed model,

one should be very confident in the model before applying ordinary least squares to make

inferences. If the model is chosen correctly, then OLS gives optimal results. However, if

the model is incorrect, then OLS could give poor predictions at some data locations, and

subsequent inferences could be very misleading. Consider simple linear regression again

as an example. Suppose the tme model is quadratic, but a linear model is specified.

Predictions at locations where the quadratic structure is prevalent would then be poor,

because most weight is given to observations at X locations far away from the point of

prediction, with little information coming from the quadratic structure itself A much

better approach (when in doubt about the true model) is to use a weighting scheme that

places more weight on observations close to the point of prediction rather than on

observations far away. This is the idea behind nonparametric regression, to be discussed

in Chapter 3. For a detailed discussion of OLS and other parametric regression

techr1iques, such as maximum likelihood estimates, and the many extensions and

applications of these techniques, see Myers (1990).

8



Chapter 3: Nonparametric Regression

3.A Introduction

This chapter contains a discussion of the procedures that attempt to solve the

problem of obtaining üts (or predictions) of a response variable when no, or incomplete,

ir1formation is available on the underlying model. With no such (parametric) information,

these nonparametric procedures use only the data itself to provide these tits. Recalling

that results considered in the current work are for the "single regressor" model, the

problem of interest now is obtaining y for the model y = f()O + 6, where f is some

unknown function. As in the parametric case, the fitted value y is obtained via a weighted

sum of the y observations. However, now there is a different rationale behind the choice

ofweights. The idea is as follows: if interested in predictingf(xa) at xa and iff is at least

somewhat smooth, then the observations with the most information aboutf(xa) should be

those located at points xi closest to xa. Thus, the weighting scheme used to assign weights

to the yi’s is based on a decreasing function of the distances of their locations xi from xa.

Points close to Xp receive large weights, while points far from Xp receive little or no weight.

More details on this weighting scheme and the most popular techniques for achieving

these weights are presented in the following sections.

3.B Kernel Regression

A widely used and thoroughly investigated nonparametric regression technique is

that of kemel regression. Due to its computational simplicity and its straightforward

extension to the multivariate case, this procedure is used extensively in the current

research.

9



3.B.l Procedure

The end result of kemel regression is to obtain the appropriate weights hylh') to

give ütted values according to the expression

y¤==*> = ];;„jP“='>yj, (3.3.1)

which can also be thought of as Ä (1:,), for i = 1,..., n. In matrix notation, equation

(3.B. 1) can be expressed as

ykc, =
H(k°‘)y, (3.B.2)

where
H“‘°‘)

= (hÜ“‘°')) is denoted as the kemel "hat" matrix. A common method of

obtaining the weights
h„‘k°')

is that proposed by Nadaraya (1964) and Watson (1964), who

deüned

K(%'i)
JEKI h Ij=I

where the function K(u) is a decreasing timction of Iu I , and h > 0 is the bandwidth

(smoothing parameter). Further discussion of K and h follows in this and subsequent

sections. The numerator of (3.B.3) satisties the notion of giving more weight to

observations at locations close to x, (the location of the Ht), and less weight to

observations far away. The denominator is present to make the rows of
HM) sum to one,

as with HM'). For obtaining a prediction jo at a non-data point xo, one simply replaces x,

with xo in (3.B.3) and calculates

10



y,$"“>
: ];1„<}“>yj . (23.4)

Obtaining such predictions over the entire range of the data would result in an estimated

regression curve j which may provide some insight into the true form of the underlying

functionf Unfortunately, no explicit closed form expression forf can be obtained from

the kemel fit, or from other nonparametric techniques.

3.B.2 Kernel Functions

Kemel regression gets its name from the function K(u) in (3.B.3), which is called

the kemel function. A decreasing function of Iu I , K(u) may be taken to be a probability

density function (such as standard normal, where K(u)¤c—‘/1%;-—e'“2 ), a function defined to be

zero outside a certain range of u, or one of many other functional forms. Two typical

forms ofkemels used in the literature are

K(u) = c(1-u2)d, c,d> 0, (3.B.5)

K(u) = 6 > 0. (3.B.6)

It has been shown by several authors that for practical purposes the choice of the kemel

function is not critical to the performance of kemel regression. Härdle (1990) illustrates

this point for the general case of twice differentiable kemels, where his performance

criterion is the mean integrated squared error (MISE) of the predicted function j(x).

Minimizing the portion of MISE that is a function only of the kemel K, Gasser, Müller,

and Marmnitzsch (1985) found the "optimal" kemel to be the Epanechnikov kemel

(Epanechnikov (1969)):

K(u) = .75(1-u2)I(|uI S 1), (3.B.7)
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where I is the indicator function. From this result, Härdle then calculates the efliciencies

of several other commonly used kemels. Efficiencies are calculated as the optimal MISE

from the Epanechnikov kemel divided by the MISE for the particular kemel of interest.

Results are in Table 3.B. 1.

Table 3.B.l Efficiencies oftwice-differentiable kemels.

Kemel K(u) Eüiciency

_ Epanechnikov (%)(1-u2)I(| u| S 1) l

Qumic S 1) .995

Triangular (l—|u|)I(|u| S 1) .989

Gauss (2„)·1'2cxp(.%) .961

Uniform (—})I(| u| S 1) .943

Based on these results, Härdle concludes that the choice of kemel function should be

based on other considerations (besides MISE), such as computational efficiency. Due to

this consideration and its similarity to a spline smoother matrix (discussed later in section

3.C.2), the kernel function employed in this current work is the simplified Normal (or

Gauss) kemel given by

2

K(u) =
e'“

. (3.B.8)

Even though the form of kemel chosen for kemel regression is not critical, the choice of

bandwidth (h in equation 3.B.3) is crucial in obtaining a "good" kemel fit.
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3.B.3 Bandwidth Choice

Recall that in the kemel regression weighting scheme, observations at locations xi

close to the point of prediction xi; receive the most weight, with weights decreasing for

observations as their distance from xi; increases. How fast these weights decrease as the

distance from xi; increases is determined by the bandwidth h. This is tum controls the

smoothness of the resulting estimate off For example, if h is very small (close to zero),

then almost all of the weight is placed on the point ofprediction itself, with the rest of the

weight on only the closest (local) observations to this point. This would result in a fit that

essentially "connects the dots", and is said to be undersmoothed, or overfit (with high

variance). At the opposite extreme, if h is very large (close to the range of the x-values),

then the weight is spread almost evenly throughout all of the observations. This would

result in a fit that essentially takes the value J7 at each data point, i.e., tits the mean. This

fit would be considered oversmoothed, or underlit (with high bias). The problem of

choosing an appropriate bandwidth (smoothing parameter) is thus the crucial element in

obtaining the proper kemel tit. By a proper or "good" Ht, one usually means that it strikes

the proper balance between the variance and the bias (or squared bias). This goal leads to

minimization of a mean squared error criterion (or other global error criterion) as a logical

starting point for determining what bandwidth to select for a given data set. Much

research has been dedicated to this problem of bandwidth selection and numerous

procedures have been developed. The next subsection gives an overview of some of the

most popular ofthese teclmiques.

Summary ofTechniquesfor Bandwidth Choice

The most popular and practical way to determine if a selected bandwidth is

appropriate is to evaluate its performance based on some global error measure for the

regression curve. As mentioned previously, this measure is often a form of mean (or

average) squared error, which incorporates both bias and variance considerations. To

begin a discussion of bandwidth choice, Härdle (1990) gives three widely accepted

13



quadratic error measures: average squared error (ASB), integrated Sqllafßd CITOI (ISE),

and a conditional average squared error (CASE). These measures are as follows:

ASE = dA(/¤) = »";[f»fxj) — f(>¤;)]2w(xj)„ (3B-9)

ISE = d;(h) = _i[j’),(x) — f(x)]2w(x)g(x)6bc, (3.B.10)

I X1, . . . , X„] , (3.B.ll)

where ß, (rh, in Härdle (1990)) is the (bandwidth dependent) kernel estimate off (m in

Härdle (1990)), g(x) is the density of the
X’
s (equals 1 if

X’
s are fixed), and w(x) is a

nonnegative weight function. This w(x) is present to reduce boundary effects on rates of

convergence, and was found by Härdle to not significantly influence the actual choice ofh.

In the current work, w(x) is usually taken to be the constant value one for simplicity.

Härdle gives a theorem showing the asymptotic equivalence (in convergence rates) of

these distance measures. ASE is actually a discrete approximation to ISE, and in practice

is much easier to compute. Based on these considerations, ASE (or "MSE") is

emphasized as a performance criterion in Härdle (1990) and in the current research.

Härdle states that "the basic idea behind all smoothing parameter selection

algorithms is to estimate the ASE or equivalent measures (up to some constant)", and

hopefhlly the smoothing parameter that minimizes this estimate is also a good estimate for

the smoothing parameter that minimizes the ASE itself In taking this approach and

expanding ASE, Härdle illustrates several important findings based on the portion ofASE

that must be estimated to give ASE apart from a constant. This portion of ASE to be

estimated is what serves as the criterion for choosing the bandwidth. A naive estimate

was found to be the usual estimate ofprediction error (denotedp(h)), involving the sum of

squared errors:
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p(h) = n"SSE = n" Eélyj — f;,(xj)]2w(xj). (3.B.12)

However, n"SSE is a biased estimate of ASE (as shown by Härdle (1990)) and tends to

overEt the data by choosing the smallest possible bandwidth. Härdle then presents three

methods of Ending an unbiased estimate of ASE (denoted MSE from this point on) in

order to get a better selector ofbandwidth.

Cross-Validation (PRESS)

The Erst of these methods is the "leave-one-out" method of cross-validation

(Stone (1974)), which results in expectation ofzero for the bias that parallels the bias Eom

equation (3.B.l2). Here, the Ets j, (= f';,(xi)) are obtained through the usual form of a

weighted sum of the
}g·’
s, but with observationy, leü out. Notationally, the "minus i" Et at

x, is given by
}7i_.i

= 2h,y,.;yJ·, where the hm., are the weights formed ignoring observation
j¢i

y,. One can express hu-, as hy/(1-h„), where hg comes from the hat matrix based on all

observations (Myers (1990)). The expression to be rninimized is given by the cross-

validation function

(Härdle (1990)). Suppressing the dependence on n and w, CV(h) is just the PRESS

statistic used in a wide variety of regression procedures. This PRESS statistic (Allen

(1974)) is as follows:

PRESS = i(y, — j?,,.,)2. (3.B.14)
i=1
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Wong (1982) and Rice (1984a) give consistency results for the method of choosing

bandwidth by cross-validation in the equispaced data situation. The cross-validation

(PRESS) procedure is an attempt to resolve the overtitting problem of using the

prediction error estimate püi) in (3.B.l2). While it does result in tits that are less

dependent on individual observations (and thus have larger bandwidths), this PRESS

procedure has been observed in a wide variety of applications to still tend to overtit the

data by not choosing a bandwidth large enough. So a moditied version of PRESS seems

necessary. One such version is explained in the next subsection.

Penalizing Functions

The second method described by Härdle of choosing h based on MSE uses

penalizing functions to adjust p(h) so that small values of h are less likely to be chosen.

This penalizing of small h’s is accomplished via a penalizing function E(u), which is

increasing in u. The general idea is to adjust the (biased) prediction errorp(h) ofequation

(3.B.12) by E[n°‘h°‘K(0)/§;,(xj)], where §;,(xj) is the Rosenblatt-Parzen kemel density

estimator ofthe (marginal) density ofXat the value ig, as described in Härdle (1990). For

more details on the development of this E, see Appendix A. In the current context, one

can think of §;,(xj) as the denominator of
hg”“")

(equation 3.B.3), divided by h. This

adjustment top(h) results in the following generalpenalizedjunction to minimize:

G(h) E [”°‘h"‘K(0) / §»(x;)] ww)- (3-B-15)

Härdle shows that the bias trom p(h) alone is eliminated and that asymptotically G(h) is

roughly equal to ASE (up to a shitt). With E(u) chosen to be increasing in u, it is clear

that G(h) penalizes values ofh too low.
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Many forms ofE are possible, with a typical choice being the simple E(u) = 1+2u

of Shibata (1981). Working in the fixed design model (fixed x’s, which eliminates the

term §;,(xj) in (3 .B. 15)), the general penalized function can be written as

G(h) =1>(h) E(M"h")-

Rice studied the behavior of five forms ofG(h) based on üve prevalent fonns ofE(n"h"):

(i) Generalized Cross-validation EGCV, (ii) Akaike’s Information Criterion EMC, (iii) Finite

Prediction Error EWE, (iv) Shibata’s Es, and (v) Rice’s own bandwidth selector E1·(n"h")

= [1—2n"h"K(0)]" (for formulas and details, see Rice (l984a)). In his paper, Rice

developed an asymptotically optimal bandwidth selector that is an unbiased estimate of the

risk function (expected squared error loss), and then showed that all Hve of these

penalized selectors are asymptotically equivalent to this optimal selector. The important

result from Rice for the current work, however, is that despite asymptotic equivalence, the

selectors behave differently for iinite data simulations. In comparing the five penalized

functions above, along with the cross-Validation selector of (3.B.13) and the selector

based on unbiased risk estimation, Rice found that his T selector and cross-validation

performed best, foHowed by GCV and the unbiased risk estimator. The AIC, FPE, and S

penalized selectors perforrned poorly. (The performance measure used was efficiency

relative to the optimal risk function). The conclusion was that selectors that penalize small

bandwidths (i.e., penalize undersmoothing (overtitting)) perform better in general. Härdle

(1990) further studied the performances of the five penalized functions with other

simulated data. He found that Rice’s T selector did indeed work well in cases where

protection against undersmoothing was desirable (i.e., needed reduction of variance), but

did not perform well when protection against oversmoothing was desirable (i.e., needed

reduction ofbias). Härdle found the Generalized Cross-validation (GCV) selector to give

the best overall performance. So Rice’s general conclusion is probably too broad a

statement, and more work needs to be done to find a selection function that performs well

for protection against both bias and variance.
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Rice does argue, however, that when considcring mean squared error, there is

much less chance of encounteiing oversmoothing problems when choosing the bandwidth.

His argument is supported by Chiu (1990), who uses Fourier analysis and the sample

variation in bandwidth estimates to show why often in simulation studies most bandwidth

selectors are biased toward undersmoothing. When deciding on a selection procedure,

one should be sure to take this point into consideration. All of these results for ünite

sample cases have by no means been rigorously proven and established in the general

statistical setting, but these tindings provide valuable information for what types of

bandwidth selectors to use in specific situations. The ideas here are used directly in

forming the bandwidth selectors used in the current research (as described in the

upcoming subsections entitled PRESS* and PRESS**).

Plug-inMethod andAsymptotic Results

The third of Härdle’s methods for obtaining an unbiased estimate of MSE in

selecting h is what he calls the "plug-in" procedure. This procedure is based on the

asymptotic expansion ofMSE, and the optimal estimate ofh involves unknowns, including

62 and the second derivative of the underlying fimction jl and is proportional to rfl/5.

Estimates Hom some preliminary smoothing process are "plugged in" for the unknowns to

give the estimate of h. Based on its strictly asymptotic nature and the additional

complication of estimating extra unknowns, this plug-in method is not appropriate for the

current research, which deals with smaller samples and simpler procedures. Also, the

plug—in method restricts the user to a certain smoothness class for the regression fhnctionf

(to twice diiferentiable functions in the case above). Under certain assumptions onß the

range ofh, and the marginal density ofX Härdle and Marron (1985) have shown that the

Cross-validation function CV(h) (equation (3.B.13)) and the General penalized iimction

G(h) (equation (3.B.15)) themselves choose bandwidths that are asymptoticallv optimal

(in the sense that these functions approximate (up to a constant) the measure MSE (dA(h)

of (3.B.9))) uniformly over h. In addition, these results of optimal bandwidths hold
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unifonnly over smoothness classes. This independence from the "smoothness" (degree of

diüerentiability) of the true f is very advantageous in the practical setting, and is not

shared by the plug-in method. And finally, Härdle, Hall, and Marron (1988) prove two

convergence rate theorems that show that even if one knew the "unknowns" in the plug-in

method, this method would still have a rate of convergence no better than that of cross-

validation or penalized functions.

Even though these asymptotic results are not used explicitly in this current work,

there are a few other important asymptotic results mentioned here that are useful in

illustrating some of the points made in subsequent chapters. The usual type of

asymptotics in kernel regression is to study the behavior of estimators as n——>¤o, with h-·>O

and r1h—><>o. These conditions ensure that as the sample size increases, a smaller range of

values around the point of prediction results, but with an increasing number of

observations in this range of values. The relevant results given here are bias and variance

formulas, explained in Chu and Marron (1991), for the Nadaraya-Watson estimate of

(3.B.3). For the teclmical assumptions underlying these expressions, see Appendix B. In

the üxed design case (fixed x’s), and under the first three technical assumptions,

(1) — f 16)

Var(j;(x))=n'1h"o2,[K2(u)du + 0(„·*h·2), (3.B.l7)

with proofs in Chu (1989). The O notation for the higher order terms is a measure ofthe

order ofmagnitude of these terms. Simply stated, a„ = O(b„) means that the sequence

{a,,} is of roughly the same size or order of magnitudc as the sequence {b„}. More

formally, a„ = O(b,,) if the ratio |a„/b,,| is bounded for large n (see Bishop, Fienberg, and

Holland (1975) for more details). Intuitively, one may think of the higher order terms of

(3.B.16) being O(n") as saying that all of these terms have denominators with terms at

least as large as rz.
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Shifting to the random design case, with the two additional assumptions given in

Appendix B, the bias and variance expressions are given by

„ IK
ä
f(1)

— x 1 1
31as(K (wlgwdt
va1(j(x))=„·‘h·‘g(x) o2_iK2(u)du + o(„·‘h·‘), (33.19)

where g(x) is the marginal density ofX (proofs in Chu (1989)). The 0 notation is another

measure oforder ofmagnitude, and a„ = 0(b,,) means that the sequence {a„} is of a smaller

order of magnitude than is {b„}, or that the ratio |a,,/b„| converges to zero (Bishop et al

(1975)). Chu and Marron (1991) also show that the bias expression of (3.B.l8) can be

expanded by use ofTaylor’s Theorem to give

Baas<i00> = h2(1'<»>g<»>+21<x>g'<x>) (l~*K<¤>d~) /(2g00) + 0<~"'*h·”*> + 00*).
(3.B.20)

Equations (3.B.l9) and (3.B.20) are the general (asymptotic equations) for bias and

variance, and are referenced in later discussions. For instance, one can clearly see that

increasing the bandwidth h (oversmoothing) increases the bias in (3.B.20), while

decreasing h (undersmoothing) increases the variance in (3.B. 19). By adding the squared

bias Hom (3.B.20) and the variance from (3.B. 19), one can obtain the (asymptotic) MSE

3SZ

MSE(j(x)) ~wr‘h·‘ +b2h‘, (3.3.21)

where ~ means the ratio approaches one in the limit, and where v and b are constants

based on the bias and variance expressions. Minimization of this MSE gives the
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asymptotically optimal bandwidth hmpp = (v/4b2n)‘/5, and establishes the widely

referenced "optimal" bandwidth expression hop, oc n"/5 (often just taken as h,„„ = n"/S).

Bootstrapping

One other technique that has been investigated for choosing a bandwidth is that of

bootstrapping, a procedure developed for constructing sampling distributions empirically

from the data at hand. To obtain a "bootstrap sample" from an original sample of size rt,

one draws many (B) samples, each of size n, with replacement, from the original sample.

Now, suppose 9 is the parameter of interest in a certain problem, and that one can obtain

an estimate Öof9 from the original sample. Then one can also obtain an estimate 9° of9

from each of the B bootstrap samples. The idea behind bootstrapping (the "bootstrap

principle") is that the observed distribution of the 6*’s approximates the true distribution

ofÖ . Thus, this distribution ofthe
6°’s

can be used to gain insight about the true behavior

of the estimate (See Stine (1989) for a brief discussion, including the choice of

resampling from residuals or from the actual data).

Faraway (1990) uses bootstrapping as a method of choosing the bandwidth in

kemel regression. Here a bootstrap sample of fits fji (x), j = 1, . . ., B, (based on

resampling residuals from an initial fit), is used to estimate the mean squared error, and the

h which minirnizes this estimated MSE is used for the final kemel fit. In this procedure,

Faraway describes how to form the estimate ofMSE so that it is consistent with the true

MSE. Due to its highly computer intensive nature, this approach to bandwidth selection

does not Ht well into the general framework of the current research, and hence are not

studied fiirther at this time. More details can be found in Faraway (1990). Bootstrapping

has proven most applicable in obtaining standard errors and conüdence intervals for

estimates, and in the exploration of estimator performance with real data, where the

parameters are unknown (as opposed to Monte Carlo simulations, which have artificial

data with known parameters). These topics are discussed briefly in later sections.

21



PRESS*

In the current research, two of the above philosophies of bandwidth choice are

combined to give a selection criterion. The iirst component of this selector is the cross-

validation quantity PRESS. As discussed in the previous sections, PRESS attempts to

overcome the overfitting problem of choosing h too small by giving a fit less dependent on

individual observations. However, PRESS has often been observed to stiH select a

bandwidth smaller than that desired. The scope ofthis problem lends itself naturally to the

application of penalized functions. These were discussed earlier in the context of

penalizing the prediction errorp(h) = HJSSE against small bandwidths. Recall that studies

by Rice, Härdle, and Chiu discovered no uniformly "best" form of penalizing fimction.

Härdle did find, however, that (penalized) Generalized Cross-validation appeared to

perform weH over a wide range of smoothness problems, and Rice found the usual cross-

validation criterion (along with his T criterion) to perform extremely well in cases where

protection against overfitting was desired. Based on these ündings and the arguments by

Rice and Chiu that the overfitting problem occurs much more üequently than the

undertitting problem, a bandwidth selector candidate for the current research is taken to

be a "penalized PRESS" diagnostic, denoted PRESS*.

Developed by Einspom (1987), PRESS* penalizes PRESS instead of the usual

prediction error. This merging ofprocedures maintains the versatility of cross-validation,

while also introducing extra protection against overlitting. The "penalty" in PRESS* for

small bandwidths comes from dividing PRESS by [ri —- tr(H“°'))]. To see how this penalty

works, consider fitting at xi. As the bandwidth gets smaller, the individual weights on xi

(the hii“‘°')’s) get larger, and thus tr(H“‘°')) gets larger. The denominator [ri — tr(H‘“")]

gets smaller, and thus penalizes (increases PRESS*) for small bandwidths. Also, the term
tr(H“‘“))

by itself may be thought of as a measure of model adequacy. Related to OLS,

where tr(H(°")) =p (the number of parameters that need to be estimated), tr(H°‘°") can be

thought of as the "equivalent" model degrees of freedom for kernel regression (Cleveland

(1979)). This quantity can be interpreted loosely as the number of parameters that would
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be needed to obtain a comparable parametric fit. Thus, it is desired to have tr(H“‘°')) as

small as possible to reflect a fit that is not overly complex (or variable). The form of

penalty function in PRESS* is slightly different from those mentioned earlier, and is

introduced in the hope of giving more consistent results for different levels of smoothing

problems. Einspom reported that in preliminary simulation studies, PRESS* led to

improved kernel predictions compared to the cross—validation method. A more detailed

study of PRESS* has been cairied out in the current work, and results are given later in

Chapters 7 and 8. It is shown that PRESS*, while it does correctly provide protection

against small bandwidths when needed, often selects bandwidths that are much too large

(especially for the proposed model-robust procedures). A possible solution to this

problem is the introduction into PRESS* of a penalty for large bandwidths. This would

provide a penalty for bias to join the existing penalty for variance. This modification of

PRESS* leads to a second candidate, PRESS**, for determining the bandwidth.

PRESS**

The basic idea behind PRESS** is to introduce a penalty for large bandwidths that

is comparable to the penalty [n—tr(H°‘°‘))] for small bandwidths, which is already present in

the denominator ofPRESS*. (The new penalty term will also appear in the denominator).

Noting that [rz - tr(H(k°'))] —> 0 as h —> 0, and [rz —— tr(H°“”))] —> rz — 1 as h —>°i>, it is

desired to have the new penalty term approach O as h
—>0i

and approach rz — 1 as h —> O.

This new penalty term will be comprised of sums of squares error (SSE) terms. It is

known that SSE increases as h increases, and SSE is maximized when h = 1 (when "i·itting

the mean"). Also, SSE —> 0 as h ——> 0. Letting SSE,„„„ = SSE with h = 1, and SSE;, =

SSE at any candidate h, it is then clear that the expression is between 0

and 1. This expression approaches 0 for h —> 1 and approaches 1 for h -> 0. Multiplying

this expression by (r1 — 1) then gives a penalty term that approaches 0 for h —> l and
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approaches rz — 1 for h —> 0. This was the penalty structure desired, and PRESS** for

choosing h for kemel regression is expressed as

PRESS
PRESS** = =—— ."_ U-(H(k~‘=f)) +

("_
1)In

general, for selecting a parameter G for any procedure with hat matrix H, and deüning

SSE,„,,, to be the maximum sum of squares error across all 9 values, PRESS** may be

defined as

PRESS** = . (3.B.22)_
+

_ ......l

"
tV(H) (H 1) SSEmax

The performance of PRESS** is analyzed (and compared with PRESS*) in Chapters 7

and 8.

3.B.4 Variations ofKernel Regression

The bulk of the current work involves applications of the kemel techniques

described in the previous subsection. These techniques were chosen based on

considerations such as simplicity, popularity, versatility, and observed performance, but

are by no means the only versions of kemel regression available. Some of these other

vaiiations are included here for completeness and to possibly suggest improvements for

future research.

Priestley-Chao, Gasser-MüllerEstimates

Considered first are two techniques of obtaining the kernel weights
h„“‘°‘)

in

equation (3.B. 1), instead ofusing the Nadaraya-Watson weights of (3.B.3). For the fixed
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design case with nearly equispaced x,’s on [0,1], Priestley and Chao (1972) proposed

using the following weights for predicting at the point xp:

x¤°x° .
};,(}?°'*PC)=n(xj—xj-1)(%)K(—;;—L) , J = 1,..., n. (3.B.23)

These Priestley-Chao weights can be interpreted in terms of the Nadaraya-Watson weights

by replacing the denominator in (3.B.3) with [n(:q —— 1g.J)]" for xo 6 (1q.J , iq). The

Priestley-Chao estimate is based on restrictive assumptions and performs poorly in many

situations. Gasser and Müller (1979) proposed an improvement to this estimate by

deüning weights

where x,.J s s,.J s x, is chosen between the ordered x-data. The Gasser-Müller estimate is

studied by Chu and Mairon (1991) as a "convolution" of a kemel timction with some

function representing the raw data. The idea here is to construct a histogram with the im

bin (I = 1, . . ., n) centered at xJ and having height yJ, and then to obtain the prediction at

Xp by the convolution (continuous moving average) ofthis histogram (a step fimction) with

the kemel function. Centered bins are obtained through deiining in = §(xJ + xJ+J). This

convolution estimator performs well in the case of nonuniform x’s, but is much more

diücult to compute than previous estimators, especially if considering the extension to the

multivariate case.

Variable Barzdwidth Selectors

The discussion about selecting the bandwidth h so far has dealt exclusively with

"global" procedures. In other words, a single bandwidth is chosen and used throughout

the entire data set. However, certain data sets may behave in such a way that varying the
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choice of bandwidth at different X locations may prove beneücial. A bandwidth that is

optimal in one region may be too small or too large to perform adequately in another

region. This need for a locally adaptive bandwidth selector is most noticeable in extremely

nonuniform (or “misbehaved") data, where there may be gaps between x’s, regions of

clumps ofobservations or sparse observations, or extreme change in local curvature when

moving from one location to another. Several approaches in the literature for choosing

local bandwidths are mentioned here. One attempt at adapting to varying local densities

of the x’s is to use k-nearest neighbor (k-NN) estimates. For a discussion of k-NN

regression (with references), see Härdle (1990) or Altman (1992). The idea here is to

apply a weight function (which could be a form ofa kemel) that only assigns weight to the

k observations that are closest in location to the point of prediction. So, if one thinks of

the spread of the weight function as being indexed by a bandwidth h, then areas of high

density ofx’s would result in small h’s, whereas areas of low density of
x’s

would result in

large h’s. Cleveland (1979) uses the idea of nearest neighbor regression in his robust

regression procedure, to be discussed in the next section. In actuality, k-NN regression

and kemel regression are two separate procedures, but conceptually they are performing

the same task. For instance, choosing h for kernel regression is directly related to

choosing k for k-NN regression. The two procedures do not behave differently enough to

warrant further discussion or comparison here (more details can be found in Härdle

(1990)).

Müller and Stadtmüller (1987) suggest an approach that adapts the choice ofh to

local curvature of the data. This procedure involves estimating derivatives of the

underlying functionfat eachXlocation, and the size ofbandwidth chosen decreases as the

estimated curvature increases. A third procedure, which is gaining prominence as a locally .

adaptive smoother, is the use of bootstrapping at individual x locations. Härdle and

Bowman (1988) develop results that use the bootstrap to acquire an approximation to a

distribution of a kemel estimator, and then use this bootstrap distribution to obtain an

estimate of local mean squared error at each data point. Local bandwidths can be chosen
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to minimize these local MSE estimates. Faraway (1990) also briefly mentions local

smoothing based on the bootstrap, and makes the additional point that there may be some

irregularity in the local bandwidths, especially if the number ofbootstrap samples B is not

sufliciently large. He suggests smoothing the bandwidths (with an initial global bandwidth

determined by all of the data) to give local bandwidths that are somewhat smooth as a

function ofX Local bandwidth selection has been shown, mainly through squared errors

of the estimates, to provide some improvement over global bandwidths. However, this

improvement comes jointly with a signiticant increase in computations. In the spirit of

sirnplicity, the current research employs the more straightforward global bandwidth

procedure. At this point, the initial comparisons of several procedures are being carried

out, and more computationally advanced "improvements" to these procedures may be

studied in the future. Additionally, these improvements should beneüt each of the

procedures similarly, and the basic results of the comparisons to come (in later chapters)

should not signiiicantly change.

Robust Kernel Regression

One other addition to the basic kemel procedure could be protection against

outliers among the y’s. This robustness problem is addressed by Cleveland (1979) in his

article on locally weighted regression. Here he uses an iterative reweighting procedure in

which the usual weights hg are downweighted for points that have large residuals e,, i = 1,

. . ., n, from the previous iteration. Cleveland uses the robust weighting function of the

bisquare to perform the downweighting:

B(„) = (1 - „*)* , rm |u| < 1

= 0 , for |u| 2 1 ,

with u replaced by el/6s for thej"' downweighting value, where s is the median of the |e,|.

(Coping with outliers is not addressed in the current research).
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BoundargvAayustmems

One of the biggest problems inherent in kemel regression is predicting at the

boundaries of the data. As x approaches the boundary points, the kemel weights become

asymmetric, and bias and variance can be affected. As an illustration, consider trying to

obtain the prediction jo at the point xo at the right boundary of the data. The only points

available (other than Xp itself) to receive kemel weights are those points to the left of x„.

Now, ifthe data (and the true functionj) are increasing toward the right boundary, then all

y-values in the weighted sum used to obtain jo are less than or equal to the value yo at xo.

Thus, the prediction jo will be too low, due to being biased at the boundary.

Several techniques have been developed that attempt to handle this bias problem.

Rice (1984b) presents a rather straightforward approach that involves adjustments to

ensure that the bias and variance near the boundaries are of the same order ofmagnitude

as in the interior. Rice’s modiüed estimate at the boundaries can be expressed as foHows:

where fi, and Ä}, are kemel estimators with bandwidths h and oth, respectively, and ot and

ß are constants. Rice gives expressions for ot and ß that achieve the desired bias and

variance properties. The expression in (3.B.24) can be written as a linear combination of

the kemel estimates in the form

f“‘><x>
= 0- R>f„0> + Kfm). 03.26)

where R = -ß. The estimate in (3.B.25) is a (generalized) jackknfe estimator, and is

discussed in this context by Härdle (1990). Other techniques that have been proposed to

solve boundary problems include use of modified boundary kemels (Gasser and Müller
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(1979)) and retlection methods (Hall and Wehrly (1991)). Details of these methods are

left out here, because in the current research the method applied ürst for handling

boundary problems is local pobmomial regression. This is another nonparametric

regression teclmique that is gaining prominence in the recent literature, and is discussed in

more detail in the next section.

3.C Other Nonparametric Methods

The kemel method is but one of several widely applicable nonparametric

procedures of litting a curve to a set of data. Due to simplicity and a straightforward

extension to the multivariate case, kemel regression has received the bulk of the attention

in the background information so far. However, due to boundary bias problems, kemel

regression is not used as the primary nonparametric ütting technique in the tinal form of

the model-robust procedures to be developed in this paper. Instead, local linear regression

is implemented in order to overcome boundary bias and a few other drawbacks of kemel

regression. The general procedure of local polynomial regression is described in detail in

t11is section. For completeness, one of the biggest "competitors" of kemel regression--

spline regression--is also described, but is not used.

3.C.l Local Polynomial Regression

All of the nonparametric techniques discussed thus far for ütting yi at a point xi

obtain the tits based on a weighted sum ofthe n observations:

E = für) = jähfyf »

where observationsM at locations close to xi are given the largest weights. Unfortunately,

this simple weighting scheme has several drawbacks. The iirst of these is boundary

problems, as discussed in the previous section. The second tlaw is that bias and variance

in the interior may also be intlated if the x’s are nonuniform or if there is substantial

curvature present in the underlying regression function. Additionally, these problems
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become worse in the multidimensional case. One rather successiiil approach to solving

these problems is local pobmomial regression, introduced by Cleveland (1979). This

technique obtains the fitted value jf as the fitted value ofa d
“‘
degree polynomial fit to the

data using a weighted least squares regression, where the weights wg~ are assigned to each

observation based on an initial kemel fit to the data.

Before describing local polynomial regression in more detail, a general, and

simplified, overview ofweighted least squares is given. Suppose one is ütting a d
°"‘
order

polynomial model yf = ßo + ßlxi + ßzxfz + · · - + ßffxfd + sf , or y = Xß + 6 in matrix

notation. Recall that the OLS estimate would be

$·„1„ = xßa = X(X'

°YHerethe prediction weights hg are functions strictly ofthe regressor values. Now suppose

we also want the prediction weights to reflect some phenomenon present in the
y’
s, such

as heterogeneous variances. With unequal variances, for instance, one would want to

place more weight on y-values with small variances and less weight on those with large

variances. To represent this additional weighting, one introduces weights wg into the

weighted sum to obtain weighted least squares (WLS) iits

;§“'*>
: ;wg;f;°‘=>y, , (3.0.1)
j=

or
jlwlsl

= xf' (X'W(xf)X)“‘X'W(xf)y, i=1, . . ., n , (3.C.2)

where xf' is the ig, row ofthe X matrix, and W(xf) is an mm diagonal matrix ofthe weights

wg. For more discussion on weighted least squares, see Myers (1990).

In local polynomial regression (LPR), the weights wg described above come from

kemel weights from an initial fit to the data. To see exactly how LPR works, consider

fittingyf at the point xf. First, a kemel lit may be obtained for the entire data set, resulting

in the kemel hat matrix
H“‘°‘),

which can be written as
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lhi·<‘<=*>l
�(ker)

Hp"') = Ihn j, (2.0.2)
Lh„·O"Ol

where
hi'p‘°‘)

is the iii, row ofHp"'). Recall that to obtain the fitted value foryi at location

xi using just this kemel hat matrix, one would find

jpw) Z éihimyi =
h¤'p""Y

i

where the hip"'), j = 1, . . ., n, are the n elements of the i"' row of
Hp"').

Also recall that

hip"') gives weight to jg based on its distance from xi. These hip"'), for fixed i, serve as the

weights wi in weighted least squares. Notice also that the h„p"')’s (w„’s) differ for different

i’s. As stated earlier, the idea behind local polynomial regression is to obtain the fit at xi

as the ütted value of a d
"‘
order polynomial fit to the observations close to xi using

weighted least squares regression. Defining the weights for WLS as the elements of the
i"‘

row of Hp"'), one obtains wi =
hip"'). Thus, the WLS diagonal weight matrix for local

polynomial regression (LPR), for fitting at xi, is given by

P~O”’ O l¤<¤·>
W"'R(xi) Z diag(hi'"')) Zt "O ._ (wi) . (2.0.4)

0 42"O

The estimated coefficients for the local polynomial regression fit at xi are then given by

ß§‘·"“’
= (x'w““(xi)X)*‘X�w““(»i)y„ (M26)

and thus the fit at xi is obtained as

Z
xi� ß§“’“> Z xi· (x· Z

ni·O·"“>
y . (2.0.6)
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In matrix notation, the n fitted values can be expressed as §·LpR =
H“‘PR)y, where

(6.0.7)

Cleveland (1979) and Hastie and Loader (1993) present this development with iiirther

discussion, and Stone (1980, 1982) shows optimal convergence rates for LPR in a certain

minimax sense. Discussed in these papers is the proper choice of the order d of the local

polynomial. For the majority of cases, a first order fit (local linear regression (LLR)) is

an adequate choice. Cleveland notes that LLR strikes a good balance between

computational ease and the flexibility to reproduce patterns in the data (i.e., reduce bias).

Fan (1992) presents asymptotic optimality properties and advantageous small sample

properties via simulations for LLR. However, in those cases where sharp curvature is

present in the data, LLR may fail to capture peaks and valleys in the data structure, and

local quadrazic regression (LQR) may be needed to provide an adequate Ht.

Unfortunately, increasing the order d of the local polynomial increases the variance of the

estimate. All authors agree that in practical applications, there is usually no need for

polynomials of order d > 2. In a given situation, the choice of d = 1 or d = 2 should be

made by the user to strike the proper balance between bias and variance.

Although presented here as a separate procedure, kemel regression is actually just

a special case of local polynomial regression, namely that of taking the local polynomial

model to be a single parameter "1ocation model". In this case, X in equation (3.C.6) is just

(1, . . ., 1)', and it can easily be shown that (3.C.6) simplifies to (3.B.1) with weights
h„“‘°')

given by the Nadaraya-Watson weights of (3.B.3). Thus, local polynomial regression can

be thought ofas taking kemel regression (which locally Hts a location model at each point)

and extending it to using local fits of higher dimension at each point. The general

32



consensus is that, in routine cases, local polynomial regression (in particular, LLR) tends

to perform as well or better than the basic kemel procedure. LPR simultaneously

addresses the problems ofboundary bias and nonunifonn x’s, and is easily extended to the

multivariate setting, The only noticeable drawback of LPR is increased variance of the

fits, especially at the boundaries. So once again, the choice of estimator depends on both

bias and variance considerations. Preliminary results in this research have shown that local

linear regression generally outperforms kemel regression for the procedures to be

developed here.

3.C.2 Spline Regression

Spline regression is another widely used nonparametric fitting procedure. For a

thorough review of this procedure, see Eubank (1988) or Silverman (1985). The spline

regression estimate is defined to be the function g that minimizes

where 6 denotes a smoothing parameter. This 6 controls the trade-off between the goal

to produce a good fit to the data (first term in (3.C.8)) and the desire to produce a curve

without too much rapid local variation (second term in (3.C.8)). The second term in

(3.C.8) can be thought of as a "roughness penalty" since the integral would be large for a

function g that fluctuates rapidly. The solution of minimizing (3.C.8) over aH twice

differentiable functions yields the solution g(x), which is a cubic spline. This cubic spline

can be shown (Reinsch (1967)) to possess the following properties:

(i) g(x) is a cubic polynomial between two successive x-values;

(ii) at the data points x,, the curve §(x) and its first two derivatives are

continuous, but there may be a discontinuity in the third derivativeg

(iii) g(x) is linear (g"(x) = 0) outside ofthe range ofthe data.
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Although computational schemes are available for tinding §(x), these schemes are much

more computationally intensive than kemel estimates, mainly due tc the dehniticn of §(x)

as the minimizer of a functicnal form.

Related tc this increased complexity, Silverman (1984) has shown a close relation

between spline regression and local bandwidth kernel regression. Silverman shows that

the spline estimate for predicting at x„ is nearly equivalent to using local bandwidth kemel

regression with weights

111 Z -1
H h(x„)

fX(xo)K h(xo)

,wheref\·(x„) is the marginal density cfXat xo, h(x„) is the (local) bandwidth at xo given by

h(x,,) = öl/4n"/4fX(x„)°‘/4 , (3.C.10)

and KS is the "eh“ective" kemel function given by

KS(u) = §ex;{%§—Ü sir(%‘£ + . (3.C.1 1) —

The relationship between the spline estimate and its "effective" (or "equivalent") kernel

estimate has been studied in some detail (Messer (1991)), and chen authors develop new

procedures using kemel regression for simplicity, noting that there is a straightforward

extension for those who would rather use splines. This is the approach being taken in the

current research, with the additional note that kernel methods are more easily extended to

the multidimensional case than are splines.
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3.D Nonparametric or Paramctric?

With such an abundance of parametric and nonparametric fitting procedures

available, it may be a task in itself for one to choose which procedure to use. In two

situations this choice is easy. If the user knows the parametric form of the underlying

functionß then a parametric procedure should be used. OLS, described in Chapter 2,

gives optimal (UMVU) results in this case. At the other extreme, if the user has no idea

about the true form ofj§ then a nonparametric procedure should be used. Several of these

teclmiques have been described in this chapter, with recommendations for kemel or local

linear regression. The trouble with method selection arises when the user has some idea

about the parametric form ofL but this form is not adequate throughout the entire range

of the data. Using a parametric procedure in this situation would not be appropriate

because the resulting fit would be misleading (biased) at points where the data deviates

from the specified model. This leads one to consider using a nonparametric procedure.

While this approach would be able to capture the different deviations in the data, it would

ignore any information that the user has about the underlying structure of the data,

resulting in a more variable fit than is probably necessary.

The proposed research presents some possible solutions to this dilemma. Methods

are developed which combine the parametric and nonparametric procedures (OLS and

kemel regression, for example) in order to both incorporate any information the user has

about a parametric model and to detect deviations in the data from this model. The

proposed methods are very flexible in terms of handling different amounts of model

misspecification, and by combining the "best" (bias and variance properties) of both

procedures, provide noticeable improvements over the two procedures when used

individually. The next chapter contains a brief overview of semzparametric procedures

(and the partial linear model), which take the approach of combining parametric and

nonparametric expressions in the same model. These procedures have been developed for

a slightly different problem than that considered here, but the general idea is extended to
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develop one of the three proposed methods. This and the other two methods are

presented in Chapter 5.
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Chapter 4: Semiparametric Procedures

4.A Introduction

Consider now the concept of combining a parametric tit and a nonparametric Ht in

the same model. The goal of the current research is to develop methods which combine a

parametric polynomial tit (by OLS) with a nonparametric Ht (kernel or local polynomial),

where both tits are based on the (single) regressorX This particular problem has received

very little attention in the literature, but some techniques have been developed for

problems closely related to this. One of these techniques (discussed below) is that of

semiparametric modeling, which combines a parametric lit based on certain regressors

with a nonparametric tit based on other regressors. This technique is extended in the next

chapter to the case where both tits are based on the same regressors. For a brief

introduction to semiparametric models and a discussion of several forms that they can

take, see Härdle (1990).

4.B Partial Linear Model

The form of semiparametiic model that has received the most attention is the

partial linear model. In this model, the response y depends on two sets of regressors

(XI), where the mean response is linearly related to X6iR" (parametric component), but

cannot be easily parameterized in terms ofTémd (nonparametric component). This model

can be expressed as

y, = x,'ß +j(t,) + 6, (1 s i s n), (4.B.l)

where the x,' are tixed known p><1 vectors, ß is an unknown vector of parameters, the tt

are üxed known dxl vectors, andf
Slid —> ER is an unknown (smooth) regression timction
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(Speckman (1988)). The term "partial linear model" is derived from the linear structure of

the parametric component xT'ß ofthe model. To obtain the estimates ofthe responses (the

)7
’s),

one must obtain the estimates Ö and
J;
of the unknown ß andfin (4.B. 1).

The approach taken by Speckrnan (1988) for obtaining these estimates begins by

supposing thatfin (4.B. 1) can be parameterized as f = (f(tT), . . ., j(t„))’ = Ty, where T is

an nxq matrix of full rank and y is an additional parameter vector, In order for the

n><(p+q) matrix (X,T) to have full rank, Speckman assumes for simplicity that the unit

vector (1, . . ., 1)' is in the span ofT, but not ofX. (This is also going to be an important

consideration when this procedure is modified to the case of only one set of regressors in

the next chapter). Model (4.B. 1) can now be written in matrix notation as

y = Xß+ Ty +6 , (4.B.2)

By taking the derivative of (y — Xß —Ty)’(y — Xß — Ty), first with respect to ß (with y

fixed), and then with respect to y (with ß fixed), and setting these equations equal to zero,

one can obtain the following normal equations for (4.B.2):

""‘ß=""y’T”·
(4.B.3)

Tv = PT(y — XB),

where PT = T(T'T)"T' denotes projection onto the colunm space of T. Speckrnan

presents two approaches for obtaining the estimates of ß and f (or Ty here) from these

normal equations. The first is due to Green, Jennison, and Seheult (1985). Their method

begins with substituting for Ty in the first equation of (4.B.3) with the second equation of

(4.B.3) and solving for ß to obtain
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^=
x· 1-1>

x·‘x·
1—1>T ,

B
( ( 1;) ) ( )Y (43.4)

Tv = PT(Y — XB) ·

Then Green et al proposed replacing the projection operator PT by a "smoother" M to

obtain the final estimates. Taking this smoother to be the kemel hat matrix
H°‘°')

from

kemel smoothing on T defines the Green-Jennison-Seheult (GJS) estimates as

ßG,S = (x· (1 (1 — H(k°'))y,
(4 B 5)

Iors Xßms) -

The second approach for obtaining B and
fi
has a little more intuitive appeal, and is

the approach used in the current research. As in the GJS method above, the same steps

are taken to arrive at equations (4.B.4). However, at this point, since PT is idempotent,

one can write (4.B.4) equivalently as

B = (X' (I — I’1)° (I (I — I’r)°(I· I‘r)Y» (4 B 6)
T? Xß) —

By inspection of these estimates, one can think of the estimate of ß as coming from ürst

adjusting X and y for the nonparametric component, and then regressing the partial

residual (I — PT)y on the partial residual (I — PT)X. Replacing PT with
Him) and deüning

the partial residuals (after "adjustment" for dependence on I) as

X = I-
Hom) X ,

N
( (km)

(4.B.7)
Y = (I — H )Y „

Speckman obtains the following estimates for ß and f:
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Bi = öv>°0·‘>”rv.„ „ (4.B.8)
0 =

H“‘”><y-xßn.

Intuitively, these estimates may be interpreted as normal equations for a (parametric)

regression model with partially adjusted residuals. Also, note that if the smootherM that

replaces PT is chosen to be symmetric and idempotent, then estimates (4.B.5) and (4.B.8)

are identical. However, in using
H“‘°')

as the smoother, one obtains two distinct sets of

estimates, since
H°‘°')

is neither symmetric nor idempotent.

Speckman proves several theorems regarding the rates of convergence of the

biases and variances of the estimates in (4.B.5) and (4.B.8). Under several assumptions,

he proves that asymptotically the variance of B, converges at the "parametric rate" n'”,

and the bias of BP converges at the "nonparametric rate" o(h2’). He also proves that the

bias of Bgm converges at a slower rate (O(h")), providing more incentive for using the

estimates BP and fp of (4.B.8). For f , Speckman proves that the biases and variances for

both fgm and fi, all converge at the same rate as when the parametric term B is not present

in the model. All ofthese results suggest that BP and fi, should perform extremely well as

estimates in the partial linear model. However, as Speckman points out, the results above

are asymptotic in nature, and more work is needed to determine small sa1nple properties.

Recall again that the current research focuses on obtaining regression estimates

based on only one set of regressorsX (or more explicitly, the single regressor model). The

semiparametric methods explained in this chapter have been developed with two sets of

regressors (X and 7) in mind. A natural setting for these methods is analysis of

covariance, where the covariate ti enters the model in a nonparametric fashion, and the

treatments of interest enter parametrically through xiB, where, for the case of two

treatments, xi = l for the first treatment group and xi = 0 for the second treatment group

(which could be a control group). The treatment effect is then given by B, which also
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provides an F-test to test for signiiicant differences between the treatments. Speckman

(1988) gives several examples in which he applies his semiparametric procedure to this

setting of analysis of covariance. In the next chapter, Speckman’s procedure is modiüed

for models with a single regressor X to give the first of the three proposed model-robust

regression procedures. The key idea for this procedure is the use of residuals from the

parametric fit to determine the nonparametric portion ofthe fit. Also, this semiparametric

procedure involves simultaneousbw fitting a parametric and a nonparametric model,

whereas the other procedures combine two separate parametric and nonparametric fits.

V
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Chapter 5: Model Robust Regression

Recall that the problem of interest in the current research is how to obtain a

regression fit that both incorporates some (parametric) knowledge about the underlying

model, and is able to detect specific deviations in the data from this model. The solution

to this problem should be able to handle cases ranging from the specified parametric model

being the true underlying model, to the specified model being a gross misspecification of

the true model. The approach taken here is to combine a parametric regression fit, which

is based on the researcher’s knowledge of the underlying model, with a nonparametric

regression fit, which is designed to capture any structure in the data that the parametric fit

fails to explain. This chapter contains the development of the three proposed methods of

combining these two fits in order to achieve a ünal fit that is robust to the varying degrees

of model misspeciücation (hence the name model-robust regression). The next chapter

contains comparisons, based on an MSE criterion, among these methods and the

individual parametric and nonparametric methods.

5.A Partial Linear Regression (PLR)

The first model-robust procedure is a modification of Speckman’s semiparametric

procedure described in chapter 4. Since it is based on the partial linear model concept,

this procedure is called partial linear regression (PLR). Recall that the current research

addresses the issue ofobtaining a regression fit for data based on a single regressorX All

other possible terms in the parametric model specified by the user are defined to be

polynomial expressions of this regressor (X2, X3, . . .). The semiparametric methods

described in chapter 4 were developed for the situation oftwo sets ofregressors (Xand T)

in the model, and thus need to be modified for models with only one set of regressors
("X’

= (X
X2, X3, . . .) as described above). The straightforward approach taken here is to

simply "replace" T with X in any step involving T in the semiparametric procedure. In
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other words, all steps that would normally involve operations on Tare still carried out, but

now they are performed on X The following discussion, analogous to the discussion of

Speckman’s semiparametric procedure in chapter 4, gives the steps of the proposed PLR

procedure.

For PLR (with single regressorX), the partial linear model is expressed as

y,=xi’ß +j(x,)+6y (l Sién), (S.A.l)

where the xi' are fixed knownp><1 vectors (comprised ofthe polynomial expressions ofX),

ß is an unknown vector ofparameters, x, is the
i“‘
value of the regressorX andf 9i

—> QR

is an unknown (smooth) regression function (see (4.B.l) for the analogy). Here y, is

explained by the sum of a linear (parametric) function ofX and a nonparametric function X

of X The estimates of ß and f are obtained following the same procedure as that of

Speckman, explained in chapter 4. First, suppose thatfcan be parameterized as f= (/(xl),

, . ., j(x„))' = Ty, where T is an nxq matrix of full rank and y is an additional parameter

vector. Note here (and in the previous chapter) that T is just a label for a "dummy"

matrix, which is introduced solely for the purpose of providing a somewhat intuitive

approach for obtaining estimates of ß and f At no point does one need to actually

perform an operation on T, or to even know the values of the elements of T. Speckman

used the label T to "represent" his second set of regressors (7), but here T still

"represents" X the only regressors available. The label T is maintained here for

simplicity--to keep the notation exactly the same as that of chapter 4. Now, model (5.A. l)

can be expressed in matrix notation as

y = Xß+Ty + 8,

just as in (4.B.2). As was the case previously, the unit vector (1, . . .,
l)’
is taken to be in

the span of T, but not of X. As is shown shortly, this must be the case for PLR.

Following the same steps as Speckman, the estimates for ß and y may be expressed as
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Ü = (X' (I — Pr)' (I —
Pr)X)_1X'

(I — Pr)' (I — I"r)Y,

Tt = my — XB) .
as in (4.B.6), where PT = T(T'T)"T'. The main difference between PLR and Speckma.n’s

semiparametric procedure arises in the selection of the smoother M that replaces the

projection operator PT. As before, a kemel hat matrix HM) may be used, but here instead

of obtaining
HM) from smoothing on T (which no longer exists), HM) is obtained from

kemel smoothing on X This kemel hat matrix is labeled as HPM), since the kemel fit

needed for PLR is generally different from that needed for fitting the data with a kemel fit

alone (by HM)). Now, define the partial residuals (after adjustment for the nonparametric

component ofX) as

X = (1- 1=1„»<"“>)X.
X =(1-as

in (4.B.7). Replacing PT with
HPM) and then substituting X and Y into the estimates

B and T? above (or, equivalently, regressing Y on X) gives the estimates

B = (XX)"XB ,
B= H»“‘“’<y— XB),

analogous with (4.B.8). From the expression for Ö, the definition of X, and the fact that

each row of
HPM) sums to one, it can be shown that the unit vector (1, . . ., l)' cannot be

included as one ofthe columns ofX. The reason for this is that X would then contain the

zero vector as a column, and (X'X)" would not exist (for details, see Appendix C).

Thus, the "X" matrix for PLR is the nxk matrix of k regressors not augmented with a

column of ones, and the PLR ß vector is k><1, not (k+l)x1 (since there is no intercept

term). To distinguish this matrix from the "usual" X matrix with a column of ones, the

PLR X matrix is denoted XP. Thus, the final PLR estimates of ß and f (= Ty) are as

follows:
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B = i'
°l$‘('~

,„"“R (
(ka?

y
. (5..4.2)

fruz = HP (Y— Xrßrm) ,

where X= (I — Hp(k“))Xp, and (y — Xpßpm) denotes the residuals Hom a parametric lit

based on Xp and Öprp. The fitted values for the observations are then given by

Ymz = Xrßrm +fPUl , (5-A-3)

or ypm =
H(PI‘R)y , (5.A.4)

where

Hm) = (h„¢"L“>) = Hp(k°‘) + >'Z(>’Z·X)'lX'(I —H,„<‘=“*) (5.,4.5)

is the PLR "hat matrix" (when using kernel regression).

An important point needs to be made here. The nonparametric portion of the Ht

(fpm , the fit to the residuals) may be improved upon by using
Hpm) from a local

polynomial (linear or quadratic) fit. This, in fact, is done in the final implementation of

this procedure (LLR is used). However, in obtaining X and 'y',
Hp‘k°‘)

is always used, so

that X and
'y“
are always defined the same way. To support this idea, several preliminary

examples were studied where
Hp(LPR) was used in constructing X and y'. The resulting

PLR üts were somewhat erratic and problems oiien arose in choosing the bandwidth for

this procedure. Using Hpom) never resulted in such problems. So, it is important to

remember that when PLR is presented as using LPR as the nonparametric ütting

technique, this means that LPR is used for the residual fit, but not for obtaining X and 'y'.

Also, this would result in the PLR hat matrix

Hm) = Hp"·"“> + (1 — Hp(LPR))Xp(X' i)"i·(1
—Hp“‘°‘))

. (5.,4.6)
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As shown in (5.A.3) above, PLR obtains {itted values as the sum ofa parametric fit

based on the regressors in Xp, and a nonparametric fit based on the residuals from this

parametric fit. The key notion here is that these two fits are obtained "simuItaneousb?’,

with one having a direct impact on the other. In particular, the (nonparametric) kemel hat

matrix (obtained as the initial step of PLR) is used to form X and S", which are used to

obtain Bppp and hence the parametric portion of the fit, with the residuals from this

parametric fit being smoothed with the original kemel hat matrix to give the

nonparametric portion of the fit. It is easily seen from this abbreviated description how

intricate the parametric and nonparametric components really are for PLR. This

complexity in the basic stmcture of PLR is considered here as a slight drawback of this

procedure, and the other two proposed methods attempt to resolve this complexity

problem by providing simpler, more intuitive methods for combining the parametric and

nonparametric {its. Also, notice that the parametric fit XpÖppp always crosses the y-axis

at zero, since no intercept term is contained in the model. Thus, in general, the parametric

fit is inadequate by itself] and the nonparametric portion, in addition to capturing special

structure in the data, must also correct for this inadequacy. (Figures 6.C.5 (a) and (b) in

chapter 6 illustrate these fitting characteristics for an example with generated data). Also,

the nonparametric {it is always included, in its raw form, to obtain the {inal Ht, even if the

underlying curve is quite smooth and a "usual" parametric fit would be sufiicient. Tl1is

characteristic of PLR also may be a drawback in many situations, since the use of an

unnecessary nonparametric fit may add excess variance to the final {it. A possible

improvement to PLR in these cases would be to somehow provide for a better parametric

fit, and to allow varying "amounts" ofthe nonparametric fit to be used (more emphasis on

nonparametric portion when parametric portion is inadequate, and less emphasis on

nonparametric portion when parametric portion is adequate). These needs are addressed

by the final two model-robust procedures.
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5.B Model Robust Regression 1 (MRR1)

A model-robust procedure which addresses the shortcomings ofPLR mentioned in

the previous section was developed by Einsporn (1987) and Einsporn and Birch (1993)

and was entitled HATLINK. Called Model Robust Regression 1 (MRR1) here, this is a

very simple, but effective method, which combines the fit of a parametric model with the

fit of a nonparametric model, both to the raw data, in a convex combination via a mixing

parameter 7„. In the current work, the parametric model is of the form y = Xß + 6 and the

method of OLS is used to estimate the parameters, ß. The nonparametric model is fit

using some nonparametric method such as kemel regression or local polynomial

regression. Kemel regression is used in the development ofMRRI in the next section.

(For results from using LPR instead of kemel, one can just replace HM) with
Hm) in all

ofthe following expressions).

5.B.l Development

In notational fonn, letting be the OLS fitted values and

yk„ =
HM)y be the kemel fitted values, the MRRI fitted values are obtained simply as

§MRRl =
7~$’k¤

+ (1 1)

where 7„ 6 [0,1]. In terms ofhat matrices, (5.B. 1) can be written as

ym, = 1„11<‘“='>y + (1 — >„)n<‘·‘*>y

=
[>„H<"“>

+ (1 y ($.12.2)
Z
H(MRRl)y
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and the MRR1 hat matrix is seen to be Hmm) = (himum) =
7„H°‘°')

+ (1—)„)H(°"’. (This

simple "link" between the two hat matrices was the origin of the term "HA'I‘LINK").

Also, the fit for an individual observation at xi can be obtained as

0Thekey idea ofMRR1 is the introduction ofthe mixing parameter X. The purpose

of X is to combine the parametric and nonparametric iits in the most eßcicient proportions

to achieve an adequate fit to the data. This A. ranges from 0 to 1 based on the amount of

misspecification of the user’s parametric model. If the parametric model gives an

adequate fit, then X should be close to O, which gives a fit based mainly on the parametric

fit. On the other hand, if the parametric model has been greatly misspeciüed, then X

should be close to 1, which gives a fit based mainly on the nonparametric fit. In cases

where the specified model is somewhat adequate, but cannot capture all of the structure in

the data, a X near the middle of [0,1] may be appropriate to aHow for a proportion of the

nonparametric fit to enter the final fit in an attempt to capture this extra structure. Olkin

and Spiegelman (1987) introduced this same technique as a serniparametric method of

density estimation. In their article, they use likelihood and pseudolikelihood functions to

prove, under certain regularity conditions, that when the speciüed model is correct, the

rate of convergence of their estimator is the same as that of the traditional maximum

likelihood estimator, and when the specified model is incorrect, the rate of convergence is

the same as when using a kemel estimator.

Notice that MRR1 combines two separate fits to the data, one based on OLS (for

the parametric model) and one on kemel regression (for the nonparametric model). So, at

each xi, there are two fitted values available for estimating yi. Based on the value of Ä,

MRR1 selects a value between these two fitted values for the final estimate of yi. For

example, if 7i is large (say, around .80), then the MRR1 fitted value would be closer to the
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kemel ütted value, and vice—versa for small K. This characteristic ofMRRI, although nice

in its simplicity, can also be a drawback of the procedure. In particular, if locations exist

in the data where OLS and kemel regression either both give fitted values too high or both

give fitted values too low, then MRRI has no way of correcting for these insuücient fits.

The third proposed model-robust procedure resolves this problem. Before presenting this

final procedure, one more issue needs to be addressed about MRRI: choice ofX.

5.B.2 Choosing A

The problem of selecting 7L is similar to that of choosing the bandwidth in kemel

regression, as discussed in section 3.B.3. Many of the bandwidth choice considerations

are also present here for choosing X, such as which error criterion to use (SSE, PRESS,

penalizing functions, plug-in estimates, etc.), global vs. local procedures, and guarding

against methods that overfit or underfit the data (here, this would be choosing X too large

or too small, respectively). An example of an overfitting procedure would be to use SSE

to choose Z., as this would nearly always result in using all of the kemel fit, i.e., a X of 1.

In the current research, the approaches taken to solve these problems of choosing A.

closely parallel the conclusions reached about choosing the bandwidth h. For the results

given here, the criterion for choosing 7„ was taken to be PRESS* (the "pena1ized PRESS")

or PRESS**. As with choosing h, it was hoped that PRESS* would incorporate the

desirable properties of both PRESS and penalizing functions, and would provide extra

protection against choosing X too large (overfitting). Also, tl1is global procedure was

used to maintain the simplicity of the procedure. PRESS** was used in order to protect

against cases where PRESS* might choose a lt too small (underfitting). Einspom (1987),

in addition to the PRESS* criterion, also developed some CP-based criteria for selecting X.

Mallow’s CP statistic is essentially an estimate for the sums ofthe individual variances and

squared biases of jh, i = l, . . ., rr, standardized by
62 (for more details on CP, see Myers

(1990)). Einspom discusses how CP strikes the proper balance between an increasing
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variance and a decreasing bias as 7L ranges from 0 to 1 (i.e., as more kemel is added to the

fit). He develops four versions of this C, criterion, based on different estimates of 62 and

different expressions for the error degrees of freedom. The comparative behaviors of

these criteria depend on the amount ofmodel misspecification present, and no one version

has been found to be uniformly best. However, in considering overall performance, with

special emphasis placed on the situation of small to moderate model misspeciiication (the

interest of the current research), Einspom’s C,3 criterion has been determined to perform

best. (Einspom (1987) presents numerous simulation studies in this regard). This C,3

criterion is given by

S2 Ä
__ _ (MRRI) Ä Ic,s(>„) =

¤(H“*“““>0„))
+
[ ( )

"
ll , (6.12.4)

where 6*2,,;, is the OLS estimate of variance for the user’s model (as in equation 2.7),
HM““)(7„)

is the MRRI hat matrix for a certain K, and s2(7„) is the estimate ofvariance for

the MRR1 fit for a certain K, given by

_ 2

AJ ihr —y?MRR"(>~))
=

—*—*—* . 5.B.5

In various simulations, Einspom found C,3 and PRESS* to behave very similarly, and

Einspom and Birch (1993) selected PRESS* as their selection criterion when applying

their HATLINK procedure. The same is done here, but with a more thorough study of

comparisons among different selection procedures for h and K, as presented in Chapter 7.
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5.C Model Robust Regression 2 (MRR2)

The final model-robust procedure is developed in this section, and is motivated by

the desire to improve upon the shortcomings of PLR and MRR1. Basically, this

procedure has as its origin the MRRI procedure, with adjustments made based on the .

PLR procedure. Due to its close relation to MRR1, this proposed procedure is entitled
A

ModelRobust Regression 2 (MRR2).

5.C.l Development

MRR2 maintains the simplicity ofMRR1 by once again using separate parametric

and nonparametric fits to construct the final fit, and MRR2 also makes use of a mixing

parameter A,. The difference arises in how the two individual fits are obtained, and in how

they are combined together. The parametric portion ofMRR2 is obtained as a parametric

fit to the raw data (as is the case with MRR1). Using OLS to fit y = Xß + 6, this fit may

be expressed as yo}, = Xliols. However, the nonparametric portion ofMRR2, instead of

coming fiom a nonparametric Ht to the raw data, comes fiom a nonparametric fit to the

residuals Hom the parametric fit. Denoting these residuals as r = y — the

nonparametric fit (using kemel) may be expressed as f = H$k°‘)r. The kemel hat matrix

H2“°') is still formulated as described in chapter 3, but note that the bandwidth that
‘

determines
H2°‘°’)

is now based on ütting residuals, not the raw data. In other words, due

to a different bandwidth,
H2“‘°‘)

for MRR2 is not the same as
H"‘°')

for MRR1. Now that

the parametric and nonparametric fits, yors and P, respectively, have been obtained, the

final question is how to combine them for the final fit.

The solution to this problem is very simple and intuitive. The procedure is to first

obtain the parametric fit to the data, and then add to this a portion ofthe nonparametric fit

to the residuals. The idea here is for the parametric fit, if not overly misspeciüed, to

explain most of the structure in the data, and then for the nonparametric fit to capture any

"left over" structure not captured by the initial parametric fit. This "lef't over" structure is
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naturally contained in the residuals. Also, instead of always adding back the entire

nonparametric Ht, a portion of this tit is added, detemiined by the parameter 7L 6 [0,1].

This K is chosen in the same fashion as the K in MRR1 (by PRESS* or PRESS** for the

current research), and increases from O to 1 as the amount ofmodel misspecitication in the

parametric portion increases. Formally, the MRR2 ftitted values are obtained as

$’Mmzz = yols +ÄI° . (5.C.l)

In terms ofhat matrices, (5.C.1) can be expressed as

__

C6
[1-1<··“=> + >„1—1$“‘>(1 — H<°‘“>)]y

= H‘MRR2’y .

and the MRR2 hat matrix is seen to be
HNRRZ) = (h„(MRR2)) = H(°") +7LHg°“)(I—H(°‘°)).

Individual Htted observations are obtained as

yMRR2 6 ;h§.M"R“>y, _ (5.03)

(Note once again that Hmm can be substituted in for Ha"') in all of the expressions above

to give the results ofusing LPR as the nonparametric titting technique for MRR2).

5.C.2 Advantages

The goal of this section is to summarize the improvements made in MRR2 over

PLR and MRR1, and to support the contention that MRR2 should be the best overall

procedure for ütting data in situations of small to moderate model misspeciücation. First,
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MRR2 is simpler and more intuitive than PLR in the sense that it involves two separate üts

as opposed to two simultaneous fits. Second, recall that PLR always uses the entire

nonparametric fit, which may lead to a higher variance than is necessary in the final fit.

The presence of 7L in MRR2 resolves this problem, because if the parametric fit is

adequate, a small X (close to zero) prevents the use of an umiecessary nonparametric fit.

Also recall that the PLR parametric fit is usually very inadequate due to the intercept term

being absent, and the nonparametric fit must make up for this inadequacy. MRR2 does

not have this problem, since there are no "restrictions" on the parametric fit. For example,

in using a "regula1" OLS fit (with intercept term), a much more adequate parametric fit

may be obtained. These are the main advantages ofMRR2 over PLR.

MRR2 also has a few advantages over MRR1. First, MRR2 overcomes the MRRI

problem of cases where both of the component üts are inaccurate in the same direction

(above or below the true y-value), with no way to correct this in the final fit. In these

cases, there is a bias problem present in certain locations for MRRI. MRR2 resolves this

problem by obtaining the basic (parametric) fit, and then adding to this a (nonparametric)

residual fit. This residual fit provides flexibility to correct for any inaccuracies in the

parametric fit. This introduction of residuals is an attempt to combine the most

advantageous part of PLR with the simplicity of MRRI. It is also conjectured that

applying the nonparametric fit to the residuals instead of the raw data would provide fits

that are somewhat less variable. Ideally, in MRR2, the main structure of the data is

removed by the parametric fit, leaving residuals to explain the remaining structure. Thus,

the structure left in the residuals should be much less complex than that of the raw data

(for some intuition, just think of the scale of the data (larger) versus the scale of the

residuals (smaller)). So, the nonparametric fitting procedure (kemel or local polynomial)

should not have to "work" as hard to fit the residuals ofMRR2 as it does for the data of

MRRI, and the variance properties ofMRR2 may be somewhat better.

As seen above, MRR2 has been developed to combine the best bias and variance

properties ofPLR and MRR1. Of course, with additional considerations present for such
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problems as bandwidth choice, choice ofX, and the countless number of possible data sets

that could be encountered, it would not be appropriate to make general conclusions at this

point about the different procedures. The next chapter contains preliminary comparisons

based on an MSE criterion and the desire for a nice smooth timction to üt the data.

Several generated data sets are used for initial performance comparisons, and then the

methods are applied to an actual data set. It will become apparent that in most cases PLR

and MRR2 give very similar tits, both displaying an improved performance over MRRI.

This behavior suggests using MRR2 as the model-robust procedure since it is much

simpler than PLR, yet performs as well, or better.
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Chapter 6: Initial Comparisons

The previous chapters have described five different regression techniques for

fitting a set of data: an individual parametric fit, an individual nonparametric Ht, and the

three model-robust methods (PLR, MRRI, and MRR2) which combine the parametric and

nonparametric fits. The purpose of this chapter is to provide comparisons of

performances among these teclmiques in the situation where some knowledge is present

about the form of the true underlying model, but this model is not adequate throughout

the entire range of the data. For these comparisons, the parametric fitting teclmique is

taken to be OLS, and the nonparametric fitting teclmique is local linear regression.

The first section of this chapter establishes the general set-up of the underlying

model ffom which comparisons among all five procedures are made. Based on this
’

general framework, an MSE criterion for each procedure is then developed in the

following section. Several examples are then presented which supply the results of

interest.

6.A Underlying Model (General Expression)

Note that the ultimate goal now is to develop an MSE criterion which can be

' calculated based on the same underlying model for each of the five fitting techniques to be

compared. The first task, then, is to develop an expression for the underlying model from

which each of the five MSE’s can be derived. This expression should be such that any

generated data set can be represented in this way. Since the model-robust methods being

studied involve fits to both parametric and nonparametric models, and since the cases of

interest are where partial, but not complete information is available about the parametric

model, it seems natural to express any underlying model as a combination of parametric

and nonparametric functions. Also, since PLR is the most "complex" fitting technique, in

that it obtains simultaneous fits to parametric and nonparametric functions in the same
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model, this serves as the starting point for developing the general expression for the

underlying model.

For the development here, the most general expression for the underlying model

can be written

y = g(x) + 6 , (6.A.l)

where g(x) = [g(x,),..., g(x„)]’ and g is some general regression function. However, this

model docs not satisfy the characteristics described above (especially for PLR) and is

made more specific as follows. In the spirit of the partial linear model on which PLR is

based, g is divided into parametric and nonparametric portions and (6.A.l) may be

expressed as

y = xpßp + f+ 6 , (6.A.2)

where Xp is the nxp = n><k PLR X matrix (without a column of ones), ßp is a kxl vector

of parameters, and f = [/(xl), . . ., /(x„)]’, where f is an unknown (smooth) regression

function. Sincefis allowed to essentially take on any functional form, any specified model

(involving any g) for gencrating data can bc expressed as (6.A.2) for PLR. For instance, a

portion of the specified model may be defined as Xpßp (i.e., extracting the parametric

part), and then the remaining portion of the specified model, whatever form it may be, is

defined as f. In other words, f can be thought of as "picking up" any part of the specified

model that is Ich over aher detining a part ofit to be Xpßp (i.e., f = g — Xpßp).

The results above are now applied to MRRI and MRR2, with the resulting

exprcssions also being appropriate for the individual parametric and nonparametric

methods. The underlying function g continucs to be split up into a parametric portion and

a nonparametric portion, similar to (6.A.2). Since MRRI and MRR2 use the linear model
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XB (X augmented with a column of ones) as their parametric portion, g can now be

expressed as g = XB + f, and the underlying model (6.A. l) may be expressed as

y=XB+f+6, (6.A.3)

where X is the nx(k+l) matrix of regressors (containing a column ofones), B is a (k+1)xl

vector of parameters, and f' = [/(xl), . . ., f(x„)]’, where f is an unknown (smooth)

regression function. The components of (6.A.3) serve the same purpose as the

corresponding components of (6.A.2), and any specified model (6.A.l) can be expressed

as (6.A.3) for MRR1 and MRR2 (and for the individual parametric and nonparametric

procedures). Note that even though any generated data is being expressed as coming from

a single model, the actual procedures for MRR1 and MRR2 are not based on a single

underlying model (unlike PLR which is based on the partial linear model). Instead,

MRR1 and MRR2 obtain tits based on two separate models, one parametric and one

nonparametric. It is important to keep this distinction between the model-robust

procedures in mind (MRRI and MRR2 vs. PLR). Generated data for MRR1 and/or

MRR2 is expressed as a single model in order to keep all of the procedures in the same

general framework (for a given g), which allows for the development of the MSE criterion

in the next section. Also note that g has now been expressed in two different parametric

forms: XPBP for PLR and XB for the other methods, with XB being a little more Hexible

by providing for an intercept term. This difference also results in the respective f’s being

unequal (namely, (fl = g — Xpßp) ¢ (fz = g — XB)). To make all expressions equal, one

may take the intercept term of B (the classical B0) to be zero, so that XB = XPBP. This is

the approach taken ir1 the current work. Getting all components equal is not a necessity,

but does simplify the calculations of the MSE’s developed in the next section (only one

"XB" and one f need to be kept track ot] instead oftwo ofeach).
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6.B MSE Criterion

Discussed earlier in section 3.B.3 as a bandwidth choice criterion for

nonparametric regression, mean squared error (MSE) is also used here as the diagnostic

for making comparisons among the various fitting techniques. Based on fitting a

particular data set, formulas are developed in this section for the MSE of the üts at any

point in the range of the data. If concemed only with the data points themselves, these

formulas can be used to obtain the n MSE’s desired. These n MSE’s can then be

converted to a single number by calculating the average MSE (AVEMSE) across all ofthe

fitted values at the specific data points. However, in comparing entire fits for the various

techniques, it may be more appropriate to compute an integratedMSE (lMSE) across all

of the locations in the entire range of the data. The formulas derived here also allow for

this calculation (or at least an excellent approximation of it). This approximate integrated

MSE (called INIMSE) is formed by taking the average of the MSE calculations at 1000

locations from 0 to 1 (the range ofthe transformed x’s). This INTMSE is used as the final

criterion for comparing the different fitting teclmiques, whereas AVEMSE is used to find

the "optimal" h and 7. for the various procedures, as described below,.

Before deriving the MSE formulas, one other cmcial point must be addressed:

how to treat the selection of the bandwidth h and the mixing parameter 7. (when needed).

The approach taken in this research follows that used by Speckman (1988). Namely, h

and 7L are both considered asfixed quantities when calculating the MSE’s. Specifically, h
I

and 7. are taken to be the "optimal" bandwidth and mixing parameter for each particular

procedure, where "optimal" refers to minimizing the AVEMSE over all possible values of

h and 7L. Using the notation ofHärdle (1990), these optimal values may be labeled h„ and

7.,,. The optimal h and 7L (when both are needed) are found separately, not jointly as a pair.

For example, in MRRI, ho is the h which minimizes AVEMSE when performing a

nonparametric fit to the data, while 7.., is then the 7. which minimizes AVEMSE for the

final fit that combines this already detemiined nonparametric Ht (based on h.,) with a

parametric fit. The MSE formulas for determining h„ and 7.., are developed shortly as part
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of the development of the other MSE formulas for the five competing procedures.

Obtaining the fixed, optimal h., and 7t„ serves two important purposes. First, it makes the

derivations ofthe MSE formulas much simpler than ifh and X were chosen by data-driven

methods. Secondly, data-driven methods (such as PRESS* or PRESS**) for selecting h

and 7t can be evaluated by comparing the chosen h and X to the optimal h„ and L,. Some

such comparisons are provided in Chapter 7. Now, with h and X fixed as h„ and 7„„, and

the underlying model for generated data defined as in the previous section, the MSE

formulas can be derived.

The following strategy is taken in developing and presenting these formulas. First,

the detailed derivations presented below and in the Appendix, and the initial formulas

which result from these derivations, are for the MSE of the vector of fitted values (y) at

the actual data locations. This is done in order to provide for the very simple calculation

ofAVEMSE, which is the important selector ofthe optimal h and A,. The formulas for the

MSE at any individual location within the range of the data can then be detemained via a

straightforward extension of the steps used to obtain MSE(y), simply be considering an

individual point x., instead of the entire "data matrix" X or Xp. The second point in this

presentation strategy is to carry out all derivations with OLS used as the parametric

technique and kemel regression used as the nonparametric teclmique. To obtain the

results when using local polynomial regression (which is used in all of the examples to

come), one can simply replace "ker" with "LPR" in all of the derivations, except for PLR.

This different derivation for PLR is given in Appendix D.

The tive MSE formulas (for OLS, kernel regression, MRRI, MRR2, and PLR) are

each derived from the underlying model y = g(x) + 6 developed in the previous section,

where g is expressed as Xpßp + f (for PLR), or Xß + f with ßp = O (for OLS, kemel,

MRRI, and MRR2). Actually, the formulas derived here are the bias and variance

formulas for each procedure. Of course, the MSE can then be obtained by squaring the

bias and adding this to the variance.
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OLS

Consider Hrst the simplest case, OLS. Here yojs = Xßojs = X(X'X)"X'y = H°"y,

and the bias of yo), is

i
Bias($·„i„) = E($·„1,)— E(y) (6.B.l)

= E(H‘°"’y) — E(y)

= H‘°"’E(y) — g
=H(°")(Xß+f)—Xß—f (sincey= Xß+f+6, E(6) =0)

= 6<°‘=>xß + H<°‘*>r — xß - r

= xß - xß - (1 —H(°“))f (since 11<°‘*>x = X(X’X)“lX'X = x)

= -(1- H<°‘*>)r .

The variance of
$’61s

is given by

Var($'¤¤s) = V¤r(H‘°‘“’y)
= H(0ls)Var(y)Hy(0ls)

= H<°‘*>(621)6·<°‘S> (since Var(6) = 621) (6.6.2)

= O2H(ols)H�(ols)
i

=
O,2H(ols)

,

as in (2.5). Note that as the true model deviates farther from the linear model Xß (i.e., has

a more prominent f component), the bias increases (while the variance is unaifected). If

the true model is just Xß, then the bias is zero as described in Chapter 2. The bias and

variance of the ütted value jo at any individual location x„' = ( l x., x,,2 - · · ) can be

obtained through similar arguments, starting with the underlying model written in the form

y„ =
x„’ß

+j(x„) + 6. The resulting formulas are given by

Bias()7„, ol,) = x„’(X’X)°‘X'f—f(x„) , (6.B.3)
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Var(,17, ok) =
62x„'(X’X)'1x,, . (6.B.4)

The bias and variance expressions for the remaining procedures are derived by the same

techniques used above for OLS. Details are provided in Appendix D.

Kemel (or LPR)

For kemel regression, yk, = H“‘“)y, where the hgom) are defined as in (3.B.3). The

bias of yk, is given by E(yk,) — E(y), and aüer some calculations (see Appendix D.l),

one can obtain

BiaS($'k«) = —(l — H°°°'))(Xß + O· (6-B-5)

With calculations analogous to those in (6.B.2) for OLS, the variance of $'k« can be

obtained as

recalling that
H°‘°‘)

is not generally symmetric or idempotent. Also recall that the

bandwidth is taken to be fixed (at h„). Here hk, is the h that minimizes the AVEMSE

calculated from the bias and variance formulas in (6.B.5) and (6.B.6), Note that if the

bandwidth is chosen close to zero so that
Ham) is the identity matrix, then the kemel bias

is zero, but the variance is maximized as 62I. This is what occurs when one "connects the

dots" to obtain a kemel fit, and illustrates the concept of a trade-off between bias and

variance.

Similar to the steps in OLS, the bias and variance of jo (for any x,,') can be

obtained as
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k„)

6*
n.,·““>

11.,*** , (6.B.8)

where h,,'“‘°’) is the row of a kemel hat matrix detennined by the distances from the data

points (the x’s) to x„. One can think ofobtaining
h„’°‘°’)

as the row ofHM) corresponding

to
x„’

when x,,' is inserted as a row in the X matrix in the usual kemel procedure. (The

elements of
h,,’“‘°')

are obtained as described in the discussion preceeding equation (3.B.4)

in section 3.B. 1).

MRR1

The bias and variance equations become a bit more complicated for the three

model-robust methods, since they involve two fitting procedures instead of one. The first

of these to be dealt with is MRR1, where yMRR1 =
H(MRRl)y = [A.H°‘“) + (l—).)H‘°")]y.

Derived in Appendix D.2, the bias and variance for the MRRI fitted values (with üxed h

and X) are given by

Bias(yMRR1) = —>„(1 — 11<"“>)xß — (1 — H(MRRl))l§ (6.1;.9)

var(9MR„) = c2H(MRRl)H'(MRR‘) (6.1;. 10)

= ¤2{(1 — >„)[1 - MI— 11<““>)]11<“‘*> +
>„11<‘“‘““>11·<"·*>}

.

Here h is fixed as h„, which is the bandwidth that minimizes the AVEMSE based on the

bias and variance equations given in (6.B.5) and (6.B.6) (and thus is the same as h„ for the

individual kernel procedure). Also, 71. is fixed as 7„,,, which is the 7L that minimizes the

AVEMSE calculated from equations (6.B.9) and (6.B.10) above, with HM) having
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already been determined by h„. Note that for K = O (using no kemel), these equations

simplify to equations (6.B.1) and (6.B.2) for OLS. Likewise, for 1, = 1 (using all kemel),

they reduce to equations (6.B.5) and (6.B.6) for kemel regression. Also, if the underlying

model is chosen such that f = 0, then it is desired to have 7L = 0 to eliminate the bias and to

achieve the minimum variance ¤2H(°"). IfXß = 0, then X = 1 is desired to give bias —(f —
H“‘°‘)i’)

E —("y" — H“‘°‘)"y") and variance o2H“‘°')H'(k°’) as in kemel regression. Here "y" is

thought of as observations directly generated üom a nonlinear function, which should be

Ht better with kemel regression than with OLS.

Again, starting with the underlying model y„ = x„'ß + j(x,,) + 6* , the bias and

variance of jr, can be obtained as

121as()>„„ Mggt) = ->„[x.,· — h„'(k")X]ß + h„’(MRm)f—f(x,,) , (6.12. 1 1)

where
h„'“"““"’

= [(l—7„)x,,’(X'X)"X' + 7„h„""°"] is the row of a MRR1 hat matrix that

would be determined by x,,’, and
h.,'°‘°‘)

is the row of a kemel hat matrix detemiined by
x„’

(same h„'“‘") as described previously).

MRR2

Reaaii that rat MRR2, ham

ÜMRRZ =
H‘°")y

+ 7»H;°‘°’)r (as in (5.C.2)), where H;“‘°') is the kemel hat matrix ü·om a

kernel Ht to the residuals r from the OLS fit. The bias and variance for yMgg; (with h and

X fixed) are derived in Appendix D.3 and may be expressed as follows:

Bias(yMgg;) = -(1 -
H(MRR2))f (6.12. 12)

63



Var(yMRR2) =
6*H“*““'—”H·<'”“"°>

(6.16. 14)

Here, the bias and variance expressions are a little more complicated, mainly due to the

combining of a Ht to the data and a fit to residuals in order to construct Hamm). This

makes it more diiiicult to get an intuitive feel for the behavior of these equations. One

does notice, though, that the bias is independent of the linear term Xß and is affected only

by the form of f. This is expected since MRR2 always uses a parametric fit to Xß, and

OLS gives an unbiased estimate, Xßols. One must be careful not to be misled by the

complexity of these bias and variance expressions. The MRR2 fitting procedure itself is

very simple; the complexity arises as an artifact of the steps necessary to develop

equations comparable with those of the competing procedures. For the MRR2 results

above, h is üxed at the optimal ho, which is different from the h„ for kemel and MRRI.

Now h,, is chosen as the bandwidth that minimizes the AVEMSE for the kernel fit to the

residuals r from the OLS fit. This kemel fit may be expressed as F= H2a‘°')r, and the

AVEMSE is calculated from the following equations (derived in Appendix D.3):

Bias(P ) = -(1 — H2a‘°‘))(I - H(°"))f (6.1;. 1s)

Var(F) = ¤2H,““>(1 — 1-1<°‘“>)121,·‘“° . (6.12. 16)

The mixing parameter X is fixed as 7„„, which minimizes the AVEMSE calculated from

(6.B. 13) and (6.B.14), with
H2a‘°‘)

already determined by h„. _

The bias and variance of jo can be obtained in a similar fashion to OLS, kemel,

and MRR1 as

Mm) = n„·<MR‘“>r—j(x„) , (6.16.17)
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6*
n„"M“"**1¤„“°“‘“*>

, (6.1;.18)

where h„'(MRR2) = [x„'(X’X)"X' +
7„h.,,2’°‘°‘)(I — H(°"))] is the row of a MRR2 hat matrix

that would be determined by xo', and h„„2'°‘°') is the row of a kemel hat matrix determined

by x,,’ when titting the residuals from the OLS fit. Note that
h„,2'“‘°‘)

is different Hom

h„""°') due to the different bandwidths resulting from fitting the data (for kemel) vs. Htting

the residuals (for MRR2).

PLR

The final procedure is PLR, where fitted values are expressed as ypm = Hmly =

Xpßpm +f'pLR (as in (5.A.3)), where Xp is the X matrix without a column of ones. As

mentioned in section 5.A (on PLR), the hat matrix Ham) takes on two different forms

depending on which nonparametric fitting technique is used for the residual fit (kemel or

LPR). These two forms for
Hmm) are given in equations (5.A.5) and (5.A.6). The

fonnulas for the bias and variance of yppp (with h üxed) for each of these cases are

derived in Appendix D.4 and are presented below. (Note that the bias expressions are the

same for both cases, but Hmm differs for each technique; also, recall that X is always

defined as X= (I — Hp°‘°‘))Xp (i.e., X always uses the kernel hat matrix)).

When using kemel regression for the residual fit, one obtains

Bias(yp;_R) = —(1 — H(PLR))f, (6.B. 19)

(6.1;.20)

= G2[HPG<¤) HPr(k¢f) + HP(k¤)(I
_
HP(k¤))rPX + Pia

_ HP(k¤))HPr(k¤) +

Px(I — Hp“‘“*><¤ -
Hp"‘“*>'Pp1 ,
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where and HGLR) is as in (5.A.5). Using local polynomial regression for

the residual tit yields

Bias(yp;_R) = -(1 — H“’L“>)g (6.B.2l)

var(9„_R) = c2H(PLR)H’(PLR) (6.6.22)

= (expression in Appendix D.4 (a)),

where Hmm is as in (5.A.6). These equations are similar to those for MRR2 in that they

are rather complex (especially the variance), and the bias takes the same form of being

dependent only on the form of f. Here h is iixed as h„, the bandwidth minimizing the

AVEMSE based on equations (6.B. 19) and (6.B.20), or (6.B.2l) and (6.B.22) (depending

on the fitting technique used for the residuals).

Now the bias and variance formulas ofthe Htted value )7„ at any individual location

x„_p' = ( x„ x„2 - · - ) (for PLR) can be obtained through similar arguments to those used to

obtain the bias and variance expressions above. Starting with the underlying model

written in the form y„ = x„,,,’ß,, + f(x,,) + 6*, the resulting formulas are as follows. When

using kemel regression for the residual fit,

Baas(y„_ PLR) =
n,,·“"·*‘>r

—j(x„) , (6.B.23)

var(9„,„R) = 6* n„·"’L">h„<"“° , (6.1;.24)

where h„’(PLR) = [h.,,,,'(k°‘) + (x.,,,,' — h„„,,'("°‘)Xp)($'('i)"$'( (I — Hp°‘°‘))] is the row of a PLR

hat matrix that would be determined by
x„,,,’,

and
h„„,'“‘°’)

is the row ofa kernel hat matrix

detennined strictly by x,,,,'. Finally, when using LPR for the residual Ht,
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= 62 n„·""·‘°ii„""·“> , (6.12.26)

where now h„’(PLR) = [h„,,,'(LPR)
+ (x„,,,' — h,,,,'(LPR)Xp)(Üv('$()'l$”( (I — Hp°°“))] is the row of a

PLR hat matrix that would be detennined by x,,,,,', and h„,,,'(LPR’ is the row of a LPR hat

matrix determined by x,,,,,' when titting to the residuals in the PLR procedure.

With the bias and variance equations (6.B.1)-(6.B.26), the MSE’s for each of the

five procedures can easily be obtained. By averaging the MSE’s for a given procedure

across the titted values at the data points, the average MSE (AVEMSE) can now be

obtained. This is the criterion used for determining the "optimal" h., and 76,, for the

diH'erent procedures. Also, by averaging the MSE’s ofmany (1000) locations across the

range of the data, a good estimate for the integrated MSE (INTMSE) can be obtained.

This is the key diagnostic for comparing the performances of the tive procedures for

several generated data sets in the next section. The reason AVEMSE is used instead of

INTMSE to choose h,, and 76,, is to allow for fairer comparisons with data-driven methods

for choosing h and 7L. In other words, it seems more appropriate to determine the optimal

tit (which serves as the basis for comparisons) based on only the data points rather than on

a global criterion, because this is what data-driven methods are restricted to.

6.C Examples

6.C.l Introduction

The five fitting techniques (OLS, LLR, MRRI, MRR2, and PLR) are now

compared for three different generated data sets and one actual data set. In all situations,

the X-data is scaled to be between 0 and l in order to have a good reference for the

behavior of the different techniques across different data sets. For example, bandwidth
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values may be interpreted the same for all data sets, whereas it would be difficult to

compare bandwidth magnitudes across different data sets if they were all on different

scales. Graphical comparisons are provided by plots of the regression curves for each

procedure, and numerical comparisons are provided by several performance diagnostics.

The diagnostics include df,„„d,i= trace(Hat matrix), SSE, PRESS, PRESS*, and INTMSE.

For "good" performance, it is desired to have all of these as small as possible. Recall that

df„,„d,, = tr(H) can be interpreted as "the number of parameters that would be needed to

obtain a comparable parametric fit", and in this sense measures the "complexity" of the

particular fit of interest. Of course, df„„,d,; = p for OLS since this is the parametric titting

technique used here. Also, h and X are chosen as the optimal h, and L, based on

minimizing AVEMSE (the average MSE of the fits at the actual data points), so each

fitting technique is doing its best to keep AVEMSE as low as possible. However, since

one is usually interested in the fit of the regression curve across the entire range of the

data, a "global" measure is more appropriate than AVEMSE in actually making the ünal

comparisons of the different procedures. Thus, the key diagnostic for the comparisons is

taken to be INTMSE (which provides the best measure of the trade-off between bias and

variance for the entire curve). Also, note that INTMSE is based on theoretical formulas

and does not depend on the particular data generated for each of the examples. The other

diagnostics are data-dependent and would change for different generated data sets (liom

the same underlying model). Thus, the values of df„,„d,;, SSE, PRESS, and PRESS* are

used as supplemental diagnostics to INTMSE for these examples (since each example is

but one of many possible generated sets of data for the particular underlying model).

More faith may be placed in these data-dependent values if these values were obtained as

average values over many simulated data sets for each underlying model. Some such

simulations are provided in Chapter 8 (for dfmdd and PRESS). A final note is that LLR

(local linear regression) is used as the nonparametric fitting teclmique in all of the

procedures in order to remove boundary bias problems inherent in kemel regression. For
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the first example, however, an individual kemel fit is also shown to illustrate how LLR can

improve the fit at the boundaries.

6.C.2 Example 1

For this example, data is generated from the underlying model

y=2(X— 5.5)2+5X+3.5sin( +6 (6.C.1)

at ten evenly spaced X-values from 1 to 10, where 6 ~ N(0,l6). The term involving the

sine function introduces a deviation from a quadratic model, and the argument of the sine

function results in the sine completing two fiill periods over the interval [1,10]. This

model was introduced by Einspom (1987), who studied fitting techniques when changing

the amplitude of the sine function (the 3.5 here). Einspom found that the usual lack of fit

test has power of only .226 at ot = .05 when the user has specified a quadratic model,

namely y = ßo +ß1X +
BZXZ + 6, instead of (6.C.1). In other words, the user would

believe the quadratic model is adequate and base inferences on that model, resulting in

possible misleading conclusions. This is a good example of a case where the specified

model (the quadratic) is adequate throughout most, but not all of the data. Figure 6.C.l

shows the true underlying model without the error term. Notice the "dip" betweenX= 3

and X = 6, which an OLS fit to the specified model is likely to be unable to capture. A

kemel or local linear fit may be used to help capture this dip, but recall that this would

ignore the known quadratic structure and result in a fit higher than necessary in variance.

The above observations are illustrated in Figures 6.C.2 (a), (b), and (c), which

show the true curve and the raw data generated from (6.C. 1) (with the error term), along

with the quadratic OLS fit (figure (a)), the kemel fit (figure (b)), and the LLR fit (Hgure

(c)). Note that the OLS fit is smooth (low variance), but fails to capture the dip and does

not fit well at several other points (high biases). The kemel fit (based on h„ = .086) fits
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Figure 6.C.1. True underlying curve from Equation (6.C. 1) for Example 1.
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Figure 6.C.2 (a). Plot ofgenerated data for Example 1, with quadratic OLS Ht.

[ � � � Raw data — True curve ····~· OLS ]
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Figure 6.C.2 (b). Plot ofgenerated data for Example 1, with Kemel fit.

[ � � � Raw data — True curve -····· Kernel ]
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Figure 6.C.2 (c). Plot ofgenerated data for Example 1, with Local Linear Ht.

[ � � � Raw data — True curve ·-···· LLR]
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close to the data points, but is not very smooth (low bias, high variance). Notice how the

kemel üts too low at the boundaries, illustrating the boundary bias problem. The LLR tit

(based on h„ = .115) solves this boundary problem, and supports the use ofLLR instead of

kernel as the nonparametric titting teclmique for all of the results to follow. Figure 6.C.3

displays how the MRRI tit, based on a X., of .503 (almost even weight on OLS and LLR),

combines the OLS and LLR tits, and Figure 6.C.4 gives just the MRRI tit along with the

true curve. The MRR1 tit maintains the smoothness (low variance) of OLS, while using

LLR information to pull the tit closer to the data where needed (lowering bias). Also,

notice that the MRR1 tit is always between the OLS and LLR tits (actually at X
~
50% of

the distance from OLS to LLR). As discussed in section 5.B. 1, if either OLS or LLR tits

poorly at a certain data point, then MRR1 may be unable to correct for this inadequacy.

This is illustrated to a certain degree at points X= 2, X = 6, and at the dip, where OLS

does not ät well. MRR2 and PLR should do as well or better at titting these locations.

Figures 6.C.5 and 6.C.6 give the individual regression üts for MRR2 and PLR,

respectively, while Figure 6.C.7 gives these two tits along with that for MRR1. The

MRR2 tit is based on h,,= .152 and 7„„= .713, while the PLR Ht has h„= .153. MRR2 and

PLR give tits very similar to each other, and these tits are on the whole slightly better than

the tit tiom MRR1. The most noticeable difference is at the dip in the data, where MRR2

and PLR give slightly improved tits. Notice that all three model—robust methods give

much better tits than the individual OLS tit, and it is shovm shortly that these model-

robust procedures have much lower variances than LLR (even though LLR does look

somewhat smooth). These are precisely the improvements hoped for tiom the proposed

methods. These improvements are supported numerically shortly, but ürst some brief

illustrations are given as to exactly how the MRR2 and PLR tits are constructed.

For MRR2, recall that the tirst step is to obtain a parametric tit to the data; this is

the quadratic OLS tit in Figure 6.C.2 (a). Then the residuals tiom this parametric tit are

tit using a nonparametric teclmique; this is the LLR iit in Figure 6.C.8, where the residuals

tiom the OLS tit are plotted on a wider scale than the data in order to show the structure
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Figure 6.C.3. Plot ofgenerated data for Example l, with quadratic OLS, LLR,
and MRRI regression curves.
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Figure 6.C.4. Plot ofgenerated data for Example 1, withMRRI {it.

[ � � � Raw data — True curve ······ MRRI ]
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Figure 6.C.5. Plot ofgenerated data for Example 1, with MRR2 Ht.

[ � � � Raw data —- True curve ······ MRR2 ]
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Figure 6.C.6. Plot ofgenerated data for Example 1, with PLR fit.

[ � � � Raw data -— True curve ····-· PLR]
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Figure 6.C.7. Plot ofgenerated data for Example 1, withMRRI, MRR2, and
PLR regression curves (based on quadratic parametric models).

[� � � Raw data — True curve - - - MRRI ·--- MRR2 ······ PLR]

79



4

3
O

21

R
E
S O

I
O

U
A -1

I. ¤ U

S

-2

-3

-4

.5

V

1 2 3 4 5 6 7 8 9 10

X

Figure 6.C.8. MRR2 LLR Ht to residuals from a quadratic OLS iit, for Example 1.
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of the LLR fit. A certain proportion (71 = .713 here) of the fit to the residuals is then

added to the OLS fit to the data to give the final MRR2 fit in Figure 6.C.5.

Recall that the PLR Ht is obtained through adding together simultaneous

parametric and nonparametric fits. The parametric fit is obtained by first adjusting Xp and

y for the nonparametric portion ofXp, and then regressing the partial residual (I — Hp(k¤))y

on the partial residual (I — Hp“‘°'))Xp. This fit always intersects they-axis at zero, since no

intercept term is contained in Xp. This parametric fit is given in Figure 6.C.9 (a), with
Hp“‘°')

based on h,, = .153. Note that the regression curve is not even close to the data, but

does display the general parametric fonn of the underlying model. The "jump" fiom this

curve to the data, along with any special structure in the data, is captured by the

nonparametric fit to the residuals Hom this parametric fit, as illustrated in Figure 6.C.9 (b).

This Ht is determined by
HPGJLR), which is based on the same h., = .153. Notice that the

residuals are scattered around approximately 42 in magnitude, so when this entire residual

fit is added to the fit to the data (to give the PLR fit in Figure 6.C.6), it corrects for the

insufficiency caused by the lack of intercept term.

Table 6.C.l gives the numerical results of interest for this example. The key

diagnostic INTMSE is smallest for MRR2, and is quite a bit lower for the model-robust

methods than for the individual OLS and LLR procedures. In comparing the model-

robust methods, note that MRR2 is uniformly better than MRR1 and almost uniformly

better than PLR (except for SSE). Also, df'„„,d„; is lowest for MRR2 for the three model-

robust methods, indicating a relatively simpler regression fit, and is much lower than for

the individual LLR fit. Figures 6.C.10 (a)-(c) display the squared bias, the variance, and

theMSE curves for the model-robust methods. Figure 6.C. 10 (a) shows a bias problem in

MRR1 (due to the large bias in OLS, especially at the dip (X = 4)). Figure 6.C.10 (b)

shows the larger variance for PLR (due to its inclusion of an entire LLR fit), and the

presence of larger variances at the boundaries for each of the procedures. This variance

increase at the boundaries should not be considered a major problem with LLR, as tl1is

phonomenon is also present when kemel regression is used. Figure 6.C.10 (c) shows the
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Figure 6.C.9 (a), (b). PLR parametric fit based on quadratic model, and PLR
nonparametric fit (using LLR) to the residuals from the parametric fit of(a),
for Example 1.
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Table 6.C.1. Bandwidth, mixing parameter, and performance diagnostics for
Example 1. Bandwidth and mixing parameter minimize AVEMSE. Key values for
comparisons are underlined.

Ä he
~

am- E
OLS 3 74.24 135.03 19.29 9.42

LLR .115

_

6.23 22.63 198.73 54.05 8.67

.115 .503 4.67 37.97 111.35 20.90 @6

.152 .713 36.08 @ @

PLR .153 5.28 E 179.61 38.07 @
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Figure 6.C.10 (a)-(c). Squared Bias, Variance, and MSE plots for MRRI,
MRR2, and PLR, for Example 1.
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MSE structure obtained by adding together the plots in 6.C.l0 (a) and 6.C.l0 (b). The

three procedures behave rather similarly. Ofnote though are the high MSE for MRR} at

the dip (X = 4, 5), and the higher MSE for PLR at the endpoints. Also, except for the

endpoints, the MSE plots for MRR2 and PLR are relatively close, with PLR slightly better

in the center of the data, and MRR2 better elsewhere. Figures 6.C.}} (a)-(c) display the

squared bias, the variance, and the MSE curves for OLS, LLR, and MRR}. The bias

problem of OLS and the variance problem of LLR show up clearly in tigures (a) and (b).

However, the key observation to be made here is in Figure 6.C. ll (c), which shows that

the model-robust procedure }VH{R} greatly reduces both of these problems at the same

time. MRR} appears to be capturing the best of both individual procedures: the small

variance of OLS and the small bias of LLR. This is exactly what was desired when the

model-robust procedures were developed.

6.C.3 Example 2

This example illustrates the use of the fitting methods when the data has a sine

wave structure, but a polynomial model is specified to be used. The underlying model is

taken to be

y = 5sin(21rX) + 6 (6.C.2)

for X = 0 to 1 by .05, where 6 ~ N(0,}). This gives a basic one period sine wave with

amplitude five. To provide a clearer interpretation ofhow weH the final curves actually Ht

this sine structure, the generated data used is actually from (6.C.2) without the error term

(i.e., the "true" underlying data is used). For calculations, the variance 62 is taken to be

one. The natural polynomial model specified for this type of data (not knowing it was

really from a sine function), would be the cubic model, y = ßo + ß,X
+ß,x“

+ ß,x° + 6.

This being the case, Figure 6.C. 12 displays the data along with the OLS, LLR, and MRR}

fits. The optimal bandwidth was found to be h, = .086 and the optimal 7t to be L, = .479.
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Notice that the cubic OLS curve takes the same general shape as the sine timction, but

carmot capture the exact form of the sine. This is the model misspeciücation for this

example (a sine is not a cubic function). Local linear regression also has some problems

fitting this data, namely where the sine curve peaks and dips. This problem of fitting in

areas of sharp curvature was briefly mentioned in section 3.B.4 when discussing the need

for variable bandwidth selectors. Another approach here would be to use local quadratic

regression in an attempt to better fit the sharp curvature. This has been done, but the fits

are only a little improved and there is hardly any change in the performance diagnostics.

Thus, the use ofLLR is maintained here for consistency with other examples. The MRRI

fit provides some improvement, but still cannot capture the "sharp" peak and dip.

Figure 6.C.13 gives the fits of the three model-robust methods. PLR does no

better than MRRI, most noticeable in the high curvature areas. This stems liom the

parametric portion ofPLR fitting poorly at the peak and dip, leaving a residual structure

with high curvature at these locations. The PLR nonparametric portion carmot capture

this curvature, and so neither does the final PLR fit. MRR2, on the other hand, gives

much improved fits at the areas of high curvature. The initial OLS fit removes much of

the structure at these points, leaving residuals that are much easier to fit than those in

PLR. From inspection ofFigure 6.C. 12, notice that the residual (y —y) üom the OLS Ht at

the right boundary is rather large and negative, whereas the four residuals preceding this

point are all positive. Kemel regression cannot adequately fit the negative residual at the

boundary due to the weights given to the proceeding positive residuals. A similar

phenomenon occurs at the left boundary, with the signs on the residuals reversed. Local

linear regression overcomes this problem. However, a couple of the large residuals from

these points preceding the endpoints are not lit extremely well by LLR and result in higher

biases for MRR2 (due to curvature in the residual structure).. The diiferences in these

biases, though, are not as significant as the differences at the curvature areas (where

MRR2 is best).
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Performance diagnostics are provided in Table 6.C.2. Again, the three model-

robust methods outperform the individual OLS and LLR methods. Based on INTMSE,

MRR1 and MRR2 perform a little better than PLR. Among the model-robust procedures,

dfmdcl is lowest for MRR2 (= 5.70), and is not much greater than thep = 4 for OLS.

6.C.4 Example 3

For this final example based on generated data, model (6.C.l) from Example l is

used once again, but now two observations are taken at each often evenly spacedX-values

from l to 10. Taking two observations at each point adds some distortion to the data in

terms of giving a wider spread of data points about the true curve. At the same time,

however, these replicated data points provide more information about the underlying

model at each point than would be provided by just one observation. This extra "local"

information should result in better performances for the nonparametric portions of the

various fitting techniques. These improvements should in tum lead to better final fits for

all of these procedures. The question is whether one procedure benefits more than the

others.

Figure 6.C.l4 shows the true curve and generated data, along with the quadratic

OLS, the LLR, and the MRRI üts. The extra distortion in the data results in a LLR fit

that is a little more "structured" (not as smooth as in Example l) (with h., = .099), and

hence results in a MRR1 fit (with X., = .686) that follows more closely the pattem of the

true curve than did the MRRI fit of Example 1 (given in Figure 6.C.4). This extra

structure in the MRRI curve allows it to compare a little more favorably to MRR2 and

PLR, which is apparent in Figure 6.C.l5 (as compared to Figure 6.C.7 of Example 1).

The MRR2 and PLR curves are very similar to each other, and are still slightly better üts

than the MRR1 curve, most notably in the dip area. Again, the model-robust procedures

are an improvement over the individual parametric and nonparametric procedures.

Numerical results supporting this contention are given in Table 6.C.3. The model-

robust procedures perform similarly, with PLR and MRR2 having the lower INTMSE’s.
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Table 6.C.2. Bandwidth, mixing parameter, and performance diagnostics for
Example 2. Bandwidth and mixing parameter minimize AVEMSE. Key values for
comparisons are underlined.

T S S @ SSS ßßß
OLS 3.13 6.36 .333
LLR .086

_

8.05 1.24 2.87 .222 .322

E .086 .479 5.94 1.24 3.64 .242
.140
„

Q 3.95 .258 ß
PSS PPP

_
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Figure 6.C.14. Plot ofgenerated data for Example 3, with quadratic OLS, LLR,
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Table 6.C.3. Bandwidth, mixing parameter, and performance diagnostics for
Example 3. Bandwidth and mixing parameter minimize AVEMSE. Key values for
comparisons are underlined.

10Ls 3 205.44 264.62 15.57
7.371111wg 1.911 211.99 4.96

.686 116.14 212.08 14.93

.879 g 115.83209.83PLR
6.27 @15.0894



Note the significant decrease in INTMSE trom Example 1 (Table 6.C.1) to this example.

This is due to the increased local information from the replicates, which leads to

signiticantly decreased biases and variances. The squared bias, variance, and MSE plots

for this example are virtually identical in structure to those in Figures 6.C.l0 (a)-(c), just

with lower values. As a whole, it appears that all fitting procedures were atfected

similarly by the introduction of replicated observations.

6.C.S Application

Consider the data in Table 6.C.4, where the response y is the tensile strength (in

psi) of paper, and the regressorXis the percentage ofhardwood in the batch ofpulp üom

which the paper was produced. This data is taken from Montgomery and Peck (1992),

and was studied by Einspom and Birch (1993). Montgomery and Peck argue that many

users would feel it appropriate to use a quadratic model to fit this data. Their argument is

based on residual plots after actually titting a quadratic model by OLS. This tensile data is

plotted in Figure 6.C.16, along with the quadratic OLS, LLR, and MRR1 tits. Here the

bandwidth (h = .127) and the mixing parameter (X = .894) are chosen by the data driven

method based on PRESS* (as described in section 3.B.3). The question of how effective

PRESS* is at choosing the appropriate h and X is addressed in the next chapter. It is

shown that PRESS* may otren choose h and/or X that are "far" from optimal. However,

for this application, the tits for the procedures relying on h and X chosen by PRESS* do

appear to be adequate (they are smooth and capture most of the structure in the data), so

PRESS* is used. Note that OLS does not fit well, especially at the peak in the data and

near the right boundary. Local linear regression tits much better. MRR1, based on

approximately 90% LLR, gives a much improved fit over OLS, but is not much diüerent

from LLR.

MRR2 and PLR provide slightly better tits in terms of capturing the peak in the

data. These differences are seen in Figure 6.C. 17, which displays the three model-robust

regression curves. MRR2 (with h = .176 and K = .939) and PLR (with h = .186) give nice
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Table 6.C.4 Tensile Strength Data. Y = tensile strength (psi) and X = percentage of
hardwood.

X X X X
1 6.3 7 42.0
1.5 11.1 8 46.1
2 20.0 9 53.1
3 24.0 10 52.0
4 26.1 11 52.5
4.5 30.0 12 48.0
5 33.8 13 42.8
5.5 34.0 14 27.8
6 38.1 15 21.9
6.5 39.9

Table 6.C.5. Bandwidth, mixing parameter, and performance diagnostics for
Tensile Data. Bandwidth and mixing parameter minimize PRESS*. Key values for
comparisons are underlined.

3 9- @
933

__

3 @ 333-33 99-93
LLR .127
¤

5.92 72.75 184.04 14.07

.127 .894 5.61 80.70 163.26 12.19

ä -333 -939 § 33-93 ä -33-33
PLR 86.14 163.60 11.38
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smooth curves that tit the data extremely well. The diagnostics ofTable 6.C.5 support the

observations made thus far. Note the slight improvement of MRRI over LLR (lower

df,„„d,l, PRESS, and PRESS*), and the tremendous improvement over OLS. Also,

considering all of the diagnostics, MRR2 performs a little better than the other procedures.

This is seen mainly in the PRESS and PRESS* diagnostics. A nice property ofMRR2 and

PLR is low df„,„d,l values compared to LLR, which is evident in the smootlmess of their

tits. Again, the model-robust procedures provide noticeable improvements over the

individual parametric or nonparametric üts.

Before proceeding to the study of data-driven selectors of h and X and the

presentation ofsimulation results, two other important topics need to be addressed. These

are (l) the development of contidence intervals for each of the procedures, and (2) a brief

look at the performances of the procedures when the sample size is decreased in the

previous examples.

6.D Confidence Intervals

Now that the tits for all of the competing procedures have been obtained, it is

desireable to have a measure of the accuracy and precision of these tits. This is

accomplished via contidence intervals on the tits. Ideally, one would like to have

contidence intervals as narrow as possible and still maintain the desired coverage

probabilities (90%, 95%, 99%, . . .). Inherent in the construction of these contidence

intervals is the need for estimates of the error variance (62 ). It is desired to obtain 62
’s

and contidence intervals (C.I.’s) for each of the titting procedures that are as basic as

possible in form. The C.I.’s developed here satisty this notion and closely parallel the

form ofOLS C.I.’s. Also, the C.I.’s are developed for any location x,, in the range of the

data.

The OLS l00(1—ot)% C.I. for the true mean py, at the location x, is given by

jg°‘*> i tw'? «\fx.; (x' X)'lx„ ,
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where }7§°") is the titted value at the individual point x,,' = (1 x., x„2 · · -), t„_p& is the
'2

1-ot
th

. .percentile of the t-distribution with r1—p degrees of freedom, and 6 is an

estimate oferror standard deviation (Myers (1990)). The usual estimate of6 is

VF
A 2

Ela — »‘°‘“’)
6: 1-1

r1 — p '

as given in equation (2.7). The general form ofthis C.I. may be expressed as

«\/(11·g°'·")1ig"')) , (6.D.1)

where h,,’(°") = x„'(X'X)"x., is the row vector of OLS weights detennined by x,,. This

general form is maintained for each of the coniidence intervals developed in this current

work. Thus, for each iitting technique, the 100(l—ot)% contidence interval for 11,0 is

expressed as

pg') i1„_„(„(.,)_% 60,,/(n'g') 11g')) , (6.112)

H A � 2

Wh¢l’¢ ¤(�) = , and
“�”

Can bc replaced by any of the üttmg techniques

(OLS, Ker, LPR, MRR1, MRR2, or PLR). The expressions for h„' for each procedure are

the same as those given in section 6.B when the MSE formulas were derived. The

appropriateness of the general C.I. form in (6.D.2) for the nonparametric and model-

robust procedures is supported by Silverman (1985) and Hastie and Tibshirani (1987),

who use contidence intervals of this form when discussing spline regression and general

additive models, respectively.
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Figures 6.D.l (a)-(f) present the various fits along with their 95% confidence

bands for the data in Example 1. Notice that the conüdence bands for OLS in figure (a)

are rather narrow, but fail to capture the true curve in several areas. The kemel

confidence bands (figure (b)) are very wide and irregular due to larger variances of the

fits. These bands are much improved for LLR, as seen in figure (c). The MRRI

confidence bands of ügure (d) maintain the narrow width of OLS bands and the better

coverage of LLR bands. The bands for the model-robust teclmiques MRR2 and PLR

appear to be smooth, narrow, and provide adequate coverage of the true curve (see

figures (e) and (f)). Table 6.D.l provides confidence interval diagnostics for comparing

the various fitting procedures. Specifically, this table contains the average confidence

interval width across the actual data points for the competing procedures for Examples 1,

2, and 3. (It is shown later using simulation studies that, especially for smaller sample

sizes, confidence intervals at locations between data points may become very wide (they

appear to be "unstable"); thus, just the C.I.’s at the data points are averaged here). The

model-robust procedures appear to be performing the best on the whole, with consistently

narrow conüdence intervals (always narrower than LLR, and oiien narrower than OLS).

Actually, one does not even get the whole story with just these width values. Also of

interest is the coverage probability ofthe various C.I.’s. Even though one C.I. is narrower

than another, if it does not provide adequate coverage, then it is no good. Simulations are

needed to study these coverage probabilities, and such results are provided in Chapter 8.

It tums out that the model-robust procedures provide adequate coverage probabilities,

while OLS coverage probabilities are often much too low. This is especially true when

there is larger misspecification in the model. So once again the model-robust procedures

prove beneficial over individual parametric and nonparametric procedures.

Of course, many other forms of confidence intervals have been studied in the

literature. Härdle (1990) presents discussions of pointwise confidence bands derived

through the establishment of the distribution of the nonparametric fits at the individual

points, and variability bands for functions, derived through distribution and derivative
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Table 6.D.l. Average Confidence Interval Widths for Examples 1, 2, and 3.
Average C.I. widths across the data points for OLS, LLR, MRR1, MRR2, and PLR.

4175 1:.1 Width

-

Example 1 Example 2 Example 3

OLS 8.19 .763 5.51

LLR .705 6.24

7.77 .546 5.56

@ 7.64 .574 5.71
PLR 7.89 .506 5.94
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results for the regression fits. A popular method of constructing confidence intervals that

eliminates the need for complex derivational results (which are needed for the techniques

described above) is the method of bootstrapping. Härdle and Bowman (1988) and

Faraway (1990) discuss how to use this resampling technique to get empirical distributions

of fits on which to base the construction of C.I.’s. The current work maintains the

simplicity of the general C.I. form in (6.D.2), and other techniques, such as those

described above, are left for future considerations.

6.E Smaller Sample Results

The final topic of concem for these initial comparisons is the effect of very small

sample sizes on the performance of the various ütting teclmiques. It is hoped that none of

the model-robust techniques would signiücantly falter in this situation. Since there is less

information (data) explaining the true model, the particular techniques are expected to

suffer somewhat in the adequacy oftheir iits. However, what must be checked is whether

one (or more) of the procedures is more significantly affected than the others, which

would seriously damage the usefulness of that particular procedure. Three examples are

used here to study the effect of smaller sample sizes. These examples are simply Examples

1, 2, and 3 discussed previously, with fewer data points generated from the underlyirrg

model, and are described below. (I—Iere h and X are chosen to minimize AVEMSE).

Example 1
’

This example obtains data from equation (6.C.1) of Example 1, but only at six

(instead of ten) evenly spaced X-values Hom l to 10. This raw data is shown in Figures

6.E.l (a)-(b), along with the regression curves from the various ütting procedures. Notice

that the fits are not as good as they were with more data points (Figures 6.C.3, 6.C.7), but

the model-robust fits are still noticeably better than the individual fits. Some performance

diagnostics supporting this contention are given in Table 6.E. 1.
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Table 6.E.1. Bandwidth, mixing parameter, and performance diagnostics for
Example 1'. Bandwidth and mixing parameter minimize AVEMSE. Key values for
comparisons are underlined.

-

M MdMM·OLS
3 44.70 12.09

LLR .133

_

5.30 Q_}; 895.32 1280.18 13.52

.133 .433 Q 23.00 Q

.169 .539 Q 27.20 Q Q

PLR 4.75 540.91 431.93 Q3]
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Example 2
’

Here data is obtained from equation (6.C.2) of Example 2 at six (instead of

twenty-one) evenly spaced X-values from 0 to I. As in Example 2, the "true" underlying

data is used (i.e., data is from (6.C.2) without the error term). Figures 6.E.2 (a)-(b) show

this data along with the various tits of interest. Notice that the MRRI procedure uses a

smaH amount of the LLR fit to adjust the OLS tit, whereas the MRR2 and PLR tits are

very close to OLS. These considerations allow for the model-robust procedures to again

perform well (although they are much closer to OLS), with MRRI holding a slight

advantage here. These conclusions are supported by the diagnostics of Table 6.E.2. It

appears that as the amount of data decreases, the model-robust procedures place more

emphasis on OLS (PLR does this by choosing h ¤ 1). This characteristic is seen again in

the simulation results ofChapter 8.

Example 3 '

This final example obtains data from Equation (6.C.l) of Example 1, where two

observations are taken at each of six (not ten, as in Example 3) equally spaced X-values

from 1 to IO. Similar to Example I', the model-robust procedures perform noticeably

better than the individual procedures. Fits are shovm in Figures 6.E.3 (a)-(b), and

diagnostics are given in Table 6.E.3.

The key observation from this section is that the model-robust procedures appear

to hold up well when the sample size ofthe data is significantly decreased. More results in

this regard, based on simulations, are given in Chapter 8.
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and MRR1 regression curves.
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Table 6.E.Z. Bandwidth, mixing parameter, and performance diagnostics for
Example Z'. Bandwidth and mixing parameter minimize AVEMSE. Key values for
comparisons are underlined.

-

74., 7.. SSS 7N-SMSS
474

__

4 -4444 @@ -747
LLR .120

_

5.55 .372 116.23260.37MRR1

.120 .256 4.40 g 2.65

.280 .578 4.15 .467 6.88

3.71PLR7 ¤¤ SOS .747

Table 6.E.3. Bandwidth, mixing parameter, and performance diagnostics for
Example 3'. Bandwidth and mixing parameter minimize AVEMSE. Key values for
comparisons are underlined.

-

4- 4- @ SSE @@444774444
OLS 3 120.20 191.53 21.28 8.90

LLR 5.60 40.75 137.16 21.42 8.32

.118 .617 55.93 135.27 gg g

.141 .750 57.28 138.20 ggg QL;

PLR .140

_

5.23 45.67 132.89 19.62 g
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Figure 6.E.3 (a). Plot ofgenerated data for Example 3', with quadratic OLS,
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Chapter 7: Choice ofBandwidth & Mixing Parameter

7.A Optimal Criterion

Most of the results and comparisons given up to this point have been based on

generated data sets for which the optimal bandwidths and mixing parameters can be

determined. Since the true underlying model has been known, it has been possible to

evaluate the "theoretical" MSE formulas of section 6.B in order to find h., and 7t,, (by

minimizing AVEMSE). The use ofh„ and 7L,, gives the "best" {its possible for each of the

fitting procedures developed throughout this paper. In other words, using AVEMSE to

select h and/or 7„ for a particular procedure detennines the procedure’s "optimal" fit,

where optimal refers to rninimizing AVEMSE. Based on these optimal fits, one can then

make true comparisons of the performances of the various fitting techniques. Since each

teclmique is contributing its best Ht, it is easy to make conclusions as to which techniques

are outperforming the others. Except for the application (tensile data) in section 6.C.5, all

of the results presented thus far have been based precisely on these considerations (with

the main performance criterion being INTMSE). Thus, the conclusions that the model-

robust procedures are very beneficial are based on solid arguments. (These conclusion

have been based on just individual data sets, but simulation results in the next chapter will

substantiate these findings).

AVEMSE is used as the "optimal" selection criterion for several reasons. First, it

gives the desired measure ofthe tradeoffbetween the bias and variance ofthe fitted values

at the data locations. Second, even though AVEMSE measures MSE values for only the

actual data points, the differences in performance of the various fitting teclmiques are

usually equally as evident in AVEMSE values as they are with the integrated MSE

(INTMSE) values determined across the entire range of the data. The situation that may

cause AVEMSE to give different results Hom INTMSE is extremely small sample sizes,
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where there are wide gaps between data points (gaps where AVEMSE ignores the titting

structure). The examples considered in this chapter do not possess this problem, so

AVEMSE should provide comparisons similar to those of INTMSE. This is an important

point that is considered shortly when deciding on a measure ofperformance for comparing

different data-driven selection criteria. A third reason for using AVEMSE as the optimal

selection criterion (instead of a "global" measure like INTMSE) is to provide a fairer

comparison with the data-diiven methods. Data-driven methods have 0nLv the data to use

in selecting h and K, so it seems appropriate to have the "best" selection criterion to also

only depend on the data. This gives a more valid basis for actually determining how well

(or poorly) data-driven methods perform; i.e., they are not placed at a disadvantage to

start with as they would be if using the global measure INTMSE as the optimal criterion.

The next step then is to determine if there is some data-driven method that consistently

chooses values ofh and X close to the optimal h„ and )„„, thus allowing the beneüts of the

model-robust fitting procedures to be evident in practice. The remainder of this chapter

provides a brief study ofattempts at satisfying this need.

7.B Overview of Study

The following explanation gives the guidelines as to how this selection criterion

study is carried out.

7.B.1 Data Sets

First of all, five different data sets are considered in evaluating methods, and these

data sets are denoted Datal, Data2, . . ., Data5. Datal is taken to be the data from

Example 1 of section 6.C.2, which is generated from equation (6.C.1) and displayed in

Figure 6.C.2 (a). Data2 is the data set generated again by equation (6.C.l), but without

the error term. This data set is similar to the data shown in Figure 6.C.2 (a), except each

point is located on the true underlying curve. Also, for calculations, 62 is taken to be 1 for

this example. Data3 is the data from Example 3 of section 6.C.2, which is shown in
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Figure 6.C. 14. This data is just like that ofDatal, but two observations (instead of one)

are taken at each X-value. Data4 is the sine wave data of Example 2 in section 6.C.2.

This data is generated Hom equation (6.C.2) and displayed in Figure 6.C.l2. Finally,

Data5 is generated from the underlying model

y = 2(lOX—- 5.5)2 + 50X+ 3.5sin(411:X) + 6 (7.B.1)

at twenty-one evenly spaced X-values from 0 to 1, where 6 ~ N(O,1). Actually, the data

used is from (7.B.l) without the error term (i.e., the true data), and c2=1 is used when

calculating diagnostics. Tl1is data is shovm in Figure (7.B.1) along with the true curve.

Note that the true curve for Data5 is very similar to that ofDatal and Data2; however, the

data itself consists of twice as many observation in the same range (after transfomiing the

data of Datal and Data2 to be between O and 1). Each of the data sets Datal through

Data5 contains different characteristics and all together provide a nice range ofunderlying

structures for titting regression curves.

7.B.2 Performance Criterion

Of basic concem for this study is simply obseiving how close the h’s and Vs

chosen by certain data-driven methods are to the optimal h., and V,. The closer the chosen

values are to h„ and V,, the better the data-driven method is considered to be. However,

since there will undoubtedly be diüerences between the optimal and chosen values, some

type ofmeasure is needed to determine how much the tits based on the chosen
h’s

and Vs

differ from the "optimal" tits based on h„ and V,. A natural diagnostic would be INTMSE,

but based on considerations pointed out in the previous section, AVEMSE values are used

instead for these comparisons. It was mentioned previously that for the examples used

here, AVEMSE values provide comparisons across titting techniques that are very similar

to those provided by INTMSE values. Support for this statement is provided in Table

7.B.1, where the AVEMSE and INTMSE values for the optimal üts are given for each
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Table 7.B.1. Comparison of optimal AVEMSE with optimal INTMSE. Values
are for the Hts based on optimal bandwidths and mixing parameters (h., and 71,, which
minimize AVEMSE).

AVEMSEO ¤NT~¤SE„
OLS 9.885 9.417

LLR 9.848 8.672

8.341 7.658
MRR2 8.386 7.573

PLR 8.71 1 7.604

OLS 5.385 5.585

LLR .922 .986

nmz .912 1.012
E .873 .845

PLR .875 .848

OLS 7.485 7.373

LLR 5.575 4.964

nm3 ß 5.066 4.693
4.909 4.415

PLR 4.997 4.404

OLS .340 .298
LLR .352 .322

Data4 ß .271 .244
ß .277 .245

PLR .281 .250

OLS 5.003 4.786

LLR .566 .527

Data.5 MRR1 .566 .527

ß .503 .467
PLR .487 .451
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fitting technique, for each of the five data set examples. Another reason for using

AVEMSE is because AVEMSE is minimized to obtain h., and 7„„, and it would be

beneücial to know exactly how close the AVEMSE value from a data-driven method is to

this optimal minimum value. (In regard to INTMSE, it is quite possible that the INTMSE

from the fit based on h., and X., is not the minimum INTMSE possible). Thus, the results

to come are based on reporting the chosen h’s and Vs with their AVEMSE’s, and

comparing these values to the optimal values of h,,, 7„,,, and the corresponding minimum

AVEMSE.

7.C PRESS* Results

The first data-driven method analyzed is PRESS*, which was introduced in section

3.B.3. Recall that PRESS* is obtained by first calculating PRESS, and then penalizing

this value for small bandwidths by dividing by n — tr(H). Thus, PRESS* is protecting

against fits that are too variable (i.e., slightly favoring larger h’s and smaller 7„’s). Notice

that no penalty is present for bias (to protect against h’s too large or
7„’s

too small).

Before presenting the diagnostics comparing PRESS* to the optimal AVEMSE, a key

observation needs to be discussed. This deals with the minimization of PRESS* as a

function ofh. Through many preliminary studies, it has been observed that PRESS* does

not always follow a concave-up shape with an "ideal" minimum value. This happens on

occasion when choosing h for MRR2 or PLR. In fact, there have been four pattems

observed for the PRESS* curve as a function of h (fiom O to 1). These are displayed in

Figures 7.C. l(a)-(d). Figure (a) shows PRESS* when selecting h for LLR for Data2, and

the bandwidth is chosen as the h corresponding to the minimum ofthe curve. Figure (b) is

PRESS* when selecting h for MRR2 for Data4, and once again the bandwidth is chosen

as the h which minimizes the curve. Plots like (c) and (d) are the ones that cause problems

for PRESS*. Figure (c) shows PRESS* when selecting h for MRR2 for Data3, and ügure

(d) shows PRESS* when selecting h for MRR2 for Data2, hi both ofthese situations, just

taking the bandwidth that minimizes PRESS* would result in h=1, which is a poor choice
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ofh. To resolve this possible problem ofchoosing h=1, it is suggested that the bandwidth

be chosen as the h at the point of the ßrst local minimum or at the point where the

PRESS* curve first starts leveling off (i.e., where the downward slope becomes

significantly less). This idea follows closely the method used ir1 ridge regression to choose

the "shrinkage parameter" k (Myers (1990)). This graphical approach to choosing h of

course involves some judgment from the user, but for most preliminary examples studied it

has been rather obvious how to choose the h. For the diagnostics below, all bandwidths

for which PRESS* is really minimized at h=1 are denoted with a superscript of "1". The

importance ofnoting these special occurrences becomes apparent later in this chapter.

Now for the results ofPRESS*. Table 7.C.1 gives the h, X, and AVEMSE values

based on PRESS*, along with the optimal values for comparisons. (The row labeled

LLRM2 is for choosing h for the LLR fit to the residuals in MRR2, with (AVEMSE) based

° on the residual fits). The final colunm points out where PRESS* chooses h or X too large

or too small (a "+" for too large, a "—" for too small). Double pluses or minuses indicate

larger discrepancies. PRESS* performs well for Data5, but rather poorly for the other

examples. Notice that most problems arise out ofPRESS* choosing h too large, and on

three occasions choosing h=1. For Datal and Data2, the bandwidths are much too large.

The conjecture made here is that introducing into PRESS* only a penalty for small

bandwidths and no penalty for large bandwidths is the cause for the large
h’s

seen in these

examples (and especially for the
h’s
=l). These inappropriate tits result in the model-

robust procedures no longer significantly outperforming the individual OLS and LLR

methods, and thus need to be improved upon. It appears that some action should be taken

to try to reduce (or at least control) the size of h chosen by PRESS*. Several criteria

addressing this issue are studied shortly. Do note, though, that PRESS* chooses h too

smaH for Data4, showing that PRESS* does not always choose h too large. It will be

difficult to find a criterion that overcomes the large bandwidth problem ofPRESS* and is

still able to fit well to Data4. A final point is that it is difficult to get a good impression of

how well PRESS* selects Ä without having the proper h’s for each example. This may be
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Table 7.C.1. Comparing h, 7., and AVEMSE values from PRESS* to optimal
values. Note that MRRI uses h from LLR, and MRR2 uses h üom LLRM2. Final
column denotes whether the particular h or 7. is too large or too small.

+1rHigh
h., 1.. AVEMSE., h 1. AVEMSE -111.66;

01.8

_!

9.885

_!

9.885
—

1.1.11 .115

-

9.848 .158

-

11.297 +
.503 8.341 I .298

9.14511.11.,,.152

-

(3.828) .3601- (5.013) ++
.713 8.386

-

.288 9.820

-

P1.11 .153 ! 8.711 .4715

-

9.866 ++
01.8 5.385

_;

5.385

-

1.1.11 .065

-

.922 .133

-

3.292 +
nmz .957 .912 jß 5.385

—

1.1.11.,, .073

-

(.573) .1351 Q (1.507) +
IEE1 1 -373 Ill 3-333 1

131.11 .0725 Q .875 .166*

-

2.286 +
01.8 7.485 :- 7.485

—

1.1.11 5.575 .088

-

5.695
—

nm3 .686 5.066

-

.566 5.009
—

1.1.11,.,, E- (2.557) .159
—

(2.897) +
.879 4.909

-

.763 5.503

-

191.11 .1185

-

4.997 .155

-

5.285 +
OLS 11 -349 ll -349 Ä
1.1.11 .086

-

.352 .049 Q .471 Q
Data4 @- .479 .271 .468

—

1.1.11„,, .140
—

(.087) E- (.205) Q
lmiälä -377 Ä 1 -393 Ä

111.11 .1405

-

.281 .0575

-

.418
—

01.8 I- 5.003
—-

5.003 Q
1.1.11 .060

—
.566 .051

-

.566
—

Data5 M11111

-

1 .566

-

1 .566

-

1.1.11.,, .057 g (.313) .052

-

(.320)

-

IMEI-! -393 XII
-3111>1.11.487 .060

=
.510

-

[ 1 denotes criterion is globally minimized at h = 1]
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studied more in the future, but for the current work more emphasis is placed on selecting

h. Notice, though, that for the few cases where h is chosen appropriately, 7L is also chosen

appropriately. Tl1is is a good sign that X may be easier to select than h, but more work is

needed on this.

7.D PRESS** Results

A criterion that maintains the penalty for variance, but also includes a penalty for

bias (large h’s) is PRESS**. PRESS** is described in section 3.B.3 and is expressed as

equation (3.B.22). This criterion is designed to stiH prevent the selection of
h’s

close to

zero (as PRESS* does), while at the same time penalizing a little more as h starts to get

larger. This should usually provide choices ofh that are at least a little smaller than those

chosen by PRESS* (and
7L’s

that are a little larger than those from PRESS*, for

comparable h’s). This balancing of penalties for both bias and variance is but one of the

two main advantageous properties ofPRESS**. The second is the virtual elimination of

the problem of selecting h=l. In other words, PRESS** (almost always) corrects for the

structure shown in Figures 7.C.l (c) and (d) by increasing the values of the curve for

larger h’s. This is an important consideration when executing the simulations in the next

chapter. There, search routines are used to find h and 7t for 500 data sets per simulation,

and it is not practical to look at PRESS* or PRESS** curves (plotted vs. h) for each of

these data sets. Thus, it is diüicult to control the selection ofh=l if the curves are of the

forms in Figures 7.C.l (c) and (d). Wise selection of the starting values ofh in the search

routine (explained below) can overcome problems like figure (c), but figure (d) curves are

much more problematic. Tl1is problem is much less prevalent in PRESS** than in

PRESS*, as shown later. Also, it should by noted that PRESS** is on rare occasions

minimized by an inappropriately small h (e.g., .015, .03, ...). In these cases, the PRESS**

curve starts out at one or two small values (for small h), but then abtuptly changes into a

curve the shape ofthose in Figures 7.C.l (a) or (b). An example is shown in Figure 7.D. l,

which shows the PRESS** curve (as a function ofh) for PLR for Data4. The initial small
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value is a result of the PRESS value in the numerator of PRESS**, due to the fact that

PRESS may give unusual values for extremely smaH
h’s.

The denominator n—tr(H) in

PRESS* eliminates this problem by approaching zero for small h, but the second penalty

term in PRESS** prevents its denominator from going to zero and thus does not eliminate

this problem. However, proper choice of starting values in the search routine for h does

easily prevent this choice ofsmall h. (The strategy for these starting values in the search is

to begin with the bandwidth values .08, .10, and .12 so that the search will move in only

very small increments (.02 max.), finding the appropriate local minimum, and not reaching

the location of the inappropriate global minimum. This strategy also eliminates the

problem in graphs such as that in Figure 7.C.l (c) (for PRESS* or possibly PRESS**) by

selecting the bandwidth at the first local minimum).

The diagnostics for PRESS** are given in Table 7.D.1. For data sets 1, 2, 3, and

5, the values resulting from PRESS** generally are relatively close to the optimal values.

In these examples, the advantages of using the model-robust procedures are not lost (as

they often were with PRESS*). Also, in many cases the PRESS** fits are much better

than the corresponding PRESS* fits, most noticeable in Datal and Data2. Notice the

smaHer h’s and larger
h’s
for PRESS** compared to PRESS*. This results in some cases

where PRESS* slightly outperforms PRESS** (e.g., Data5). Unfortunately Data4 is also

fit poorly by PRESS**. However, in considering all of the examples, PRESS** is much

more consistent than PRESS*, and PRESS** has no h’s chosen as 1. It appears that

PRESS** (or future modiücations of it) has potential as a useful data-driven selector ofh

and X.

7.E Other Criteria

This section mentions some other data-driven criteria that have been studied, but

found to not perform as well as PRESS** (or even PRESS* in several cases). These

criteria are the usual MSE, generalized cross-validation, a standardized PRESS*, and an

"average" ofPRESS and PRESS*.
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Table 7.D.1. Comparing h, 2, and AVEMSE values from PRESS** to optimal
values. Final colunm denotes whether the particular h or 2 is too large or too small.

+ifH*8h
1.,, AVEMSE., h 1 AVEMSE —ifLow

888 11 8-885 11
8-8851.1.11.115 I 9.848 .120

—
9.868

_

.503 8.341 Q .770 8.830

-

LLRM2 .152

-

(3.828) .145
=

(3.840) Q
.713 8.386

-

.780 8.348

_

PLR .153

-

8.711 .165

-

8.736
—

888 11 5885 11 5885 1
1.1,11 .065 I .922

.040Data2.957 .912
—

.615 1.320.

_

LLRM2 .073 K (.573) m- (.820)
—

1 .873

-

.915 1.274

-

PLR .0725 I .875 1.124
—

888 11 7485 11 7485 1
1,1,11 5.575 .080

-

5.957 :
128888 MRR1

-

.686 5.066

-

.890 5.464

_

1.1.11,,,, E- (2.557) .080 ! (3.407)
.879 4.909 5.536

-

181.11 .1185 I 4.997 .075

_

6.143

_

888 11 -848 {I 848 Ä
LLR .086

-

.352 .040 : .584
—

196864 MRR1 ! .479 .271

-

1 .584

-

LLRM2 .140 Q (.087) .060

-

(.274) B
IEEII -888 -877 III +*64 Ä

181.11 .1405 I .281 .045

-

.517

_

888 1; 5488 11
54881,1,11.060

—
.566 EQ- .622

_

88885 IEEIIII 588 Ill -888 1
LLRM2 .057

-

(.313) (.413)

_

IEEEIII -588 IIIEEIÄ
8888 EMI -487 EDI -888 1
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MSE, GCV

The Erst of these altematives is to choose h and 7„ to minimize the classical MSE

formula,

MSE = §g(M
— M)2

Z SSE
M— ¤(H) M— tr(H) ‘

A
This selector results in always choosing the bandwidth too small, which is due to having

SSE in the numerator instead of PRESS (which is in PRESS*). A second altemative for

selecting h and K is generalized cross-validation, expressed as

GCV: PRESS
2lv — ¤(H>]

(Myers (1990)). This is just PRESS* with the penalty for small h’s entering as a squared

term. This criterion results in bandwidths that are always larger than those for PRESS*,

which results in worse fits most ofthe time. Also, GCV has more problems with choosing

h=l.

StandardizedPRESS*

A third criterion, which has performed better than the MSE or GCV techniques

just described, is a standardized PRESS*. This is simply Standardized PRESS (described

below), divided by the penalty n- tr(H). Standardized PRESS is defined as the sum of

the standardized PRESS residuals, which are the regular PRESS residuals each divided by

its standard deviation (or estimated standard deviation). It can be shown that the PRESS

residuals for each fitting technique in this work may be expressed as

61.-: =
Mwhere"—1"’

denotes "without using the im observation," and ei is the usual residual from the

regression fit. Then standardized PRESS residuals are defined as
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std 11Ess,=——%>=——Li:(P ) "Va""‘·"’
0
·0i>(‘®

(7.E. 1)
(1 — hn), V¤r(¢1)

-

.._theregular standardized residuals. Letting y(°)
= H(°)y for "�" = OLS, LLK MRRI, or

PLR, so that e(°) = y-
§·(°)

= (I- H(°))y, it is clear that Var(e,) = c2[(I — H(°’)(I — H‘°))']„

for each of these fitting procedures. For MRR2, there is an extra step involved in ünding

Var(ei). Letting r = (I -
H(°"))y be the residuals Hom the initial OLS lit, and then defining

e = (I — H2(U“R))r to be the residuals tiom the MRR2 local linear Ht to r, one obtains the

foHowing:

wm) = 0 — HiU‘R))V¤r(r)(1 — HSM)'=
= 0-HSM) ¤20— H(°"))(1— H‘“‘“’)'0—HSM)'
=
¤“0

HSM) ,

and Var(ei) = [o2(I— HS'M)(1— H‘°‘”)(1—HSM)'1, fm MRR2. substitutmg the

appropriate Var(ei) into equation (7.E.l) and summing these standardized PRESS

residuals gives Standardized PRESS for each titting technique, which facilitates the

calculation ofStandardizedPRESS*.

The diagnostics for Standardized PRESS* are included in Table 7.E.1. These

results are very similar to those from PRESS*. There are some areas of improvement

(e.g., Datal), and some areas where the {its are worse (e.g., Data3). Also, there is still a

problem with choosing h=l (three times), and one h (for PLR for Datal) is chosen too

high at an inappropriate minimum of the Std. PRESS* curve. On the whole it does not
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Table 7.E.1. Values of h, 2, and AVEMSE from Standardized PRESS*
and AVEPRESS selection criteria.

s1111111111111z6111>1z13ss« 1
2. AVEMSE h 2. AVEMSE

0Ls

--

9.885 1-- 9.885
1.1.11 .130 j 10.035 1 .115

-

9.848
MR111 rm 9.401 1- .745 8.694
LLRM2 (3.945) .190*

-

(4.025)
.625 8.716 1- .575 8.864

PLR .190 I 8.897 .210
—

9.074
0Ls 5.385

--

5.385
LLR .120 Q 2.503 1.105.

� � «

DM
LLRM2 135*

-

(1;:;;) 1 110*
@7;;

5.385 .830 1.666
181.11 .135*

-

1.812 1 .115* I 1.387
0Ls

--

7.485

--

7.485
LLR .065 g 6.912 1 .075

-

6.217
131111,13 6.179 .840 5.428

LLRM, .070

-

(4.091) 1 .080

-

(3.407)

-

.950ß- 5.419
121.11 .070

-

6.507 1 .080

-

5.831
ons

--

-849 *-- -840
LLR .050 -ß1 .040

-

.584
Data4 MRRI

-

.995 EQ 1 .584
LLRM2 .055

-

(.238)
1
.045

-

(.323)
IEEEIKII -428 ill -818
PLR .050 Q .469

1
.045

_

.517
01-8 11 8-098 lf 8-998
1.1.11 .050

-

.566 Ey- .622
Data5 IEEIIII -888 11ll -822

LLRM2 .050

-

(.327) .040

-

(.413)
IEEXII .517 -1 1 EK
PLR .050 Q .510 .603

[ 1 denotes criterion is globally minimized at h = 1]
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appear that Std. PRESS* is noticeably better than PRESS*, and it detinitely is not

performing as well as PRESS**.

AVEPRESS

The ünal altemative for choosing h and 7t has as its origin the desire to decrease

the size of the h’s chosen by PRESS*. This is done by averaging PRESS* with PRESS

(which is known to give small h’s) to form an "average PRESS," denoted AVEPRESS.

This criterion can be expressed as

AVEPRESS = (PRESS + PRESS*)/2

— RE S=
“,§Sf)l SQ,] S)+PRESS=

H11-tr(H)+l]PRESS* .

Performance diagnostics are given in Table 7.E.1. As expected (by design), the h’s are

smaller for AVEPRESS than for PRESS*. This results in several improvements for

AVEPRESS, but ofcourse makes the frts for Data4 even worse. Also, using AVEPRESS

does not solve the problem of selecting h=l (or another inappropriately high value), and

the tits are not quite as good overall as those tiom PRESS**.

In summary, it appears that PRESS** has the best potential as a data-driven

selector ofh and 7„ for the titting techniques developed in this research. It does not solve

every problem, but does usually give adequate tits that maintain the advantages of the -

model-robust procedures over the individual parametric and nonparametric procedures.

Of course, there is much more work needed to more thoroughly investigate PRESS**

(and PRESS*), and possibly make improvements or even tind better methods altogether.

A brief simulation study is performed on PRESS* and PRESS** in the next chapter in

order to substantiate the tindings reported thus far.
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Chapter 8: Simulation Results

8.A Introduction

This chapter makes use of Monte Carlo simulations to further study the various

fitting teclmiques and to substantiate the many observations made in previous chapters.

All results thus far have been based on single data sets and on derived "theoretical"

formulas (for MSE values). Thus, there are two main areas that need to be checked for

accuracy. First, a comparison needs to be made of the theoretical MSE values based on

equations derived in section 6.B to the simulated MSE values based on Htting many data

sets (for a given underlying model). (For all simulations presented here, S=500 simulated

data sets are used for each Monte Carlo example). These comparisons will actually be a

check on the accuracy of the INTMSE values for several examples, where INTMSE is

based on the MSE formulas being veritied. Recall that the MSE formulas (and INTMSE)

do not depend on the generated data, but only on the true underlying model. However,

INTMSE is estimating the tme integrated MSE that would be based on the MSE

calculations ofall possible data sets. Thus, Monte Carlo simulations ofmany data sets are

needed to study MSE, even though the fonnulas being checked do not themselves depend

on the data. The second topic studied through these simulations involves the quantities

and diagnostics that are actually determined by the data. These include the bandwidths

and mixing parameters chosen by data-driven methods, and the diagnostics such as df,„„,;,;

and PRESS that are evaluated based on the data. The conclusions reached in previous

chapters, although informative and very useiiil as preliminary studies, are only based on

one of an intinite number of possible data sets for a given underlying model. This makes

the results at least a little suspect, and more reliable results are needed. These are
‘

obtained by running Monte Carlo simulations with 500 simulated data sets and calculating

the average values of the quantities in question across all 500 data sets. This technique

provides a much better idea of the values of the diagnostics and data-driven selection

quantities that one expects to see on average for a particular example.
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8.A.l Examples Used (Data)

The simulation examples studied here are based on a model closely related to

model (6.C.1) of Example 1 in Chapter 6. The actual underlying model used here to

generate the Monte Carlo data sets is

where 6 ~ N(0,l6), and 7 is the misspecyication parameter, which is taken to range from

0 to 1. This model is a quadratic model with a certain amount of deviation introduced by

the sine function term. The amount of deviation is controlled by 7. Assuming that a

quadratic OLS model is fit for all of these examples, 7 is actually determining the amount

ofmisspecification present in the chosen model. 7 is varied for the simulations as 0, 0.25,

0.5, 0.75, and 1.0 in order to give a wide range of misspecifications to be studied.

(Taking 7:3.5 yields model (6.C.1) of Example 1). Note that 7:0 results in no

misspecification, and OLS should perform best. As 7 increases, OLS performs more

poorly, and nonparametric techniques (LLR) should prove more beneficial. The main

interest, though, is in how the model-robust procedures perform across this range of

misspeciücations. It is shown shortly that they perform very well. A plot of the various

true curves, determined by 7, is given in Figure 8.A.l. In addition to varying the

misspeciiication level, the sample size fl is also varied for the simulations. The three

sample sizes used are 11:6, 10, and 19, providing for a range of small to moderately large

data sets for comparisons. For all examples, X-values are taken at evenly spaced locations

from 1 to 10 (in increments of 1.8 for 11:6, increments of 1.0 for 11:10, and increments of

0.5 for 11:19).
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8.A.2 Progression of Study

The Monte Carlo simulation study is carried out in the following order. In section

8.B, the theoretical MSE formulas are compared to simulated MSE’s and checked for

accuracy. These results are based on the optimal bandwidths and
7„’s

(Hom minimizing

AVEMSE). Then in section 8.C, these optimal tits are used in comparing the various

ütting techniques. Performance diagnostics and contidence interval results are presented

for these tits. Section 8.D then presents simulation results for the data-driven bandwidth

and K selection methods of PRESS* and PRESS**. Values for h, K, and INTMSE are

given for comparison with the optimal values in section 8.C. Conüdence interval results

are also given for the better performing PRESS** method. Conclusions are presented in

section 8.E.

8.B Accuracy of Theoretical MSE Formulas

Recall that INTMSE is the average of the MSE values of the ütted values at many

(1000, thus far) locations across the entire range of the data. That is, INTMSE is an

estimate ofthe integrated MSE ofthe regression curve. A11 preliminary results which have

favored the model-robust procedures (MRR2 in particular) in previous chapters have been

based mainly on INTMSE values. Based on comparisons with the "simulated MSE"

(SIA/HVISE) of 500 data sets per simulation, it is shown here that these derived theoretical

formulas appear to be extremebr accurate. All results are based on using the optimal h„’s

and Ä.„’s for the bandwidths and mixing parameters to determine the tits. These optimal

values for the simulation examples are given in Table 8.B.1. Before proceeding, a few

observations should be pointed out regarding the h„ and L, values. First, as n increases

(for a üxed 7), h., decreases and 7t,, generally increases. (The exception is at 7=0, where 7„,,

actually decreases slightly, but remains close to zero, always resulting in tits close to

OLS). These properties are due to LLR performing better (tits with smaller variance,

allowing smaller h„) when there is more data, and thus being used as a larger component

ofthe model-robust tits. Second, as the rnisspecitication (7) increases, h,, decreases and X.,
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Table 8.B.1. Optimal bandwidths and mixing parameters for the model-robust
fitting procedures. The optimal h., for MRRI is also h., for LLR.

04004 4000
7 h., 7.., h., 2.., h.,
IK -440-00000

-400-000.5
.126 .656 .140.754.75

.115 E .120 .890 .120
1 .108 .924 .939 .110

.25 .122 .301 .226 .478

_

10 .5 .105 .751 .884 .118
-40 Ä -040 -000 @@

.082 1 .083 .083
-— —

Il -440 Ä! -004 K
.25 .458 .157 .739 .158

49 -0 -000-000.75
.077 1 .080 .080

4 -000 -040
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increases. This reflects the improvement in LLR over OLS as the data departs more and

more from quadratic, and the need for smaller bandwidths to pick up extra structure. Also

note that K., is close to zero for y=O (thus using mainly the optimal ütting OLS), and K., is

close to one for y=1 (using mainly the better iitting LLR). These are very promising

results, because they show that the model-robust techniques are properly mixing the

individual parametric and nonparametric techniques. As seen in Table 8.B.2, this proper

mixing allows the model-robust procedures to perform as well as OLS when there is no

model misspecification. When there is large misspecitication they perfonn at least as well

as LLR. For small to moderate misspecitication, h,, and 71.,, are used by the model-robust

procedures to give improved tits over OLS and LLR.

The simulated (average) mean squared error for a particular titting procedure is

calculated according to the following steps. For each of the S=500 simulated data sets,

lirst determine the titted values at "many" x„ locations (on the transformed scale of [0,1]).

For these simulation results, 250 x., locations are fit instead of 1000, as was done in

previous chapters (the results are very similar, and using 250 gives much faster Monte

Carlo runs, which still provide very adequate results). After obtaining these iits (jfs),

next compute the average squared error (ase) given by

§(E<»> — rf
aw = ii€6”—

for each of the 500 sirnulations (i.e., get asej, for j=1, 2, ..., 500), where E(y,) is the true

value from the underlying timction (without the error term). The Monte Carlo (simulated)

average mean squared error is then given by

äoasej

SIMMSE = !% . (8.B.1)

Table 8.B.2 gives the results for the simulated MSE values along with the

theoretical INTMSE values for the simulation examples. The values are very similar to
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Table 8.B.2. Simulated mean squared error values for optimal fits from 500
Monte Carlo runs. Theoretical INTMSE values are in bold.

“
7 01.8 LLR MRRI PLR

6.069 11.254 6.059 6.069 6.080

¤
6.384 11.789 6.382 6.384 6.391

25 8.876 12.054 8.470 8.876 8.891

9.295 12.695 8.985 9.295 9.301
_$ 17.505 14.510 13.436 13.084 13.223

18.028 15.220 14.143 13.596 13.659
.75 31.956 18.391 18.478 17.646 17.377

32.583 19.190 19.293 18.229 17.907

1 52.228 23.723 24.206 23.231 22.761
52.959 24.630 25.127 23.915 23.408

_
ÄÄ3.987 7.430 3.985 3.987 3.992

4.105 7.689 4.104 4.105 4.110
.25 6.721 8.015 6.172 6.388 6.729

6.818 8.243 6.300 6.490 6.825

10 .5 14.881 9.264 9.105 8.772 8.688
14.956 9.456 9.262 8.884 8.867

.75 28.466 10.555 10.660 10.282 10.283
28.520 10.721 10.819 10.403 10.450

1 47.477 11.736 11.736 11.562 11.571
47.509 11.883 11.883 11.675 11.722

ÄÄ2.274 4.504 2.273 2.273 2.270
2.314 4.622 2.314 2.314 2.316

.25 4.937 4.885 4.064 4.016 4.067
4.973 4.971 4.104 4.041 4.080

19
_5 12.918 5.631 5.635 5.324 5.362

12.951 5.695 5.680 5.348 5.381

.75 26.218 6.376 6.376 6.225 6.261
26.247 6.430 6.430 6.251 6.283

1 44.837 7.041 7.041 6.953 6.988

44.861 7.089 7.089 6.979 7.010
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each other. In fact, even the HJTMSE values with the largest discrepancy from SIMMSE

are less than 5% diiferent. For moderate to large sample sizes, the values are extremely

close to each other. These results are very beneticial, since they provide evidence that the

MSE formulas derived in Chapter 6 (for fixed h„, 7L.,) are indeed accurate. So all results

reached earlier that were based on INTMSE seem appropriate, which gives support to the

benefits ofthe model-robust procedures.

8.C Comparisons ofProcedures Based on Optimal Fits

By using the optimal h., and )„„, the best possible üts for the various procedures are

obtained. Presented here are performance diagnostics and confidence interval results for

each of these "best" tits of each procedure. From these values, conclusions can be

reached as to how well the "best" tit of one technique compares to the "best" tits of the

other techniques.

8.C.1 Performance Diagnostics

Table 8.C.l displays the data-dependent diagnostics of df„„„,; = tr(H) and PRESS

for each titting technique, averaged across the 500 Monte Carlo simulations. Also

included for reference are the INTMSE values. The values df,„„d,; and PRESS measure the

complexity and adequacy, respectively, of the particular tits. It is desired to have both of

these values small, which signiües a fit that is not very complex (or variable) and is not

overly dependent on individual data points when Htting at those particular locations. Also,

one hopes that a fit having these properties will also have a low INTMSE, which measures

the relative "theoretica1" performances of the fitting techniques. Unfortunately, it is

shown shortly that this is not always achieved (PRESS and INTMSE often are not in

agreement when measuring model adequacy).

Several observations can be made tiom Table 8.C.l. For no misspeciücation

(·y=O), df,„„d,; for each of the model-robust procedures is close to OLS. This is due to the

model-robust procedures (correctly) obtaining tits similar to OLS. For large
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Table 8.C.1. Diagnostics for fitting techniques based on optimal h., and L,. Data-
dependent diagnostics are df„„,d.| and PRESS, but INTMSE is also included as a reference
as to which teclmiques are "theoretical1y" best.

E Y 1 OYS M @@ PLR
df„„,d,l 3 5.05 3.04 3.00 3.01
PRESS 291.79 826.23 291.72 291.78 291.71.

¤
INYYMSE 6.384 11.789 6.382 6.384 6.391
df„„,d,| 3 5.19 3.56 3.00 3.01

.25 PRESS 331.41 926.71 333.13 331.41 331.52
INTYMSE 9.295 12.695 8.985 9.295 9.301
df„,,,d,; 3 5.45 4.61 4.67 5.23

.5 PRESS 455.64 1242.86 481.11 492.56 992.05
INYYMSE 18. 028 15.220 14.143 13.596 13.659
df„„,d„l 3 5.65 5.25 5.30 5.59

.75 PRESS 664.46 1775.24 743 .40 763.10 1762.08
INTMSE 32.583 19.190 19.293 18.229 17.907
df,,,,,d,; 3 5.76 5.55 5.58 5.75

1 PRESS 957.89 2523.13 1110.12 1144.22 2843.23
INYYVISE 52.959 24.630 25.127 23.915 23.408

v

-

0Ls LLR MRR1 PLR
dfmdcl 3 5.82 3.04 3.00 3.01

PRESS 249.78 438.03 249.77 249.78 249.83
INTMSE 4.105 7.689 4.104 4.105 4.110
df„„,,,,; 3 6.09 3.93 3.55 3.01

.25 PRESS 300.07 497.45 298.68 311.26 299.92

INTMSE 6.818 8.243 6.300 6.490 6.825

IQ df,„,,d,; 3 6.76 5.82 5.87 6.29

.5 PRESS 448.59 660.10 422.12 442.12 680.90
INTMSE 14.956 9.456 9.262 8.884 8.867

df,,,,,d,l 3 7.49 7.24 7.26 7.31

.75 PRESS 695.37 921.86 581.95 763.39 1007.05

INTMSE 28.520 10. 721 10.819 10.403 10.450

df„,,,d,; 3 8.09 8.09 8.00 8.02

1 PRESS 1040.39 1287.96 1287.96 1314.16 1454.45

INHJSE 47.509 11.883 11.883 11.675 11.722

(oont...)
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Table 8.C.l (continued)

v oLs LLR MRR1 PLR
df„„d,; 3 6.52 3.03 3.00 3.01
PRESS 364.94 487.92 364.94 364.94 364.94

INYMSE 2.314 4.622 2.314 2.314 2.316
df„„,d,; 3 6.93 4.80 4.61 5.19

.25 PRESS 426.90 510.18 415.10 421.77 445.55
INTMSE 4.973 4. 971 4. 104 4. 041 4.080

]9 df„,„d„; 3 7.87 7.35 7.25 7.31
.5 PRESS 621.88 564.64 508.16 533.02 543.31

INYYMSE 12.951 5.695 5.680 5.348 5.381
df„,,_,d,; 3 8.88 8.88 8.61 8.65

.75 PRESS 949.88 623.63 623.63 609.22 620.20

INYMSE 26.247 6.430 6.430 6.251 6.283
df„„,d,; 3 9.78 9.78 9.62 9.64

1 PRESS 1410.91 677.73 677.73 669.34 682.12
INTMSE 44.861 7.089 7.089 6.979 7.010
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misspeciücation (starting at y=.75, or y=.5 for n=l9), df,„.,d,; for the model-robust

procedures is much closer to that of LLR. This is necessary (and correct) since the data

being fit is more complex. The OLS df„„,,;„; is always equal to 3, but INTMSE shows that

OLS is very inadequate when misspeciücation is present. The real benefits of the model-

robust procedures show up in the cases of small to moderate misspecification (y=.25 and

often y=.5). Table 8.C.l illustrates that df„,„d,; for the model-robust procedures remains

rather low (much lower usuaHy than LLR), but these procedures still make use of the

nonparametric fits to reduce INTMSE. For example, this shows up very clearly for the

case where n=19 and y=.25. The LLR dfmhl is approximately 7, while the model-robust

procedures have df,„„d,; values around 5 or less. The resulting INTMSE values are much

lower for the model-robust procedures than either LLR or OLS (which maintains

df,„„d„l=3). In conclusion, the model-robust procedures seem to be perfomaing well in the

sense of obtaining the best Hts possible to capture the structure in the data, while at the

same time remaining as simple (smooth) as possible. This is precisely the result of

maintaining both low bias and low variance.

The PRESS values also provide for some interesting observations. For y=0, the

model-robust procedures are once again close to OLS, with LLR being much larger. In

fact, the LLR PRESS remains large for all 7-values. As ·y increases, the PRESS values for

MRRI and MRR2 get larger, but remain smaller than that for LLR. The difference in

these values is very large for n=6 and becomes less as rz increases to 10 and 19. The

reason for this is that when fitting at a point x,,, the smaller the sample size, the more

emphasis LLR places on that particular xo. This characteristic is what inflates PRESS for

small n. That is, the üt changes significantly when removing x., and recalculating the fit.

The model-robust procedures MRR1 and MRR2 make use of OLS to alleviate some of

this weight placed on the point being fit, and this shows up in smaller PRESS values. Do

note, however, that PRESS for PLR is oüen very large, especially as y gets larger. This is

an artifact of PLR always using the entire LLR fit in its development, which has already

been mentioned as a drawback of the PLR procedure. In relation to OLS, the PRESS
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values for MRRI and MRR2 are slightly larger for n=6 (but as y get larger, OLS gives

poor tits based on INTMSE). This supports the contention made earlier that PRESS is

not always in agreement with INTMSE in terms of diagnosing tits, and should not be

relied on entirely for making such assessments. For larger sample sizes, MRR1 and

MRR2 PRESS values are a little more reliable and tend to be lower than OLS. In

summary, PRESS gives some support to the use ofMRRI or MRR2, and provides some

reservations as to the overall performance ofPLR.

PRESS* could also be considered as a diagnostic to compare the üts of the

ditferent techniques. PRESS* values have been obtained for all of the simulations

described above. These values, while different in magnitude from PRESS, give the same

information as PRESS in regard to ordering the model-robust procedures and LLR in

terms ofperformance. One change when using PRESS* is that the values remain very low

for OLS, even when y becomes large. However, it is clear üom INTMSE that these OLS

tits (for y large) are very poor. This misleading representation ofperformance in PRESS*

(as well as the drawbacks of PRESS given above) emphasizes that data-dependent

comparisons should be based on several diagnostics (not just one) in order to provide

more contidence as to the true behavior ofthe üts.

8.C.2 Contidence Intervals

The ünal method for comparing the performances ofthe different titting techniques

is to observe the validity of the respective conüdence intervals. The expressions for the

conüdence intervals studied here are those given ir1 section 6.D by equation (6.D.2). In

Chapter 6, the average C.I. widths for each titting teclmique were compared for three

examples, with the model-robust procedures perforrning well. To better understand the

effectiveness of the C.I.’s, one needs to determine not only these widths, but also the

coverage probabilities that are obtained by each procedure. This is accomplished through

the 500 Monte Carlo simulations described above, where the tits are based on the optimal

ho and 7L., given in Table 8.B.l.
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Table 8.C.2 supplies the diagnostics of interest when forming 95% contidence

intervals for each of the sample size (n) and misspecitication (y) combinations. To

faeilitate the study, three X-values have been chosen based on the curves in Figure 8.A. 1,

and contidence intervals have been eonstructed for each of these values. As seen in Table

8.C.2, these values are at the locations x., = 2, 4, and 7. These values have been chosen

due to their locations at points where there is much change in the underlying curves as y is

varied. In fact, these points have been chosen because it should be more difticult to obtain

adequate tits at these locations than at most other locations, especially for large y values.

The diagnostics presented to compare the tits at these points across titting procedures are

the truey-value (E(y„)) at the particular x„, the (mean) Htted value (across the 500 Monte

Carlo runs) at x„, the (mean) contidence interval width at x„, and the observed coverage

probability of these C.I.’s at x„. The observed coverage probability is the percentage of

the C.I.’s in the 500 simulations that contain the true y-value at x„. Of course, it is desired

to have C.I. widths as small as possible (for precision), while still maintaining close to

95% coverage (for accuracy). Wide intervals with large coverage probabilities, as weH as

narrow intervals with small coverage probabilities are indications of a need for improving

the procedures. Based on all of these considerations, many interesting conclusion can be

drawn from the information in Table 8.C.2, and some ofthese are discussed below.

First, note that the C.I. widths for a given titting technique (OLS, LLR, MRRI,

MRR2, or PLR) are identical for the locations x,,= 4 and 7. This occurs because the

variance portion of the conüdence intervals (the h,,’h„ term in (6.D.2)) happens to be the

same for each of these points (also, the t-value and 6 used in the C.I.’s for any X-values

are always the same within a given titting teclmique). An illustration of this occurrence is

supplied by Figures 6.C.l0 (c) and 6.C.ll (c) in Chapter 6. These tigures show the

variance curves (the same variances as used in the contidence intervals) for the model used

in these simulations with y = .35. For all titting techniques, the variances are equal at the

locations x,,= 4 and 7. With the variance portions equal, the only other values that

determine C.I. widths are the t-value and 61 For a given ütting teclmique, these values are
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Table 8.C.2 (a)-(o). Confidence interval diaguostics for the various optimal fits
for the 500 Monte Carlo runs. Values are reported for tl1reeX-locations: 2, 4, 7.

(3) [ M = 6 v = 0]

True Mean Mean Obs. Covrg.
Method x1, P11 C.I. Width Probabili

319.1939......... ..............1233.............
OLS ........5........ ........2519........ .......25152....... .........13.1333......... ..............1252.............

7 39.5 39.31 13.833 .948

........2........ ........3519 1.................
LLR .......5........ ........2519........ .......29.19...... 1 ........39139.1.......... ..................1.................

7 39.5 41.27 80.801 1

.........2........ ........319.1.1.92......... ..............
1MRR1........5........ ........2519........ .......25159...... . .........13.133.1.......... ..............1255.............

7 39.5 39.34 13.831 .946

3
51919.19395................2519........ .......25152....... .........13.1335......... ..............1252.............
7 39.5 39.31 13.834 .948

.........2........ ........3 3
1PLR........5........ ........2519........ .......25152...... .........13.1353......... ..............1255.............

7 39.5 39.31 13.848 .948

(b) [M=6 v=125]

True Mean Mean Obs. Covrg.
Method x., ,911 C.I. Width Probabili

39129
1OLS........5........ .......2 2191235......... ..............1255.............

7 41.67 39.21 15.984 .920

........2........ .......39129....... .......39122...... .........1.2.919.12........ ..................1.................
LLR ........5........ .......22133....... .......2 1 1.................

7 41.67 42.10 129.033 1

.........2........ .......39129....... .......3
1MRR1........5 25199...... ..........19313......... ..............1259.............

7 41.67 39.95 16.813 .94835
25192....... .........19.1239......... ..............1255.............

7 41.67 39.21 15.985 .920

39129111513......... ..............
1PLR........5........ .......2 2519.1....... .........191913......... ..............1255.............

7 41.67 39.21 16.013 .920

144



Table 8.C.2. (continued)

(c) [n=6 y=.5]

True Mean Mean Obs. Covrg.
Method x„ 1% C.I. Width Probabili

3 3 239.............
OLS ........:1........ .......29:.1.2....... .......2:1:9.1....... .........21.:3:12......... ..............:239

7 43.83 39.11 21.347 .916

.........2........ .......3 3 1.................
LLR ........:1........ ......29:.1.2....... .......2.3:22...... .......999:.192........ .................1.................

7 43.83 43.06 600.149 1

3 39:99 229.............
MRR1 ........:1........ ......29:.1.2....... .......29:99...... ........39:292......... ..............:229.............

7 43.83 41.70 36.987 1

32:92....... .......399:292.......................:2999........
.......29:.1.2....... .......22:29:222.............

7 43.83 40.78 41.523 .990

32:92....... .......39:91....... ........1.92:993........ ..................1.................
PLR .......:1........ ......29:.1.2....... .......22:91....... ........1.99:929........ ..................1.................

7 43.83 41.32 148.570 1

(d) [n=6 y=.75]

True Mean Mean Obs. Covrg.
Method x., 1% C.I. Width Probabili

9.1.:9239:999......... ..............:299.............
OLS ........:1........ .......19:99....... .......29:2.1...............29:3937

46.00 39.02 28.303 .942

9.1.:92....... .......39:99...... ......9 1.................
LLR ........:1........ .......19:99....... .......2 229:1:.292....... ..................1.................

7 46.00 44.14 9244.707 1

........2........ ......:1.1.:92....... .......39:99...... ........11.................
MRR1 .......:1........ .......19:99....... .......22:92...... .........1.22:9.1:1........ .................1.................

7 46.00 43.37 177.014 1

3:1...............19:99....... .......2229:921........ ..............:229.............
7 46.00 42.22 226.091 1

9.1.:92....... .......39:92...... .......3.199:.299....... ..................1.................
PLR ........:1........ .......19:99....... .......2.1:.12...... ......333.9::121....... ..................1.................

7 46.00 42.61 3338.471 1
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Table 8.C.2. (continued)

(6) [v = 6 v=1]

True Mean Mean Obs. Covrg.
Method ,1% C.I. Width Probabili

3222.............
OLS ........A........ .......1ä;2A....... .......2A217

48.16 38.92 35.944 .976

.........2........ ......A 3 A 1.................
LLR ........A 2 A21222......... ..................1.................

7 48.16 45.24 481998 l

1.................
MRR1 ........A........ .......1221....... .......2.1:92...... ......29.1.1:922....... .................1.................

7 48.16 44.76 2011.022 1

.........2 3 2
1A...............12:2A....... .......29:29...... ......2§A.1;.§§§....... ..................1.................
7 48.16 43.48 2841.556 1

........2........ ......A 3 2 1.................
PLR ........A 2 1.................

7 48.16 43.77 269552 1
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Table 8.C.2. (continued)

(1) [M = 10 Y = 0]

True Mean Mean Obs. Covrg.
Method x., ,9.. C.I. Width Probabili

........3 3 2..99.1........... ...............299.............
OLS ........9........ ........39.9........ .......39.93....... ...........3.-.932.......... ...............299.............

7 39.5 39.48 8.089 .950

.........3........ ........39.913.992......... ...............293.............
LLR ........9........ ........39.9........ .......39.39...... .........13.911......... ...............293.............

7 39.5 40.85 12.017 .962

.........3........ ........39.9........ .......32..993.......... ...............
2999................39.9........ .......39.99....... ..........3.299.............
7 39.5 39.50 8.073 .948

32.-.991........... ...............
2999................39.9........ .......39.93....... ..........3.·.932.......... ...............299.............
7 39.5 39.48 8.089 .950

2.-.991PLR
.......9........ ........39.9........ .......39.93....... ..........3.929.......... ...............299.............

7 39.5 39.48 8.090 .952

(g)True Mean Mean Obs. Covrg.
Method x., 31.. C.I. Width Probabilit

.........3........ .......39.29....... .......39.23....... ..........19.199......... ...............299.............
OLS ........9........ .......3 39.93...... . ..........3..221.......... ...............399.............

7 41.67 39.24 8.997 .820
39.29....... .......39.23.239.............

LLR .......9 39.93.233.............
7 41.67 41.90 12.892 .982

.........3........ .......39.29....... .......3 19.99.1......... ...............239.............
MRR1 ........9........ .......3 39.99...... ..........3.-.231........... ...............399.............

7 41.67 40.04 8.931 .890

39.2919.919......... ...............219.............
........9........ ......33.3.3....... .......39.93....... ..........2..999.......... ...............339

7 41.67 39.47 9.050 .862

39.29....... .......3
1PLR........9........ .......3 39.91...... ..........2..9%.......... ...............399.............

7 41.67 39.24 9.000 .820
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Table 8.C.2. (continued)

(h) [n=1O y=.5]

True Mean Mean Obs. Covrg.
Method x, ,9.. C.I. Width Probabili

92.92.999.............
O1-S ........9........ ......29..1.7....... .......29.22....... .........1.999.............

7 43.83 38.99 11.333 .652

9 299.............
LLR ........9........ .......29..1.7....... .......22.91....... ..........19..922......... ...............2.99.............

7 43.83 43.23 15.499 .984

92.92
1MRR1........9 9..1.7....... .......29..11 1.979.............

7 43.83 42.18 12.920 .952

9
2.92.2299..............29..1.7....... .......219.1.297

43.83 41.65 13.128 .918

.........2........ .......92.9219.992......... ...............299.............
PLR ........9........ .......29..1.7....... .......2.1.29...... . .........19.292......... ...............299.............

7 43.83 42.04 13.909 .942

(i) [n=l0 y=.75]

Tme Mean Mean Obs. Covrg.
Method x., ,17.. C.I. Width Probabilit

9.1..92....... .......99.99
1OLS........9........ .......19.99....... .......29..19...... .........19.999......... ...............999.............

7 46.00 38.75 14.446 .480

.........2........ ......9.1..92....... .......9 222.............
LLR ........9........ .......19.99....... .......29.9.1....... . ........29.929......... ...............299.............

7 46.00 44.99 20.096 .994

........2........ ......9.1..92....... .......99.9.112..1.99......... ...............299.............
MRR1 ........9........ .......19.99....... .......29.99...... ..........19.29.1.......... ...............279.............

7 46.00 44.65 18.951 .986

.........2........ .......9.1..92....... .......919.992......... ...............279.............
919.99....... .......12.99....... ..........19.999......... ...............279

46.00 44. 15 18.646 .974

9.1..92....... .......92.99...... . .........12.1.22......... ...............279.............
PLR 9 .... .......19.99....... .......12.99...... ..........19.799......... ...............279

46.00 44.20 18.780 .976
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Table 8.C.2. (continued)

(i) [¤=1¤ v=1]

True Mean Mean Obs. Covrg.
Method ,1% C.I. Width Probabili

.........2........ ......A 3 393.............
OLS ........A........ .......19.3A....... .......29.A.l....... .........11.233......... ...............339.............

7 48.16 38.51 17.938 .396

.........2 A 223.............
LLR ........A........ .......19.3A 223.............

7 48.16 47.02 27.809 1

A........ .......19.3A....... .......11.22...... ........21.392......... ...............223.............
7 48.16 47.02 27.809 1

A.223A...............19.3A....... .......11.99...... ........29.2Aä......... ...............229.............
7 48.16 46.43 26.243 .996

........2........ ......A A21.9%......... ...............223.............
PLR .......A........ .......19.3A....... .......11.9.1....... . ........29.99A......... ...............229.............

7 48.16 46.46 26.564 .996
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Table 8.C.2. (continued)

(k) [n=19 y=O]

True Mean Mean Obs. Covrg.
Method Y., C.I. Width Probabili

.........9........ ........39.9........ .......39.99...... ...........9..999.......... ...............299.............
OLS ........51........ ........99.9........ .......951.519 299.............

7 39.5 39.49 5.279 .958

3 3 9.-.999.......... ...............299.............
LLR ........51........ ........99.9........ .......9 9..3251.......... ...............219.............

7 39.5 40.51 7.394 .9243 3351................99.9........ .......951.519...... ..........9.299.............
7 39.5 39.50 5.274 .958

.........9........ ........39.9 9
29951................951.9........ .......951.519 299.............
7 39.5 39.49 5.279 .958

.........9........ ........39.9........ .......39.99...... ..........9.299.............
PLR ........51........ ........99.9........ .......951.99...... ...........9..9.99.......... ...............299.............

7 39.5 39.50 5.280 .956

(1) [n=l9 y=.25]

True Mean Mean Obs. Covrg.
Method x., Y., C.I. Width Probabili

39.29....... .......3 9.999.............
OLS ........51........ .......9 951.99...... . ..........9..999........... ...............999.............

7 41.67 39.17 5.745 .588

39.29 9..29.1........... ...............299.............
LLR .......51........ .......99.3.3....... .......93.22...... ...........9..9.1.1........... ...............9.99.............

7 41.67 41.77 7.711 .956

39.29 9..191........... ...............299.............
MRR1 ........51........ .......9 99.93....... ..........9..292.......... ...............929.............

7 41.67 40.36 5.949 .866

.........9........ .......39.29 9999.............

........51........ .......9 9 9.999
7 41.67 40.01 6.123 .794

.........9........ .......39.29....... .......3 9 999.............
PLR 4 9 9..999.......... ...............999.............Illllllll

7 41.67 40.30 6.580 .866
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Table 8.C.2. (continued)

(m)

True Mean Mean Obs. Covrg.
Method 1% C.I. Width Probabilit

.........7........ .......3 39.1979.......... ..............
1OLS........9........ .......791.1.7....... .......7 7.1919.......... ..............1199.............

7 43.83 38.84 7.018 .162

.........7........ .......3 39.19.13........... ..............
1LLR........9........ .......79;.1.7....... .......7799...... . ..........9.1919.......... ..............1997.............

7 43.83 43.28 8.410 .962

3 3 91999.............
MRR1 ........9........ .......79;.1.7....... .......77139...... ..........7.1999.......... ..............1919.............

7 43.83 42.80 7.989 .9302........ .......2 229..............791.1.7....... .......7.1199...... . ..........9.1993........... ..............1999.............
7 43.83 42.41 8.063 .898

........7........ .......39197 91979.............
PLR ........9........ ......79;.1.7....... .......7 91.993........... ..............1999.............

7 43.83 42.42 8.043 .910

(n) [n=l9 y=.75]

True Mean Mean Obs. Covrg.
Method x1, 1711 C.I. Width Probabili

9.1.1991.1.1719......... ..............1999.............
OLS ........9........ .......19199....... .......7 9 1919.............

7 46.00 38.52 8.765 .018

9.1.199....... .......9 91.199.......... ..............1999.............
LLR .......9........ .......19199 91.199.......... ..............1999.............

7 46.00 45.09 9.109 .948

........7........ ......9.1.199....... .......99.1199.......... ..............1999.............
MRR1 ........9........ .......191999.1199.......... ..............1999.............

7 46.00 45.09 9.109 .948

9.1.199....... .......9 9 1979.............
......9........ .......19199....... .......19199...... ..........9.-.977........... ..............1999.............u

7 46.00 44.52 8.972 .910

.........7 .1.199....... .......9
9PLR9........ .......19199....... .......19199...... ..........9.1999.......... ..............1

46.00 44.52 8.956 .912
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Table 8.C.2. (continued)

(<>) [»=19 v=1]

True Mean Mean Obs. Covrg.
Method x„ ,9., C.I. Width Probabili

........Z........ .......A
9OLS........51 99................

7 48.16 38.19 10.757 0

A 9Q§.............
LLR ........51 9.-.7%.......... ..............4§79.............

7 48.16 47.04 9.724 .930

51 9„9Q§.............
MRRI .......51 93179.............

7 48.16 47.04 9.724 .9302451
9.~.§A§.......... ..............11199.............

7 48.16 46.61 9.648 .914

.........Z........ ......A A
9PLR........51 9.49.99.......... ..............4§9§.............

7 48.16 46.60 9.639 .916
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the same for any x„. Thus, the C.I. widths are identical for x„= 4 and 7. However, since

the true y-values and the (mean) fitted values differ for the different locations, the

coverage probabilities may also differ, and still need to be considered.

Now for the interesting comparisons and conclusions. To begin with, consider the

examples with n = 6. For these examples, the points x„= 2, 4, and 7 are not at locations of

actual data points (as they are for rz == 10 and 19). There is a serious problem ütting these

points when the misspecitication (y) increases. The problem originates with the

nonparametric ütting technique, and is compounded by the fact that rz = 6 provides few

data points (little information) with large gaps between them. All of these factors together

result in nonparametric üts that have rather large variances. This is due to the

nonparametric teclmique placing almost all of the local weight used in obtaining tits on the

actual data points being tit. Thus, diH‘erent possible data sets from the same underlying

model (with some error) will result in vastly different üts (especially if the errors are

large). This local weighting problem also causes the trace of the nonparametric hat matrix

to get larger (closer to rz), and thus n-tr(H) gets closer to zero. Since n-tr(H) is the

degrees ofüeedom for the t-value in the C.I.’s, this t-value may become extremely large.

The large variances and large t-values cause wide contidence intervals. This phenomenon

is clear in parts (a) and (b) of Table 8.C.2, where there is zero or small misspecitication.

In both of these cases, the model-robust procedures use entirely or mostly the parametric

tit of OLS (PLR does this by choosing h„= 1). The C.I. widths are seen to be small for

OLS, MRR1, MRR2, and PLR, and the resulting coverage probabilities are very close to

95%. Comparing these values to LLR, one sees a tremendous difference. The local titting

problem mentioned above causes the C.I. widths for LLR to be much too large, and the

resulting coverage probabilities are 100%. For moderate to large misspecitication (y = .5,

.75, 1), the model-robust procedures use a little more LLR to achieve better Hts. In doing

so, the contidence intervals become much too wide, which is especially evident in PLR,

which uses a complete LLR tit to its residuals. The OLS procedure maintains good

coverage probabilities for larger
y’
s, but needs rather wide C.I.

’s
to overcome its poor tits.
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These widths look fine compared to the other procedures, but even so, still need to be

improved upon. More work is needed in this area to find appropriate confidence intervals

for the nonparametric and model-robust techniques when the data available is sparse. Do

note, though, that for small misspecilication (part (b) of table), the model-robust

procedures are doing as weH as OLS. There is some evidence that the problems

mentioned here are alleviated when moving to a moderate sample size. In other words,

the problem here has more to do with n than it does with the x.,-values not being data

points. Some support (albeit for a single data set) is given ir1 Figure 6.D.l. Here the

C.I.’s for all ütting techniques are shown for data fiom a model equivalent to the model

used for the simulations, with y = .35. Notice that even for the nonparametric LLR

procedure, the confidence interval at any X-location has a reasonable width (somewhere

between 10 and 15). That is, locations between data points show no sign of causing

special problems. Thus, it appears sample size is of more importance than the location

being estimated in tenns this C.I. problem.

Parts (f)-(o) of Table 8.C.2 provide the C.I. diagnostics for n = 10 and n = 19.

Clearly, with everything else held constant, the confidence interval widths drop

dramatically from n = 6 to n = 10 and are also quite a bit lower for n = 19 than for n = 10.

This result is expected since more information should provide for more precise estimates.

Now consider the effects ofvarying y, with other quantities held constant. For y = 0 (no

misspecification with the quadratic model), OLS and the model—robust procedures

perform extremely well for any n, as seen in the small widths and accurate coverage

probabilities of tables (f) and (k). LLR C.I.’s are still a little wide with slightly high

coverage probabilities for n = 10, and for n = 19 are a little wide, but with coverages a

little low. The first observation to be made as y increases is that the OLS coverage

probabilities become too small. For n = 10, this is apparent when y = .5 (where the

coverages are .850, .648, and .652 (in table (h)). For n = 19, the coverage probabilities

drop to .860, .620, and .588 as early as y = .25. For larger y values, the OLS coverages

are extremely poor, actually equaling 0 for x„= 4 and 7 when n = 19 and 7 = 1. This is all
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° a retlection of the poor OLS tits, as seen in the mean jk,
’s
compared to the true y’s. The

key part of these observations is the fact that OLS may perform poorly for even very small

misspeciiication. These are precisely the cases where the user would probably be led to

use OLS even after observing the data and possibly performing lack-of-fit tests. Recall

that the model-robust procedures were first conceived as an attempt to overcome this

problem. As seen in table (h) (n =10, 7 = .5) and in table (1) (n = 19, 7 = .25), the model-

robust procedures consistently outperform OLS. This improvement is a little more

obvious in this case for MRR2 and PLR over MRRI. A disappointing coverage

probability appears for MRR1 when n = 19, 7 = .25, and x„= 4 (in table (l)). This 69%

value is clearly the lowest of all model-robust values in Table 8.C.2, and results from a Ht

that uses a large portion of OLS (A.,,= .458) (other than this .69 value, MRR1 performs

just as well as the other model-robust procedures). It is also seen in table (l) that for this

scenario, LLR is slightly outperforming the model-robust procedures. The C.I. widths for

LLR are a little larger, but not by a signiücant amount, and the coverage probabilities are a

bit closer to 95%. Even though this C.I. advantage is present here, one secs from Table

8.B.2 that in terms of INTMSE, LLR is performing noticeably worse than the model-

robust procedures.

The key observation that should be made here is that the model-robust procedures

very rarely are worse in terms of confidence intervals than LLR and the case pointed out

above is one of these rare occurrenccs. The following observations lend support to this

contention. For rz = 10 and 7 = .25 (table (g)), LLR has much wider C.I.’s that give

coverage probabilities too large for x„= 2 and 4. For the same case, the model-robust

techniques are slightly low in coverage probability (mid 80’s to low 90’s), but use much

narrower intervals. In moving to 7 = .5 the model-robust C.I.’s remain narrower than

those for LLR, and are much closer to 95% in coverage (whereas LLR remains too high).

For the larger misspeciücations, the model-robust C.I.’s get closer in form to the LLR

intervals and all of these become a little too wide and result in coverage probabilities that

are too high. This phenomenon is similar to what happened for rz = 6, but not nearly as
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serious. Still, improvements could be made in the confidence intervals in the future to try

and resolve this problem. These high coverage probabilities are not present when 11 = 19.

For y in the range of .5 to 1, the model-robust procedures become similar to LLR, and

have coverage probabilities consistently in the upper 80’s to lower 90’s. These coverages

are slightly low, but with the smaH widths of the C.I.’s here, these C.I.’s are considered to

be quite adequate. Also, do not forget that the points x„= 2, 4, and 7 were specially

picked in areas that should be difficult to fit, so achieving coverages around 90% for these

values is actually a very good result.

In summary, the model-robust conüdence intervals have been shown to outperform

OLS in most situations, and to perform just as well as OLS even when there is no

misspeciücation present. The exception here is for very small sample sizes (11 = 6) and

larger misspeciücation (y = .5, .75, 1), where LLR and the model-robust procedures give

extremely wide C.I.’s. The OLS procedure looks good in comparison, but it too gives

wider intervals than desired. Possible improvements need to be researched in the future in

order to provide adequate model-robust confidence intervals for these situations (where

the model-robust procedures already greatly outperform OLS based on INTMSE, as seen

in Table 8.B.2). It has also been shown above that except in rare situations, the model-

robust C.I.’s tend to be better (narrower, with adequate coverage probabilities) than LLIL

with LLR often giving intervals that are much too wide. Thus, the model-robust

techniques, which have been established as having better iits based on INTMSE, also

provide adequate coniidence intervals across different sample size and misspecification

combinations. References for possible improvements in these confidence intervals (say,

for small sample sizes) are briefly outlined in section 6.D.

8.D Simulation Results for Data-Driven h and A Selection

All simulation results presented so far have been based on the optimal values for

bandwidths and mixing parameters. These results are considered the "best" ofeach fitting

procedure, and show that the model-robust procedures (led by MRR2) have the ability to
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signiücantly outperform the individual parametric and nonparametric methods. Addressed

in this section is the eifectiveness of data-driven methods in choosing h and X such that

these advantages are maintained. To determine the extent to which this is accomplished,

the bandwidths and mixing parameters chosen by the data-driven methods are compared in

value to h,, and L,. Also compared are the INTMSE values resulting from the data-driven

fits to the INTMSE values for the optimal fits. Based on the preliminary bandwidth and X

selection study given in Chapter 7, the methods chosen to be analyzed here are PRESS*

and PRESS**.

The setup for the simulations parallels that of the previous sections in this chapter.

The same underlying function is used, with the same misspecification (y) levels and sample

sizes (ri = 6, 10, 19), Five hundred Monte Carlo runs are executed for each scenario. The

difference now is that h and K are determined by data-driven methods, instead of being

deüned as the optimal h„ and L,. These h and 7„ values are averaged over the 500 runs to

give the (mean) bandwidth and (mean) mixing parameter to be associated with each fitting

technique. In addition to the direct comparisons of h and 7„ to ho and L,, the INTMSE

values resulting üom using the (mean) h and X are compared to the optimal INTMSE

values.

8.D.l Simulation Results for PRESS*

The ürst results given here are based on using PRESS* as the data-driven selection

criterion. Recall that PRESS* is just the usual PRESS statistic, penalized for smaH

bandwidths. As discussed in section 7.3, PRESS* (as a function of h) may often be

minimized at h = 1 when selecting h for the MRR2 or PLR procedures. Examples of this

behavior in PRESS* are shown in Figures 7.C.1 (c) and (d). It has also been pointed out

that for cases such as these, the proper method ofselecting h would be to obtain the graph

of PRESS* vs. h and choose h where the curve starts leveling off (or at the first local

minimum). Unfortunately, this is not practical for the 500 Monte Carlo runs, and the

bandwidth chosen for each of these runs is the h chosen through a search routine to find
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the value corresponding to the minimum PRESS*. The starting values for this search, as

described in section 7.C, are chosen in such a way that the bandwidth corresponding to the

tirst local minimum ofPRESS* should be the one selected. This (usuaHy) alleviates the

problem represented by Figure 7.C.l (c). However, otten PRESS* still results in choosing

a bandwidth ofone, which results in poor tits for that particular procedure.

Table 8.D.l contains the
h’s

and
7„’s

chosen for each ütting technique for each of

the different simulation examples. Also shown for comparison are the optimal h„ and M

values (in bold). A tinal column that has been included for each model-robust procedure

gives the number of times out of the 500 Monte Carlo runs that the bandwidth for the

particular procedure was chosen to be l (labeled # h=l). The numbers in these "# h=l"

colunms provide the most obvious conclusion about PRESS*: the bandwidths for MRR2

and PLR are chosen much too otten to be one, and the bandwidth is never chosen to be

one for MRRI. This phenomenon has two main implications. The "good news"

implication is that for the small misspeciücation cases (y = 0 or sometimes .25) where the

optimal bandwidths are large for MRR2 and PLR, PRESS* does an adequate job of

selecting h. This is seen in any row of Table 8.D.l with y = 0. To measure, in terms of

titting performance, the closeness ofh and 7t chosen by PRESS* to the optimal ho and M,

Table 8.D.2 displays the INTMSE for h and X along with the optimal INTMSE. Note for

y = 0 that the model-robust üts based on PRESS* are close to optimal. (It appears that

there are discrepancies in X for these cases for MRR2: A. larger than M; however, h = 1

gives a nearly constant linear tit through zero for the nonparametric residual Ht, and any

proportion ofthis added back to the parametric tit causes no real change to the parametric

Ht). The h and X chosen by PRESS* for MRRI are also adequate for y = 0, because 7t is

chosen close to the small optimal value (close to zero). The bandwidth is chosen a little

large for MRR1 (actually for LLR), but X = 0 compensates for this in MRRI. LLR is not

compensated, and the larger resulting INTMSE values are apparent in Table 8.D.2,

especially for the (n = 6, y = 0 or .25) cases. Even with this being the case for LLIL
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Table 8.D.l. Bandwidths and mixing parameters chosen by PRESS* for the model-
robust iitting procedures for 500 Monte Carlo simulations. Optimal h., and 71,, are in bold.
The column "# h=1" gives the number oftimes the bandwidth was chosen to be 1. (The h
for MRRI is also h for LLR).

MRR1 MRR2 PLR

¤
7 11 1 # 14-1 11 1 # 11-1 11 # 11-1

¤
.259 .046
¤

.937 .515 456 .781 310
.146 .020 1 .016 1_25 .270 .060 “ .943 .518 460

E
324

.139 .256 1 .016
_ 5 .299 .082 .969 .470 478 .852 359

.126 .656 I .140 .754 .140
.75 .335 .090 .986 .387 490 405

.115 .851 .120.890.369

.098 .996 .304 497 .944 444
I .108 .924 E .110 .939 .110

ll.185 .075 .898 .434 432 .741 279
R .130 .013 1 .016 1_25 .188 .068 .898 .459 433 .768 293

.122 .301 .226 .478 1
10 _5 .200 .062

E
.886 .485 428 .788 302

.105 .751 .118 .884 .118
_75 .223 .056

¤
.870 .486 421 .794 323

.091 .946 .095 .996 .095
1 .261 .851 .489 412 .807 349

.082 .083 1 .083

.145 .065 .886 .404 430 .750 294

.113 .009
¤

1 .031 1

.25 .140 .161 .722 .477 333 .606 217
.104 .458 E .157 .739 .158

19 _5 .125 .452 “ .432 .693 170 .368
E.089 .892 .099 .996 .099

.75 .110 .756 .185 .866 39 .173 20
.077 1 .080 1 .080
.098 .910 .117 .114 3
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Table 8.D.2. INTMSE values for fits based on PRESS* from 500 Monte Carlo runs.
Optimal INTMSE values are in bold.

7 01.s LLR MRR1 PLR
6.384 42.170 6.403 6.387 6.398
6.384 11.789 6.382 6.384 6.391

.25 9.295 45.198 9.336 9.297 9.306
9.295 12.695 8.985 9.295 9.301

_5 18.028 58.289 18.136 18.027 18.031
18.028 15.220 14.143 13.596 13.659

.75 32.583 78.839 32.730 32.579 32.576
32.583 19.190 19.293 18.229 17.907

1 52.959 105.466 53.169 52.952 52.941
52.959 24.630 25.127 23.915 23.408

*4.105 7.926 4.117 4.106 4.119

R 4.105 7.689 4.104 4.105 4.110

25 6.818 9.535 6.688 6.820 6.826
6.818 8.243 6.300 6.490 6.825

10
_5 14.956 14.427 14.530 14.960 14.961

14.956 9.456 9.262 8.884 8.867
_75 28.520 25.556 27.860 28.527 28.523

28.520 10.721 10.819 10.403 10.450

1 47.509 61.576 47.116 47.517 47.514

47.509 11.883 11.883 11.675 11.722

l2.314 5.589 2.322 2.315 2.737

2.314 4.622 2.314 2.314 2.316

.25 4.973 5.557 4.609 4.969 5.917
4.973 4.971 4.104 4.041 4.080

19
_5 12.951 6.348 8.390 12.542 12.738

12.951 5.695 5.680 5.348 5.381

.75 26.247 7.230 9.331 15.558 13.287
26.247 6.430 6.430 6.251 6.283
44.861 8.067 9.261 12.234 10.881

44.861 7.089 7.089 6.979 7.010
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PRESS* does perform well for the model-robust procedures when the misspecification

present is low (7 = 0 and sometimes 7 = .25).

The negative implication ofthe tendeney ofPRESS* to result in h’s = 1 is that for

cases of misspeciücation in the model, where a smaH optimal bandwidth is desired, the

bandwidths chosen by PRESS* are much too large for MRR2 and PLR. This discrepancy

is clear from any case in Table 8.D.l when h., is not one. The INTMSE’s in Table 8.D.2

resulting Hom these large h’s are greatly inflated, and the beneüts of using the model-

robust procedures are lost. For example, notice the drastic loss in performance for the

case where rz = 10 and 7 = .5. Thus, MRR2 and PLR are obviously hampered by using

these selected h’s from PRESS*. In observing the results for MRR1, one sees that this

procedure is adversely affected also. The
h’s

are chosen consistently large, but the main

problem is with the selection of extremely small A.’s (until 7 = .5 for n = 19). Recall that

PRESS* is penalizing for variance, and this characteristic aifects MRR1 by choosing a

small X which prevents much of the (more variable) LLR fit Hom being used. The

consistently high bandwidths also cause increases in the INTMSE ofLLR, as seen in Table

8.D.2.

For n=l9, the model-robust procedures perform a little better, but still suifer üom

bandwidths that are too large (still have h’s =1 for MRR2 and PLR). The model-robust

procedures are now quite a bit better than OLS, but still are not as good as LLR. MRR1

shows the most improvement for the model-robust procedures, but still needs to be

improved upon even more.

Thus, the conclusions reached from these observations is that the h’s and
7„’s

chosen through the minimization of PRESS* are very inadequate, except for the case of

no misspecitication. So if using PRESS*, one would definitely need to use the technique

of graphing PRESS* as a function of h and selecting the proper bandwidth according to

the slope of this plot. However, it is conjectured here that the
h’s

and 7L’s chosen by

PRESS* would still be inadequate. This statement is supported by the MRR1 results

given above (h’s too large even without h’s equal 1, and
7„’s

much too smaH), and by the
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preliminary "single data set" examples in Chapter 7. A possible alternative to PRESS* is

PRESS**, which is studied now to determine if it provides suüicient improvements.

8.D.2 Simulation Results for PRESS**

Bandwidth, Ä, INYMSE

Recall that PRESS** (defined in equation 3.B.22) is designed to control (reduce)

the size ofh chosen by PRESS*. This is accomplished by a penalty term for large h being

added to the denorninator ofPRESS*. It is hoped that PRESS** would prevent selection

ofh = 1 when a smaller bandwidth is desired. Tables 8.D.3 and 8.D.4 supply the results of

using PRESS** as the data-driven selection criterion for the simulation examples being

studied. Table 8.D.3 contains the values of the selected
h’s

and A.’s (with optimal values

in bold), along with the number of
h’s

chosen to be one. Table 8.D.4 contains the

INTMSE’s for the chosen bandwidths and mixing parameters, and the INTMSE’s for the

optimal fits (in bold). These values can be used to measure how "close" the chosen
h’s

and
7L’s

are to ho and X., in terms of iitting performance.

The first observance from Table 8.D.3 is the major reduction (from PRESS*) in

the number of bandwidths chosen to be one for MRR2 and PLR. Except for the cases

(n=19, y = 0 or .25) the largest number of bandwidths chosen to be one (out of the 500

runs) for any particular case is 23 (which is only 4.6% of the time). This means that in

practice, one can be very confident that h will not be chosen as 1 when using PRESS**.

Unfortunately, there is one problem with this tendency to shy away from h = 1. For y = 0

(no misspecification), the optimal bandwidth should be one for MRR2 and PLR (h„ should

also be one in a few cases where y = .25). As seen in Table 8.D.3, the chosen h values are

far below one for these cases. This would not be a problem at all, though, if X were

chosen to be close to zero for these cases (giving OLS). Unfortunately, this does not

happen, and Ä. is actually chosen rather large for the small ·y cases (seen in Table 8.D.3).

These large X values result from PRESS** penalizing for bias, and consequently desiring
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Table 8.D.3. Bandwidtbs and mixing parameters chosen by PRESS** for the model-
robust ütting procedures for 500 Monte Carlo simulations. Optimal h., and 71.., are ir1 bold.
The column "# h=l" gives the number oftimes the bandwidth was chosen to be 1. (The h
for MRRI is also h for LLR).

MRR1 MRR2 PLR

¤
Y h 2. # h=l h 7. # h=l h # h=l

.020 1 .016
.25 .201 .824 .127

_ 5 .229 .590 g .132 .747
¤

.126
.126 .656 .140 .754 .140

¤_75 .270 .566
E

.127 .692 .125
¤.115 .851 .120 .890 .120

1 .309 .440 .125 .661 .123
.108 .924

“

.110 .939
¤

.110
¤11iiilljij

.156 .378 .138 .755 14 .123 5
¤

.130 .013 E 1 .016 1_25 .154 .432 .784 18 .131
¤.122 .301 .478 1

10 _5
E

.555
¤

.133 .844 I4 .139 15
.751 .118 .884 .118

_75 .143 .665 .121 .878 10 .139 16
.091 .946
¤

.095 .996 .095
1 .136 .742 “ .109 .899 5 .116 5

.082 1 .083 1 .083
11l11lij7

.128 .338 .486 .670 205 .376 110

.113 .009 1 .031 1
.25 .122 .497 .338 .765 123 .268 63

.104 .458 2 .157 .739 .158

19 _ 5 .108 .782
¤

.144 .908 23 .123 5
.089 .892 .099 .996 .099

.75 .093 .928 .089 .089

1 .082 .972 .078 .976
E

.079
¤.068 1 .069 1 .070
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Table 8.D.4. INTMSE values for fits based ou PRESS** from 500 Monte Carlo runs.
Optimal INTMSE values are in bold.

v 0Ls LLR MRR1 PLR
6.384 16.448 10.477 8.597 10.453
6.384 11.789 6.382 6.384 6.391

25 9.295 18.814 12.656 9.778 11.029
9.295 12.695 8.985 9.295 9.301

_5 18.028 28.350 20.728 13.439 13.669
18.028 15.220 14.143 13.596 13.659

.75 32.583 50.968 37.320 20.055 18.015
32.583 19.190 19.293 18.229 17.907

1 52.959 80.155 57.096 29.787 23.969

52.959 24.630 25.127 23.915 23.408

l4.105 7.826 4.621 5.197 6.592
“

4.105 7.689 4.104 4.105 4.110

25 6.818 8.234 6.321 6.358 7.027

6.818 8.243 6.300 6.490 6.825

10
_5 14.956 10.048 10.529 9.321 9.275

14.956 9.456 9.262 8.884 8.867

.75 28.520 12.733 15.498 12.569 13.251
28.520 10.721 10.819 10.403 10.450

1 47.509 16.024 20.672 15.469 14.854

47.509 11.883 11.883 11.675 11.722

Ä-2.314 5.079 2.614 2.322 2.756
2.314 4.622 2.314 2.314 2.316

.25 4.973 5.078 4.190 4.750 5.095
4.973 4.971 4.104 4.041 4.080

19
_5 12.951 5.691 5.839 6.724 5.856

12.951 5.695 5.680 5.348 5.381

.75 26.247 6.435 6.590 6.675 6.480

26.247 6.430 6.430 6.251 6.283

44.861 7.089 7.222 7.441 7.278

¤
44.861 7.089 7.089 6.979 7.010
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more of the nonparametric fit to be used. This problem with 7„ (as with the problem of 7L

too small from PRESS*) is not really addressed in the current work, and is left for

possible future research. This is done for two reasons. First, most of the K values chosen

by PRESS** are indeed adequate (for larger rz and some misspecitication present).

Secondly, if the bandwidth could be improved upon (made closer to 1) (which may effect

3, at the same time), the whole problem could be eliminated and it would not matter what

Z. was chosen to be. Thus, the discussion here centers on the bandwidth. For the large

sample size case (rz = 19), PRESS** does result in (mean) bandwidths of .486 and .376 (at

7 = 0). These h’s are large enough to give close to optimal tits, as seen in the INTMSE

values of Table 8.D.4 for (n = 19, 7 = 0). For the (rz = 19, 7 = .25) case, the (mean)

bandwidths remain large for MRR2 and PLR (with "# h=1" of 123 and 63, respectively),

but they remain a little too large. However, the optimal bandwidths are somewhat large

also (relative to higher 7 cases), and the resulting tits from PRESS** are not too far from

optimal. The MRR2 INTMSE is smaller than those for OLS or LLR, thus maintaining the

beneücial properties of this model-robust procedure. Thus, for larger sample sizes it

appears that the model-robust procedures are not overly impacted by these discrepancies

in bandwidth selection. But what about small to moderate sample sizes? For the cases of

rz = 6 and 10 where h„= 1 for MRR2 and PLR, the chosen bandwidths are .145, .140,

.118, .127, .138, .123, and .131, as seen in various locations in Table 8.D.3. This appears

to be a huge misspecification that would result in tits far from optimal. However, as seen

in Table 8.D.4 for the cases (rt = 6, 7 = 0 or .25) and (n = 10, 7 = 0 or .25 for PLR), the

tits are actually not greatly different from optimal. To get an idea of a tit that would be

considered "greatly dit’t‘erent" from optimal, one only needs to look at Table 8.D.2 (the

PRESS* INTMSE table). Fits such as those for LLR, MRR1, MRR2, and PLR for the

case (n = 10, 7 = .75) (or even (n = 10, 7 = .5)) are what is meant by this expression.

Differences in INTMSE’s like "28.527 vs. 10.403" represent extremely poor tits, and

diüerences like "l4.960 vs. 8.884" also show signiticant problems. (These numbers are

from MRR2 for the cases (n = 10, 7 = .75) and (n = 10, 7 = .5), respectively). Now, for
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the PRESS** results, the largest difference in INTMSE’s for MRR2 or PLR is for PLR in

the case (n = 6, 7 = 0). Here the difference in values is 10.453 vs. the optimal 6.391. This

is the onbr location in the entire Table 8.D.4 where one of the MRR2 or PLR fits (based

on PRESS**) might be considered to be rather poor, but still it probably should not be

considered "greatly diH“erent" from optimal. (The MRR2 fit for (rz = 6, 7 = 1) is a bit away

from its optimum, but it still strongly outperforms either OLS or LLR). The MRR2 for

the (rz = 6, 7 = O) case is actually not too bad at all and is much better than LLR. In this

situation, MRR2 uses a signiiicant portion of the LLR residual fit, but the underlying

adequate OLS fit keeps the INTMSE at a somewhat low value. This is a case where

fitting the residuals (containing less structure), rather than the data, with the

nonparametric fit is beneücial. This is illustrated by the difference in INTMSE’s ofMRR2

(8.597) compared to MRR1 (10.477). For all cases shown in Table 8.D.4, other than

(n=6, 7=0), the INTMSE values for the fits based on PRESS** remain relatively close to

optimal.

The following discussion provides the key points to be made about the fits

resulting from using PRESS** as the selector ofh and A,. First, nothing as ofyet has been

said about the performance ofMRR1. While the bandwidths are now somewhat smaller

than they were for PRESS* (which were quite a bit too large), they are still consistently a

little large. Also, the 7t’s chosen for MRR1 are somewhat erratic, especially for smaller

sample sizes. These characteristics result in many ofthe MRR1 Hts being quite poor when

based on PRESS**, as seen in the INTMSE values of Table 8.D.4. MRR1 does perform

very well for n = 19, but the problems for smaller rz damage the reliability of MRR1 in

terms of performing well in a general setting. However, the most important point to be

made here is about the good, consistent performance ofMRR2 and PLR when based on

PRESS**. Notice from Table 8.D.4 that for the no misspeciücation examples, MRR2 and

PLR have INTMSE values a little larger than OLS, but they are not far off (the possible

exception being PLR for (n = 6, 7 = 0 discussed above), and are much better than LLR.

Also, for large misspeciücation examples, the MRR2 and PLR INTMSE’s are just a little
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larger than those for LLR for the cases (rz = 19 and y = .5, .75, or 1), and are lower

everywhere else. Also, the INTMSE’s are much lower than those for OLS, which fits

poorly. For small to moderate misspeciiication, MRR2 and PLR oiren give results much

better than either OLS or LLR thus establishing the advantages of these model-robust

procedures over the individual parametric and nonparametric procedures. In conclusion

then, if the user does not know how much model misspecification may be present in a

certain situation, and wants to protect against all possibilities, then using MRR2 (or PLR)

based on h and 2. from PRESS** is the appropriate method to use. This would provide

adequate fits at either extreme ofmisspecification, and would perform better than either

OLS or LLR for anything in between. IfOLS were used, then large problems could arise

if there happens to be misspecifrcations present. A similar statement applies for using

LLR, where much performance is lost if there happens to be no misspecilication present.

These considerations are precisely why model-robust methods have been developed in this

work, and the previous discussion above shows that PRESS** can make the methods

work in practice.

Confidence lmervals

The ünal concem as to the actual effectiveness ofusing PRESS** as the selection

criterion is whether or not adequate confidence intervals can be obtained for the various

fitting techniques. Ofmain interest at this point are the performances ofMRR2 and PLR,

which have been shown above to have the best potential for providing adequate tits based

on PRESS**. Table 8.D.5 contains the 95% confidence interval diagnostics for the

simulations being studied, where the fits of the various procedures are based on h and X

chosen by PRESS**. The information in Table 8.D.5 parallels that ofTable 8.C.2 for the

optimal üts. Namely, the three x., locations 2, 4, and 7 are selected to be studied since

they are located at points where there is much change in the underlying curve as y is

varied. The diagnostics reported at each of these x„’s are the true y-value (E(y„)), the

(mean) fitted value (across the 500 Monte Carlo runs), the (mean) C.1. width, and
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Table 8.D.5 (a)-(0). Coufidence interval diagnostics for the various fits based on
PRESS** for the 500 Monte Carlo runs.

(6) lv = 6 Y = 01

True Mean Mean Obs. Covrg.
Method x., 1% C.I. Width Probabili

.........2........ ........2 2 3.........12.3922......... ..............3222.............
OLS ........11........ ........211:2........ .......211:112 2112.............

7 39.5 39.31 13.833 .948

.........2........ ........21112........ .......22312...... ........223229......... ..................1.................
LLR ........11........ ........211:2........ .......2 2 1.................

7 39.5 42.38 37.313 1
........2........ ........21132........ .......22399 3229.............

MRR1 ........11........ ........211:2........ .......222:1122......... ..............:222.............
7 39.5 41.27 25.437 .9963311................21:2........ .......211:22....... ........29:222......... ..............:222.............
7 39.5 39.41 30.929 .992

........2........ ........23222.............
PLR ........11........ ........211:2........ .......211:22...... 3.....1.:92.}..1922..... ..............:229.............

7 39.5 39.39 1.02 x 102* .996

(b) [n=6 y=.25]

True Mean Mean Obs. Covrg.
Method x„ C.I. Width Probabili

.........2........ .......22322 3.........1
3OLS........11........ .......2 212:221......... ..............:2111.............

7 41.67 39.21 15.984 .920

22322 1.................
LLR........11 222:929......... ..................1.................

_ 7 41.67 43.07 38.030 13........ .......3311...............2 22:.12....... ........22:1122......... ..............:222.............
7 41.67 41.56 26.499 .998

2232222.329.1......... ..............3222.............
........11 22:22...... ........21:92.1.......... ..............:222

7 41.67 40.19 37.081 .980

.........3........ .......3
3PLR3........1137

41.67 40.43 3.99 x 1022 .990
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Table 8.D.5. (continued)

True Mean Mean Obs. Covrg.
Method x., 326 C.I. Width Probabili

3OLS.........5........ .......321.1.2....... .......3513.1....... ........3.1.1352......... ..............1233.............
7 43.83 39.11 21.347 .916

.........3........ .......3 3551533......... ..................1.................
LLR ........5........ .......321.12....... .......321.2.1....... .........3213.23......... .................1.................

7 43.83 44.10 39.592 1

3 33133 1233.............
.........5........ .......321.1.2....... .......33133 1223.............

7 43.83 42.03 29.725 .992

35..............321.1.2....... .......3531232......... ..............1223.............
7 43.83 40.86 46.989 .990

2 11.................
PLR ........5........ .......321.1.2....... .......3 1.:%..5..5933..... ..............1223.............

7 43.83 41.48 1.44 x 1023 .998

(d) [n=6 y=.75]

True Mean Mean Obs. Covrg.
Method x., 3% C.I. Width Probabili

5.1.132 321333......... ..............1233.............
OLS ........5........ .......13122....... .......35121....... ........3313.23......... ..............1233.............

7 46.00 39.02 28.303 .942

5.1.132521222......... .................1.................
LLR .......5........ .......13122....... .......35.1.1333......... ..............1223.............

7 46.00 45.24 41.623 1

5.1.132233.............
MRR1 ........5........ .......13122....... .......32153...... ........351525......... ..............1222.............

7 46.00 42.47 34.494 .988

5.1.132....... .......3223.............
.........5........ .......13122....... .......3331532......... ..............1225.............

7 46.00 41.45 58.487 .996

.........2 2 1.................
PLR 2.11.12 1.................

7 46.00 42.54 2.03 x 1022 1
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Table 8.D.5. (continued)

(6) lv = 6 v =1]

True Mean Mean Obs. Covrg.
Method x., ,1% C.I. Width Probabili

........2........ ......5
3OLS........5........ .......13135....... .......25:3.1....... .........321255......... ..............1222.............

7 48.16 38.92 35.944 .976

........2........ ......5 3 1.................
LLR .......5 229.............

7 48.16 46.24 44.894 1

.........2........ ......
5MRR1.......5........ .......1§;§5....... .......22152...... ........321229......... ..............1229.............

7 48.16 42.07 39.776 .9921.................
........5........ .......12195....... .......27

48.16 42.01 67.794 1

211.1..391....... .................1.................
PLR .......5........ .......1295....... .......29;.12...... ......2 1.................

7 48.16 43 .61 2222.729 1

170



Table 8.D.5. (continued)

(1) [v = 10 7 = 01

True Mean Mean Obs. Covrg.
Method x1, ,1211 C.I. Width Probabili

........2........ ........3 21.661OLS

.......5........ ........2512........ .......25153....... . ..........6.1962.......... ..............1225.............
7 39.5 39.48 8.089 .950

.........2........ ........352........ .......3 11266.............
LLR ........5........ ........252........ .......262.1....... .........1.1.1562......... ..............1256.............

7 39.5 41.54 11.462 .934

3 35166...... ..........21259.............
MRR1........5........ ........2512........ .......22126...... ..........61.532........... ..............1256.............

7 39.5 40.06 8.435 .920

........2........ ........3512........ .......3 1 1
2525................252........ .......25152...... ..........2.122.1........... ..............1236.............
7 39.5 39.53 9.721 .952

.........2........ ........2
2PLR227

39.5 39.62 2.81 x 1022 .956

(2) [~=10 7=~251
True Mean Mean Obs. Covrg.

Method x., ,911 C.I. Width Probabili

.........2........ .......3@26....... .......351.23....... ..........121152OLS
.......5........ .......2 25166...... ...........6.1222.......... ..............1625.............

7 41.67 39.24 8.997 .820

.........2........ .......3@26....... .......3@26...... .........11266.............
LLR........5 2 121.162......... ..............1656.............

7 41.67 42.43 12.167 .984

.........2........ .......36126....... .......3 12112.1......... ..............1252.............
MRR1 ........5 25162....... 1..........21659.............

7 41.67 40.58 9.394 .906

.........2........ .......36126....... .......315
2 19.1666......... ..............1216

7 41.67 40.58 10.886 .914

........2........ .......36126....... .......
3PLR........5 213.3....... .......21226.............

7 41.67 40.95 4.16 X 10*° .956
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Table 8.D.5. (continued)

(h) [n=10 y=.5]

True Mean Mean Obs. Covrg.
Method x„ 3% C.I. Width Probabili

.........Z........ .......32.92....... .......3 339.............
OLS ........51........ ......29..11....... .......Z51.22...... .........1.1..333......... ...............9513..........

7 43.83 38.99 11.333 .652

32.92 231.............
LLR ........51........ .......Z9..1.1....... .......Z151.999......... ...............129.............

7 43.83 43.38 14.060 .984

........Z........ .......3 3 13..399......... ...............229.............
MRR1 ........51........ .......Z9..1.1....... .......Z 11..21.17

43.83 41.46 11.911 .864

3
2.9219.93251..............29..11....... .......Z13.9127

43.83 41.90 13.619

.910Z...............32.92 292.............
PLR ........51........ ......29..1.1....... .......Z19.312......... ...............239.............

7 43.83 42.36 16.519 .938

(i) [n=1O ·y=.75]

True Mean Mean Obs. Covrg.
Method x„ 3% C.1. Width Probabili

.........2........ ......9.1..32OLS
.......51........ .......13.99....... .......Z3..19...... ..........19.51519......... ...............5133.............

7 46.00 38.75 14.446 .480

.........2........ ......9.1..32....... .......32.93....... ..........11.219......... ...............232.............
LLR ........51........ .......13.99....... .......Z3.9.1....... . .........19.133......... ...............399.............

7 46.00 44.47 16.753 .986

51........ .......13.99....... .......Z2.29...... . .........13..132......... ...............1519.............
7 46.00 42.64 15.189 .876

9........ .......13.99....... .......Z9.32...... .........19.232......... ...............233.............
7 46.00 43.40 16.989 .934

9.1..32....... .......32.99....... .........13.3.39......... ...............219.............
PLR ........51........ .......13.99....... .......Z9.29...... .........13.391......... ...............2512.............

7 46.00 43.76 18.307 .934
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Table 8.D.5. (continued)

G) [M = 10 v=1]

True Mean Mean Obs. Covrg.
Method x„ 91, C.I. Width Probabili

1§§§.............
OLS ........Q........ .......1§.1§Q....... .......1§1Q1....... .........17

48.16 38.51 17.938 .396

Q.11.161...... ........Z.1111Q.1.......... ..............19.§§.............
LLR .......Q........ .......1ä1§Q....... .......Z.11:19................12126197

48.16 45.72 19.946 .992

........Z........ ......Q QQ1.1§...... ........ZQ1.1.§§......... ..............12§§.............
........Q........ .......1§1§Q....... .......1.11éQ...... . .........1§1Z?.1......... ..............1ZQQ.............

7 48.16 43.99 18.791 .888

Q91151...... ........ZQ1ZZ§......... ..............12ÖZ§.............V ........Q........ .......1§1§Q....... .......121.11...... ........291äZQ......... ..............Zgéé.............
7 48.16 44.86 20.574 .956

.........Z........ .......Q Q.11.13 12§Q.............
PLR .......Q1.11äQZ......... ..............1222.............

7 48.16 45.31 21.342 .962
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Table 8.D.5. (continued)

(k) [¤=19 v=0]

True Mean Mean Obs. Covrg.
Method x., ,172, C.I. Width Probabilit

........3........ ........322.3
9OLS........2........ ........3223........ .......32223 2233.............

7 39.5 39.49 5.279 .958

3 3 3 2239.............
LLR .......2........ ........3223........ .......33232...... ..........3 2393..........

7 39.5 40.88 7.067

.8683................3223........ .......32299...... ..........9222.............
MRRI ........2........ ........3223........ .......32233...... ..........3.2333.......... ..............2212.............

7 39.5 39.82 5.538 .926

3 32232...... ..........
92................3223........ .......32223...... ..........32.332.......... ..............2232.............
7 39.5 39.47 5.839 .936

........3........ ........32213.............
PLR 227

39.5 39.45 2.51 x 1022 .930

(1) [r1=19 y=.25]

True Mean Mean Obs. Covrg.
Method x., 3% C.I. Width Probabili

.........3........ .......39229....... .......3 3 2399.............
OLS ........2........ .......33233....... .......32239...... ...........3 2939.............

7 41.67 39.17 5.745 .588

.........3........ .......39229 3.2299.......... ..............2223.............
LLR ........2........ .......33233....... .......322.33....... ..........3 2339.............

7 41.67 42.02 7.305 .954

39229 3 22922
32232...... ...........9.2191........... ..............2923.............

7 41.67 40.66 6.101 .808

39229 3 2399............_
.......2........ .......33233....... .......3 9.2339.......... ..............2332

7 41.67 40.34 6.386 .770

.........2........ .......2
2PLR........2........ .......3 33221....... .....1.2.1.2..¥..193..... ..............2319.............

7 41.67 40.54 1.19 x 102* .800
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Table 8.D.5. (continued)

(m) [r1=l9 y=.5]

True Mean Mean Obs. Covrg.
Method x., 911 C.I. Width Probabili

9 9
.-.929GLS.......9........ ......29:.12....... .......2 2:.9.19.......... ..............:199.......

7 43.83 38.84 7.018

.1622...............99192....... .......9...... ...........9 1919.............
LLR .......9........ ......29:.12....... .......2 2.-991........... ..............:992.............

7 43.83 43.27 7.931 .9442........ .......2......2......9...............29:.12....... .......22:99...... ...........2 999.............
7 43.83 42.43 7.359 .784......2......2......79..............29:.12....... .......22:99...... ...........2.:992.......... ..............:299.............
7 43.83 42.00 7.542 .758

......9......PLR
........9........ ......29:.1.2....... .......2.1:29......:919.............

7 43.83 42.26 2.95 x 1020 .818

(n)

True Mean Mean Obs. Covrg.
Method J26 C.I. Width Probabilit

9.1199....... .......99:1.1....... .........11.12.19......... ..............19.99.............
GLS ........9........ .......19:99....... .......2 9:.299.......... ..............:9.19.............

7 46.00 38.52 8.765 .018

9.1199....... .......9 9.-.9261.......... ..............1992.............
LLR.........9........ .......19:99....... .......29:99...... ..........97

46.00 44.85 8.677 .934

........2........ ......9.1199....... .......619129...... ..........91999.............
MRR1 ........9........ .......19:99....... .......29:99...... ..........9:.999.......... ..............:929.............

7 46.00 44.45 8.504 .870............ ...........2...2.169...............19:99....... .......29:9.1....... ...........9.:999.......... ..............:999.............
7 46.00 44.00 8.544 .812

9.1.199....... .......9...... ..........91.999.......... ..............19961.............
PLR.........9........ .......19:99....... .......19:29....... ..........9:.929.......... ..............:9.99.............

7 46.00 44.21 8.620 .854
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Table 8.D.5. (continued)

(o) [n=l9 y=1]

True Mean Mean Obs. Covrg.
Method x., ,1% C.I. Width Probabili

.........Z........ ......5% 599.............
OLS ........5%........ .......19.95%....... .......99.19...... .........19.1äZ......... .................9................

7 48.16 38.19 10.757 0

........Z........ ......4 4
9LLR.......5%........ .......1ä.§4....... .......!§.4§...... ...........9..994.......... ...............1§é.............

7 48.16 46.67 9.394 .920

49..599.......... ...............912.............
MRRI.........5%........ .......1994....... .......1§.§4...... ..........97

48.16 46.46 9.356 .882

........Z........ .......4 4 9..491.......... ...............949.............
........5%........ .......19.94....... .......l1.9§....... ...........9..949.......... ...............999.............

7 48.16 46.07 9.348 .840

.........Z........ ......4
4PLR........5%97

48.16 46.22 9.348 .866
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i observed coverage probabilities of these C.I.’s. Several conclusions can be derived from

this table and are described below.

First, note that often the (mean) C.I. width for PLR is reported as an extremely

large number (9.64 >< 1023, for example). These values should not be interpreted to mean

that PLR will usually result in extremely wide C.I.’s. The actual cause of these large

values is the tendency on rare occasions for PLR (based on PRESS**) to select a very

small bandwidth (such as .035 or .05). This results in small (close to zero) degrees of

freedom (rz — tr(H)) for the t-value in the conlidence interval, which results in a huge t-

value, which leads to wide C.I.’s. As mentioned above, this is a rare occurrence, but even

getting just one of these values out of the 500 simulations would result in a large (mean)

width. Thus, the large C.I. width values for PLR in Table 8.D.5 are really misleading, and

one should keep in mind that most ofthe 500 individual widths are not so large. In several

cases (tables (h), (i), (i), (n), (0)), no extremely low bandwidths were chosen for PLR, and

the (mean) width values are accurate. Whether or not the (mean) C.I. width

measurements are accurate, the observed coverage probability values can be interpreted as

being accurate. This is because the individual huge C.I. width problem only occurs in rare

data sets, and the coverage probabilities are barely alfected, ifat all.

For comparisons ofthe fitting techniques, consider first the small sample cases (rr =

6), where the x,,—values are not actual data points. Recall for the optimal üts (data in Table

8.C.2), the C.I.’s became much too wide for 7 2 .5, and coverage probabilities (except for

OLS) were around .99 or larger. For OLS, these coverages were much more adequate,

but the C.I. width was still wider than desired. For 7 = 0 or .25 (for rz = 6), the robust

procedures performed very well by selecting üts close to OLS (gave small widths and

accurate coverages). Similar results (for n = 6) hold for using PRESS** to choose h and

7t, except that the C.I.’s are too wide even for small 7 values. For these small 7, the

coverage probabilities are around .99 on average, compared to .94 to .95 for the optimal

fits. This drop in accuracy is due to the model-robust procedures based on PRESS**

selecting more of the LLR fit than the OLS fit, as was pointed out in the previous
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subsection. This results in much larger variances, and thus the wider C.I.’s. The

7 conclusion here (for small sample sizes) is that, while the tits are Hne, improved methods

for conüdence intervals are needed. This was also the conclusion üom the optimal tits.

Now consider the cases ofmoderate to larger sample sizes (11 = 10, 19). For these

cases, the performance of PRESS** is very adequate and the results look promising for

this selection criterion. In fact, for TI = 10 the tits from using PRESS** often provide

contidence intervals that have even better properties than the optimal Hts. This is seen in

the (g) tables of Tables 8.C.2 and 8.D.5 for 7 = .25, where MRR2 gives slightly higher

coverage probabilities that are closer to .95 and PLR gives much more accurate coverages

(¤ .95 compared to coverages ranging trom .82 to .90 for optimal tits). The greatest

improvement, though, can be found in the (i) and (j) tables for large 7 values. For these

cases, PRESS** yields C.I.’s that are signiticantly narrower and have much better

coverage probabilities, especially for the model-robust procedures. For example, the

coverage probabilities at 7 = 1 for the model-robust procedures based on optimal üts were

all larger than .99. These values range tiom .956 to .984 for MRR2 and PLR üom üts

based on PRESS**. The C.I. widths drop Hom around 26.5 on average (for optimal tits)

to around 21.0 on average (for PRESS** tits). MRR1 contidence intervals are not

consistently as good as those ofMRR2 and PLR. These MRR1 intervals tiom PRESS**

still show improved behavior over those Rom optimal tits, but tend to often have

somewhat low coverage probabilities at x,, = 4 and 7. This property ofMRR1, coupled

with the problem ofPLR on occasion selecting a bandwidth too small (resulting in wide

C.I.’s), leads to the conclusion that MRR2 based on PRESS** as the selection criterion

seems to be the most promising model-robust technique to be used in practice (at least

based on II = 10).

For 71 = 19, the C.I. coverage probabilities for the titting technique based on

PRESS** are always a little lower than those based on the optimal h and K values, and

thus a little tiirther Hom .95. This is illustrated in any oftables (k)-(o) ofTables 8.C.2 and

8.D.5. It is important to obsexve, however, that all of the coverage probabilities are stiH
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very close to those trom the optimal tits, along with C.I. widths being very close (slightly

wider for y = 0, .25, and noticeably narrower for y = .5, .75, 1). Observing the PRESS**-

based MRR2 results more closely (since this is the most advantageous technique thus far),

one sees that most of the coverage probabilities range trom the upper 70%’s to the lower

mid 90%’s. These values are only slightly below the values for the optimal tits for MRR2,

and still provide "acceptable" coverages, especially considering again that the x,,-values

were chosen at locations diflicult to Ht. The two coverage probabilities of .748 and .758

in the case y = .5 (for n = 19 for PRESS**) may be considered "undesirab1y" low, but they

are not unacceptable (as are values such as .146 and .162 for OLS). With these being the

lowest coverages for MRR2, it appears that MRR2 based on PRESS** also performs well

enough for rz = 19 to be usetul in practice. This is an important statement because it has

been shown in prior discussions that using PRESS** (in particular, for MRR2) maintains

the beneüts of the üts of the model-robust procedures over the individual OLS and LLR

Hts. These beneüts are also apparent here. Clearly from tables (l)-(o), as the

misspecitication increases, the OLS coverage probabilities become extremely low

(approaching zero). The model-robust procedures avoid this problem and hold a distinct

advantage over OLS. The beneiits over LLR are not as clear for this case of n = 19,

where LLR provides mostly adequate results. In fact, LLR only shows one slight

problem: when titting to x„= 4, the coverage probabilities are sometimes rather low (.720,

.682, .722). The model-robust procedures improve upon this situation by giving

consistently higher coverage probabilities at this location. For the scenarios involving x„,=

2 or 7, LLR oiten provides better coverage probabilities than MRR2. However, the

MRR2 contidence intervals are always narrower than those for LLR, even when the

coverage probabilities are higher (and more accurate) for MRR2. Thus, the choice

between LLR and MRR2 is rather ditücult for n = 19, but it does appear that MRR2

would be slightly more reliable, all cases considered. The smaller sample sizes are what

really hinder LLR as a general technique to be used in practice. This and other

conclusions üom the simulation study presented here are summarized in the next section.
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8.E Conclusions

Based on the results of the simulations presented above, several general

conclusions can be made about the model-robust procedures developed in this work.

First, the model-robust procedures (MRR1, MRR2, and PLR) all have the ability to

outperform the individual procedures of OLS and LLR. This is supported by the

simulation results where the optimal tits were obtained. Namely, in section 8.C when the

optimal h and L (those that minimize AVEMSE) were used to obtain the various tits, the

INTMSE values for the model-robust procedures were lower than (or ¤ equal to) those

for OLS and LLR. With no misspeciiication present in the chosen model, the model-

robust procedures performed as well or better than the ordinarily used OLS procedure. At

the other extreme, when the model was greatly misspeciüed, the model-robust procedures

performed as well as (or better than) the ordinarily used LLR procedure. In small to

moderate cases ofmisspecitcication, the model-robust procedures were consistently better

than OLS and LLR. Several other examples, presented in Chapter 6, also showed the

advantages ofthe model—robust procedures for single data sets. These results were based

on theoretical INTMSE values, and were validated in section 8.B when it was shown that

the theoretical MSE formulas for each ütting procedure were very accurate (close to the

simulated MSE’s). A study of contidence intervals for the optimal tits revealed two main

conclusions. First, for small sample sizes, it appears that some additional work is needed

to greatly decrease the widths of the LLR and model-robust C.I.’s to make them better

than the OLS intervals, which were also too wide, but look better than the others. For

larger sample sizes, however, it appears that the C.I.’s for the model-robust titting

teclmiques (based on optimal tits) provide adequate results. While on occasion giving

slightly low coverage probabilities (for the three points at locations diüicult to tit), the

various contidence intervals were shown to usually have very sutiicient coverages

(probabilities in upper 80%’s to lower 90%’s) while maintaining appropriately small

widths. All of the conclusions just mentioned establish that the model-robust procedures

detinitely have the potential to be very beneücial Htting teclmiques.
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With the potential established, the only remaining question is whether or not this

potential can be reached in practice. This issue was addressed in section 8.D by studying

data—driven selectors of h and K , and very promising results were found. PRESS* was

shown to provide inadequate results (large h and small 7L problems), but PRESS**

produced much improved Hts. In comparing the üts based on PRESS** to the optimal üts

based on h„ and ?„,,, the PRESS** tits were found to perform relatively close to optimal in

almost all of the cases. These comparisons were made by observing the chosen h and X

values, the INTMSE values, and the contidence interval diagnostics. Actually, the MRR2

procedure was found to be the most consistent technique when using PRESS**, with

LLR, MRR1, and PLR each having some type of problem with their tits. (LLR and

MRRI had large bandwidth problems (especially for small to moderate sample sizes),

while PLR on occasion had problems with choosing a bandwidth too small, resulting in

extremely wide conüdence intervals). The most important conclusion to come out of this

study is that the benefits ofusing a model-robust procedure over an individual parametric

or nonparametric procedure can be maintained in practice, with the best method appearing

to be MRR2 with h and 7„ based on PRESS**.
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Chapter 9: Future Research

Each ofthe frtting techniques described in the preceding chapters involves only one

of many variations for that particular technique. For example, local linear regression is

just one of the many nonparametric ütting techniques described in chapter 3, and the LLR

procedure itself can be altered by changing the method of choosing the bandwidth. This

chapter briefly mentions some of the tiiture work needed to determine if the forms of the

techniques proposed in this current research are appropriate or can be improved upon.

Also mentioned are some extensions and further developments ofthe techniques.

9.A Nonparametric Portion (Bandwidth Choice)

The most important component of nonparametric regression is the choice of the

bandwidth h. As seen in previous chapters, an incorrect bandwidth can signiiicantly atfect

the performance of any titting technique that is dependent on this choice of h. The

preliminary study presented in this paper studied a variety of possible data-driven

bandwidth selectors before deciding on PRESS** as a promising candidate. Simulation

results show this criterion to work relatively well, but there is still room for large

improvements. One such need is more consistency across sample sizes. Possible

improvements may include adjusting the current fomi ofPRESS**, making use of current

popular bandwidth selectors in the recent literature (Ruppert (1995), for example), or

developing new procedures altogether. A possible approach in terms of adjusting the

current form ofPRESS** may be to somehow combine it with PRESS*; the idea being to

somehow weight PRESS* more when there is little or no misspecitication (when PRESS*

performs well) and to weight PRESS** more when there is signiiicant misspeciiication.

Many altematives to these ideas exist, and hopeiiilly one can be found that consistently

performs well.
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9.B Model Robust Techniques

Choice ofZ

The main area offirture research in terms ofcombining the separate parametric and

nonparametric fits is in choosing the mixing parameter K. The ideas here follow closely

those for further work on choosing the bandwidth. Studies are needed to better determine

the effectiveness of PRESS**, and whether or not adjustments to PRESS**, or even

totally different criteria, are needed. This information may be gathered by fixing the

bandwidth at h„ and then observing the performances of various selection criteria (in

particular, PRESS**) in terms ofhow close they select lt to A0.

Error Variance, Confidence lntervals

More work is needed in developing better confidence intervals for the various

procedures. A particular need is a method of accounting for high variances of the fits in

small sample size cases, thus providing for a more consistent method of constructing

C.I.’s. Also of interest is to find a method about as simple as those used in the current

work that gives a little bit higher coverage probabilities for LLR and the model-robust

techniques. Several more complicated techniques were introduced in section 6.D. Also of

interest, in addition to forming C.I.’s for just the three "difficult to fit" x„-values that were

used in this paper, would be to study the C.I.’s formed for other types ofpoints (boundary

points, or points in smooth areas ofthe true underlying curve that should be fit easily).

Multiple Regression

Important for any regression technique is its ability to handle the multiple regressor

situation. Future work needs to involve extensions of the model—robust procedures to this

situation. Of interest are comparisons on the ease at which each procedure may be

extended and studies of the performances of the fits themselves. The key step here is

extending the nonparametric portions of the fits to multiple regression. For instance,
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kernel regression may be extended by replacing the usual one-dimensional distance

measure (X} — X}) with an appropriate multi-dimensional measure II x} — xj II. Local

polynomial regression may be extended by using regular weighted multiple regression,

where the weights are based on kemel weights achieved by the multiple regression

extension just mentioned above. These types of extensions need to be incorporated into

the model-robust procedures, allowing for the development of a vast amount of other

multiple regression techniques (such as variable selection methods).

Other Developments

To better establish model-robust regression as a basic regression tool, various

other measures need to be developed. These include such measures as lack-of-fit, R2-type

measures of model adequacy, or possibly distributional results for 7t (for MRR1 and/or

MRR2). Lack-of-fit measures could prove very useful in providing additional support for

the benefits of the model-robust procedures. In particular, it would be useful to have a

measure ofhow far a model prescribed by the user is to a particular known true underlying

model for the data structures used in this work (namely, for unreplicated data). One

approach to this problem is given by Lawrence (1994). For example, it would be

interesting to know how much lack-of-fit corresponds to each y in the simulation study of

this work (or how much power a lack-of-fit test would have (for each case). Such a

measure would give a good indication as to how likely it is that a user would stick with his

specified model, even when there is actually misspeciücation present. It is conjectured

that many cases would arise where the user would use the specified model when the

model-robust procedures would work much better. Such results could also be used to

further support the main conclusion of this research. That is, to use a model-robust

procedure (MRR2 seems best) for any regression situation where there is even the

slightest hint of doubt about the validity of the specified model. If the specified model

were actually correct (no lack-of-fit), then the model-robust procedure will perform as

well as a parametric procedure. If the specified model is a gross misspecification (high
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lack-of-fit), then the model-robust procedure will perform as well as a nonparametric

procedure. And finally, if the specified model is adequate for some (or most) but not all of

the data (moderate lack-of-fit), then the model-robust procedure will outperform either of

the individual parametric or nonparametric procedures, possibly to a large degree.
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Appcndix

(A, B, C, D)



Appendix A: Choice of Penalizing Function

Härdle (1990) defines the general weight sequence {PK,j(x)}é
1
for obtaining kemel

J:

predictions at location x as

h-:14%)
W- = .h}(x) gh(x) 1 1)

where h is the bandwidth, K is the kemel, and §1,(·) is the Rosenblatt-Parzen kemel density

estimator of the (marginal) density of X (Note: the Nadaraya-Watson estimate of

equation (3.B.3) is achieved by defining

_ _l n _1 x'—Xj
g1,(x) = I1 äh ). (A.2)

From the weight sequence in (A. 1), the general kemel estimator of the true fimctionfcan

be expressed as

A ]äm11(x)Y1=
:=:_.....: · 3Mx)

~
¤g»(x) g»(x) ( )

Now, the argument u of the penalizing function E'.(u) is defined to be rz"W1„(1g), giving the

function E[n'1W1„(1g~)]. To see how this results in penalizing for small h, note that

-1 -1 _ _ „ -1 -1
”|

___ _] __ n h h Klo)
.:·. W · = .:. —————— = .:. ^ , A.41" L g„<»,—> 1

‘ ’

a function clearly increasing as h gets smaller (since E(u) is defined to be increasing in u).
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1

Appendix B: Technical Assumptions

The following are the five technical assumptions necessary for the asymptotic bias

and variance expressions of equations (3.B. 16-20). The first three are needed in the fixed

design case, with the last two added for the random design case.

A1. fis twice continuously differentiable on a neighborhood ofthe point x;

A2. K is a symmetric, probability density supported on [-1, 1], bounded

above O on [-1/2, 1/2], with a bounded derivative;

A3. TI —> oo, with 71+++8 S h S 114, for some ö 6 (O, 1/2),

A4. the marginal density g ofJg has a bounded and continuous first

derivative and is bounded above zero, on a neighborhood ofx;

A5. ag and syare uncorrelated.
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Appendix C: X Matrix in PLR

For partial linear regression (PLR), suppose that H(k°‘) ( = Hp“‘°')) is the kemel hat

matrix obtained üom kemel smoothing on the regressor X where the rows of HG"') each

sum to one. Deüning X = (I-
H(k°'))X and B = (X'X)"X'Y, the following proof shows

why the matrix of regressors X cannot contain a colunm ofones.

Proof: For Hm') = (hy(k°’)), it is known that (1)
älhym) = 1 for i = l, 2,..., n (i.e., the
J:

rows ofHG"') each sum to one).

(2) Assume that X does contain a colunm ofones, say this is column c.

Consider the
c“‘
colunm of

32 = [Si, ii,. . . Si,] = (1-1s1<‘“'>)[x, x,. . . x,,]= (1-H<"“>)x;

32. =(1=

(1 — H“‘°") 1 (by (2))

= 1 -
H<"“>

1

I1-WI
I

„ I I1- 1I IOI
1- Zh§‘;°'>|

I ;=1 I 1- l O
=I ,

I

= , (by(1)) =I: =0·

_ ~ am I1- 1I IoII1 im I
Hence, X contains a column ofzeros, and X'X contains a colunm (and a row) of

zeros. Thus, X'X is a singular matrix, and (X'X)" does not exist. This implies

that B: (X'X)"X'Y does not exist.

Thus, to obtain estimates for PLR, assumption (2) above must be incorrect, and so

X cannot contain a column ofones I
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Appendix D: Bias and Variance Derivations

** Note that all results here are for tixed bandwidths (h) and mixing parameters (X).

Appendix D.1: Kernel Regression

Consider the general underlying model y = g(x) + 6 = XB + f + 6, where E(6) = 0

and Var(6) = 621. The kemel titted values are ykq =
H°‘°’)y.

To simplify notation, detine

the kemel hat matrix as
H““”)

= K. The bias and variance of yke, are then as follows:

BiaS($'k«) = E(9k«) — E(y)

= E(Ky) — (Xß + T)

=K(Xß+r)—Xß—f

= KXß + Kf— XB — f

= —(I — K)Xß — (I — K)f

= —(I — K)(Xß + O ,

V¤r(ik«) = V¤r(Ky)

= KVar(y)K'

= K(¤*r)1<·

= ¤’KK'
_

These are equations (6.B.5) and (6.B.6), respectively.
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Appendix D.2: MRR1

Consider the underlying model y = g(x) + 6 = XB + f + 6, where E(6) = 0 and

ver(e) = 621. The MRR1 fitted values are yMRR, =
H(MRm)y = [A11“*“> + (l—A)H(°")]y.

To simplify notation, define the kemel hat matrix as
H(k°‘)

= K and the OLS hat matrix as

H(°") = H. Also, note that (1) HX = X(X'X)"X'X = X , (2) H' = H , and (3) HH = H.

The bias and variance of yMRR[ are then as follows:

Bi3S($'MRR1) = E(yMRR1) · E(y) = E(H(MRm)y) — (XB + 1) =
=H(MRR1)(Xß+f)—XB—f

= HMRRDXB +
11““‘*““*

1- xß — r

= —(1 —
H“”“““*)xß

— (1 -
H<M“‘“>)r

= —(I — AK — (l—A)H)XB — (I — H(Mm“))f

= —Xß + AKXB + (1—A)HXB — (I — H(MRR1))f

= —Xß + ÄKXB + (l—7»)XB — (1 — H‘MRm))1 (by (1))

= —Xß + AKXß + Xß —AXß — (I — H(MRR‘))f

= —Axß + Axxß - (1

—A(1 — K)XB — (1 — 11<M“‘*)r_

V8·1(§'MRR1) = Va1(H(MRRl)Y)

= H(MRR”Var(y)H'(MRm) ( = e*11“*““">11·“*“““>)

_ = [AK + (1—A)H](¤2I) [AK + (1—A)H]'

= 62[A’KK' + (1—A)AHK' + A(1—A)KH' + (1—A)2HH']

= ¤2[A’KK' + (1—A)AHK' + A(1—A)KH + (1—A)’H] (by (2), (3))

= 62{ A[AK + (l—A)H]K' + (1—A)[(1—A)1 + A,K]H }

= 62{
AH‘M‘““’K'

+ (1—A)[I —A(I — K)]H
}_

These are equations (6.B.9) and (6.B. 10), respectively.
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Appeudix D.3: MRR2

Consider the underlying model y = g(x) + 6 = Xß + f + 6, where E(6) = 0 and

Var(6) = 621. The MRR2 fitted values are yMRR; =
H(MRR2)y = [H(°") + )LH2(k°')(I—H‘°"))]y,

where H;°°°') is the kemel hat matrix for a kemel fit to the residuals from the parametric

(OLS) fit. To simplify notation, define the kemel hat matrix as
H2°‘°‘)

= K and the OLS

hat matrix as
H(°") = H. Also, notice that (1) HX = X(X'X)'lX'X = X , (2) H' = H , and

(3) HH = H. The bias and variance of $'MRR2 are then as follows:

Bi¤S($'MRR2) = E($’MRR2) — E(Y)

=
E<H‘“‘“)y> — <xß + 0

=H(MRR2)(Xß+f)—Xß—f

=
H“”“““>(xß)

+
11“°““‘2)r—

xß — r

= [11+ A,K(I—H)](Xß) - xß + 11<M*“*2>r - r

= HXß + )„K(I—H)Xß — xß — (1 — H(MRR2))f

= HXß + 7tK(Xß — HXß) — Xß — (I —
H"”"““’)r

= XB + 7~K(XB — XB) — XB — (I — Hmm)? (by (1))

= -(1=

[11+ 7„K(1—H)](¤*1)[H+ )„K(I—H)]’

=
¤’[HH'

+ )„K(I—H)H' + 7LH(I—H)'K' + )„2K(I—H)(I—H)’K']

= ¤“[11H + ),K(I-H)H + )„H(I—H)K’ + )„.2K(I—H)(I—H)K'] (by (2))

= ¤’[H + 7„K(H—H) + )„(H—H)K' + K2K(I—H)K'] (by (3))

= 62[H + )„2K(I—H)K’]
_

These are equations (6.B. 13) and (6.B.14), respectively.
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Appendix D.3: MRR2 (cont.)

In this section, the bias and variance expressions ((6.B.9) and (6.B. 10)) for

determining the optimal bandwidth ho for MRR2 will be developed. This bandwidth is for

the kemel fit to the residuals fiom the OLS fit, which may be expressed as F=
H2°‘°’)r,

where r = y —
Xßols and y = g(x) + 6 = Xß + f + 6, where E(6) = 0 and Var(a) = 62I.

Defining
H2“‘°‘)

= K and H(°") = H, the bias and variance of F are as follows:

Bias(F ) = E(F) — E(r) = E(Kr) — E(r) =

= KEG) — EG) = —(I — K)EG) =

= —(I — K)[E(y — Xßols)]

= —(I — K)(E[(I — H)y]) (Since yas = Hy = Xßob)

= —(I — K)[(I — H)E(y)]

= —(I — K)[(I — H)(XB + Ü]

= —(I — K)[(I — H)XB + (I — H)I]

= —(I — K)[XB — XB + (I — H)I] (by (1))

= —(I — K)(I — H)f
_

V¤rG ) = V¤r[K(y — Xlä¤1s)]

= KVar(y — XBo1s)K'
= KVar[(I — H)y]K'

= K(I — H)Var(y)(I — H)'K'

= K(I — H)(6’I)(I — H)'K'

= c2K(I - H)(1 — H)'K'

= ¤2K(I · II)K' . (by (3))

These are equations (6.B. 15) and (6.B. I6), respectively.
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Appeudix D.4 (a): PLR (when using kernel regression to fit residuals)

Consider the underlying model y = g(x) + 6 = Xpßp + f + 6, where E(6) = 0 and

Var(6) = G2], and Xp is the X matrix without a column of ones. The PLR fitted values are

§PLR =
H(PLR)y

=
[Hp(k“)

+ i)—lX' (I —
Hp(k“))]y, WhCI'C X: —

Hp(k“))Xp. To

simplify notation, define the kemel hat matrix as
Hp°‘°')

= K. The bias and variance of

ypm are then as follows:

BiaS($'1>uz) = E($'PLR) — E(y) = E(H(m)y) — (X1>ß1> + O

XPBP — f

=
11“’L‘°(xppp

+ 1) — xppp — 1

= [K + >'2(i· x)·‘x· (1 — K)[xppp + H(PLR)f - xppp - 1

= 1<xpßp + >”é(Y<· >'ä>">'?(1 — 1<>xpß1— — xpßp — (1 — 11"’“>>1

= Kxpßp + io'?
>’ä>*‘Y<·

im — xpßp - (1 — 11""·*“>1
= KXpßp + Xpp - xppp - (1 —

11<*’L“>)1

= 1<xpßp + (1 (1 — H‘“‘·*“>1

= Kxppp + xpßp — Kxpßp — xpßp - a — 11"’L*°>1
= —(1 — 11""·">)1

_

Var(yp[_R) = Var(H‘PLR)y)

= H(PLR)VaI_(y)H;(PLR) ( = 62H(PLR)Hp(PLR))

= ¤2[K (I — K)]’

= ¤2[K + rp(1 — K)][K +1>p(1 — K)]' (depmng X(X'X)“1X'= Pp)

= ¤2[KK' + K(I — K)'I’x' +
I’x(I — K)K’ + I’2(I — K)(I — K)'Px']

{
= ¤2[KK' + K(I — K)'I’x + P2(I — K)K' + Px(I — K)(I — K)'I’ä] .

These are equations (6.B. 19) and (6.B.20), respectively.
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Appeudix D.4 (b): PLR (when using local polyn. regression to fit residuals)

Consider the underlying model y = g(x) + 6 = Xpßp + f + 6, where E(6) = 0 and

Var(6) = 621, and Xp is the X matrix without a colunm ofones. The PLR fitted values are

ypm = H(PLR)y = [Hp(LPR) + (I — Hpa“PR))Xp(i'i)”lX'(I — Hp(k°‘))]y, where, once again,

X= (I —- Hp(k°‘))Xp. To simplify notation, define the kemel hat matrix as
Hp“‘°‘)

= K and the

LPR hat matrix for ütting the residuals as HPUR) = KL. The bias and variance of ypu; are

then as follows:

Bi¤S($'1>L1z) = E($'PLR) — E(Y) = E(H(PLR)Y) — (Xpßp + Ü =

= H‘PLR’E(y) — xpßp — 1
= H(PLR)(X1¤ß1> + Ü

— Xpßv — f

= [KL + (1 — KL)xP (X'X)'1X'(I - K)]Xpßp + H(PLR)f — xpßp - r

= KLXpßp + (1 - KL)Xp (S? $1)**11(1 - K)Xpßp - xpßp - (1

K;Xpßp + (1 — KL)x,„(x· i)"i'X ßp — xpßp — (1

(1 — KL)x,„ß,„ - xpßp - (1 —
H(PLR))f

= KLXPBP + xpßp — K1Xpßp — xpßp — (1 — 11"’L*">1
= -(1 — H""·“’>1 .

V¤f($'1·LR) = VaY(H(PLR)Y)

= H(PLR)VaI_(y)H1(PLR) ( = G2H(PLR)H;(PLR))

= ¤211<L + (1 (1 - 1<>111<L +(1=
6’[KLKL' + KL(1 - K)'x(x· X)'1Xp’(I - KL)· +

(1 — KL)XL„ (32* SZ)"X' (1 — K)KL· +

(1 — 1<L.>xp (32* i>">'Z'

(1Theseare equations (6.B.2l) and (6.B.22), respectively.

199




