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Abstract

In obtaining a regression fit to a set of data, ordinary least squares regression depends
directly on the parametric model formulated by the researcher. If this model is incorrect, a
least squares analysis may be misleading. Alternatively, nonparametric regression (kernel
or local polynomial regression, for example) has no dependence on an underlying
parametric model, but instead depends entirely on the distances between regressor
coordinates and the prediction point of interest. This procedure avoids the necessity of a
reliable model, but in using no information from the researcher, may fit to irregular
patterns in the data. The proper combination of these two regression procedures can
overcome their respective problems. Considered is the situation where the researcher has
an idea of which model should explain the behavior of the data, but this model is not
adequate throughout the entire range of the data. An extension of partial linear regression
and two methods of model robust regression are developed and compared in this context.
These methods involve parametric fits to the data and nonparametric fits to either the data
or residuals. The two fits are then combined in the most efficient proportions via a mixing
parameter. Performance is based on bias and variance considerations.
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Chapter 1: Introduction and Motivation

Historically, the regression problem of describing the behavior of some response
variable y via a combination of explanatory, or regressor variables X;, X, ..., X; has
received a tremendous amount of attention. All of the regression problem scenarios, and
the vast number of solutions presented for these problems are too numerous to mention.
The research presented in this paper returns to the basic foundations of many of these
regression procedures--the simple idea of fitting a curve to a scatter of points. The goal is
a procedure for completing this task which displays better performance and is more

versatile than the popular solutions that currently exist.

1.A Statement of the Problem
The basic regression problem involves a variable y whose response in a particular
process is explained by one or more regressor variables X;, X, ..., X; according to a

model of the form
yz.f(Xl!XZI"-’Xk)+£.

The term ¢ is a random error from the process, often assumed to have mean O and
variance o. The classical parametric regression viewpoint is that the function fis assumed
to have a known parametric form, where the parameters are estimated from the data.
Important inferences made from the resulting regression analysis depend heavily on the
validity of the chosen function for . Clearly, if f is misspecified, even over only portions
of the data, these inferences may be misleading. Thus, knowledge of the appropriate
model is crucial when applying the classical parametric regression procedures (such as

ordinary least squares).



At the opposite extreme from these parametric procedures are the aptly named
nonparametric procedures. Here the function f'is considered to be unknown and the user
has no parametric specification as to its form. Hence, nonparametric regression must rely
totally on the data itself to determine a fit to the scatter of points. Many of these
procedures exist, but kernel regression (and local polynomial regression) receive the
emphasis in this current work. To see how nonparametric procedures fit the data,
consider a point Xo = (Xjo . . . , Xi)” where the prediction of E(y) = fx,) is desired.
The basic idea is that if f is at least somewhat smooth, then the best information on f{x)
should come from the y-values at regressor locations x; that are closest to x,. This is
exactly what is done in kernel regression--the prediction of f(xo) at xo is obtained as a
weighted sum of y observations, with the weights dependent on the distances of the
respective regressor locations from the point of prediction. The greater the distance from
xo, the smaller the weight assigned to the observation at that location. Once this
procedure is applied to get predictions at all of the regressor locations, a nonparametric fit
to the data is obtained. No closed form expression for f is achieved, but the fit obtained
may suggest to the user such a form to study.

Just as in the parametric case, the nonparametric procedures have their
disadvantages. Since no information is included from the user, nonparametric fits may fit
to superfluous or irregular patterns in the data. This may result in misleading inferences
about the process. Also, nonparametric fits tend to be more variable than parametric fits
because they rely so much on the scatter of data itself and do not have the underlying
stability of a specified functional form. A third drawback, which is intimately connected
with the first two, is the problem of how best to determine the weighting scheme to be
used. This is discussed later in detail as the problem of bandwidth (or smoothing
parameter) selection.

In practice, rarely does the researcher know the exact form of the true function fin
the regression equation. However, often he may have an idea, or at least be suspicious, of

how the data may behave. For instance, if studying the growth rate of adolescents ages



10-20 (regressing growth rate vs. age), the researcher may strongly suspect some
quadratic behavior in the data. In this case, a quadratic model would be specified and a
parametric procedure used. However, the researcher may also suspect some deviation in
the data from the quadratic model due to the “growth spurt” that occurs over two or three
years in a teenager (around age 14 for girls and age 16 for boys). This phenomenon
would create an abnormality (a “bump” or peak area) in the quadratic structure of the
data. So the researcher has a dilemma. Using a (parametric) quadratic model would
explain most of the data, but would be inadequate in capturing the growth spurt
phenomenon, whereas using a nonparametric fit would ignore the information that the
researcher has about the underlying structure. The usual solution to this problem would
be to just settle for the nonparametric fit. A second possible solution would be to fit the
quadratic model, perform a test for lack of fit, and use this model if no lack of fit is
detected (if lack of fit is detected, use the nonparametric fit). It is very possible that even
with the presence of the growth spurt deviation from the quadratic, a lack of fit test would
conclude that the specified model is adequate. Thus, the parametric fit would be used and
the resulting inferences would likely be misleading due to the inability of the procedure to
detect the growth spurt.

1. B Direction of Research

The research presented in this paper provides a solution to the problem described
above. That is, how does the researcher obtain a fit that both incorporates his knowledge
about a parametric model and is able to detect specific deviations in the data from this
model? The solution to this problem should also be versatile enough to handle the
following two cases: (1) the researcher believes in a parametric model that is a gross
misspecification of the true model (i.e., robustness to a misspecified model), and (2) the
specified model is adequate throughout all of the data and no specific deviations need to
be detected (i.e., a simple procedure that would just perform ordinary parametric
regression when that is all that is needed). Actually, three possible solutions are studied



and compared to ordinary least squares (OLS) and kernel (or local polynomial) regression.
All three procedures involve the combination of a parametric fit and a nonparametric fit.
The parametric fitting technique used throughout this work is OLS. For the
nonparametric fitting technique, kernel regression is used when introducing and explaining
the three proposed procedures. However, the final form of the procedures (for
implementation) involves the better performing local linear regression as the
nonparametric fitting technique.

The first of these procedures was developed by Einsporn (1987) and Einsporn and
Birch (1993) and was entitled HATLINK. Here an OLS fit to the data and a kernel fit to
the data are combined in a convex combination via a mixing parameter A. This A ranges
from 0 to 1 based on the amount of misspecification of the specified model. Thatis, A =0
gives the usual OLS fit (when the model is appropriate), and A = 1 gives the kernel fit
(when the model is badly misspecified). Due to its ability to handle the varying degrees of
model misspecification, this procedure is called Model Robust Regression 1 (MRR1). The
second procedure is an adaptation of the semiparametric procedure of partial linear
regression (PLR) developed by Speckman (1988). Here the underlying model for the y;
(=1, ..., n)is thought of as being composed of a linear parametric part (x;'B) and a
nonparametric part (m(x;’)), where x;’ = (X;;, X2, . . ., Xu), B is a vector of unknown
parameters, and m is an unknown function. The idea, related to partial correlation analysis
of a subset of independent variables in OLS, is to estimate B based on the matrix of
regressors X and the vector of responses y after “adjusting” them both for partial
information from the -nenparametric portion, and to estimate m based on a nonparametric
fit to the residuals from the resulting parametric fit. These two fits are added to give the
final fit. PLR uses simultaneous fitting techniques and involves the use of residuals to fine
tune the fit.

The final procedure to be studied is a proposed method which combines the
techniques of these first two procedures. The simplicity of the MRR1 fit is maintained,
but the method itself is improved by introducing the use of residuals to fine tune the fit, as



in PLR. This method, denoted MRR2 (Model Robust Regression 2), begins by obtaining
a parametric (OLS) fit to the data, based on the user’s specified model. A nonparametric
(kernel) fit is then obtained on the residuals from the initial OLS fit. A portion of this
residual fit is then added back to the OLS fit to give the final MRR2 fit. The residual fit
provides the extra structure in the data that the OLS fit cannot capture. What “portion” of
the fit to add back is determined by a parameter A€[0,1], as in the MRR1 procedure.

Inherent in the development and comparison of these three procedures are several
other topics that need to be addressed. These include the method of bandwidth choice in
kernel regression, the method of choosing the mixing parameter A, the development of a
criterion for comparing the performance of the different methods, the methods of
obtaining predictions at points other than data locations, and the development of
diagnostics such as error variance estimates and confidence intervals. These issues are
addressed in the context of a one-regressor model, keeping in mind the desire to later
extend the results to the multiple regression case.

The next chapter gives a brief discussion of parametric regression (OLS in
particular), while Chapter 3 gives a detailed review of nonparametric regression (with
most emphasis on kernel regression). Also discussed in Chapter 3 is local polynomial
regression and its benefits over kernel regression. Chapter 4 provides some discussion of
semiparametric procedures, including the introduction of the partial linear model. Then in
Chapter 5 the three model robust regression methods--PLR, MRR1, and MRR2--are
developed. Chapter 6 presents several comparisons among the three procedures based on
a mean squared error criterion. Comparisons are made on several sets of generated and
actual data. Chapter 7 contains a preliminary study of data-driven methods that could be
used to obtain the fits for the various techniques. Simulation results are given in Chapter
8 in order to substantiate the findings in Chapters 6 and 7. Included in these simulations is
a check on the validity of the mean squared error criterion used in making the key
comparisons in this work. Finally, Chapter 9 outlines some additional developments of the

procedures and some areas for further research.



Chapter 2: Ordinary Least Squares

Consider again the problem of predicting the value of a response variable y which

is explained by one or more regressor variables according to the model
Vi=f X Xy ..., X))t &, i=1,..,n,

where the errors & are assumed to be iid with mean 0 and variance o*. The most common
parametric approach to this problem is to express the model above as a (parametric) linear

model, written in matrix notation as
y=Xp +e,

where y is an n dimensional vector of responses, X is an nx(k+1) matrix of k regressor
variables augmented with a column of ones, B is a £+1 dimensional vector of unknown
parameters, and € is an n dimensional vector of unknown errors. Note here that a
regressor variable may be a function of other regressors, such as a polynomial term. The
current work emphasizes the “single regressor model”, having one explanatory variable X
in the model, with all other possible terms defined to be polynomial expressions of this
regressor (X2 X .). The goal of this parametric approach is to obtain the estimate ﬁ
of the unknown B in order to achieve estimates of mean response y = Xﬁ. A common

technique for obtaining this estimate is that of ordinary least squares (OLS). OLS

minimizes the sum of squared residuals (jZi(y,- - )7,-)2 ), which results in the estimate

ﬁoh =(X'X)'X'y. Assuming that € is N(O0, o°I), where I is the nxn identity matrix, ﬁol,



is the optimal (uniform minimum variance unbiased (UMVU)) estimator of . Thus, the

fits at the data locations are obtained as
Fois = XBois = X(X'X) X'y = HWy, (2.1)

where H® is the OLS “hat” matrix.

This hat matrix plays a crucial role in many inferences that are based on the OLS
regression fit, and several of the properties of the OLS hat matrix are extended to the
other procedures in this current work. Some of these properties of HY = (h,-j(°" are as

follows:

G -1<h™<1, (2.2)
(i) #(H)=Sh = p, where tr = trace and p = k+1 , (2.3)
i=1

(ii)y $h(® =1 for eachi (row sums equal 1), (2.9)
J=1

(iv) Var(§os)=Var(H®y) = FHOHCS = SHCY 2.5)
(since H®™® is symmetric and idempotent) ,

(v) residuals e =y -y, = (1- H® )y, (2.6)

2 (ols) 2 (ols)
(i) Py =ZE— = Ze @7

ols — n-p - tr[(I _ H(ols))(l _ H(ols))c] .

For the development and further discussion of these properties, see Myers (1990) and
Hoaglin and Welsch (1978). Also, consider again equation (2.1), and notice that the fit

for y; at x; can be expressed as



A(ols) z h(ols) yJ (28)

Thus, the fitted value ; is obtained as a weighted sum of the observations y; j=1,.. ., n

t]

and an observation with a large A;; has a significant influence on the fit. The value of each

hy is directly related to the choice of model by the user. For instance, in simple linear

regression,
(xi—X)(x; — X,
R 2 2.9)
Z(x, %)
so ™ reflects the distance that x; is from the mean ¥. For fitting at x,, data points at

locations x; far from the mean have heavy influence, while some data points relatively close
to x; may have almost no influence at all (especially if x; is near X).

With the weighting scheme being a direct consequence of the prescribed model,
one should be very confident in the model before applying ordinary least squares to make
inferences. If the model is chosen correctly, then OLS gives optimal results. However, if
the model is incorrect, then OLS could give poor predictions at some data locations, and
subsequent inferences could be very misleading. Consider simple linear regression again
as an example. Suppose the true model is quadratic, but a linear model is specified.
Predictions at locations where the quadratic structure is prevalent would then be poor,
because most weight is given to observations at X locations far away from the point of
prediction, with little information coming from the quadratic structure itself. A much
better approach (when in doubt about the true model) is to use a weighting scheme that
places more weight on observations close to the point of prediction rather than on
observations far away. This is the idea behind nonparametric regression, to be discussed
in Chapter 3. For a detailed discussion of OLS and other parametric regression
techniques, such as maximum likelihood estimates, and the many extensions and

applications of these techniques, see Myers (1990).



Chapter 3: Nonparametric Regression

3.A Introduction

This chapter contains a discussion of the procedures that attempt to solve the
problem of obtaining fits (or predictions) of a response variable when no, or incomplete,
information is available on the underlying model. With no such (parametric) information,
these nonparametric procedures use only the data itself to provide these fits. Recalling
that results considered in the current work are for the “single regressor” model, the
problem of interest now is obtaining y for the model y = fiX) + & where f is some
unknown function. As in the parametric case, the fitted value y is obtained via a weighted
sum of the y observations. However, now there is a different rationale behind the choice
of weights. The idea is as follows: if interested in predicting f{x;) at x, and if fis at least
somewhat smooth, then the observations with the most information about f{xg) should be
those located at points x; closest to xo. Thus, the weighting scheme used to assign weights
to the y;’s is based on a decreasing function of the distances of their locations x; from x,.
Points close to x, receive large weights, while points far from x, receive little or no weight.
More details on this weighting scheme and the most popular techniques for achieving

these weights are presented in the following sections.

3.B Kernel Regression

A widely used and thoroughly investigated nonparametric regression technique is
that of kernel regression. Due to its computational simplicity and its straightforward
extension to the multivariate case, this procedure is used extensively in the current

research.



3.B.1 Procedure
The end result of kernel regression is to obtain the appropriate weights A,*® to

give fitted values according to the expression

P = J§lh§~“°"y , (3.B.1)
which can also be thought of as f (x), fori=1, .. ., n In matrix notation, equation
(3.B.1) can be expressed as

Fiee = H*y, (3B.2)

where H*® = (h,%7) is denoted as the kernel “hat” matrix. A common method of
obtaining the weights #,*™ is that proposed by Nadaraya (1964) and Watson (1964), who
defined

KD =

m, (3.B.3)

where the function K(u) is a decreasing function of lul , and A > 0 is the bandwidth
(smoothing parameter). Further discussion of K and 4 follows in this and subsequent
sections. The numerator of (3.B.3) satisfies the notion of giving more weight to
observations at locations close to x; (the location of the fit), and less weight to
observations far away. The denominator is present to make the rows of H* sum to one,

as with H®®. For obtaining a prediction j, at a non-data point xo, one simply replaces x;

with x, in (3.B.3) and calculates

10



P = Zin“‘“’ (3.B.4)

Obtaining such predictions over the entire range of the data would result in an estimated
regression curve f which may provide some insight into the true form of the underlying

function /. Unfortunately, no explicit closed form expression for f can be obtained from

the kemel fit, or from other nonparametric techniques.

3.B.2 Kernel Functions
Kernel regression gets its name from the function K(u) in (3.B.3), which is called
the kernel function. A decreasing function of lul, K(u) may be taken to be a probability

density function (such as standard normal, where K(u)oc e ) a function defined to be

zero outside a certain range of u, or one of many other functional forms. Two typical

forms of kernels used in the literature are

K@) =c(1-u?)? ¢,d>0, (3.B.5)

1
= >0. D,
K@= (3.B.6)

It has been shown by several authors that for practical purposes the choice of the kernel
function is not critical to the performance of kernel regression. Hirdle (1990) illustrates
this point for the general case of twice differentiable kernels, where his performance
criterion is the mean integrated squared error (MISE) of the predicted function f(x).
Minimizing the portion of MISE that is a function only of the kemnel X, Gasser, Miiller,
and Mammitzsch (1985) found the “optimal” kernel to be the Epanechnikov kernel
(Epanechnikov (1969)):

K@) =.751-u)I(Ju] < 1), GB.7)
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where / is the indicator function. From this result, Hirdle then calculates the efficiencies
of several other commonly used kernels. Efficiencies are calculated as the optimal MISE
from the Epanechnikov kernel divided by the MISE for the particular kernel of interest.
Results are in Table 3.B.1.

Table 3.B.1 Efficiencies of twice-differentiable kernels.

Kernel K(u) Efficiency
Epanechnikov (3)A-udI(Ju) £1) 1
Quartic (3)a-u?I(Jul < 1) 995
Triangular A-|up) I(Ju| <1) 989
Gauss (21:)‘”2exp(‘—2“2-) 961
Uniform (FM(Ju| <1) 943

Based on these results, Hardle concludes that the choice of kernel function should be
based on other considerations (besides MISE), such as computational efficiency. Due to
this consideration and its similarity to a spline smoother matrix (discussed later in section
3.C.2), the kernel function employed in this current work is the simplified Normal (or
Gauss) kernel given by

Kw)=e" . (3.B.8)

Even though the form of kernel chosen for kernel regression is not critical, the choice of

bandwidth (% in equation 3.B.3) is crucial in obtaining a “good” kernel fit.
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3.B.3 Bandwidth Choice

Recall that in the kernel regression weighting scheme, observations at locations x;
close to the point of prediction x, receive the most weight, with weights decreasing for
observations as their distance from x, increases. How fast these weights decrease as the
distance from x, increases is determined by the bandwidth A. This is turn controls the
smoothness of the resulting estimate of £ For example, if A is very small (close to zero),
then almost all of the weight is placed on the point of prediction itself, with the rest of the
weight on only the closest (local) observations to this point. This would result in a fit that
essentially “connects the dots”, and is said to be undersmoothed, or overfit (with high
variance). At the opposite extreme, if / is very large (close to the range of the x-values),
then the weight is spread almost evenly throughout all of the observations. This would

result in a fit that essentially takes the value y at each data point, i.e., fits the mean. This

fit would be considered oversmoothed, or underfit (with high bias). The problem of
choosing an appropriate bandwidth (smoothing parameter) is thus the crucial element in
obtaining the proper kernel fit. By a proper or “good” fit, one usually means that it strikes
the proper balance between the variance and the bias (or squared bias). This goal leads to
minimization of a mean squared error criterion (or other global error criterion) as a logical
starting point for determining what bandwidth to select for a given data set. Much
research has been dedicated to this problem of bandwidth selection and numerous
procedures have been developed. The next subsection gives an overview of some of the

most popular of these techniques.

Summary of Techniques for Bandwidth Choice

The most popular and practical way to determine if a selected bandwidth is
appropriate is to evaluate its performance based on some global error measure for the
regression curve. As mentioned previously, this measure is often a form of mean (or
average) squared error, which incorporates both bias and variance considerations. To

begin a discussion of bandwidth choice, Hirdle (1990) gives three widely accepted
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quadratic error measures: average squared error (ASE), integrated squared error (ISE),

and a conditional average squared error (CASE). These measures are as follows:

ASE = dut) = " Sty o w6, (3B.9)
ISE = di(h) = [ /i) - fool wivgtoa, (3.B.10)
CASE = do(h) = E[da(h) | %1, . . ., %] , G.B.11)

where ﬁ, (m, in Hirdle (1990)) is the (bandwidth dependent) kernel estimate of f (m in
Hirdle (1990)), g(x) is the density of the X’s (equals 1 if X’s are fixed), and w(x) is a
nonnegative weight function. This w(x) is present to reduce boundary effects on rates of
convergence, and was found by Hirdle to not significantly influence the actual choice of A.
In the current work, w(x) is usually taken to be the constant value one for simplicity.
Hirdle gives a theorem showing the asymptotic equivalence (in convergence rates) of
these distance measures. ASE is actually a discrete approximation to ISE, and in practice
is much easier to compute. Based on these considerations, ASE (or “MSE”) is
emphasized as a performance criterion in Hérdle (1990) and in the current research.

Hirdle states that “the basic idea behind all smoothing parameter selection
algorithms is to estimate the ASE or equivalent measures (up to some constant)”, and
hopefully the smoothing parameter that minimizes this estimate is also a good estimate for
the smoothing parameter that minimizes the ASE itself In taking this approach and
expanding ASE, Hardle illustrates several important findings based on the portion of ASE
that must be estimated to give ASE apart from a constant. This portion of ASE to be
estimated is what serves as the criterion for choosing the bandwidth. A naive estimate
was found to be the usual estimate of prediction error (denoted p(h)), involving the sum of

squared errors:
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p(h) =n'SSE =n* ;[yj —fh(xj)]zw(xj). (3.B.12)

However, n'SSE is a biased estimate of ASE (as shown by Hirdle (1990)) and tends to
overfit the data by choosing the smallest possible bandwidth. Hirdle then presents three
methods of finding an unbiased estimate of ASE (denoted MSE from this point on) in
order to get a better selector of bandwidth.

Cross-Validation (PRESS)
The first of these methods is the “leave-one-out” method of cross-validation

(Stone (1974)), which results in expectation of zero for the bias that parallels the bias from
equation (3.B.12). Here, the fits J, (= f'h(x,-)) are obtained through the usual form of a

weighted sum of the y;’s, but with observation y; left out. Notationally, the “minus i” fit at

x; is given by yi = Zh,, -iyj, where the A, are the weights formed ignoring observation

¥i. One can express h;;_; as h/(1-h;), where h; comes from the hat matrix based on all
observations (Myers (1990)). The expression to be minimized is given by the cross-

validation function

CVih=n 2 y,,_, w(x,) (3.B.13)

(Hérdle (1990)). Suppressing the dependence on n and w, CV(h) is just the PRESS
statistic used in a wide variety of regression procedures. This PRESS statistic (Allen
(1974)) is as follows:

PRESS = 3.(3i — i)’ (3B.14)
i=1
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Wong (1982) and Rice (1984a) give consistency results for the method of choosing
bandwidth by cross-validation in the equispaced data situation. The cross-validation
(PRESS) procedure is an attempt to resolve the overfitting problem of using the
prediction error estimate p(h) in (3.B.12). While it does result in fits that are less
dependent on individual observations (and thus have larger bandwidths), this PRESS
procedure has been observed in a wide variety of applications to still tend to overfit the
data by not choosing a bandwidth large enough. So a modified version of PRESS seems

necessary. One such version is explained in the next subsection.

Penalizing Functions

The second method described by Hirdle of choosing # based on MSE uses
penalizing functions to adjust p(h) so that small values of 4 are less likely to be chosen.
This penalizing of small A’s is accomplished via a penalizing function Z(u), which is
increasing in u. The general idea is to adjust the (biased) prediction error p(h) of equation
(3.B.12) by Z[n'h'K(0)/gx(x;)], where Zi(x;) is the Rosenblatt-Parzen kernel density
estimator of the (marginal) density of X at the value x;, as described in Hardle (1990). For
more details on the development of this =, see Appendix A. In the current context, one
can think of gx(x;) as the denominator of h*” (equation 3.B.3), divided by A. This

adjustment to p(h) results in the following general penalized function to minimize:
—_ —li 7 2 — ~]l7-1 a~ -
G =2y~ i) E 0T KO 2l W), (BBIS)
J=

Hirdle shows that the bias from p(h) alone is eliminated and that asymptotically G(h) is
roughly equal to ASE (up to a shift). With Z(u) chosen to be increasing in u, it is clear
that G(h) penalizes values of A too low.
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Many forms of = are possible, with a typical choice being the simple Z(u) = 1+2u
of Shibata (1981). Working in the fixed design model (fixed x’s, which eliminates the
term gx(x;) in (3.B.15)), the general penalized function can be written as

G(h) = p(h) E(n"'1").
Rice studied the behavior of five forms of G(k) based on five prevalent forms of Z(n"'4™):
(i) Generalized Cross-validation Ecv, (ii) Akaike’s Information Criterion Exc, (iii) Finite
Prediction Error Eppg, (iv) Shibata’s Zs, and (v) Rice’s own bandwidth selector Ex(n'4#™)
= [1-2n'H'K(0)]" (for formulas and details, see Rice (1984a)). In his paper, Rice
developed an asymptotically optimal bandwidth selector that is an unbiased estimate of the
risk function (expected squared error loss), and then showed that all five of these
penalized selectors are asymptotically equivalent to this optimal selector. The important
result from Rice for the current work, however, is that despite asymptotic equivalence, the
selectors behave differently for finite data simulations. In comparing the five penalized
functions above, along with the cross-validation selector of (3.B.13) and the selector
based on unbiased risk estimation, Rice found that his T selector and cross-validation
performed best, followed by GCV and the unbiased risk estimator. The AIC, FPE, and S
penalized selectors performed poorly. (The performance measure used was efficiency
relative to the optimal risk function). The conclusion was that selectors that penalize small
bandwidths (i.e., penalize undersmoothing (overfitting)) perform better in general. Hirdle
(1990) further studied the performances of the five penalized functions with other
simulated data. He found that Rice’s T selector did indeed work well in cases where
protection against undersmoothing was desirable (i.e., needed reduction of variance), but
did not perform well when protection against oversmoothing was desirable (i.e., needed
reduction of bias). Hirdle found the Generalized Cross-validation (GCV) selector to give
the best overall performance. So Rice’s general conclusion is probably too broad a
statement, and more work needs to be done to find a selection function that performs well

for protection against both bias and variance.
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Rice does argue, however, that when considering mean squared error, there is
much less chance of encountering oversmoothing problems when choosing the bandwidth.
His argument is supported by Chiu (1990), who uses Fourier analysis and the sample
variation in bandwidth estimates to show why often in simulation studies most bandwidth
selectors are biased toward undersmoothing. When deciding on a selection procedure,
one should be sure to take this point into consideration. All of these results for finite
sample cases have by no means been rigorously proven and established in the general
statistical setting, but these findings provide valuable information for what types of
bandwidth selectors to use in specific situations. The ideas here are used directly in
forming the bandwidth selectors used in the current research (as described in the
upcoming subsections entitled PRESS* and PRESS**).

Plug-in Method and Asymptotic Results

The third of Hirdle’s methods for obtaining an unbiased estimate of MSE in
selecting A is what he calls the “plug-in” procedure. This procedure is based on the
asymptotic expansion of MSE, and the optimal estimate of s involves unknowns, including
o’ and the éecond derivative of the underlying function f, and is proportional to n™*.
Estimates from some preliminary smoothing process are “plugged in” for the unknowns to
give the estimate of A. Based on its strictly asymptotic nature and the additional
complication of estimating extra unknowns, this plug-in method is not appropriate for the
current research, which deals with smaller samples and simpler procedures. Also, the
plug-in method restricts the user to a certain smoothness class for the regression function f
(to twice differentiable functions in the case above). Under certain assumptions on f, the
range of A, and the marginal density of X, Hérdle and Marron (1985) have shown that the
Cross-validation function CV(#) (equation (3.B.13)) and the General penalized function
G(h) (equation (3.B.15)) themselves choose bandwidths that are asymptotically optimal
(in the sense that these functions approximate (up to a constant) the measure MSE (da(h)

of (3.B.9))) uniformly over 4. In addition, these results of optimal bandwidths hold
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uniformly over smoothness classes. This independence from the “smoothness” (degree of
differentiability) of the true f is very advantageous in the practical setting, and is not
shared by the plug-in method. And finally, Hardle, Hall, and Marron (1988) prove two
convergence rate theorems that show that even if one knew the “unknowns” in the plug-in
method, this method would still have a rate of convergence no better than that of cross-
validation or penalized functions.

Even though these asymptotic results are not used explicitly in this current work,
there are a few other important asymptotic results mentioned here that are useful in
illustrating some of the points made in subsequent chapters. The usual type of

asymptotics in kernel regression is to study the behavior of estimators as #—c0, with A~—0

and nh—o. These conditions ensure that as the sample size increases, a smaller range of
values around the point of prediction results, but with an increasing number of
observations in this range of values. The relevant results given here are bias and variance
formulas, explained in Chu and Marron (1991), for the Nadaraya-Watson estimate of
(3.B.3). For the technical assumptions underlying these expressions, see Appendix B. In
the fixed design case (fixed x’s), and under the first three technical assumptions,

Bias(f(e) = [ K5 f(0) - fat + O™,  (3B.16)
Var(f(x)) = "W 'F | K2y + O, (.B.17)

with proofs in Chu (1989). The O notation for the higher order terms is a measure of the
order of magnitude of these terms. Simply stated, a, = O(b,) means that the sequence
{a,} is of roughly the same size or order of magnitude as the sequence {b,}. More
formally, a, = O(b,) if the ratio |au/b,| is bounded for large n (see Bishop, Fienberg, and
Holland (1975) for more details). Intuitively, one may think of the higher order terms of
(3.B.16) being O(n™") as saying that all of these terms have denominators with terms at

least as large as n.
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Shifting to the random design case, with the two additional assumptions given in

Appendix B, the bias and variance expressions are given by

Ix (237 - F)gwar
Tk (5 gtepa

Var(F(x)) = ' 'g(x) A K2@du + oY), (3B.19)

Bias( f(x)) = + O™ *h V), (3.B.18)

where g(x) is the marginal density of X (proofs in Chu (1989)). The o notation is another
measure of order of magnitude, and a, = o(b,) means that the sequence {a,} is of a smaller
order of magnitude than is {b,}, or that the ratio |ays/b,| converges to zero (Bishop et a/
(1975)). Chu and Marron (1991) also show that the bias expression of (3.B.18) can be
expanded by use of Taylor’s Theorem to give

Bias(7 (1)) = /" ()g(x) + 21 (g’ () ([P K ) / (2g(x) + OG*H ) + of#?).
(3.B.20)

Equations (3.B.19) and (3.B.20) are the general (asymptotic equations) for bias and
variance, and are referenced in later discussions. For instance, one can clearly see that
increasing the bandwidth A (oversmoothing) increases the bias in (3.B.20), while
decreasing A (undersmoothing) increases the variance in (3.B.19). By adding the squared
bias from (3.B.20) and the variance from (3.B.19), one can obtain the (asymptotic) MSE

as.
MSE( f(x)) ~vn W' + b*h*, (3.B.21)

where ~ means the ratio approaches one in the limit, and where v and b are constants

based on the bias and variance expressions. Minimization of this MSE gives the
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asymptotically optimal bandwidth Ascer = (v/4b6°n)"°, and establishes the widely

referenced “optimal” bandwidth expression Ay oc ™ (often just taken as Aoy = 1),

Bootstrapping

One other technique that has been investigated for choosing a bandwidth is that of
bootstrapping, a procedure developed for constructing sampling distributions empirically
from the data at hand. To obtain a “bootstrap sample” from an original sample of size n,
one draws many (B) samples, each of size n, with replacement, from the original sample.
Now, suppose O is the parameter of interest in a certain problem, and that one can obtain
an estimate 6 of © from the original sample. Then one can also obtain an estimate 6" of 0
from each of the B bootstrap samples. The idea behind bootstrapping (the “bootstrap
principle”) is that the observed distribution of the 6s approximates the true distribution
of §. Thus, this distribution of the 8”’s can be used to gain insight about the true behavior
of the estimate 6. (See Stine (1989) for a brief discussion, including the choice of
resampling from residuals or from the actual data).

Faraway (1990) uses bootstrapping as a method of choosing the bandwidth in
kernel regression. Here a bootstrap sample of fits f,-' x),j=1,.. . B, (based on
resampling residuals from an initial fit), is used to estimate the mean squared error, and the
h which minimizes this estimated MSE is used for the final kernel fit. In this procedure,
Faraway describes how to form the estimate of MSE so that it is consistent with the true
MSE. Due to its highly computer intensive nature, this approach to bandwidth selection
does not fit well into the general framework of the current research, and hence are not
studied further at this time. More details can be found in Faraway (1990). Bootstrapping
has proven most applicable in obtaining standard errors and confidence intervals for
estimates, and in the exploration of estimator performance with real data, where the
parameters are unknown (as opposed to Monte Carlo simulations, which have artificial

data with known parameters). These topics are discussed briefly in later sections.
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PRESS*

In the current research, two of the above philosophies of bandwidth choice are
combined to give a selection criterion. The first component of this selector is the cross-
validation quantity PRESS. As discussed in the previous sections, PRESS attempts to
overcome the overfitting problem of choosing 4 too small by giving a fit less dependent on
individual observations. However, PRESS has often been observed to still select a
bandwidth smaller than that desired. The scope of this problem lends itself naturally to the
application of penalized functions. These were discussed earlier in the context of
penalizing the prediction error p(h) = n"'SSE against small bandwidths. Recall that studies
by Rice, Hirdle, and Chiu discovered no uniformly “best” form of penalizing function.
Hirdle did find, however, that (penalized) Generalized Cross-validation appeared to
perform well over a wide range of smoothness problems, and Rice found the usual cross-
validation criterion (along with his T criterion) to perform extremely well in cases where
protection against overfitting was desired. Based on these findings and the arguments by
Rice and Chiu that the overfitting problem occurs much more frequently than the
underfitting problem, a bandwidth selector candidate for the current research is taken to
be a “penalized PRESS” diagnostic, denoted PRESS*.

Developed by Einsporn (1987), PRESS* penalizes PRESS instead of the usual
prediction error. This merging of procedures maintains the versatility of cross-validation,
while also introducing extra protection against overfitting. The “penalty” in PRESS* for
small bandwidths comes from dividing PRESS by [ - tr(H*™)]. To see how this penalty
works, consider fitting at x;. As the bandwidth gets smaller, the individual weights on x;
(the h;*s) get larger, and thus tr(H*™) gets larger. The denominator [n — tr(H*)]
gets smaller, and thus penalizes (increases PRESS*) for small bandwidths. Also, the term
tr(H*™) by itself may be thought of as a measure of model adequacy. Related to OLS,
where tr(H®™) = p (the number of parameters that need to be estimated), tr(H*™) can be
thought of as the “equivalent” model degrees of freedom for kernel regression (Cleveland

(1979)). This quantity can be interpreted loosely as the number of parameters that would
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be needed to obtain a comparable parametric fit. Thus, it is desired to have tr(H*™) as
small as possible to reflect a fit that is not overly complex (or variable). The form of
penalty function in PRESS* is slightly different from those mentioned earlier, and is
introduced in the hope of giving more consistent results for different levels of smoothing
problems. Einsporn reported that in preliminary simulation studies, PRESS* led to
improved kernel predictions compared to the cross-validation method. A more detailed
study of PRESS* has been carried out in the current work, and results are given later in
Chapters 7 and 8. It is shown that PRESS*, while it does correctly provide protection
against small bandwidths when needed, often selects bandwidths that are much too large
(especially for the proposed model-robust procedures). A possible solution to this
problem is the introduction into PRESS* of a penalty for large bandwidths. This would
provide a penalty for bias to join the existing penalty for variance. This modification of
PRESS* leads to a second candidate, PRESS**, for determining the bandwidth.

PRESS**

The basic idea behind PRESS** is to introduce a penalty for large bandwidths that
is comparable to the penalty [n-tr(H**)] for small bandwidths, which is already present in
the denominator of PRESS*. (The new penalty term will also appear in the denominator).
Noting that [ — tr(H*®)] - 0 as & — 0, and [n — tf(A*)] > n - 1 ash > 1, it is
desired to have the new penalty term approach 0 as A -1 and approachn—-1ash > 0.
This new penalty term will be comprised of sums of squares error (SSE) terms. It is
known that SSE increases as 4 increases, and SSE is maximized when 4 = 1 (when “fitting

the mean”). Also, SSE — 0 as # — 0. Letting SSEmcn = SSE with A =1, and SSE; =

SSE at any candidate 4, it is then clear that the expression SSE§‘§“E: SSE, is between O
can

and 1. This expression approaches 0 for # — 1 and approaches 1 for # — 0. Multiplying

this expression by (n — 1) then gives a penalty term that approaches 0 for # — 1 and

23



approaches n — 1 for A — 0. This was the penalty structure desired, and PRESS** for

choosing 4 for kernel regression is expressed as

PRESS

n_tr(H(ker)) + (n_ 1) SSESmSeaEn_SSEh

PRESS** =

In general, for selecting a parameter 0 for any procedure with hat matrix H, and defining
SSEmax to be the maximum sum of squares error across all 6 values, PRESS** may be

defined as

PRESS

n—te(l) + (n-1) ——SS%ms‘E;ism

PRESS** = (3.B.22)

The performance of PRESS** is analyzed (and compared with PRESS*) in Chapters 7
and 8.

3.B.4 Variations of Kernel Regression

The bulk of the current work involves applications of the kernel techniques
described in the previous subsection. These techniques were chosen based on
considerations such as simplicity, popularity, versatility, and observed performance, but
are by no means the only versions of kernel regression available. Some of these other
variations are included here for completeness and to possibly suggest improvements for

future research.
Priestley-Chao, Gasser-Miiller Estimates

Considered first are two techniques of obtaining the kernel weights 4,* in
equation (3.B.1), instead of using the Nadaraya-Watson weights of (3.B.3). For the fixed
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design case with nearly equispaced x,’s on [0,1], Priestley and Chao (1972) proposed

using the following weights for predicting at the point x,:
Xo—Xj .
}b(}(er’Pc) =n(xj—xj_1)('b)K(—;;-L) » J = 1, P (P (3B23)

These Priestley-Chao weights can be interpreted in terms of the Nadaraya-Watson weights
by replacing the denominator in (3.B.3) with [n(x; — x./)]" for x, € (x.; , x). The
Priestley-Chao estimate is based on restrictive assumptions and performs poorly in many
situations. Gasser and Miiller (1979) proposed an improvement to this estimate by
defining weights

HE=M _ j:-_l 1 K(xo;")du, (3.B.24)

where x;; < 5,; <x; is chosen between the ordered x-data. The Gasser-Miiller estimate is
studied by Chu and Marron (1991) as a “convolution” of a kernel function with some
function representing the raw data. The idea here is to construct a histogram with the i
bin (/ =1, . . ., n) centered at x; and having height y;, and then to obtain the prediction at
X by the convolution (continuous moving average) of this histogram (a step function) with
the kernel function. Centered bins are obtained through defining s; = % (x; + x;41). This
convolution estimator performs well in the case of nonuniform x’s, but is much more
difficult to compute than previous estimators, especially if considering the extension to the

multivariate case.

Variable Bandwidth Selectors
The discussion about selecting the bandwidth 4 so far has dealt exclusively with
“global” procedures. In other words, a single bandwidth is chosen and used throughout

the entire data set. However, certain data sets may behave in such a way that varying the
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choice of bandwidth at different X locations may prove beneficial. A bandwidth that is
optimal in one region may be too small or too large to perform adequately in another
region. This need for a locally adaptive bandwidth selector is most noticeable in extremely
nonuniform (or “misbehaved”) data, where there may be gaps between x’s, regions of
clumps of observations or sparse observations, or extreme change in local curvature when
moving from one location to another. Several approaches in the literature for choosing
local bandwidths are mentioned here. One attempt at adapting to varying local densities
of the x’s is to use k-nearest neighbor (k-NN) estimates. For a discussion of k-NN
regression (with references), see Hirdle (1990) or Altman (1992). The idea here is to
apply a weight function (which could be a form of a kernel) that only assigns weight to the
k observations that are closest in location to the point of prediction. So, if one thinks of
the spread of the weight function as being indexed by a bandwidth A, then areas of high
density of x’s would result in small /’s, whereas areas of low density of x’s would result in
large A’s. Cleveland (1979) uses the idea of nearest neighbor regression in his robust
regression procedure, to be discussed in the next section. In actuality, k-NN regression
and kernel regression are two separate procedures, but conceptually they are performing
the same task. For instance, choosing h for kernel regression is directly related to
choosing k for £-NN regression. The two procedures do not behave differently enough to
warrant further discussion or comparison here (more details can be found in Hirdle
(1990)).

Miiller and Stadtmiiller (1987) suggest an approach that adapts the choice of 4 to
local curvature of the data. This procedure involves estimating derivatives of the
underlying function f at each X location, and the size of bandwidth chosen decreases as the
estimated curvature increases. A third procedure, which is gaining prominence as a locally
adaptive smoother, is the use of bootstrapping at individual x locations. Hirdle and
Bowman (1988) develop results that use the bootstrap to acquire an approximation to a
distribution of a kernel estimator, and then use this bootstrap distribution to obtain an

estimate of local mean squared error at each data point. Local bandwidths can be chosen
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to minimize these local MSE estimates. Faraway (1990) also briefly mentions local
smoothing based on the bootstrap, and makes the additional point that there may be some
irregularity in the local bandwidths, especially if the number of bootstrap samples B is not
sufficiently large. He suggests smoothing the bandwidths (with an initial global bandwidth
determined by all of the data) to give local bandwidths that are somewhat smooth as a
function of X. Local bandwidth selection has been shown, mainly through squared errors
of the estimates, to provide some improvement over global bandwidths. However, this
improvement comes jointly with a significant increase in computations. In the spirit of
simplicity, the current research employs the more straightforward global bandwidth
procedure. At this point, the initial comparisons of several procedures are being carried
out, and more computationally advanced “improvements” to these procedures may be
studied in the future. Additionally, these improvements should benefit each of the
procedures similarly, and the basic results of the comparisons to come (in later chapters)

should not significantly change.

Robust Kernel Regression

One other addition to the basic kernel procedure could be protection against
outliers among the y’s. This robustness problem is addressed by Cleveland (1979) in his
article on locally weighted regression. Here he uses an iterative reweighting procedure in
which the usual weights A, are downweighted for points that have large residuals e;, i = 1,
.. ., n, from the previous iteration. Cleveland uses the robust weighting function of the

bisquare to perform the downweighting:

B(u) = (1 — %), for u| < 1

=0 ,forjuj>1,

with u replaced by e/6s for the j* downweighting value, where s is the median of the |e,|.

(Coping with outliers is not addressed in the current research).
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Boundary Adjustments

One of the biggest problems inherent in kernel regression is predicting at the
boundaries of the data. As x approaches the boundary points, the kernel weights become
asymmetric, and bias and variance can be affected. As an illustration, consider trying to
obtain the prediction jo at the point x, at the right boundary of the data. The only points
available (other than x, itself) to receive kernel weights are those points to the left of x,.
Now, if the data (and the true function f) are increasing toward the right boundary, then all
y-values in the weighted sum used to obtain ), are less than or equal to the value y; at x,.
Thus, the prediction y, will be too low, due to being biased at the boundary.

Several techniques have been developed that attempt to handle this bias problem.
Rice (1984b) presents a rather straightforward approach that involves adjustments to
ensure that the bias and variance near the boundaries are of the same order of magnitude

as in the interior. Rice’s modified estimate at the boundaries can be expressed as follows:
F®) = fule) + B o) = fan()], (3.B.25)

where ﬁ, and f'(,;, are kernel estimators with bandwidths /# and ok, respectively, and o and

B are constants. Rice gives expressions for o and B that achieve the desired bias and
variance properties. The expression in (3.B.24) can be written as a linear combination of

the kernel estimates in the form
F®E) = 1-Rf() + Rfan(®), (3.B.26)
where R = -B. The estimate in (3.B.25) is a (generalized) jackknife estimator, and is

discussed in this context by Hirdle (1990). Other techniques that have been proposed to
solve boundary problems include use of modified boundary kernels (Gasser and Miiller
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(1979)) and reflection methods (Hall and Wehrly (1991)). Details of these methods are
left out here, because in the current research the method applied first for handling
boundary problems is local polynomial regression. This is another nonparametric
regression technique that is gaining prominence in the recent literature, and is discussed in

more detail in the next section.

3.C Other Nonparametric Methods

The kernel method is but one of several widely applicable nonparametric
procedures of fitting a curve to a set of data. Due to simplicity and a straightforward
extension to the multivariate case, kernel regression has received the bulk of the attention
in the background information so far. However, due to boundary bias problems, kernel
regression is not used as the primary nonparametric fitting technique in the final form of
the model-robust procedures to be developed in this paper. Instead, local linear regression
is implemented in order to overcome boundary bias and a few other drawbacks of kernel
regression. The general procedure of local polynomial regression is described in detail in
this section. For completeness, one of the biggest “competitors” of kernel regression--

spline regression--is also described, but is not used.

3.C.1 Local Polynomial Regression
All of the nonparametric techniques discussed thus far for fitting y; at a point x;

obtain the fits based on a weighted sum of the n observations:
~ n
Yi=f(x)= Elth’j ,
where observations y; at locations close to x; are given the largest weights. Unfortunately,
this simple weighting scheme has several drawbacks. The first of these is boundary
problems, as discussed in the previous section. The second flaw is that bias and variance

in the interior may also be inflated if the x’s are nonuniform or if there is substantial

curvature present in the underlying regression function. Additionally, these problems
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become worse in the multidimensional case. One rather successful approach to solving
these problems is local polynomial regression, introduced by Cleveland (1979). This
technique obtains the fitted value ; as the fitted value of a ™ degree polynomial fit to the
data using a weighted least squares regression, where the weights w;; are assigned to each
observation based on an initial kernel fit to the data.

Before describing local polynomial regression in more detail, a general, and
simplified, overview of weighted least squares is given. Suppose one is fitting a d™ order
polynomial model y; = Po+ Bix; + Box* + - - -+ Bax’ + &, 0or y=XPB + & in matrix
notation. Recall that the OLS estimate would be

Fois = XfBots = X(X'X) X'y = H®y, or ¥ = Zh,‘°"

Here the prediction weights A; are functions strictly of the regressor values. Now suppose
we also want the prediction weights to reflect some phenomenon present in the y’s, such
as heterogeneous variances. With unequal variances, for instance, one would want to
place more weight on y-values with small variances and less weight on those with large
variances. To represent this additional weighting, one introduces weights w; into the

weighted sum to obtain weighted least squares (WLS) fits

,.(wls) iwy h(ols v, (3 C. 1)

or 3™ =x'(XW(x)X)'X'W(x)y, i=l, ..., n, (3.C2)

where x;' is the iy, row of the X matrix, and W(x,) is an nxn diagonal matrix of the weights
wy. For more discussion on weighted least squares, see Myers (1990).

In local polynomial regression (LPR), the weights w; described above come from
kernel weights from an initial fit to the data. To see exactly how LPR works, consider
fitting y; at the point x;. First, a kernel fit may be obtained for the entire data set, resulting

in the kernel hat matrix H* which can be written as
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[ g0 |
hzv(ker)

H*" = ,
L, |

(3.C.3)

where h;"®® is the i, row of H*®. Recall that to obtain the fitted value for y; at location

x; using just this kernel hat matrix, one would find

n
f"(k v= ]}=:lh§k “))’j = hi'(ker)y ’

where the #,*™, j =1, . . ., n, are the n elements of the i* row of H*®. Also recall that
h,% gives weight to y; based on its distance from x;. These h,*, for fixed i, serve as the
weights w; in weighted least squares. Notice also that the #,**s (w,’s) differ for different
i’s. As stated earlier, the idea behind local polynomial regression is to obtain the fit at x;
as the fitted value of a ™ order polynomial fit to the observations close to x; using
weighted least squares regression. Defining the weights for WLS as the elements of the i*
row of H*®, one obtains w; = h,*. Thus, the WLS diagonal weight matrix for local

polynomial regression (LPR), for fitting at x;, is given by

{h&“” 0
W (x,) = diag(h*”) = Lo
0 e

= (wy) . (3.C.4)

S —

The estimated coefficients for the local polynomial regression fit at x; are then given by
BFR = (X WIPR(x)X) 1X WHR (x,)y, (3.C.5)
and thus the fit at x; is obtained as

j)i(LPR) =x, ﬁgLPR) =x' (X' WLPR(xi)X)—lxv WLPR(x, )y = hi'(LPR) y. (3C6)
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In matrix notation, the # fitted values can be expressed as §1pr = H ™™y, where

[ @R |
g - [0 | (3.C7)
L7 |

Cleveland (1979) and Hastie and Loader (1993) present this development with further
discussion, and Stone (1980, 1982) shows optimal convergence rates for LPR in a certain
minimax sense. Discussed in these papers is the proper choice of the order 4 of the local
polynomial. For the majority of cases, a first order fit (Jocal linear regression (LLR)) is
an adequate choice. Cleveland notes that LLR strikes a good balance between
computational ease and the flexibility to reproduce patterns in the data (i.e., reduce bias).
Fan (1992) presents asymptotic optimality properties and advantageous small sample
properties via simulations for LLR. However, in those cases where sharp curvature is
present in the data, LLR may fail to capture peaks and valleys in the data structure, and
local quadratic regression (LOR) may be needed to provide an adequate fit.
Unfortunately, increasing the order d of the local polynomial increases the variance of the
estimate. All authors agree that in practical applications, there is usually no need for
polynomials of order d > 2. In a given situation, the choice of d = 1 or d = 2 should be
made by the user to strike the proper balance between bias and variance.

Although presented here as a separate procedure, kernel regression is actually just
a special case of local polynomial regression, namely that of taking the local polynomial
model to be a single parameter “location model”. In this case, X in equation (3.C.6) is just
(1, ..., 1), and it can easily be shown that (3.C.6) simplifies to (3.B.1) with weights h,*
given by the Nadaraya-Watson weights of (3.B.3). Thus, local polynomial regression can
be thought of as taking kernel regression (which locally fits a location model at each point)

and extending it to using local fits of higher dimension at each point. The general
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consensus is that, in routine cases, local polynomial regression (in particular, LLR) tends
to perform as well or better than the basic kernel procedure. LPR simultaneously
addresses the problems of boundary bias and nonuniform x’s, and is easily extended to the
multivariate setting. The only noticeable drawback of LPR is increased variance of the
fits, especially at the boundaries. So once again, the choice of estimator depends on both
bias and variance considerations. Preliminary results in this research have shown that local
linear regression generally outperforms kernel regression for the procedures to be

developed here.

3.C.2 Spline Regression
Spline regression is another widely used nonparametric fitting procedure. For a
thorough review of this procedure, see Eubank (1988) or Silverman (1985). The spline

regression estimate is defined to be the function g that minimizes

S@g) = 2 —gx) + Sf(g”(x)) (3.C.8)

where 8 denotes a smoothing parameter. This § controls the trade-off between the goal
to produce a good fit to the data (first term in (3.C.8)) and the desire to produce a curve
without too much rapid local variation (second term in (3.C.8)). The second term in
(3.C.8) can be thought of as a “roughness penalty” since the integral would be large for a
function g that fluctuates rapidly. The solution of minimizing (3.C.8) over all twice
differentiable functions yields the solution g(x), which is a cubic spline. This cubic spline
can be shown (Reinsch (1967)) to possess the following properties:

(i) £(x) is a cubic polynomial between two successive x-values;

(i) at the data points x;, the curve g(x) and its first two derivatives are

continuous, but there may be a discontinuity in the third derivative;

(iii) £(x) is linear (¢''(x) = 0) outside of the range of the data.
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Although computational schemes are available for finding g(x), these schemes are much
more computationally intensive than kernel estimates, mainly due to the definition of g(x)
as the minimizer of a functional form.

Related to this increased complexity, Silverman (1984) has shown a close relation
between spline regression and local bandwidth kernel regression. Silverman shows that
the spline estimate for predicting at x, is nearly equivalent to using local bandwidth kernel

regression with weights

J =n'1h(xo) Fx (x) S(h(xo)) (3.C9

where fx(x) is the marginal density of X at x,, h(x) is the (local) bandwidth at x, given by
h(xo) = 8" n 7 fr(xo) ", (3.C.10)

and K5 is the “effective” kernel function given by

Ks(u) =1 ex 7'5—[) sir(%‘z-lﬂ;) . (3.C.11)

The relationship between the spline estimate and its “effective” (or “equivalent™) kernel
estimate has been studied in some detail (Messer (1991)), and often authors develop new
procedures using kernel regression for simplicity, noting that there is a straightforward
extension for those who would rather use splines. This is the approach being taken in the
current research, with the additional note that kernel methods are more easily extended to

the multidimensional case than are splines.
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3.0 Nonparametric or Parametric?

With such an abundance of parametric and nonparametric fitting procedures
available, it may be a task in itself for one to choose which procedure to use. In two
situations this choice is easy. If the user knows the parametric form of the underlying
function £, then a parametric procedure should be used. OLS, described in Chapter 2,
gives optimal (UMVU) results in this case. At the other extreme, if the user has no idea
about the true form of £, then a nonparametric procedure should be used. Several of these
techniques have been described in this chapter, with recommendations for kernel or local
linear regression. The trouble with method selection arises when the user has some idea
about the parametric form of £, but this form is not adequate throughout the entire range
of the data. Using a parametric procedure in this situation would not be appropriate
because the resulting fit would be misleading (biased) at points where the data deviates
from the specified model. This leads one to consider using a nonparametric procedure.
While this approach would be able to capture the different deviations in the data, it would
ignore any information that the user has about the underlying structure of the data,
resulting in a more variable fit than is probably necessary.

The proposed research presents some possible solutions to this dilemma. Methods
are developed which combine the parametric and nonparametric procedures (OLS and
kernel regression, for example) in order to both incorporate any information the user has
about a parametric model and to detect deviations in the data from this model. The
proposed methods are very flexible in terms of handling different amounts of model
misspecification, and by combining the “best” (bias and variance properties) of both
procedures, provide noticeable improvements over the two procedures when used
individually. The next chapter contains a brief overview of semiparametric procedures
(and the partial linear model), which take the approach of combining parametric and
nonparametric expressions in the same model. These procedures have been developed for

a slightly different problem than that considered here, but the general idea is extended to
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develop one of the three proposed methods. This and the other two methods are
presented in Chapter 5.
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Chapter 4: Semiparametric Procedures

4.A Introduction

Consider now the concept of combining a parametric fit and a nonparametric fit in
the same model. The goal of the current research is to develop methods which combine a
parametric polynomial fit (by OLS) with a nonparametric fit (kernel or local polynomial),
where both fits are based on the (single) regressor X. This particular problem has received
very little attention in the literature, but some techniques have been developed for
problems closely related to this. One of these techniques (discussed below) is that of
semiparametric modeling, which combines a parametric fit based on certain regressors
with a nonparametric fit based on other regressors. This technique is extended in the next
chapter to the case where both fits are based on the same regressors. For a brief
introduction to semiparametric models and a discussion of several forms that they can
take, see Hardle (1990).

4.B Partial Linear Model

The form of semiparametric model that has received the most attention is the
partial linear model. In this model, the response y depends on two sets of regressors
(X,T), where the mean response is linearly related to XeR? (parametric component), but
cannot be easily parameterized in terms of TeR? (nonparametric component). This model

can be expressed as
yi=x/'B+At)+s& (1<is<n), (4B.1)

where the x;’ are fixed known px1 vectors, B is an unknown vector of parameters, the t;

are fixed known dx1 vectors, and £ R? — R is an unknown (smooth) regression function
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(Speckman (1988)). The term “partial linear model” is derived from the linear structure of
the parametric component x;'B of the model. To obtain the estimates of the responses (the
»’s), one must obtain the estimates B and f of the unknown B and fin(4B.1).

The approach taken by Speckman (1988) for obtaining these estimates begins by
supposing that fin (4.B.1) can be parameterized as f = (f{ty), . . ., At.))’ = Ty, where T is
an nxq matrix of full rank and y is an additional parameter vector. In order for the
nx(p+q) matrix (X,T) to have full rank, Speckman assumes for simplicity that the unit
vector (1, . . ., 1)’ is in the span of T, but not of X. (This is also going to be an important
consideration when this procedure is modified to the case of only one set of regressors in

the next chapter). Model (4.B.1) can now be written in matrix notation as
y=XB+Ty+e. (4B.2)

By taking the derivative of (y—XP~—Ty)'(y — Xp — Ty), first with respect to § (with y
fixed), and then with respect to y (with B fixed), and setting these equations equal to zero,

one can obtain the following normal equations for (4.B.2):

X Xp=X(y-Tr), (4B.3)

Ty = Pr(y - XB),
where Pr = T(T'T)'T’ denotes projection onto the column space of T. Speckman
presents two approaches for obtaining the estimates of § and f (or Ty here) from these
normal equations. The first is due to Green, Jennison, and Seheult (1985). Their method
begins with substituting for Ty in the first equation of (4.B.3) with the second equation of
(4.B.3) and solving for f to obtain
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B = (X'(I-Pr)X)'X'(I- Pr)y,

[i X'( 1;) ) X'( )y (4B.4)
Ty = Pr(y-XB) .

Then Green et al proposed replacing the projection operator Py by a “smoother” M to

obtain the final estimates. Taking this smoother to be the kernel hat matrix H*® from

kernel smoothing on 7" defines the Green-Jennison-Seheult (GJS) estimates as

Bass = (X' (I- H*?)X) X" (1- H*)y,
l}GJs ( A( . )X) 2 ( )y @4B5)
fais (= Ty) = H*(y - XBass) -
The second approach for obtaining B and f has a little more intuitive appeal, and is
the approach used in the current research. As in the GJS method above, the same steps
are taken to arrive at equations (4.B.4). However, at this point, since Pr is idempotent,

one can write (4.B.4) equivalently as

B=(X - Py (- B)X)”X (I- By A- Py, 4B6)

Ty = Pr(y - XB) .
By inspection of these estimates, one can think of the estimate of B as coming from first
adjusting X and y for the nonparametric component, and then regressing the partial
residual (I — Pr)y on the partial residual (I - Pr)X. Replacing Pr with H*® and defining
the partial residuals (after “adjustment” for dependence on 7) as

X=(1-H*)X,

(4B.7)
y=a-H*y,

Speckman obtains the following estimates for B and f:
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[}” - X X)_li'i’ (4B.8)
f, =H* (y-XB,).

Intuitively, these estimates may be interpreted as normal equations for a (parametric)
regression model with partially adjusted residuals. Also, note that if the smoother M that
replaces Pr is chosen to be symmetric and idempotent, then estimates (4.B.5) and (4.B.8)
are identical. However, in using H*® as the smoother, one obtains two distinct sets of
estimates, since H*® is neither symmetric nor idempotent.

Speckman proves several theorems regarding the rates of convergence of the

biases and variances of the estimates in (4.B.5) and (4.B.8). Under several assumptions,

he proves that asymptotically the variance of ﬁp converges at the “parametric rate” n™
and the bias of ﬁ » converges at the “nonparametric rate” o(h¥). He also proves that the

bias of ﬁms converges at a slower rate (O(#")), providing more incentive for using the

estimates f} p and f » of (4B.8). For f, Speckman proves that the biases and variances for
both foss and f » all converge at the same rate as when the parametric term B is not present

in the model. All of these results suggest that 3 p and f » should perform extremely well as
estimates in the partial linear model. However, as Speckman points out, the results above
are asymptotic in nature, and more work is needed to determine small sample properties.
Recall again that the current research focuses on obtaining regression estimates
based on only one set of regressors X (or more explicitly, the single regressor model). The
semiparametric methods explained in this chapter have been developed with two sets of
regressors (X and 7) in mind. A natural setting for these methods is analysis of
covariance, where the covariate #; enters the model in a nonparametric fashion, and the
treatments of interest enter parametrically through x,3, where, for the case of two

treatments, x; = 1 for the first treatment group and x; = O for the second treatment group

(which could be a control group). The treatment effect is then given by ﬁ, which also
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provides an F-test to test for significant differences between the treatments. Speckman
(1988) gives several examples in which he applies his semiparametric procedure to this
setting of analysis of covariance. In the next chapter, Speckman’s procedure is modified
for models with a single regressor X to give the first of the three proposed model-robust
regression procedures. The key idea for this procedure is the use of residuals from the
parametric fit to determine the nonparametric portion of the fit. Also, this semiparametric
procedure involves simultaneously fitting a parametric and a nonparametric model,

whereas the other procedures combine two separate parametric and nonparametric fits.

41



Chapter S: Model Robust Regression

Recall that the problem of interest in the current research is how to obtain a
regression fit that both incorporates some (parametric) knowledge about the underlying
model, and is able to detect specific deviations in the data from this model. The solution
to this problem should be able to handle cases ranging from the specified parametric model
being the true underlying model, to the specified model being a gross misspecification of
the true model. The approach taken here is to combine a parametric regression fit, which
is based on the researcher’s knowledge of the underlying model, with a nonparametric
regression fit, which is designed to capture any structure in the data that the parametric fit
fails to explain. This chapter contains the development of the three proposed methods of
combining these two fits in order to achieve a final fit that is robust to the varying degrees
of model misspecification (hence the name model-robust regression). The next chapter
contains comparisons, based on an MSE criterion, among these methods and the

individual parametric and nonparametric methods.

5.A Partial Linear Regression (PLR)

The first model-robust procedure is a modification of Speckman’s semiparametric
procedure described in chapter 4. Since it is based on the partial linear model concept,
this procedure is called partial linear regression (PLR). Recall that the current research
addresses the issue of obtaining a regression fit for data based on a single regressor X. All
other possible terms in the parametric model specified by the user are defined to be
polynomial expressions of this regressor (X°, X°, . . ). The semiparametric methods
described in chapter 4 were developed for the situation of two sets of regressors (X and 7)
in the model, and thus need to be modified for models with only one set of regressors (“X”
= (X, X’, X, . . ) as described above). The straightforward approach taken here is to

simply “replace” T with X in any step involving 7 in the semiparametric procedure. In
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other words, all steps that would normally involve operations on 7 are still carried out, but
now they are performed on X. The following discussion, analogous to the discussion of
Speckman’s semiparametric procedure in chapter 4, gives the steps of the proposed PLR
procedure.

For PLR (with single regressor X), the partial linear model is expressed as

yi=xiB+fx)+e& (1<i<n), (5.A1)

where the x;’ are fixed known px1 vectors (comprised of the polynomial expressions of X),
B is an unknown vector of parameters, ¥, is the i value of the regressor X and £ R — R
is an unknown (smooth) regression function (see (4.B.1) for the analogy). Here y; is
explained by the sum of a linear (parametric) function of X and a nonparametric function
of X. The estimates of B and f are obtained following the same procedure as that of
Speckman, explained in chapter 4. First, suppose that f can be parameterized as f = (f{x;),
.. ., fxn)) = Ty, where T is an nxq matrix of full rank and y is an additional parameter
vector. Note here (and in the previous chapter) that T is just a label for a “dummy”
matrix, which is introduced solely for the purpose of providing a somewhat intuitive
approach for obtaining estimates of B and /. At no point does one need to actually
perform an operation on T, or to even know the values of the elements of T. Speckman
used the label T to “represent” his second set of regressors (7), but here T still
“represents” X, the only regressors available. The label T is maintained here for
simplicity--to keep the notation exactly the same as that of chapter 4. Now, model (5.A.1)
can be expressed in matrix notation as
y=XB+Ty+e,

just as in (4.B.2). As was the case previously, the unit vector (1, . . ., 1)’ is taken to be in
the span of T, but not of X. As is shown shortly, this must be the case for PLR.

Following the same steps as Speckman, the estimates for B and y may be expressed as
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B = (X' (- Pr)' (I- P)X)™' X" (I- Br)' (I- Br)y,
T§ = Pr(y - XB) ,

as in (4.B.6), where Pr = T(T'T)"'T". The main difference between PLR and Speckman’s
semiparametric procedure arises in the selection of the smoother M that replaces the
projection operator Pr. As before, a kernel hat matrix H*® may be used, but here instead
of obtaining H**” from smoothing on T (which no longer exists), H*® is obtained from
kernel smoothing on X. This kernel hat matrix is labeled as Hp®™, since the kernel fit
needed for PLR is generally different from that needed for fitting the data with a kernel fit
alone (by H*™). Now, define the partial residuals (after adjustment for the nonparametric
component of X) as

X=@-H*))X,

¥ =0-B )y,
as in (4.B.7). Replacing Pr with H:* and then substituting X and ¥ into the estimates
ﬁ and Ty above (or, equivalently, regressing ¥ on X) gives the estimates

= XXXy,

f = B (y-XB),
analogous with (4.B.8). From the expression for B, the definition of X, and the fact that
each row of Hy*™ sums to one, it can be shown that the unit vector (1, . . ., 1)’ cannot be
included as one of the columns of X. The reason for this is that X would then contain the
zero vector as a column, and (5'(' i)" would not exist (for details, see Appendix C).
Thus, the “X” matrix for PLR is the nxk matrix of k regressors not augmented with a
column of ones, and the PLR B vector is kx1, not (k+1)x1 (since there is no intercept
term). To distinguish this matrix from the “usual” X matrix with a column of ones, the
PLR X matrix is denoted Xp. Thus, the final PLR estimates of f and f (= Ty) are as

follows:
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Brr = (X' X)Xy,

- (ke R (5.A2)
ferr = Hp"'(y — XpBrir),

where X= (I - Hp*)Xp, and (y - Xpﬁpm) denotes the residuals from a parametric fit

based on Xp and Bprr. The fitted values for the observations are then given by

$rir = XePrir +fpir (5.A3)
or ¥pr=H®y (5.A.4)

where
H® = (,F) = 1% + X(X' X)X 1 -Bp*) (5.A.5)

is the PLR “hat matrix” (when using kernel regression).
An important point needs to be made here. The nonparametric portion of the fit

(f'pm , the fit to the residuals) may be improved upon by using Hp™™

from a local
polynomial (linear or quadratic) fit. This, in fact, is done in the final implementation of
this procedure (LLR is used). However, in obtaining X and §, Hp*™ is always used, so
that X and § are always defined the same way. To support this idea, several preliminary
examples were studied where Hp™™® was used in constructing X and §. The resulting
PLR fits were somewhat erratic and problems often arose in choosing the bandwidth for
this procedure. Using Hp*™ never resulted in such problems. So, it is important to
remember that when PLR is presented as using LPR as the nonparametric fitting

technique, this means that LPR is used for the residual fit, but not for obtaining Xandy.

Also, this would result in the PLR hat matrix

HOR = H™™R + (1- Hp®™) X (X' X)X (T -Hp*™) . (5.A.6)
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As shown in (5.A.3) above, PLR obtains fitted values as the sum of a parametric fit
based on the regressors in Xp, and a nonparametric fit based on the residuals from this
parametric fit. The key notion here is that these two fits are obtained “simultaneously”,

with one having a direct impact on the other. In particular, the (nonparametric) kernel hat
matrix (obtained as the initial step of PLR) is used to form X and §, which are used to

obtain BPLR and hence the parametric portion of the fit, with the residuals from this
parametric fit being smoothed with the original kernel hat matrix to give the
nonparametric portion of the fit. It is easily seen from this abbreviated description how
intricate the parametric and nonparametric components really are for PLR. This
complexity in the basic structure of PLR is considered here as a slight drawback of this
procedure, and the other two proposed methods attempt to resolve this complexity

problem by providing simpler, more intuitive methods for combining the parametric and

nonparametric fits. Also, notice that the parametric fit Xp Brir always crosses the y-axis
at zero, since no intercept term is contained in the model. Thus, in general, the parametric
fit is inadequate by itself, and the nonparametric portion, in addition to capturing special
structure in the data, must also correct for this inadequacy. (Figures 6.C.5 (a) and (b) in
chapter 6 illustrate these fitting characteristics for an example with generated data). Also,
the nonparametric fit is always included, in its raw form, to obtain the final fit, even if the
underlying curve is quite smooth and a “usual” parametric fit would be sufficient. This
characteristic of PLR also may be a drawback in many situations, since the use of an
unnecessary nonparametric fit may add excess variance to the final fit. A possible
improvement to PLR in these cases would be to somehow provide for a better parametric
fit, and to allow varying “amounts” of the nonparametric fit to be used (more emphasis on
nonparametric portion when parametric portion is inadequate, and less emphasis on
nonparametric portion when parametric portion is adequate). These needs are addressed

by the final two model-robust procedures.
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S.B Model Robust Regression 1 (MRR1)

A model-robust procedure which addresses the shortcomings of PLR mentioned in
the previous section was developed by Einsporn (1987) and Einsporn and Birch (1993)
and was entitled HATLINK. Called Model Robust Regression 1 (MRRI) here, this is a
very simple, but effective method, which combines the fit of a parametric model with the
fit of a nonparametric model, both to the raw data, in a convex combination via a mixing
parameter A. In the current work, the parametric model is of the form y = X + ¢ and the
method of OLS is used to estimate the parameters, §. The nonparametric model is fit
using some nonparametric method such as kernel regression or local polynomial
regression. Kernel regression is used in the development of MRR1 in the next section.
(For results from using LPR instead of kernel, one can just replace H** with H*™® in all

of the following expressions).

5.B.1 Development
In notational form, letting $ois = XPois = H®®y be the OLS fitted values and

Fier = H*?y be the kernel fitted values, the MRR1 fitted values are obtained simply as
YMRRI = A¥ier + (1= MFois , (5.B.1)
where A € [0,1]. Interms of hat matrices, (5.B.1) can be written as

YMRR1 = XH(k“)y +(1- K)H(OB)y
= [AE® + (1- HH®)] y (5B.2)

= HMRRDy
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and the MRR1 hat matrix is seen to be HV®®D = (o, M%) = 3 g*™ + (1-0)H®W. (This
simple “link” between the two hat matrices was the origin of the term “HATLINK”).

Also, the fit for an individual observation at x; can be obtained as

JMERD - ghﬁm‘“’y,- = ;[Mﬁ-““’ +(1- DA™y, . (5.B.3)

The key idea of MRR1 is the introduction of the mixing parameter A. The purpose
of A is to combine the parametric and nonparametric fits in the most efficient proportions
to achieve an adequate fit to the data. This A ranges from 0 to 1 based on the amount of
misspecification of the user’s parametric model. If the parametric model gives an
adequate fit, then A should be close to 0, which gives a fit based mainly on the parametric
fit. On the other hand, if the parametric model has been greatly misspecified, then A
should be close to 1, which gives a fit based mainly on the nonparametric fit. In cases
where the specified model is somewhat adequate, but cannot capture all of the structure in
the data, a A near the middle of [0,1] may be appropriate to allow for a proportion of the
nonparametric fit to enter the final fit in an attempt to capture this extra structure. Olkin
and Spiegelman (1987) introduced this same technique as a semiparametric method of
density estimation. In their article, they use likelihood and pseudolikelihood functions to
prove, under certain regularity conditions, that when the specified model is correct, the
rate of convergence of their estimator is the same as that of the traditional maximum
likelihood estimator, and when the specified model is incorrect, the rate of convergence is
the same as when using a kernel estimator.

Notice that MRR1 combines two separate fits to the data, one based on OLS (for
the parametric model) and one on kernel regression (for the nonparametric model). So, at
each x;, there are two fitted values available for estimating y;, Based on the value of A,
MRRI1 selects a value between these two fitted values for the final estimate of y.. For

example, if A is large (say, around .80), then the MRR1 fitted value would be closer to the
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kernel fitted value, and vice-versa for small A. This characteristic of MRR1, although nice
in its simplicity, can also be a drawback of the procedure. In particular, if locations exist
in the data where OLS and kernel regression either both give fitted values too high or both
give fitted values too low, then MRR1 has no way of correcting for these insufficient fits.
The third proposed model-robust procedure resolves this problem. Before presenting this

final procedure, one more issue needs to be addressed about MRR1: choice of A.

5.B.2 Choosing A

The problem of selecting A is similar to that of choosing the bandwidth in kernel
regression, as discussed in section 3.B.3. Many of the bandwidth choice considerations
are also present here for choosing A, such as which error criterion to use (SSE, PRESS,
penalizing functions, plug-in estimates, etc.), global vs. local procedures, and guarding
against methods that overfit or underfit the data (here, this would be choosing A too large
or too small, respectively). An example of an overfitting procedure would be to use SSE
to choose A, as this would nearly always result in using all of the kernel fit, i.e., a A of 1.
In the current research, the approaches taken to solve these problems of choosing A
closely parallel the conclusions reached about choosing the bandwidth 4. For the results
given here, the criterion for choosing A was taken to be PRESS* (the “penalized PRESS”)
or PRESS**. As with choosing A, it was hoped that PRESS* would incorporate the
desirable properties of both PRESS and penalizing functions, and would provide extra
protection against choosing A too large (overfitting). Also, this global procedure was
used to maintain the simplicity of the procedure. PRESS** was used in order to protect
against cases where PRESS* might choose a A too small (underfitting). Einsporn (1987),
in addition to the PRESS* criterion, also developed some C,-based criteria for selecting A.
Mallow’s C, statistic is essentially an estimate for the sums of the individual variances and
squared biases of y;, i = 1, . . ., n, standardized by o’ (for more details on C,, see Myers

(1990)). Einsporn discusses how C, strikes the proper balance between an increasing
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variance and a decreasing bias as A ranges from 0 to 1 (i.e., as more kernel is added to the
fit). He develops four versions of this C, criterion, based on different estimates of o> and
different expressions for the error degrees of freedom. The comparative behaviors of
these criteria depend on the amount of model misspecification present, and no one version
has been found to be uniformly best. However, in considering overall performance, with
special emphasis placed on the situation of small to moderate model misspecification (the
interest of the current research), Einsporn’s C;3 criterion has been determined to perform
best. (Einsporn (1987) presents numerous simulation studies in this regard). This C;3

criterion is given by

[*(A) - ] [~ r@FR0 )]
e ’

Cp3(A) = tr(AMO (L)) + (5.B.4)

where 5%, is the OLS estimate of variance for the user’s model (as in equation 2.7),
HM®RD(),) is the MRR1 hat matrix for a certain A, and s?(A) is the estimate of variance for

the MRR1 fit for a certain A, given by

(3 - 5MRRD )

SOy =" ETGy)

(5.B.5)

In various simulations, Einsporn found C,3 and PRESS* to behave very similarly, and
Einsporn and Birch (1993) selected PRESS* as their selection criterion when applying
their HATLINK procedure. The same is done here, but with a more thorough study of

comparisons among different selection procedures for 4 and A, as presented in Chapter 7.
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5.C Model Robust Regression 2 (MRR2)

The final model-robust procedure is developed in this section, and is motivated by
the desire to improve upon the shortcomings of PLR and MRR1. Basically, this
procedure has as its origin the MRR1 procedure, with adjustments made based on the
PLR procedure. Due to its close relation to MRR1, this proposed procedure is entitled
Model Robust Regression 2 (MRR2).

5.C.1 Development

MRR2 maintains the simplicity of MRR1 by once again using separate parametric
and nonparametric fits to construct the final fit, and MRR2 also makes use of a mixing
parameter A. The difference arises in how the two individual fits are obtained, and in how
they are combined together. The parametric portion of MRR2 is obtained as a parametric
fit to the raw data (as is the case with MRR1). Using OLS to fit y = X + €, this fit may
be expressed as Yo = Xﬁols. However, the nonparametric portion of MRR2, instead of
coming from a nonparametric fit to the raw data, comes from a nonparametric fit to the

residuals from the parametric fit. Denoting these residuals as r = y — Xﬁols, the

nonparametric fit (using kernel) may be expressed as r = HY“)r. The kernel hat matrix
H,* is still formulated as described in chapter 3, but note that the bandwidth that
determines H,*™ is now based on fitting residuals, not the raw data. In other words, due
to a different bandwidth, H,* for MRR2 is not the same as H*® for MRR1. Now that
the parametric and nonparametric fits, yosand r, respectively, have been obtained, the
final question is how to combine them for the final fit.

The solution to this problem is very simple and intuitive. The procedure is to first
obtain the parametric fit to the data, and then add to this a portion of the nonparametric fit
to the residuals. The idea here is for the parametric fit, if not overly misspecified, to
explain most of the structure in the data, and then for the nonparametric fit to capture any

“left over” structure not captured by the initial parametric fit. This “left over” structure is
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naturally contained in the residuals. Also, instead of always adding back the entire
nonparametric fit, a portion of this fit is added, determined by the parameter A € [0,1].
This A is chosen in the same fashion as the A in MRR1 (by PRESS* or PRESS** for the
current research), and increases from O to 1 as the amount of model misspecification in the

parametric portion increases. Formally, the MRR2 fitted values are obtained as
5’MRR2 = s'ols +Ar . (S.C.l)
In terms of hat matrices, (5.C.1) can be expressed as

FMmrr2 = H®y + AH$r
= HWy + A\HF(y - HCPy)
= [HC® + ABF @A - HOW)]y

— gMRR2)

(5.C.2)

y,

and the MRR2 hat matrix is seen to be HM®? = (5, M%) = gOB 4 A gHF)(1- HOW).

Individual fitted observations are obtained as

JMRRZ _ 3 (MRRD) (5.C.3)

i=1

(Note once again that H*® can be substituted in for H** in all of the expressions above

to give the results of using LPR as the nonparametric fitting technique for MRR2).

5.C.2 Advantages
The goal of this section is to summarize the improvements made in MRR2 over
PLR and MRR1, and to support the contention that MRR2 should be the best overall

procedure for fitting data in situations of small to moderate model misspecification. First,
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MRR2 is simpler and more intuitive than PLR in the sense that it involves two separate fits
as opposed to two simultaneous fits. Second, recall that PLR always uses the entire
nonparametric fit, which may lead to a higher variance than is necessary in the final fit.
The presence of A in MRR2 resolves this problem, because if the parametric fit is
adequate, a small A (close to zero) prevents the use of an unnecessary nonparametric fit.
Also recall that the PLR parametric fit is usually very inadequate due to the intercept term
being absent, and the nonparametric fit must make up for this inadequacy. MRR2 does
not have this problem, since there are no “restrictions” on the parametric fit. For example,
in using a “regular” OLS fit (with intercept term), a much more adequate parametric fit
may be obtained. These are the main advantages of MRR2 over PLR.

MRR2 also has a few advantages over MRR1. First, MRR2 overcomes the MRR1
problem of cases where both of the component fits are inaccurate in the same direction
(above or below the true y-value), with no way to correct this in the final fit. In these
cases, there is a bias problem present in certain locations for MRR1. MRR2 resolves this
problem by obtaining the basic (parametric) fit, and then adding to this a (nonparametric)
residual fit. This residual fit provides flexibility to correct for any inaccuracies in the
parametric fit. This introduction of residuals is an attempt to combine the most
advantageous part of PLR with the simplicity of MRR1. It is also conjectured that
applying the nonparametric fit to the residuals instead of the raw data would provide fits
that are somewhat less variable. Ideally, in MRR2, the main structure of the data is
removed by the parametric fit, leaving residuals to explain the remaining structure. Thus,
the structure left in the residuals should be much less complex than that of the raw data
(for some intuition, just think of the scale of the data (larger) versus the scale of the
residuals (smaller)). So, the nonparametric fitting procedure (kernel or local polynomial)
should not have to “work” as hard to fit the residuals of MRR2 as it does for the data of
MRR1, and the variance properties of MRR2 may be somewhat better.

As seen above, MRR2 has been developed to combine the best bias and variance

properties of PLR and MRR1. Of course, with additional considerations present for such
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problems as bandwidth choice, choice of A, and the countless number of possible data sets
that could be encountered, it would not be appropriate to make general conclusions at this
point about the different procedures. The next chapter contains preliminary comparisons
based on an MSE criterion and the desire for a nice smooth function to fit the data.
Several generated data sets are used for initial performance comparisons, and then the
methods are applied to an actual data set. It will become apparent that in most cases PLR
and MRR2 give very similar fits, both displaying an improved performance over MRR1.
This behavior suggests using MRR2 as the model-robust procedure since it is much

simpler than PLR, yet performs as well, or better.
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Chapter 6: Initial Comparisons

The previous chapters have described five different regression techniques for
fitting a set of data: an individual parametric fit, an individual nonparametric fit, and the
three model-robust methods (PLR, MRR1, and MRR2) which combine the parametric and
nonparametric fits. The purpose of this chapter is to provide comparisons of
performances among these techniques in the situation where some knowledge is present
about the form of the true underlying model, but this model is not adequate throughout
the entire range of the data. For these comparisons, the parametric fitting technique is
taken to be OLS, and the nonparametric fitting technique is local linear regression.

The first section of this chapter establishes the general set-up of the underlying
model from which comparisons among all five procedures are made. Based on this -
general framework, an MSE criterion for each procedure is then developed in the
following section. Several examples are then presented which supply the results of

interest.

6.A Underlying Model (General Expression)

Note that the ultimate goal now is to develop an MSE criterion which can be
calculated based on the same underlying model for each of the five fitting techniques to be
compared. The first task, then, is to develop an expression for the underlying model from
which each of the five MSE’s can be derived. This expression should be such that any
generated data set can be represented in this way. Since the model-robust methods being
studied involve fits to both parametric and nonparametric models, and since the cases of
interest are where partial, but not complete information is available about the parametric
model, it seems natural to express any underlying model as a combination of parametric
and nonparametric functions. Also, since PLR is the most “complex” fitting technique, in

that it obtains simultaneous fits to parametric and nonparametric functions in the same
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model, this serves as the starting point for developing the general expression for the

underlying model.
For the development here, the most general expression for the underlying model
can be written
y=gkx) +e, (6.A.1)
where g(x) = [g(x)), . . ., g(x.)]’ and g is some general regression function. However, this

model does not satisfy the characteristics described above (especially for PLR) and is
made more specific as follows. In the spirit of the partial linear model on which PLR is
based, g is divided into parametric and nonparametric portions and (6.A.1) may be

expressed as

y=XeBp+ft+e, (6.A.2)

where Xp is the nxp = nxk PLR X matrix (without a column of ones), PBp is a kx1 vector
of parameters, and f = [f{x;), . . ., f{x,)]', where f is an unknown (smooth) regression
function. Since fis allowed to essentially take on any functional form, any specified model
(involving any g) for generating data can be expressed as (6.A.2) for PLR. For instance, a
portion of the specified model may be defined as XpBp (i.e., extracting the parametric
part), and then the remaining portion of the specified model, whatever form it may be, is
defined as f. In other words, f can be thought of as “picking up” any part of the specified
model that is left over after defining a part of it to be XpBp (i.€., f= g — XpBp).

The results above are now applied to MRR1 and MRR2, with the resulting
expressions also being appropriate for the individual parametric and nonparametric
methods. The underlying function g continues to be split up into a parametric portion and

a nonparametric portion, similar to (6.A.2). Since MRR1 and MRR2 use the linear model

56



XpB (X augmented with a column of ones) as their parametric portion, g can now be

expressed as g = XP + f, and the underlying model (6.A.1) may be expressed as

y=Xp+f+g, (6.A.3)

where X is the nx(k+1) matrix of regressors (containing a column of ones), B is a (k+1)x1
vector of parameters, and f = [A{x;), . . ., Ax,)]’, where f is an unknown (smooth)
regression function. The components of (6.A.3) serve the same purpose as the
corresponding components of (6.A.2), and any specified model (6.A.1) can be expressed
as (6.A.3) for MRR1 and MRR2 (and for the individual parametric and nonparametric
procedures). Note that even though any generated data is being expressed as coming from
a single model, the actual procedures for MRR1 and MRR2 are not based on a single
underlying model (unlike PLR, which is based on the partial linear model). Instead,
MRR1 and MRR2 obtain fits based on two separate models, one parametric and one
nonparametric. It is important to keep this distinction between the model-robust
procedures in mind (MRR1 and MRR2 vs. PLR). Generated data for MRR1 and/or
MRR?2 is expressed as a single model in order to keep all of the procedures in the same
general framework (for a given g), which allows for the development of the MSE criterion
in the next section. Also note that g has now been expressed in two different parametric
forms: XpPp for PLR and X for the other methods, with XB being a little more flexible
by providing for an intercept term. This difference also results in the respective f’s being
unequal (namely, (fi =g — XpPBp) # (f2=g — XB)). To make all expressions equal, one
may take the intercept term of B (the classical o) to be zero, so that Xp = Xpfp. This is
the approach taken in the current work. Getting all components equal is not a necessity,
but does simplify the calculations of the MSE’s developed in the next section (only one
“XB” and one f need to be kept track of, instead of two of each).
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6.B MSE Criterion

Discussed earlier in section 3.B.3 as a bandwidth choice criterion for
nonparametric regression, mean squared error (MSE) is also used here as the diagnostic
for making comparisons among the various fitting techniques. Based on fitting a
particular data set, formulas are developed in this section for the MSE of the fits at any
point in the range of the data. If concerned only with the data points themselves, these
formulas can be used to obtain the » MSE’s desired. These » MSE’s can then be
converted to a single number by calculating the average MSE (AVEMSE) across all of the
fitted values at the specific data points. However, in comparing entire fits for the various
techniques, it may be more appropriate to compute an integrated MSE (| MSE ) across all
of the locations in the entire range of the data. The formulas derived here also allow for
this calculation (or at least an excellent approximation of it). This approximate integrated
MSE (called INTMSE) is formed by taking the average of the MSE calculations at 1000
locations from O to 1 (the range of the transformed x’s). This INTMSE is used as the final
criterion for comparing the different fitting techniques, whereas AVEMSE is used to find
the “optimal” & and A for the various procedures, as described below..

Before deriving the MSE formulas, one other crucial point must be addressed:
how to treat the selection of the bandwidth / and the mixing parameter A (when needed).
The approach taken in this research follows that used by Speckman (1988). Namely, A
and A are both considered as fixed quantities when calculating the MSE’s. Specifically, A
and A are taken to be the “optimal” bandwidth and mixing parameter for each particular
procedure, where “optimal” refers to minimizing the AVEMSE over all possible values of
h and A. Using the notation of Hirdle (1990), these optimal values may be labeled A, and
Ao. The optimal & and A (when both are needed) are found separately, not jointly as a pair.
For example, in MRR1, A, is the # which minimizes AVEMSE when performing a
nonparametric fit to the data, while A, is then the A which minimizes AVEMSE for the
final fit that combines this already determined nonparametric fit (based on A,) with a

parametric fit. The MSE formulas for determining 4, and A, are developed shortly as part
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of the development of the other MSE formulas for the five competing procedures.
Obtaining the fixed, optimal A, and A, serves two important purposes. First, it makes the
derivations of the MSE formulas much simpler than if # and A were chosen by data-driven
methods. Secondly, data-driven methods (such as PRESS* or PRESS**) for selecting 4
and A can be evaluated by comparing the chosen 4 and A to the optimal 4, and A,. Some
such comparisons are provided in Chapter 7. Now, with /4 and A fixed as A, and A, and
the underlying model for generated data defined as in the previous section, the MSE
formulas can be derived.

The following strategy is taken in developing and presenting these formulas. First,
the detailed derivations presented below and in the Appendix, and the initial formulas
which result from these derivations, are for the MSE of the vector of fitted values (y) at
the actual data locations. This is done in order to provide for the very simple calculation
of AVEMSE, which is the important selector of the optimal 2 and A. The formulas for the
MSE at any individual location within the range of the data can then be determined via a
straightforward extension of the steps used to obtain MSE(¥), simply be considering an
individual point x, instead of the entire “data matrix” X or Xp. The second point in this
presentation strategy is to carry out all derivations with OLS used as the parametric
technique and kernel regression used as the nonparametric technique. To obtain the
results when using local polynomial regression (which is used in all of the examples to
come), one can simply replace “ker” with “LPR” in all of the derivations, except for PLR.
This different derivation for PLR is given in Appendix D.

The five MSE formulas (for OLS, kernel regression, MRR1, MRR2, and PLR) are
each derived from the underlying model y = g(x) + € developed in the previous section,
where g is expressed as XpBp + f (for PLR), or X + f with Bo = O (for OLS, kernel,
MRRI1, and MRR2). Actually, the formulas derived here are the bias and variance
formulas for each procedure. Of course, the MSE can then be obtained by squaring the

bias and adding this to the variance.

59



OLS
Consider first the simplest case, OLS. Here y5 = Xﬁols = X(X'X) X'y = H"y,

and the bias of yois is

Bias(Yois) = E(Yois) — E(y) (6.B.1)
= E@“y) - E(y)
=HCE(y)-¢
=H9XB+)-Xp-f (sincey = XB+f +¢, EE) =0)
=HCWXB + HOOf - XB-f
=XB- XB-(I-H)f (since H*®X = X(X'X)'X'X = X)
=—(I-HC)f

The variance of yos is given by

Var(§os) = Var(H®y)
= H°®Var(y)H'®?
= HPDA'™®  (since Vare) =’ (6.B.2)
= PHCSeS)
=H®,

asin (2.5). Note that as the true model deviates farther from the linear model X8 (i.e., has
a more prominent f component), the bias increases (while the variance is unaffected). If
the true model is just XB, then the bias is zero as described in Chapter 2. The bias and
variance of the fitted value J, at any individual location x,’ = ( 1 x, X,° - - - ) can be
obtained through similar arguments, starting with the underlying model written in the form

Yo = Xo'B + fx,) + £. The resulting formulas are given by

Bias(Jo, ois) = Xo' (X'X) ' X' - fxo) , (6.B.3)
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Var(5, o) = 0* X' (X'X) "X . (6.B.4)

The bias and variance expressions for the remaining procedures are derived by the same

techniques used above for OLS. Details are provided in Appendix D.

Kernel (or LPR)
For kernel regression, yie = H*™y, where the #,% are defined as in (3.B.3). The
bias of Yye is given by E(¥ker) — E(y), and after some calculations (see Appendix D.1),

one can obtain

Bias(§ker) = —(I - H**?)(XB + f). (6.B.5)

With calculations analogous to those in (6.B.2) for OLS, the variance of yy. can be

obtained as
Var(¥ie ) = o"H*H'*), (6.B.6)

recalling that H*? is not generally symmetric or idempotent. Also recall that the
bandwidth is taken to be fixed (at h,). Here A, is the A that minimizes the AVEMSE
calculated from the bias and variance formulas in (6.B.5) and (6.B.6). Note that if the
bandwidth is chosen close to zero so that H*® is the identity matrix, then the kernel bias
is zero, but the variance is maximized as o’I. This is what occurs when one “connects the
dots” to obtain a kernel fit, and illustrates the concept of a trade-off between bias and
variance.

Similar to the steps in OLS, the bias and variance of j, (for any x,) can be

obtained as

61



Bias(Jo, ker ) = [ho'* X — x,]B + ho'*™f — f{x,) , (6.B.7)
Var(Jo, ker) = o® ho'*? h " s (6.B.8)

where h,"* is the row of a kernel hat matrix determined by the distances from the data
points (the x’s) to x,. One can think of obtaining h,'*™ as the row of H*™ corresponding
to x,' when x,’ is inserted as a row in the X matrix in the usual kernel procedure. (The

hor(kﬂf)

elements of are obtained as described in the discussion preceeding equation (3.B.4)

in section 3.B.1).

MRRI

The bias and variance equations become a bit more complicated for the three
model-robust methods, since they involve two fitting procedures instead of one. The first
of these to be dealt with is MRR1, where §yrr; = HM Py = [AHE + (1-A)H™]y.
Derived in Appendix D.2, the bias and variance for the MRR1 fitted values (with fixed A

and A) are given by
Bias(§mrr1) = —AM(I - H*?)XB - (1 - H¥*D)f, (6B.9)
Var(§urr1) = o”HAMRRDgMRRD (6.B.10)

= ?{(1- M- MI- B ) HCD + ARCRROg®}

Here A is fixed as h,, which is the bandwidth that minimizes the AVEMSE based on the
bias and variance equations given in (6.B.5) and (6.B.6) (and thus is the same as A, for the
individual kernel procedure). Also, A is fixed as A,, which is the A that minimizes the

AVEMSE calculated from equations (6.B.9) and (6.B.10) above, with H*® having
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already been determined by /4,. Note that for A = 0 (using no kernel), these equations
simplify to equations (6.B.1) and (6.B.2) for OLS. Likewise, for A = 1 (using all kernel),
they reduce to equations (6.B.5) and (6.B.6) for kernel regression. Also, if the underlying
model is chosen such that f = 0, then it is desired to have A = 0 to eliminate the bias and to
achieve the minimum variance ’H®”. If XB = 0, then A = 1 is desired to give bias —(f —
H*f) = ~(“y” - H*™y”) and variance c’H*"H’®* as in kernel regression. Here “y” is
thought of as observations directly generated from a nonlinear function, which should be
fit better with kernel regression than with OLS.

Again, starting with the underlying model y, = x,'/B + f{x,) + &, the bias and

variance of y, can be obtained as
Bias(J, Mrr1) = -AM[Xo" — ho'*X]B + b/ RVf — fix,) (6.B.11)
Var(Jo, mrr1) = o* hy' @D p MY (6.B.12)

where h,™®V = [(1-A)x,'(X'X)'X’ + Ah/®"] is the row of a MRR1 hat matrix that
would be determined by x,’, and ho'®™ is the row of a kernel hat matrix determined by x,’

(same h,'*™ as described previously).

MRR?2

Recall that for MRR2, §yrrz = HM®y = [H® + AH*(I - H*W)]y, from
Fvrrz = Hy + AH,*r (as in (5.C.2)), where H,*™ is the kernel hat matrix from a
kernel fit to the residuals r from the OLS fit. The bias and variance for yumgrr2 (With 2 and

A fixed) are derived in Appendix D.3 and may be expressed as follows:

Bias(¥mrr2) = —(I - HM)f (6.B.13)
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Var(§urrz) = o HMRIg/MRR2) (6.B.14)
= cZ[H(ols) + szz(k“)(I _ H(oll))Hzl(kﬂ)] )

Here, the bias and variance expressions are a little more complicated, mainly due to the
combining of a fit to the data and a fit to residuals in order to construct HM*? This
makes it more difficult to get an intuitive feel for the behavior of these equations. One
does notice, though, that the bias is independent of the linear term XB and is affected only
by the form of f. This is expected since MRR2 always uses a parametric fit to XB, and
OLS gives an unbiased estimate, XBos. One must be careful not to be misled by the
complexity of these bias and variance expressions. The MRR2 fitting procedure itself is
very simple; the complexity arises as an artifact of the steps necessary to develop
equations comparable with those of the competing procedures. For the MRR2 results
above, h is fixed at the optimal A,, which is different from the A, for kernel and MRR1.
Now A, is chosen as the bandwidth that minimizes the AVEMSE for the kernel fit to the
residuals r from the OLS fit. This kernel fit may be expressed as #= H,*"r, and the
AVEMSE is calculated from the following equations (derived in Appendix D.3):

Bias(f ) = —(I - H*)(1 - H)f (6.B.15)
Var(f ) = 6’H,*(1 - H*)H,'*™ | (6.B.16)
The mixing parameter A is fixed as A,, which minimizes the AVEMSE calculated from
(6.B.13) and (6.B.14), with H,** already determined by .
The bias and variance of y, can be obtained in a similar fashion to OLS, kernel,

and MRR1 as

Bias(Js, Mrrz) = ho'*F0f - fix,) (6.B.17)
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Var(J,, mrrz) = 6> h,/ "D p MED (6.B.18)

where h,/®®? = [x,/(X'X)'X’ + Ah,,"* (I — H®™)] is the row of a MRR2 hat matrix

&) is the row of a kernel hat matrix determined

that would be determined by x,’, and h,
by x,” when fitting the residuals from the OLS fit. Note that h,,'*™ is different from
h,'*™ due to the different bandwidths resulting from fitting the data (for kernel) vs. fitting

the residuals (for MRR2).

PLR

The final procedure is PLR, where fitted values are expressed as ypir = HF Ry =
Xpﬁpm +fprr (as in (5.A.3)), where Xp is the X matrix without a column of ones. As
mentioned in section 5.A (on PLR), the hat matrix H®® takes on two different forms
depending on which nonparametric fitting technique is used for the residual fit (kernel or
LPR). These two forms for H®'™® are given in equations (5.A.5) and (5.A.6). The
formulas for the bias and variance of ypr (with A fixed) for each of these cases are
derived in Appendix D.4 and are presented below. (Note that the bias expressions are the
same for both cases, but H®'® differs for each technique; also, recall that X is always
defined as X= (I - Hs**)Xp (i.e., X always uses the kernel hat matrix)).

When using kernel regression for the residual fit, one obtains
Bias(§pir) = —(I — H®™O)f, (6.B.19)
Var(§pir) = " HE-PH/ LR (6.B.20)

= cz[Hp(kﬂ') HPl(kcr) + Hp(kﬂ)(l _ Hp(k“))'PX + Pﬁ(l _ Hp(kcl‘))HPr(kef) +
Py (1 - H*)(1 - Bx*") By ],
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where P; = XX'X)'X' and H*"® is as in (5.A.5). Using local polynomial regression for
the residual fit yields

Bias(¥pir) = (I - HF®)f, (6.B.21)

Var(§pir) = c’HOOHPR (6.B.22)

= (expression in Appendix D.4 (a)),

where H®'® is as in (5.A.6). These equations are similar to those for MRR? in that they
are rather complex (especially the variance), and the bias takes the same form of being
dependent only on the form of f. Here 4 is fixed as A,, the bandwidth minimizing the
AVEMSE based on equations (6.B.19) and (6.B.20), or (6.B.21) and (6.B.22) (depending
on the fitting technique used for the residuals).

Now the bias and variance formulas of the fitted value y, at any individual location
Xop' = (X0 X,_ - - - ) (for PLR) can be obtained through similar arguments to those used to
obtain the bias and variance expressions above. Starting with the underlying model
written in the form y, = X,,'B, + fx,) + & the resulting formulas are as follows. When

using kernel regression for the residual fit,

Bias(Jo, prr) = ho'TRf ~ fix,) , (6.B.23)
Var(§o,prr) = 6> hy TV b | (6.B.24)

where h,/®® = [h,,/*? + (x,,’ — h,,*Xp)(X' X)X (I - Hp*™)] is the row of a PLR
hat matrix that would be determined by x,,’, and h,,*? is the row of a kernel hat matrix

determined strictly by x,,’. Finally, when using LPR for the residual fit,
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Bias(y, pir) = ho' ™ Of - fixy) | (6.B.25)
Var(Jo, pr) = o” by ® 0 h 0 (6.B.26)

where now hy'®® = [h,," ™™ + (x,," ~ ho, PPXp)(X' X)X (I - Hp*™)] is the row of a
PLR hat matrix that would be determined by x,,’, and h,,’™™ is the row of a LPR hat
matrix determined by x,,’ when fitting to the residuals in the PLR procedure.

With the bias and variance equations (6.B.1)-(6.B.26), the MSE’s for each of the
five procedures can easily be obtained. By averaging the MSE’s for a given procedure
across the fitted values at the data points, the average MSE (AVEMSE) can now be
obtained. This is the criterion used for determining the “optimal” A, and A, for the
different procedures. Also, by averaging the MSE’s of many (1000) locations across the
range of the data, a good estimate for the integrated MSE (INTMSE) can be obtained.
This is the key diagnostic for comparing the performances of the five procedures for
several generated data sets in the next section. The reason AVEMSE is used instead of
INTMSE to choose A, and A, is to allow for fairer comparisons with data-driven methods
for choosing # and A. In other words, it seems more appropriate to determine the optimal
fit (which serves as the basis for comparisons) based on only the data points rather than on

a global criterion, because this is what dafa-driven methods are restricted to.
6.C Examples

6.C.1 Introduction

The five fitting techniques (OLS, LLR, MRR1, MRR2, and PLR) are now
compared for three different generated data sets and one actual data set. In all situations,
the X-data is scaled to be between 0 and 1 in order to have a good reference for the

behavior of the different techniques across different data sets. For example, bandwidth
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values may be interpreted the same for all data sets, whereas it would be difficult to
compare bandwidth magnitudes across different data sets if they were all on different
scales. Graphical comparisons are provided by plots of the regression curves for each
procedure, and numerical comparisons are provided by several performance diagnostics.
The diagnostics include dfy.q.= trace(Hat matrix), SSE, PRESS, PRESS*, and INTMSE.
For “good” performance, it is desired to have all of these as small as possible. Recall that
dfneaa = tr(H) can be interpreted as “the number of parameters that would be needed to
obtain a comparable parametric fit”, and in this sense measures the “complexity” of the
particular fit of interest. Of course, dfn.a = p for OLS since this is the parametric fitting
technique used here. Also, # and A are chosen as the optimal A, and A, based on
minimizing AVEMSE (the average MSE of the fits at the actual data points), so each
fitting technique is doing its best to keep AVEMSE as low as possible. However, since
one is usually interested in the fit of the regression curve across the entire range of the
data, a “global” measure is more appropriate than AVEMSE in actually making the final
comparisons of the different procedures. Thus, the key diagnostic for the comparisons is
taken to be INTMSE (which provides the best measure of the trade-off between bias and
variance for the entire curve). Also, note that INTMSE is based on theoretical formulas
and does not depend on the particular data generated for each of the examples. The other
diagnostics are data-dependent and would change for different generated data sets (from
the same underlying model). Thus, the values of dfmec, SSE, PRESS, and PRESS* are
used as supplemental diagnostics to INTMSE for these examples (since each example is
but one of many possible generated sets of data for the particular underlying model).
More faith may be placed in these data-dependent values if these values were obtained as
average values over many simulated data sets for each underlying model. Some such
simulations are provided in Chapter 8 (for dfn.as and PRESS). A final note is that LLR
(local linear regression) is used as the nonparametric fitting technique in all of the

procedures in order to remove boundary bias problems inherent in kernel regression. For
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the first example, however, an individual kernel fit is also shown to illustrate how LLR can

improve the fit at the boundaries.

6.C.2 Example 1

For this example, data is generated from the underlying model

y=2(X-55)+5X+ 3.5sin( %2‘511) +e (6.C.1)

at ten evenly spaced X-values from 1 to 10, where &€ ~ N(0,16). The term involving the
sine function introduces a deviation from a quadratic model, and the argument of the sine
function results in the sine completing two full periods over the interval [1,10]. This
model was introduced by Einsporn (1987), who studied fitting techniques when changing
the amplitude of the sine function (the 3.5 here). Einsporn found that the usual lack of fit
test has power of only .226 at a = .05 when the user has specified a quadratic model,
namely y = Bo +8:.X + B.X* + ¢, instead of (6.C.1). In other words, the user would
believe the quadratic model is adequate and base inferences on that model, resulting in
possible misleading conclusions. This is a good example of a case where the specified
model (the quadratic) is adequate throughout most, but not all of the data. Figure 6.C.1
shows the frue underlying model without the error term. Notice the “dip” between X = 3
and X = 6, which an OLS fit to the specified model is likely to be unable to capture. A
kernel or local linear fit may be used to help capture this dip, but recall that this would
ignore the known quadratic structure and result in a fit higher than necessary in variance.
The above observations are illustrated in Figures 6.C.2 (a), (b), and (c), which
show the true curve and the raw data generated from (6.C.1) (with the error term), along
with the quadratic OLS fit (figure (a)), the kernel fit (figure (b)), and the LLR fit (figure
(c)). Note that the OLS fit is smooth (low variance), but fails to capture the dip and does
not fit well at several other points (high biases). The kernel fit (based on h, = .086) fits
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Figure 6.C.1. True underlying curve from Equation (6.C.1) for Example 1.
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Figure 6.C.2 (a). Plot of generated data for Example 1, with quadratic OLS fit.

[¢ee Raw data — True curve - OLS]
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close to the data points, but is not very smooth (low bias, high variance). Notice how the
kernel fits too low at the boundaries, illustrating the boundary bias problem. The LLR fit
(based on A, = .115) solves this boundary problem, and supports the use of LLR instead of
kernel as the nonparametric fitting technique for all of the results to follow. Figure 6.C.3
displays how the MRR1 fit, based on a A, of .503 (almost even weight on OLS and LLR),
combines the OLS and LLR fits, and Figure 6.C.4 gives just the MRR1 fit along with the
true curve. The MRR1 fit maintains the smoothness (low variance) of OLS, while using
LLR information to pull the fit closer to the data where needed (lowering bias). Also,
notice that the MRR1 fit is always between the OLS and LLR fits (actually at A ~ 50% of
the distance from OLS to LLR). As discussed in section 5.B.1, if either OLS or LLR fits
poorly at a certain data point, then MRR1 may be unable to correct for this inadequacy.
This is illustrated to a certain degree at points X = 2, X = 6, and at the dip, where OLS
does not fit well. MRR2 and PLR should do as well or better at fitting these locations.

Figures 6.C.5 and 6.C.6 give the individual regression fits for MRR2 and PLR,
respectively, while Figure 6.C.7 gives these two fits along with that for MRR1. The
MRR2 fit is based on A, = .152 and A, = .713, while the PLR fit has 4,=.153. MRR2 and
PLR give fits very similar to each other, and these fits are on the whole slightly better than
the fit from MRR1. The most noticeable difference is at the dip in the data, where MRR2
and PLR give slightly improved fits. Notice that all three model-robust methods give
much better fits than the individual OLS fit, and it is shown shortly that these model-
robust procedures have much lower variances than LLR (even though LLR does look
somewhat smooth). These are precisely the improvements hoped for from the proposed
methods. These improvements are supported numerically shortly, but first some brief
illustrations are given as to exactly how the MRR2 and PLR fits are constructed.

For MRR2, recall that the first step is to obtain a parametric fit to the data, this is
the quadratic OLS fit in Figure 6.C.2 (a). Then the residuals from this parametric fit are
fit using a nonparametric technique; this is the LLR fit in Figure 6.C.8, where the residuals
from the OLS fit are plotted on a wider scale than the data in order to show the structure
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Figure 6.C.3. Plot of generated data for Example 1, with quadratic OLS, LLR,
and MRR1 regression curves.

[¢e« Raw data — Truecurve ---OLS - LLR ----MRR1]
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Figure 6.C.4. Plot of generated data for Example 1, with MRR1 fit.

[eee Raw data — Truecurve - MRRI1 ]
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Figure 6.C.5. Plot of generated data for Example 1, with MRR2 fit.
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Figure 6.C.7. Plot of generated data for Example 1, with MRR1, MRR2, and
PLR regression curves (based on quadratic parametric models).

[+e« Raw data — Truecurve ---MRR1 ----MRR2 - PLR]
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Figure 6.C.8. MRR2 LLR fit to residuals from a quadratic OLS fit, for Example 1.
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of the LLR fit. A certain proportion (A = .713 here) of the fit to the residuals is then
added to the OLS fit to the data to give the final MRR2 fit in Figure 6.C.5.

Recall that the PLR fit is obtained through adding together simultaneous
parametric and nonparametric fits. The parametric fit is obtained by first adjusting Xp and
y for the nonparametric portion of Xp, and then regressing the partial residual (I - Hy*®)y
on the partial residual (I - Hp**)Xp. This fit always intersects the y-axis at zero, since no
intercept term is contained in Xp. This parametric fit is given in Figure 6.C.9 (a), with
Hy*™ based on 4, = .153. Note that the regression curve is not even close to the data, but
does display the general parametric form of the underlying model. The “jump” from this
curve to the data, along with any special structure in the data, is captured by the
nonparametric fit to the residuals from this parametric fit, as illustrated in Figure 6.C.9 (b).
This fit is determined by Hp™®, which is based on the same A, = .153. Notice that the
residuals are scattered around approximately 42 in magnitude, so when this entire residual
fit is added to the fit to the data (to give the PLR fit in Figure 6.C.6), it corrects for the
insufficiency caused by the lack of intercept term.

Table 6.C.1 gives the numerical results of interest for this example. The key
diagnostic INTMSE is smallest for MRR2, and is quite a bit lower for the model-robust
methods than for the individual OLS and LLR procedures. In comparing the model-
robust methods, note that MRR2 is uniformly better than MRR1 and almost uniformly
better than PLR (except for SSE). Also, dfede is lowest for MRR2 for the three model-
robust methods, indicating a relatively simpler regression fit, and is much lower than for
the individual LLR fit. Figures 6.C.10 (a)-(c) display the squared bias, the variance, and
the MSE curves for the model-robust methods. Figure 6.C.10 (a) shows a bias problem in
MRR1 (due to the large bias in OLS, especially at the dip (X = 4)). Figure 6.C.10 (b)
shows the larger variance for PLR (due to its inclusion of an entire LLR fit), and the
presence of larger variances at the boundaries for each of the procedures. This variance
increase at the boundaries should not be considered a major problem with LLR, as this

phonomenon is also present when kernel regression is used. Figure 6.C.10 (c) shows the
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(a) PLR parametric (b) PLR nonparametric

Figure 6.C.9 (), (b). PLR parametric fit based on quadratic model, and PLR
nonparametric fit (using LLR) to the residuals from the parametric fit of (a),
for Example 1.
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Table 6.C.1. Bandwidth, mixing parameter, and performance diagnostics for
Example 1. Bandwidth and mixing parameter minimize AVEMSE. Key values for
comparisons are underlined.

ho A Af o SSE | PRESS | PRESS* | INTMSE
OLS 3 7424 | 13503 | 19.29 9.42
LLR 115 623 | 2263 | 19873 | 54.05 8.67
MRR1 115 503 467 | 3797 | 11135 | 2090 71.66
MRR2 | .152 713 461 | 3608 | 10675 | 19.81 1.57
PLR 153 528 | 2625 | 17961 | 38.07 7.60
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Figure 6.C.10 (a)-(c). Squared Bias, Variance, and MSE plots for MRR1,

MRR2, and PLR, for Example 1.
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MSE structure obtained by adding together the plots in 6.C.10 (a) and 6.C.10 (b). The
three procedures behave rather similarly. Of note though are the high MSE for MRR1 at
the dip (X = 4, 5), and the higher MSE for PLR at the endpoints. Also, except for the
endpoints, the MSE plots for MRR2 and PLR are relatively close, with PLR slightly better
in the center of the data, and MRR2 better elsewhere. Figures 6.C.11 (a)-(c) display the
squared bias, the variance, and the MSE curves for OLS, LLR, and MRR1. The bias
problem of OLS and the variance problem of LLR show up clearly in figures (a) and (b).
However, the key observation to be made here is in Figure 6.C.11 (c), which shows that
the model-robust procedure MRR1 greatly reduces both of these problems at the same
time. MRR1 appears to be capturing the best of both individual procedures: the small
variance of OLS and the small bias of LLR. This is exactly what was desired when the

model-robust procedures were developed.

6.C.3 Example 2
This example illustrates the use of the fitting methods when the data has a sine
wave structure, but a polynomial model is specified to be used. The underlying model is

taken to be
y=35sin(2nX) + ¢ (6.C.2)

for X = 0 to 1 by .05, where ¢ ~ N(0,1). This gives a basic one period sine wave with
amplitude five. To provide a clearer interpretation of how well the final curves actually fit
this sine structure, the generated data used is actually from (6.C.2) without the error term
(i.e., the “true” underlying data is used). For calculations, the variance o is taken to be
one. The natural polynomial model specified for this type of data (not knowing it was
really from a sine function), would be the cubic model, y = By + B.X +BX* + BaX° + €.
This being the case, Figure 6.C.12 displays the data along with the OLS, LLR, and MRR1
fits. The optimal bandwidth was found to be A, = .086 and the optimal A to be A, = .479.
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Figure 6.C.11 (a)-(c). Squared Bias, Variance, and MSE plots for OLS,

LLR, and MRR1, for Example 1.
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Figure 6.C.12. Plot of generated data for Example 2, with cubic OLS, LLR, and
MRRI1 regression curves.

[+ee Rawdata — Truecurve ---OLS - LLR ---MRR1]
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Notice that the cubic OLS curve takes the same general shape as the sine function, but
cannot capture the exact form of the sine. This is the model misspecification for this
example (a sine is not a cubic function). Local linear regression also has some problems
fitting this data, namely where the sine curve peaks and dips. This problem of fitting in
areas of sharp curvature was briefly mentioned in section 3.B.4 when discussing the need
for variable bandwidth selectors. Another approach here would be to use local quadratic
regression in an attempt to better fit the sharp curvature. This has been done, but the fits
are only a little improved and there is hardly any change in the performance diagnostics.
Thus, the use of LLR is maintained here for consistency with other examples. The MRR1
fit provides some improvement, but still cannot capture the “sharp” peak and dip.

Figure 6.C.13 gives the fits of the three model-robust methods. PLR does no
better than MRR1, most noticeable in the high curvature areas. This stems from the
parametric portion of PLR fitting poorly at the peak and dip, leaving a residual structure
with high curvature at these locations. The PLR nonparametric portion cannot capture
this curvature, and so neither does the final PLR fit. MRR2, on the other hand, gives
much improved fits at the areas of high curvature. The initial OLS fit removes much of
the structure at these points, leaving residuals that are much easier to fit than those in
PLR. From inspection of Figure 6.C.12, notice that the residual (y —y) from the OLS fit at
the right boundary is rather large and negative, whereas the four residuals preceding this
point are all positive. Kernel regression cannot adequately fit the negative residual at the
boundary due to the weights given to the proceeding positive residuals. A similar
phenomenon occurs at the left boundary, with the signs on the residuals reversed. Local
linear regression overcomes this problem. However, a couple of the large residuals from
these points preceding the endpoints are not fit extremely well by LLR and result in higher
biases for MRR2 (due to curvature in the residual structure).. The differences in these
biases, though, are not as significant as the differences at the curvature areas (where

MRR2 is best).
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Figure 6.C.13. Plot of generated data for Example 2, with MRR1, MRR2, and
PLR regression curves (based on cubic parametric models).

[+es Raw data — Truecurve ---MRR]l ----MRR2 - PLR]
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Performance diagnostics are provided in Table 6.C.2. Again, the three model-
robust methods outperform the individual OLS and LLR methods. Based on INTMSE,
MRRI1 and MRR2 perform a little better than PLR. Among the model-robust procedures,
dfimoder is lowest for MRR2 (= 5.70), and is not much greater than the p = 4 for OLS.

6.C.4 Example 3

For this final example based on generated data, model (6.C.1) from Example 1 is
used once again, but now fwo observations are taken at each of ten evenly spaced X-values
from 1 to 10. Taking two observations at each point adds some distortion to the data in
terms of giving a wider spread of data points about the true curve. At the same time,
however, these replicated data points provide more information about the underlying
model at each point than would be provided by just one observation. This extra “local”
information should result in better performances for the nonparametric portions of the
various fitting techniques. These improvements should in turn lead to better final fits for
all of these procedures. The question is whether one procedure benefits more than the
others.

Figure 6.C.14 shows the true curve and generated data, along with the quadratic
OLS, the LLR, and the MRR1 fits. The extra distortion in the data results in a LLR fit
that is a little more “structured” (not as smooth as in Example 1) (with A, = .099), and
hence results in a MRR1 fit (with A, = .686) that follows more closely the pattern of the
true curve than did the MRRI1 fit of Example 1 (given in Figure 6.C.4). This extra
structure in the MRR1 curve allows it to compare a little more favorably to MRR2 and
PLR, which is apparent in Figure 6.C.15 (as compared to Figure 6.C.7 of Example 1).
The MRR2 and PLR curves are very similar to each other, and are still slightly better fits
than the MRR1 curve, most notably in the dip area. Again, the model-robust procedures
are an improvement over the individual parametric and nonparametric procedures.

Numerical results supporting this contention are given in Table 6.C.3. The model-

robust procedures perform similarly, with PLR and MRR2 having the lower INTMSE’s.
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Table 6.C.2. Bandwidth, mixing parameter, and performance diagnostics for
Example 2. Bandwidth and mixing parameter minimize AVEMSE. Key values for
comparisons are underlined.

By A Af e SSE | PRESS | PRESS* | INTMSE
OLS 4 3.13 6.80 400 298
LLR 086 8.05 1.24 2.87 222 322
MRR1 086 479 5.94 124 3.64 242 244
MRR2 | .140 961 5.70 112 3.95 258 245
PLR 141 5.87 0.97 2.94 195 .250
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Figure 6.C.14. Plot of generated data for Example 3, with quadratic OLS, LLR,
and MRR1 regression curves.

[+e« Rawdata — Truecurve ---OLS - LLR ----MRR1]
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Figure 6.C.15. Plot of generated data for Example 3, with MRR1, MRR2, and
PLR regression curves (based on quadratic parametric models).

[¢ee Raw data — Truecurve ---MRR1 ----MRR2 - PLR]
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Table 6.C.3.

Bandwidth, mixing parameter, and performance diagnostics for
Example 3. Bandwidth and mixing parameter minimize AVEMSE. Key values for

comparisons are underlined.

ho . Af el SSE | PRESS | PRESS* | INTMSE
OLS 3 20544 | 26462 | 1557 7.37
LLR 099 7.08 9641 | 21199 | 1641 4.96
MRR1 .099 686 580 | 11614 | 21208 | 1493 4.69
MRR2 119 879 583 | 11583 | 20983 | 14.81 4.42
PLR 118 627 | 107.93 | 207.10 | 15.08 4.40
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Note the significant decrease in INTMSE from Example 1 (Table 6.C.1) to this example.
This is due to the increased local information from the replicates, which leads to
significantly decreased biases and variances. The squared bias, variance, and MSE plots
for this example are virtually identical in structure to those in Figures 6.C.10 (a)-(c), just
with lower values. As a whole, it appears that all fitting procedures were affected

similarly by the introduction of replicated observations.

6.C.5 Application

Consider the data in Table 6.C.4, where the response y is the tensile strength (in
psi) of paper, and the regressor X is the percentage of hardwood in the batch of pulp from
which the paper was produced. This data is taken from Montgomery and Peck (1992),
and was studied by Einsporn and Birch (1993). Montgomery and Peck argue that many
users would feel it appropriate to use a quadratic model to fit this data. Their argument is
based on residual plots after actually fitting a quadratic model by OLS. This tensile data is
plotted in Figure 6.C.16, along with the quadratic OLS, LLR, and MRR1 fits. Here the
bandwidth (5 = .127) and the mixing parameter (A = .894) are chosen by the data driven
method based on PRESS* (as described in section 3.B.3). The question of how effective
PRESS* is at choosing the appropriate 2 and A is addressed in the next chapter. It is
shown that PRESS* may often choose 4 and/or A that are “far” from optimal. However,
for this application, the fits for the procedures relying on 4 and A chosen by PRESS* do
appear to be adequate (they are smooth and capture most of the structure in the data), so
PRESS* is used. Note that OLS does not fit well, especially at the peak in the data and
near the right boundary. Local linear regression fits much better. MRRI1, based on
approximately 90% LLR, gives a much improved fit over OLS, but is not much different
from LLR.

MRR2 and PLR provide slightly better fits in terms of capturing the peak in the
data. These differences are seen in Figure 6.C.17, which displays the three model-robust
regression curves. MRR2 (with 2= .176 and A = .939) and PLR (with 4 = .186) give nice
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Table 6.C.4 Tensile Strength Data. Y = tensile strength (psi) and X = percentage of
hardwood.

X Y X Y
1 6.3 7 42.0
L5 11.1 8 46.1
2 20.0 9 53.1
3 24.0 10 52.0
4 26.1 11 525
4.5 300 12 48.0
5 338 13 428
5.5 34.0 14 278
6 38.1 15 219
6.5 39.9

Table 6.C.5. Bandwidth, mixing parameter, and performance diagnostics for
Tensile Data. Bandwidth and mixing parameter minimize PRESS*. Key values for
comparisons are underlined.

h A Fnodel SSE PRESS | PRESS*
OLS 3 312.64 | 478.88 29.93
LLR 127 5.92 72.75 184.04 14.07
MRR1 127 894 5.61 80.70 163.26 12.19
MRR2 176 939 4.64 87.41 156.14 10.88
PLR 186 4.63 86.14 163.60 11.38
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Figure 6.C.16. Plot of tensile data, with quadratic OLS, LLR, and MRR1
regression curves.
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Figure 6.C.17. Plot of tensile data, with MRR1, MRR2, and PLR regression
curves (based on quadratic parametric models).

[+oeRawdata —— MRR] ----MRR2 - PLR ]
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smooth curves that fit the data extremely well. The diagnostics of Table 6.C.5 support the
observations made thus far. Note the slight improvement of MRR1 over LLR (lower
dfinoset, PRESS, and PRESS*), and the tremendous improvement over OLS. Also,
considering all of the diagnostics, MRR2 performs a little better than the other procedures.
This is seen mainly in the PRESS and PRESS* diagnostics. A nice property of MRR2 and
PLR is low dfy.ae values compared to LLR, which is evident in the smoothness of their
fits. Again, the model-robust procedures provide noticeable improvements over the
individual parametric or nonparametric fits.

Before proceeding to the study of data-driven selectors of # and A and the
presentation of simulation results, two other important topics need to be addressed. These
are (1) the development of confidence intervals for each of the procedures, and (2) a brief
look at the performances of the procedures when the sample size is decreased in the

previous examples.

6.D Confidence Intervals

Now that the fits for all of the competing procedures have been obtained, it is
desireable to have a measure of the accuracy and precision of these fits. This is
accomplished via confidence intervals on the fits. Ideally, one would like to have
confidence intervals as narrow as possible and still maintain the desired coverage
probabilities (90%, 95%, 99%, . . .). Inherent in the construction of these confidence
intervals is the need for estimates of the error variance (6*). It is desired to obtain &*’s
and confidence intervals (C.I.’s) for each of the fitting procedures that are as basic as
possible in form. The C.I.’s developed here satisfy this notion and closely parallel the
form of OLS C.I.’s. Also, the C.I.’s are developed for any location x, in the range of the
data.

The OLS 100(1-c)% C.1I. for the true mean p,, at the location x, is given by

L) 4 t, 2 O [x.' (X' X)'x |
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5(ols)

where p5°° is the fitted value at the individual point x,’ = (1 x, x> - - ), t__« is the

n—-p3y

th
(I“Ta) percentile of the t-distribution with n—p degrees of freedom, and 6 is an

estimate of error standard deviation (Myers (1990)). The usual estimate of & is

as given in equation (2.7). The general form of this C.I. may be expressed as
j;((’ols) + tn-tr(H (ols))’% ~ (hlgols) hgols)) , (6.D.1)

where h,®® = x,/(X'X)x, is the row vector of OLS weights determined by x,. This
general form is maintained for each of the confidence intervals developed in this current

work. Thus, for each fitting technique, the 100(1-a)% confidence interval for p,, is

expressed as

PO £ ) s SO RS | (6.D.2)

n YAy
Z=3)

n-— tr(H(‘))
(OLS, Ker, LPR, MRR1, MRR2, or PLR). The expressions for h,’ for each procedure are

where &) = , and “” can be replaced by any of the fitting techniques

the same as those given in section 6.B when the MSE formulas were derived. The
appropriateness of the general C.I. form in (6.D.2) for the nonparametric and model-
robust procedures is supported by Silverman (1985) and Hastie and Tibshirani (1987),
who use confidence intervals of this form when discussing spline regression and general

additive models, respectively.
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Figures 6.D.1 (a)-(f) present the various fits along with their 95% confidence
bands for the data in Example 1. Notice that the confidence bands for OLS in figure (a)
are rather narrow, but fail to capture the true curve in several areas. The kernel
confidence bands (figure (b)) are very wide and irregular due to larger variances of the
fits. These bands are much improved for LLR, as seen in figure (c¢). The MRRI1
confidence bands of figure (d) maintain the narrow width of OLS bands and the better
coverage of LLR bands. The bands for the model-robust techniques MRR2 and PLR
appear to be smooth, narrow, and provide adequate coverage of the true curve (see
figures (e) and (f)). Table 6.D.1 provides confidence interval diagnostics for comparing
the various fitting procedures. Specifically, this table contains the average confidence
interval width across the actual data points for the competing procedures for Examples 1,
2, and 3. (It is shown later using simulation studies that, especially for smaller sample
sizes, confidence intervals at locations between data points may become very wide (they
appear to be “unstable”); thus, just the C.1.’s at the data points are averaged here). The
model-robust procedures appear to be performing the best on the whole, with consistently
narrow confidence intervals (always narrower than LLR, and often narrower than OLS).
Actually, one does not even get the whole story with just these width values. Also of
interest is the coverage probability of the various C.1.’s. Even though one C.I. is narrower
than another, if it does not provide adequate coverage, then it is no good. Simulations are
needed to study these coverage probabilities, and such results are provided in Chapter 8.
It turns out that the model-robust procedures provide adequate coverage probabilities,
while OLS coverage probabilities are often much too low. This is especially true when
there is larger misspecification in the model. So once again the model-robust procedures
prove beneficial over individual parametric and nonparametric procedures.

Of course, many other forms of confidence intervals have been studied in the
literature. Hirdle (1990) presents discussions of pointwise confidence bands derived
through the establishment of the distribution of the nonparametric fits at the individual

points, and variability bands for functions, derived through distribution and derivative
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(c) LLR (d) MRR1

Figure 6.D.1 (a)-(d). Plot of confidence bands for OLS, Ker, LLR, and MRR1 for
Example 1.

[+es Raw data — True curve ----- Fitted curve - Conf. band]
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(e) MRR2 (® PLR
Figure 6.D.1 (e)-(f). Plot of confidence bands for MRR2 and PLR for Example 1.

[+ee Raw data — True curve ----- Fitted curve - Conf. band]

Table 6.D.1. Average Confidence Interval Widths for Examples 1, 2, and 3.
Average C.I. widths across the data points for OLS, LLR, MRR1, MRR2, and PLR.

AVE C.L Width
Example 1 | Example 2 | Example 3
OLS 8.19 763 5.51
LLR 9.94 .705 6.24
MRR1 177 546 5.56
MRR2 7.64 528 571
PLR 7.89 506 5.94
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results for the regression fits. A popular method of constructing confidence intervals that
eliminates the need for complex derivational results (which are needed for the techniques
described above) is the method of bootstrapping. Hirdle and Bowman (1988) and
Faraway (1990) discuss how to use this resampling technique to get empirical distributions
of fits on which to base the construction of C.I’s. The current work maintains the
simplicity of the general C.I. form in (6.D.2), and other techniques, such as those

described above, are left for future considerations.

6.E Smaller Sample Results

The final topic of concern for these initial comparisons is the effect of very small
sample sizes on the performance of the various fitting techniques. It is hoped that none of
the model-robust techniques would significantly falter in this situation. Since there is less
information (data) explaining the true model, the particular techniques are expected to
suffer somewhat in the adequacy of their fits. However, what must be checked is whether
one (or more) of the procedures is more significantly affected than the others, which
would seriously damage the usefulness of that particular procedure. Three examples are
used here to study the effect of smaller sample sizes. These examples are simply Examples
1, 2, and 3 discussed previously, with fewer data points generated from the underlying

model, and are described below. (Here /# and A are chosen to minimize AVEMSE).

Example 1’

This example obtains data from equation (6.C.1) of Example 1, but only at six
(instead of ten) evenly spaced X-values from 1 to 10. This raw data is shown in Figures
6.E.1 (a)-(b), along with the regression curves from the various fitting procedures. Notice
that the fits are not as good as they were with more data points (Figures 6.C.3, 6.C.7), but

the model-robust fits are still noticeably better than the individual fits. Some performance

diagnostics supporting this contention are given in Table 6.E. 1.
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Figure 6.E.1 (a). Plot of generated data for Example 1, with quadratic OLS,
LLR, and MRR1 regression curves.

[+ee Rawdata — Truecurve ---OLS - LLR ----MRRI1]

105



100

10 —

Figure 6.E.1 (b). Plot of generated data for Example 1’, with MRR1, MRR2,
and PLR regression curves.

[+ee Raw data — Truecurve ---MRR1 ----MRR2 - PLR ]
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Table 6.E.1. Bandwidth, mixing parameter, and performance diagnostics for
Example 1’. Bandwidth and mixing parameter minimize AVEMSE. Key values for
comparisons are underlined.

By 2o Af el SSE | PRESS | PRESS* | INTMSE
OLS 3 4470 | 16618 | 5539 12.09
LLR 133 530 | 1015 | 89532 | 1280.18 | 13.52
MRR1 133 433 340 | 2300 | 178.64 | 89.16 | 1099
MRR2 | .169 539 393 | 2720 | 189.61 | 91.49 10.97
PLR 169 — 475 | 1598 | 54091 | 43193 | 1137
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Example 2’

Here data is obtained from equation (6.C.2) of Example 2 at six (instead of
twenty-one) evenly spaced X-values from 0 to 1. As in Example 2, the “true” underlying
data is used (i.e., data is from (6.C.2) without the error term). Figures 6.E.2 (a)-(b) show
this data along with the various fits of interest. Notice that the MRR1 procedure uses a
small amount of the LLR fit to adjust the OLS fit, whereas the MRR2 and PLR fits are
very close to OLS. These considerations allow for the model-robust procedures to again
perform well (although they are much closer to OLS), with MRR1 holding a slight
advantage here. These conclusions are supported by the diagnostics of Table 6. E.2. It
appears that as the amount of data decreases, the model-robust procedures place more
emphasis on OLS (PLR does this by choosing # =~ 1). This characteristic is seen again in

the simulation results of Chapter 8.

Example 3’

This final example obtains data from Equation (6.C.1) of Example 1, where two
observations are taken at each of six (not ten, as in Example 3) equally spaced X-values
from 1 to 10. Similar to Example 1’, the model-robust procedures perform noticeably
better than the individual procedures. Fits are shown in Figures 6.E.3 (a)-(b), and
diagnostics are given in Table 6.E.3.

The key observation from this section is that the model-robust procedures appear

to hold up well when the sample size of the data is significantly decreased. More results in

this regard, based on simulations, are given in Chapter 8.
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Figure 6.E.2 (a). Plot of generated data for Example 2’, with cubic OLS, LLR,
and MRR1 regression curves.

[+« Raw data — Truecurve ---OLS - LLR ----MRR1]
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Figure 6.E.2 (b). Plot of generated data for Example 2', with MRR1, MRR2,
and PLR regression curves.

[+ee Rawdata — Truecurve ---MRR1 ----MRR2 .- PLR ]
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Table 6.E.2.

Bandwidth, mixing parameter, and performance diagnostics for
Example 2'. Bandwidth and mixing parameter minimize AVEMSE. Key values for

comparisons are underlined.

h, Ao dfodel SSE PRESS | PRESS* | INTMSE

OLS 4 500 4.44 2.22 747

LLR 120 - 5.55 372 116.23 260.37 916

MRRI1 120 256 4.40 316 4.24 2.65 662
MRR2 280 578 4.15 467 6.88 3.71 138

PLR 1 - 4.00 .500 4.28 2,14 7147
Table 6.E.3. Bandwidth, mixing parameter, and performance diagnostics for
Example 3'. Bandwidth and mixing parameter minimize AVEMSE. Key values for

comparisons are underlined.

h, Ao Af ol SSE | PRESS | PRESS* | INTMSE
OLS 3 12020 | 19153 | 21.28 8.90
LLR 118 5.60 40.75 | 137.16 | 21.42 8.32
MRRI 118 617 4.60 5593 | 13527 | 1828 7.23
MRR2 141 750 4.65 5728 | 13820 | 18.80 6.75
PLR 140 5.23 4567 | 132.89 19.62 6.79
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Figure 6.E.3 (a). Plot of generated data for Example 3', with quadratic OLS,
LLR, and MRR1 regression curves.

[+ee Raw data — Truecurve ---OLS - LLR ---MRR1]
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Figure 6.E.3 (b). Plot of generated data for Example 3’, with MRR1, MRR2,
and PLR regression curves.

[+ee Raw data — Truecurve ---MRRl ----MRR2 - PLR ]
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Chapter 7: Choice of Bandwidth & Mixing Parameter

7.A Optimal Criterion

Most of the results and comparisons given up to this point have been based on
generated data sets for which the optimal bandwidths and mixing parameters can be
determined. Since the true underlying model has been known, it has been possible to
evaluate the “theoretical” MSE formulas of section 6.B in order to find A, and A, (by
minimizing AVEMSE). The use of h, and A, gives the “best” fits possible for each of the
fitting procedures developed throughout this paper. In other words, using AVEMSE to
select 2 and/or A for a particular procedure determines the procedure’s “optimal” fit,
where optimal refers to minimizing AVEMSE. Based on these optimal fits, one can then
make true comparisons of the performances of the various fitting techniques. Since each
technique is contributing its best fit, it is easy to make conclusions as to which techniques
are outperforming the others. Except for the application (tensile data) in section 6.C.5, all
of the results presented thus far have been based precisely on these considerations (with
the main performance criterion being INTMSE). Thus, the conclusions that the model-
robust procedures are very beneficial are based on solid arguments. (These conclusion
have been based on just individual data sets, but simulation results in the next chapter will
substantiate these findings).

AVEMSE is used as the “optimal” selection criterion for several reasons. First, it
gives the desired measure of the tradeoff between the bias and variance of the fitted values
at the data locations. Second, even though AVEMSE measures MSE values for only the
actual data points, the differences in performance of the various fitting techniques are
usually equally as evident in AVEMSE values as they are with the integrated MSE
(INTMSE) values determined across the entire range of the data. The situation that may
cause AVEMSE to give different results from INTMSE is extremely small sample sizes,
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where there are wide gaps between data points (gaps where AVEMSE ignores the fitting
structure). The examples considered in this chapter do not possess this problem, so
AVEMSE should provide comparisons similar to those of INTMSE. This is an important
point that is considered shortly when deciding on a measure of performance for comparing
different data-driven selection criteria. A third reason for using AVEMSE as the optimal
selection criterion (instead of a “global” measure like INTMSE) is to provide a fairer
comparison with the data-driven methods. Data-driven methods have only the data to use
in selecting A and A, so it seems appropriate to have the “best” selection criterion to also
only depend on the data. This gives a more valid basis for actually determining how well
(or poorly) data-driven methods perform; i.e., they are not placed at a disadvantage to
start with as they would be if using the global measure INTMSE as the optimal criterion.
The next step then is to determine if there is some data-driven method that consistently
chooses values of 7 and A close to the optimal A, and A,, thus allowing the benefits of the
model-robust fitting procedures to be evident in practice. The remainder of this chapter

provides a brief study of attempts at satisfying this need.

7.B  Overview of Study

The following explanation gives the guidelines as to how this selection criterion

study is carried out.

7.B.1 Data Sets

First of all, five different data sets are considered in evaluating methods, and these
data sets are denoted Datal, Data2, . . ., Data5. Datal is taken to be the data from
Example 1 of section 6.C.2, which is generated from equation (6.C.1) and displayed in
Figure 6.C.2 (a). Data2 is the data set generated again by equation (6.C.1), but without
the error term. This data set is similar to the data shown in Figure 6.C.2 (a), except each
point is located on the true underlying curve. Also, for calculations, o? is taken to be 1 for

this example. Data3 is the data from Example 3 of section 6.C.2, which is shown in
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Figure 6.C.14. This data is just like that of Datal, but two observations (instead of one)
are taken at each X-value. Data4 is the sine wave data of Example 2 in section 6.C.2.
This data is generated from equation (6.C.2) and displayed in Figure 6.C.12. Finally,

Data5 is generated from the underlying model
y=2(10X - 5.5)* + 50X + 3.5sin(4nX) + & (7B.1)

at twenty-one evenly spaced X-values from 0 to 1, where & ~ N(0,1). Actually, the data
used is from (7.B.1) without the error term (i.e., the true data), and o’=1 is used when
calculating diagnostics. This data is shown in Figure (7.B.1) along with the true curve.
Note that the true curve for Data$ is very similar to that of Datal and Data2; however, the
data itself consists of twice as many observation in the same range (after transforming the
data of Datal and Data2 to be between 0 and 1). Each of the data sets Datal through
Data5 contains different characteristics and all together provide a nice range of underlying

structures for fitting regression curves.

7.B.2 Performance Criterion

Of basic concern for this study is simply observing how close the A#’s and A’s
chosen by certain data-driven methods are to the optimal 4, and A.. The closer the chosen
values are to A, and A, the better the data-driven method is considered to be. However,
since there will undoubtedly be differences between the optimal and chosen values, some
type of measure is needed to determine how much the fits based on the chosen /’s and A’s
differ from the “optimal” fits based on A, and A.. A natural diagnostic would be INTMSE,
but based on considerations pointed out in the previous section, AVEMSE values are used
instead for these comparisons. It was mentioned previously that for the examples used
here, AVEMSE values provide comparisons across fitting techniques that are very similar
to those provided by INTMSE values. Support for this statement is provided in Table
7B.1, where the AVEMSE and INTMSE values for the optimal fits are given for each
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Table 7.B.1. Comparison of optimal AVEMSE with optimal INTMSE. Values
are for the fits based on optimal bandwidths and mixing parameters (4, and A, which
minimize AVEMSE).

AVEMSE, INTMSE,

OLS 9.885 9.417

LLR 9.848 8.672

Datal MRRI1 8.341 7.658
MRR2 8.386 7.573

PLR 8.711 7.604

OLS 5.385 5.585

LLR 922 986

Data2 MRRI1 912 1.012
MRR2 .873 .845

PLR 875 .848

OLS 7.485 7.373

LLR 5.575 4.964

Data3 MRRI1 5.066 4.693
MRR2 4.909 4415

PLR 4.997 4.404

OLS .340 298

LLR 352 322

Data4 MRRI1 271 244
MRR2 277 245

PLR 281 250

OLS 5.003 4.786

LLR 566 527

Data5 MRRI1 .566 527
MRR2 .503 467

PLR 487 451
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fitting technique, for each of the five data set examples. Another reason for using
AVEMSE is because AVEMSE is minimized to obtain A, and A,, and it would be
beneficial to know exactly how close the AVEMSE value from a data-driven method is to
this optimal minimum value. (In regard to INTMSE, it is quite possible that the INTMSE
from the fit based on A, and A, is not the minimum INTMSE possible). Thus, the results
to come are based on reporting the chosen A#’s and A’s with their AVEMSE’s, and
comparing these values to the optimal values of 4,, A., and the corresponding minimum
AVEMSE.

7.C  PRESS* Results

The first data-driven method analyzed is PRESS*, which was introduced in section
3.B.3. Recall that PRESS* is obtained by first calculating PRESS, and then penalizing
this value for small bandwidths by dividing by #» — tr(H). Thus, PRESS* is protecting
against fits that are too variable (i.e., slightly favoring larger /’s and smaller A’s). Notice
that no penalty is present for bias (to protect against #’s too large or A’s too small).
Before presenting the diagnostics comparing PRESS* to the optimal AVEMSE, a key
observation needs to be discussed. This deals with the minimization of PRESS* as a
function of 4. Through many preliminary studies, it has been observed that PRESS* does
not always follow a concave-up shape with an “ideal” minimum value. This happens on
occasion when choosing # for MRR2 or PLR. In fact, there have been four patterns
observed for the PRESS* curve as a function of 4 (from O to 1). These are displayed in
Figures 7.C.1(a)-(d). Figure (a) shows PRESS* when selecting /# for LLR for Data2, and
the bandwidth is chosen as the /# corresponding to the minimum of the curve. Figure (b) is
PRESS* when selecting 2 for MRR2 for Data4, and once again the bandwidth is chosen
as the # which minimizes the curve. Plots like (c) and (d) are the ones that cause problems
for PRESS*. Figure (c) shows PRESS* when selecting # for MRR2 for Data3, and figure
(d) shows PRESS* when selecting # for MRR2 for Data2. In both of these situations, just
taking the bandwidth that minimizes PRESS* would result in #=1, which is a poor choice
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of A. To resolve this possible problem of choosing #=1, it is suggested that the bandwidth
be chosen as the 4 at the point of the first local minimum or at the point where the
PRESS* curve first starts leveling off (i.e, where the downward slope becomes
significantly less). This idea follows closely the method used in ridge regression to choose
the “shrinkage parameter” k (Myers (1990)). This graphical approach to choosing 4 of
course involves some judgment from the user, but for most preliminary examples studied it
has been rather obvious how to choose the 4. For the diagnostics below, all bandwidths
for which PRESS* is really minimized at ~=1 are denoted with a superscript of “1”. The
importance of noting these special occurrences becomes apparent later in this chapter.
Now for the results of PRESS*. Table 7.C.1 gives the A, A, and AVEMSE values
based on PRESS*, along with the optimal values for comparisons. (The row labeled
LLRwp is for choosing A for the LLR fit to the residuals in MRR2, with (AVEMSE) based
on the residual fits). The final column points out where PRESS* chooses 4 or A too large
or too small (a “+” for too large, a “—” for too small). Double pluses or minuses indicate
larger discrepancies. PRESS* performs well for Data5, but rather poorly for the other
examples. Notice that most problems arise out of PRESS* choosing 4 too large, and on
three occasions choosing #=1. For Datal and Data2, the bandwidths are much too large.
The conjecture made here is that introducing into PRESS* only a penalty for small
bandwidths and no penalty for large bandwidths is the cause for the large #’s seen in these
examples (and especially for the #’s =1). These inappropriate fits result in the model-
robust procedures no longer significantly outperforming the individual OLS and LLR
methods, and thus need to be improved upon. It appears that some action should be taken
to try to reduce (or at least control) the size of # chosen by PRESS*. Several criteria
addressing this issue are studied shortly. Do note, though, that PRESS* chooses A too
small for Data4, showing that PRESS* does not always choose /4 too large. It will be
difficult to find a criterion that overcomes the large bandwidth problem of PRESS* and is
still able to fit well to Data4. A final point is that it is difficult to get a good impression of
how well PRESS* selects A without having the proper #’s for each example. This may be
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Table 7.C.1. Comparing h, A, and AVEMSE values from PRESS* to optimal
values. Note that MRR1 uses /# from LLR, and MRR2 uses 4 from LLRy,. Final
column denotes whether the particular / or A is too large or too small.

PRESS* + if High
h, ro AVEMSE, h A AVEMSE | -ifLow
OLS 9.885 9.885
LLR | .115 9848 | .158 11.297 +
Datal | MRRI 503 | 8341 298 | 9.145
LLRy; | .152 (3.828) | 360" (5.013) ++
MRR2 713 | 8386 288 | 9.820
PLR | .153 8711 | 4715 9.866 ++
OLS 5.385 5.385
LLR | .065 922 | 133 3.292 +
Data2 | MRRI 957 | 912 0 5.385 ——
LLRy; | 073 (573) | .135! (1.507) +
MRR2 1 873 0 5.385 -
PLR | .0725 875 | .155! 2.286 +
OLS 7.485 7.485
LLR | .099 5575 | .088 5.695
Data3 | MRRI 686 | 5.066 566 | 5.009
LLRy | .119 @557 | .159 (2.897) +
MRR2 879 | 4909 763 | 5.503
PLR | .1185 4997 | .155 5.285 +
OLS 340 340
LLR | .086 352 | .049 471 -
Data4 | MRRI 419 | 2n 996 | 468
LLRy | .140 (087) | .061 (.205) _
MRR2 961 | 277 1 395
PLR | .1405 281 | .0575 418 _
OLS 5.003 5.003
LLR | .050 566 | .051 566
Data5 | MRRI1 1 566 1 566
LLRy, | 057 (313) | 052 (.320)
MRR2 1 503 1 511
PLR | .060 487 | .050 510

[ " denotes criterion is globally minimized at / = 1]
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studied more in the future, but for the current work more emphasis is placed on selecting
h. Notice, though, that for the few cases where 4 is chosen appropriately, A is also chosen
appropriately. This is a good sign that A may be easier to select than 4, but more work is

needed on this.

7.D PRESS** Results

A criterion that maintains the penalty for variance, but also includes a penalty for
bias (large 4’s) is PRESS**. PRESS** is described in section 3.B.3 and is expressed as
equation (3.B.22). This criterion is designed to still prevent the selection of 4’s close to
zero (as PRESS* does), while at the same time penalizing a little more as A starts to get
larger. This should usually provide choices of /4 that are at least a little smaller than those
chosen by PRESS* (and A’s that are a little larger than those from PRESS*, for
comparable /4’s). This balancing of penalties for both bias and variance is but one of the
two main advantageous properties of PRESS**. The second is the virtual elimination of
the problem of selecting #=1. In other words, PRESS** (almost always) corrects for the
structure shown in Figures 7.C.1 (c) and (d) by increasing the values of the curve for
larger A’s. This is an important consideration when executing the simulations in the next
chapter. There, search routines are used to find # and A for 500 data sets per simulation,
and it is not practical to look at PRESS* or PRESS** curves (plotted vs. /) for each of
these data sets. Thus, it is difficult to control the selection of A=1 if the curves are of the
forms in Figures 7.C.1 (c) and (d). Wise selection of the starting values of 4 in the search
routine (explained below) can overcome problems like figure (c), but figure (d) curves are
much more problematic. This problem is much less prevalent in PRESS** than in
PRESS*, as shown later. Also, it should by noted that PRESS** is on rare occasions
minimized by an inappropriately small 4 (e.g., .015, .03, ...). In these cases, the PRESS**
curve starts out at one or two small values (for small /), but then abruptly changes into a
curve the shape of those in Figures 7.C.1 (a) or (b). An example is shown in Figure 7.D.1,
which shows the PRESS** curve (as a function of 4) for PLR for Data4. The initial small
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Figure 7.D.1. Plot of PRESS** curve as a function of bandwidth for PLR fit of
Data4.
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value is a result of the PRESS value in the numerator of PRESS**, due to the fact that
PRESS may give unusual values for extremely small #’s. The denominator 7—tr(H) in
PRESS* eliminates this problem by approaching zero for small A, but the second penalty
term in PRESS** prevents its denominator from going to zero and thus does not eliminate
this problem. However, proper choice of starting values in the search routine for # does
easily prevent this choice of small 4. (The strategy for these starting values in the search is
to begin with the bandwidth values .08, .10, and .12 so that the search will move in only
very small increments (.02 max.), finding the appropriate local minimum, and not reaching
the location of the inappropriate global minimum. This strategy also eliminates the
problem in graphs such as that in Figure 7.C.1 (c) (for PRESS* or possibly PRESS**) by
selecting the bandwidth at the first local minimum).

The diagnostics for PRESS** are given in Table 7.D.1. For data sets 1, 2, 3, and
5, the values resulting from PRESS** generally are relatively close to the optimal values.
In these examples, the advantages of using the model-robust procedures are not lost (as
they often were with PRESS*). Also, in many cases the PRESS** fits are much better
than the corresponding PRESS* fits, most noticeable in Datal and Data2. Notice the
smaller #’s and larger A’s for PRESS** compared to PRESS*. This results in some cases
where PRESS* slightly outperforms PRESS** (e.g., Data5). Unfortunately Data4 is also
fit poorly by PRESS**. However, in considering all of the examples, PRESS** is much
more consistent than PRESS*, and PRESS** has no h’s chosen as 1. It appears that
PRESS** (or future modifications of it) has potential as a useful data-driven selector of A

and A.

7.E  Other Criteria
This section mentions some other data-driven criteria that have been studied, but
found to not perform as well as PRESS** (or even PRESS* in several cases). These

criteria are the usual MSE, generalized cross-validation, a standardized PRESS*, and an

“average” of PRESS and PRESS*.

125



Table 7.D.1. Comparing k, A, and AVEMSE values from PRESS** to optimal
values. Final column denotes whether the particular 4 or A is too large or too small.

PRESS** + if High
Ao A | AVEMSE,| & » | AVEMSE | -ifLow
OLS 9.885 9.885
LLR | .115 9848 | .120 9.868
Datal | MRRI 503 | 8341 770 | 8.830
LLRy | .152 (3.828) | .145 (3.840)
MRR2 713 | 8.386 780 | 8.348
PLR | .153 8711 | .165 8.736
OLS 5.385 5.385
LLR | .065 922 | 040 999 -
Data2 | MRRI 957 | 912 615 | 1320 -
LLRy, | 073 (573) | .100 (.820)
MRR2 1 873 915 | 1274
PLR | .0725 875 100 1.124
OLS 7.485 7.485
LLR | .099 5575 | .080 5.957
Data3 | MRRI 686 | 5.066 890 | 5.464
LLRy | .119 (2.557) | .080 (3.407) -
MRR2 879 | 4.909 940 [ 5536
PLR | .1185 4997 | 075 6.143 -
OLS 340 340
LLR | .086 352 | .040 584 -
Data4 | MRR1 479 | 2m 1 584
LLRys | .140 087) | .0s0 (274) -
MRR2 961 271 1 464
PLR | .1405 281 045 517 -
OLS 5.003 5.003
LLR | .050 566 | .040 622 -
Data5 | MRRI 1 566 1 622
LLRy, | .057 (313) | 040 (.413) -
MRR2 1 503 1 604
PLR | .060 487 | .040 603 -
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MSE, GCV

The first of these alternatives is to choose /# and A to minimize the classical MSE
formula,

MSE =+

z ~\2
=1(yi ~ y') _ _SSE

n—H(@) -

This selector results in always choosing the bandwidth too small, which is due to having

SSE in the numerator instead of PRESS (which is in PRESS*). A second alternative for

selecting A and A is generalized cross-validation, expressed as
PRESS
12
[ (D)

(Myers (1990)). This is just PRESS* with the penalty for small /’s entering as a squared

GCV =

term. This criterion results in bandwidths that are always larger than those for PRESS*,
which results in worse fits most of the time. Also, GCV has more problems with choosing
=1

Standardized PRESS*

A third criterion, which has performed better than the MSE or GCV techniques
just described, is a standardized PRESS*. This is simply Standardized PRESS (described
below), divided by the penalty n—tr(H). Standardized PRESS is defined as the sum of
the standardized PRESS residuals, which are the regular PRESS residuals each divided by
its standard deviation (or estimated standard deviation). It can be shown that the PRESS

residuals for each fitting technique in this work may be expressed as

~ €;
C-i=Yi—Yi-i = 1-h; >

2

where “-i” denotes “without using the i observation,” and e, is the usual residual from the

regression fit. Then standardized PRESS residuals are defined as
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the regular standardized residuals. Letting § = H®y for “” = OLS, LLR, MRR1, or
PLR, so that e = y—§ = 1- H®)y, it is clear that Var(e;) = ’[(1 - H)(I - H*)'],
for each of these fitting procedures. For MRR2, there is an extra step involved in finding
Var(e)). Letting r = (I - H®)y be the residuals from the initial OLS fit, and then defining
e=(1- H,""®r to be the residuals from the MRR2 local linear fit to r, one obtains the
following:
Var(e) = (1~ HY ) Var(r)(1- B )=
= - B{"°) - H)a- By @- B{"Vy
=o'~ B O)I-H)a-Bi™oy |

and Var(e) = [*A-H®)a-B)a-H{™Y ), for MRR2.  Substituting the
appropriate Var(e;) into equation (7.E.1) and summing these standardized PRESS
residuals gives Standardized PRESS for each fitting technique, which facilitates the
calculation of Standardized PRESS*.

The diagnostics for Standardized PRESS* are included in Table 7E.1. These
results are very similar to those from PRESS*. There are some areas of improvement
(e.g., Datal), and some areas where the fits are worse (e.g., Data3). Also, there is still a
problem with choosing #=1 (three times), and one 4 (for PLR for Datal) is chosen too
high at an inappropriate minimum of the Std. PRESS* curve. On the whole it does not
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Table 7.E.1. Values of i, A, and AVEMSE from Standardized PRESS*
and AVEPRESS selection criteria.

Standardized PRESS* AVEPRESS
h A AVEMSE h A AVEMSE
OLS 9.885 9.885
LLR | .130 10.035 || .115 9.848
Datal | MRRI .100 9.401 745 8.694
LLRy, | .180" (3.945) | .190" (4.025)
MRR2 625 8.716 575 8.864
PLR | .190 8.897 210 9.074
OLS 5.385 5.385
LLR | .120 2.503 .105 1.810
Data2 | MRRI 0 5.385 530 2.726
LLRye | .135' (1.507) | .110" (.988)
MRR2 0 5.385 830 1.666
PLR | .135' 1.812 | .115" 1.387
OLS 7.485 7.485
LLR | .065 6.912 075 6.217
Data3 | MRRI 900 6.179 840 5.428
LLRye | .070 (4.091) [ .080 (3.407)
MRR2 950 6.161 910 5.419
PLR | .070 6.507 .080 5.831
OLS 340 340
LLR | .050 466 .040 584
Data4 | MRRI 995 464 1 584
LLR\ | .055 (238) || .045 (.323)
MRR2 1 428 1 513
PLR | .050 469 045 517
OLS 5.003 5.003
LLR | .050 566 040 622
Data5 | MRRI 1 566 1 622
LLRy; | .050 (327) || .040 (413)
MRR2 1 517 1 604
PLR | .050 510 040 603

[ ! denotes criterion is globally minimized at 4 = 1]
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appear that Std. PRESS* is noticeably better than PRESS*, and it definitely is not
performing as well as PRESS**,

AVEPRESS
The final alternative for choosing /# and A has as its origin the desire to decrease
the size of the A’s chosen by PRESS*. This is done by averaging PRESS* with PRESS
(which is known to give small /’s) to form an “average PRESS,” denoted 4VEPRESS.
This criterion can be expressed as
AVEPRESS = (PRESS + PRESS*)/2

1 [[n—tr(H)] (PRESS)
2\ n-u(d)

1([n - t(H)] PRESS *+ PRESS *)

+PRESS *]

= 2[n—tr(A) + 1 [PRESS * .

Performance diagnostics are given in Table 7.E.1. As expected (by design), the #’s are
smaller for AVEPRESS than for PRESS*. This results in several improvements for
AVEPRESS, but of course makes the fits for Data4 even worse. Also, using AVEPRESS
does not solve the problem of selecting #=1 (or another inappropriately high value), and
the fits are not quite as good overall as those from PRESS**.

In summary, it appears that PRESS** has the best potential as a data-driven
selector of # and A for the fitting techniques developed in this research. It does not solve
every problem, but does usually give adequate fits that maintain the advantages of the
model-robust procedures over the individual parametric and nonparametric procedures.
Of course, there is much more work needed to more thoroughly investigate PRESS**
(and PRESS*), and possibly make improvements or even find better methods altogether.
A brief simulation study is performed on PRESS* and PRESS** in the next chapter in

order to substantiate the findings reported thus far.
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Chapter 8: Simulation Results

8.A Introduction

This chapter makes use of Monte Carlo simulations to further study the various
fitting techniques and to substantiate the many observations made in previous chapters.
All results thus far have been based on single data sets and on derived “theoretical”
formulas (for MSE values). Thus, there are two main areas that need to be checked for
accuracy. First, a comparison needs to be made of the theoretical MSE values based on
equations derived in section 6.B to the simulated MSE values based on fitting many data
sets (for a given underlying model). (For all simulations presented here, S=500 simulated
data sets are used for each Monte Carlo example). These comparisons will actually be a
check on the accuracy of the INTMSE values for several examples, where INTMSE is
based on the MSE formulas being verified. Recall that the MSE formulas (and INTMSE)
do not depend on the generated data, but only on the true underlying model. However,
INTMSE is estimating the true integrated MSE that would be based on the MSE
calculations of all possible data sets. Thus, Monte Carlo simulations of many data sets are
needed to study MSE, even though the formulas being checked do not themselves depend
on the data. The second topic studied through these simulations involves the quantities
and diagnostics that are actually determined by the data. These include the bandwidths
and mixing parameters chosen by data-driven methods, and the diagnostics such as dfjoede
and PRESS that are evaluated based on the data. The conclusions reached in previous
chapters, although informative and very useful as preliminary studies, are only based on
one of an infinite number of possible data sets for a given underlying model. This makes
the results at least a little suspect, and more reliable results are needed. These are
obtained by running Monte Carlo simulations with 500 simulated data sets and calculating
the average values of the quantities in question across all 500 data sets. This technique
provides a much better idea of the values of the diagnostics and data-driven selection

quantities that one expects to see on average for a particular example.
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8.A.1 Examples Used (Data)
The simulation examples studied here are based on a model closely related to
model (6.C.1) of Example 1 in Chapter 6. The actual underlying model used here to

generate the Monte Carlo data sets is
y=2(X——55)2+5X+‘Y[10 sin(ﬂ%z)]hﬂ: , B.AD

where € ~ N(0,16), and vy is the misspecification parameter, which is taken to range from
0to 1. This model is a quadratic model with a certain amount of deviation introduced by
the sine function term. The amount of deviation is controlled by y. Assuming that a
quadratic OLS model is fit for all of these examples, y is actually determining the amount
of misspecification present in the chosen model. 7 is varied for the simulations as 0, 0.25,
0.5, 0.75, and 1.0 in order to give a wide range of misspecifications to be studied.
(Taking y=3.5 yields model (6.C.1) of Example 1). Note that y=0 results in no
misspecification, and OLS should perform best. As y increases, OLS performs more
poorly, and nonparametric techniques (LLR) should prove more beneficial. The main
interest, though, is in how the model-robust procedures perform across this range of
misspecifications. It is shown shortly that they perform very well. A plot of the various
true curves, determined by 7, is given in Figure 8.A.1. In addition to varying the
misspecification level, the sample size » is also varied for the simulations. The three
sample sizes used are #=6, 10, and 19, providing for a range of small to moderately large
data sets for comparisons. For all examples, X-values are taken at evenly spaced locations
from 1 to 10 (in increments of 1.8 for #=6, increments of 1.0 for n=10, and increments of

0.5 for n=19).
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8.A.2 Progression of Study

The Monte Carlo simulation study is carried out in the following order. In section
8.B, the theoretical MSE formulas are compared to simulated MSE’s and checked for
accuracy. These results are based on the optimal bandwidths and A’s (from minimizing
AVEMSE). Then in section 8.C, these optimal fits are used in comparing the various
fitting techniques. Performance diagnostics and confidence interval results are presented
for these fits. Section 8.D then presents simulation results for the data-driven bandwidth
and A selection methods of PRESS* and PRESS**. Values for 2, A, and INTMSE are
given for comparison with the optimal values in section 8.C. Confidence interval results
are also given for the better performing PRESS** method. Conclusions are presented in

section 8.E.

8.B Accuracy of Theoretical MSE Formulas

Recall that INTMSE is the average of the MSE values of the fitted values at many
(1000, thus far) locations across the entire range of the data. That is, INTMSE is an
estimate of the integrated MSE of the regression curve. All preliminary results which have
favored the model-robust procedures (MRR2 in particular) in previous chapters have been
based mainly on INTMSE values. Based on comparisons with the “simulated MSE”
(SIMMSE) of 500 data sets per simulation, it is shown here that these derived theoretical
formulas appear to be extremely accurate. All results are based on using the optimal A,’s
and A,’s for the bandwidths and mixing parameters to determine the fits. These optimal
values for the simulation examples are given in Table 8.B.1. Before proceeding, a few
observations should be pointed out regarding the 4, and A, values. First, as » increases
(for a fixed v), h, decreases and A, generally increases. (The exception is at y=0, where A,
actually decreases slightly, but remains close to zero, always resulting in fits close to
OLS). These properties are due to LLR performing better (fits with smaller variance,
allowing smaller A,) when there is more data, and thus being used as a larger component

of the model-robust fits. Second, as the misspecification (y) increases, &, decreases and A,
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Table 8.B.1. Optimal bandwidths and mixing parameters for the model-robust
fitting procedures. The optimal A, for MRR1 is also A4, for LLR.

MRRI1 MRR2 PLR
n Y h, Ao h, Ao h,
0 146 020 1 016 1
25 139 256 1 016 1
6 5 126 656 .140 754 .140
75 115 851 120 890 120
1 108 924 110 939 110
0 130 013 1 016 1
25 122 301 226 478 1
10 5 105 751 118 884 118
75 091 946 095 996 095
1 082 1 083 1 083
0 113 009 1 031 1
25 104 458 157 7139 158
19 5 .089 892 099 996 099
75 077 1 .080 1 .080
1 .068 1 .069 1 070
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increases. This reflects the improvement in LLR over OLS as the data departs more and
more from quadratic, and the need for smaller bandwidths to pick up extra structure. Also
note that A, is close to zero for y=0 (thus using mainly the optimal fitting OLS), and A, is
close to one for y=1 (using mainly the better fitting LLR). These are very promising
results, because they show that the model-robust techniques are properly mixing the
individual parametric and nonparametric techniques. As seen in Table 8.B.2, this proper
mixing allows the model-robust procedures to perform as well as OLS when there is no
model misspecification. When there is large misspecification they perform at least as well
as LLR. For small to moderate misspecification, 4, and A, are used by the model-robust
procedures to give improved fits over OLS and LLR.

The simulated (average) mean squared error for a particular fitting procedure is
calculated according to the following steps. For each of the S=500 simulated data sets,
first determine the fitted values at “many” x, locations (on the transformed scale of [0,1]).
For these simulation results, 250 x, locations are fit instead of 1000, as was done in
previous chapters (the results are very similar, and using 250 gives much faster Monte
Carlo runs, which still provide very adequate results). After obtaining these fits (3;’s),

next compute the average squared error (ase) given by
250 A2
Ei(E()’i) - }’i)
ase="""250
for each of the 500 simulations (i.e., get ase;, for j=1, 2, ..., 500), where E(y;) is the true
value from the underlying function (without the error term). The Monte Carlo (simulated)

average mean squared error is then given by

500
glase,-
SIMMSE = 55— . (8.B.1)

Table 8.B.2 gives the results for the simulated MSE values along with the

theoretical INTMSE values for the simulation examples. The values are very similar to
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Table 8.B.2. Simulated mean squared error values for optimal fits from 500
Monte Carlo runs. Theoretical INTMSE values are in bold.

n Y OLS LLR MRR1 MRR2 PLR
0 6.069 11.254 6.059 6.069 6.080

6.384 11.789 6.382 6.384 6.391

25 8.876 12.054 8.470 8.876 8.891

9.295 12.695 8.985 9.295 9.301

6 5 17.505 14.510 13.436 13.084 13.223
18.028 15.220 14.143 13.596 13.659

75 31.956 18.391 18.478 17.646 17.377

32.583 19.190 19.293 18.229 17.907

1 52.228 23.723 24.206 23.231 22.761

52.959 24.630 25.127 23.915 23.408

0 3.987 7.430 3.985 3.987 3.992

4.105 7.689 4.104 4.105 4.110

25 6.721 8.015 6.172 6.388 6.729

6.818 8.243 6.300 6.490 6.825

10 5 14.881 9.264 9.105 8.772 8.688
14.956 9.456 9.262 8.884 8.867

75 28.466 10.555 10.660 10.282 10.283

28.520 10.721 10.819 10.403 10.450

1 47.477 11.736 11.736 11.562 11.571

47.509 11.883 11.883 11.675 11.722

0 2.274 4.504 2273 2273 2.270

2.314 4.622 2.314 2.314 2.316

25 4.937 4.885 4.064 4.016 4.067

4.973 4.971 4.104 4.041 4.080

19 5 12.918 5.631 5.635 5324 5.362
12.951 5.695 5.680 5.348 5.381

75 26.218 6.376 6.376 6.225 6.261

26.247 6.430 6.430 6.251 6.283

1 44.837 7.041 7.041 6.953 6.988

44.861 7.089 7.089 6.979 7.010
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each other. In fact, even the INTMSE values with the largest discrepancy from SIMMSE
are less than 5% different. For moderate to large sample sizes, the values are extremely
close to each other. These results are very beneficial, since they provide evidence that the
MSE formulas derived in Chapter 6 (for fixed A,, A,) are indeed accurate. So all results
reached earlier that were based on INTMSE seem appropriate, which gives support to the

benefits of the model-robust procedures.

8.C Comparisons of Procedures Based on Optimal Fits

By using the optimal 4, and A, the best possible fits for the various procedures are
obtained. Presented here are performance diagnostics and confidence interval results for
each of these “best” fits of each procedure. From these values, conclusions can be
reached as to how well the “best” fit of one technique compares to the “best” fits of the

other techniques.

8.C.1 Performance Diagnostics

Table 8.C.1 displays the data-dependent diagnostics of dfi.aer = tr(H) and PRESS
for each fitting technique, averaged across the 500 Monte Carlo simulations. Also
included for reference are the INTMSE values. The values dfioast and PRESS measure the
complexity and adequacy, respectively, of the particular fits. It is desired to have both of
these values small, which signifies a fit that is not very complex (or variable) and is not
overly dependent on individual data points when fitting at those particular locations. Also,
one hopes that a fit having these properties will also have a low INTMSE, which measures
the relative “theoretical” performances of the fitting techniques. Unfortunately, it is
shown shortly that this is not always achieved (PRESS and INTMSE often are not in
agreement when measuring model adequacy).

Several observations can be made from Table 8.C.1. For no misspecification
(y=0), dfinoder for each of the model-robust procedures is close to OLS. This is due to the

model-robust procedures (correctly) obtaining fits similar to OLS. For large
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Table 8.C.1. Diagnostics for fitting techniques based on optimal k, and A,. Data-
dependent diagnostics are df;,.4e and PRESS, but INTMSE is also included as a reference
as to which techniques are “theoretically” best.

n Y OLS LLR MRRI1 MRR2 PLR
dfogel 3 5.05 3.04 3.00 3.01
0 PRESS 29179 826.23 291.72 291.78 291.71.
INTMSE 6.384 11.789 6.382 6.384 6.391
Afnodel 3 5.19 3.56 3.00 3.01
25 PRESS 331.41 926.71 333.13 331.41 331.52
INTMSE 9.295 12.695 8.985 9.295 9.301
6 dfinodel 3 5.45 461 4.67 5.23
) PRESS 455.64 1242.86 481.11 492.56 992.05
INTMSE 18.028 15.220 14.143 13.596 13.659
dfnodel 3 5.65 5.25 5.30 5.59
15 PRESS 664.46 1775.24 743.40 763.10 1762.08
INTMSE 32.583 19.190 19.293 18.229 17.907
dfrodel 3 5.76 5.55 5.58 5.75
1 PRESS 957.89 2523.13 1110.12 114422 2843.23
INTMSE 52.959 24.630 25.127 23.915 23.408
n Y OLS LLR MRR1 MRR2 PLR
dfrodel 3 5.82 3.04 3.00 3.01
0 PRESS 249.78 438.03 249.77 249.78 249.83
INTMSE 4.105 7.689 4.104 4.105 4.110
A nodel 3 6.09 3.93 3.55 3.01
25 PRESS 300.07 497.45 298.68 311.26 299.92
INTMSE 6.818 8.243 6.300 6.490 6.825
10 dfinodel 3 6.76 5.82 5.87 6.29
) PRESS 448.59 660.10 422.12 442.12 680.90
INTMSE 14.956 9.456 9.262 8.884 8.867
dfinodel 3 7.49 7.24 7.26 7.31
75 PRESS 695.37 921.86 581.95 763.39 1007.05
INTMSE 28.520 10.721 10.819 10.403 10.450
dfnodel 3 8.09 8.09 8.00 8.02
1 PRESS 1040.39 1287.96 1287.96 1314.16 1454 .45
INTMSE 47.509 11.883 11.883 11.675 11.722
(cont...
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Table 8.C.1 (continued)

n Y OLS LLR MRR1 MRR2 PLR
dfinodel 3 6.52 3.03 3.00 3.01
0 PRESS 364.94 487.92 364.94 364.94 364.94
INTMSE 2.314 4.622 2.314 2.314 2.316
Afnogel 3 6.93 4.80 4.61 5.19
25 PRESS 426.90 510.18 415.10 421.77 445.55
INTMSE 4.973 4971 4.104 4.041 4.080
19 dfnose 3 7.87 7.35 7.25 731
5 PRESS 621.88 564.64 508.16 533.02 543.31
INTMSE 12.951 3.695 5.680 5.348 5.381
dfinoser 3 8.88 8.88 8.61 8.65
15 PRESS 949.88 623.63 623.63 609.22 620.20
INTMSE 26.247 6.430 6.430 6.251 6.283
dfpoget 3 9.78 9.78 9.62 9.64
1 PRESS 1410.91 677.73 671.73 669.34 682.12
INTMSE 44.861 7.089 7.089 6.979 7.010
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misspecification (starting at y=75, or y=.5 for n=19), df,aq for the model-robust
procedures is much closer to that of LLR. This is necessary (and correct) since the data
being fit is more complex. The OLS dfi,.4q is always equal to 3, but INTMSE shows that
OLS is very inadequate when misspecification is present. The real benefits of the model-
robust procedures show up in the cases of small to moderate misspecification (y=25 and
often y=.5). Table 8.C.1 illustrates that dfy.qa for the model-robust procedures remains
rather low (much lower usually than LLR), but these procedures still make use of the
nonparametric fits to reduce INTMSE. For example, this shows up very clearly for the
case where #=19 and y=25. The LLR dfy4q is approximately 7, while the model-robust
procedures have dfiod values around 5 or less. The resulting INTMSE values are much
lower for the model-robust procedures than either LLR or OLS (which maintains
dfneae=3). In conclusion, the model-robust procedures seem to be performing well in the
sense of obtaining the best fits possible to capture the structure in the data, while at the
same time remaining as simple (smooth) as possible. This is precisely the result of
maintaining both low bias and low variance.

The PRESS values also provide for some interesting observations. For y=0, the
model-robust procedures are once again close to OLS, with LLR being much larger. In
fact, the LLR PRESS remains large for all y-values. As y increases, the PRESS values for
MRRI1 and MRR2 get larger, but remain smaller than that for LLR. The difference in
these values is very large for #=6 and becomes less as » increases to 10 and 19. The
reason for this is that when fitting at a point x,, the smaller the sample size, the more
emphasis LLR places on that particular x,. This characteristic is what inflates PRESS for
small n. That is, the fit changes significantly when removing x, and recalculating the fit.
The model-robust procedures MRR1 and MRR2 make use of OLS to alleviate some of
this weight placed on the point being fit, and this shows up in smaller PRESS values. Do
note, however, that PRESS for PLR is often very large, especially as y gets larger. This is
an artifact of PLR always using the entire LLR fit in its development, which has already
been mentioned as a drawback of the PLR procedure. In relation to OLS, the PRESS
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values for MRR1 and MRR2 are slightly larger for #=6 (but as y get larger, OLS gives
poor fits based on INTMSE). This supports the contention made earlier that PRESS is
not always in agreement with INTMSE in terms of diagnosing fits, and should not be
relied on entirely for making such assessments. For larger sample sizes, MRR1 and
MRR2 PRESS values are a little more reliable and tend to be lower than OLS. In
summary, PRESS gives some support to the use of MRR1 or MRR2, and provides some
reservations as to the overall performance of PLR.

PRESS* could also be considered as a diagnostic to compare the fits of the
different techniques. PRESS* values have been obtained for all of the simulations
described above. These values, while different in magnitude from PRESS, give the same
information as PRESS in regard to ordering the model-robust procedures and LLR in
terms of performance. One change when using PRESS* is that the values remain very low
for OLS, even when y becomes large. However, it is clear from INTMSE that these OLS
fits (for y large) are very poor. This misleading representation of performance in PRESS*
(as well as the drawbacks of PRESS given above) emphasizes that data-dependent
comparisons should be based on several diagnostics (not just one) in order to provide

more confidence as to the true behavior of the fits.

8.C.2 Confidence Intervals

The final method for comparing the performances of the different fitting techniques
is to observe the validity of the respective confidence intervals. The expressions for the
confidence intervals studied here are those given in section 6.D by equation (6.D.2). In
Chapter 6, the average C.I. widths for each fitting technique were compared for three
examples, with the model-robust procedures performing well. To better understand the
effectiveness of the C.I.’s, one needs to determine not only these widths, but also the
coverage probabilities that are obtained by each procedure. This is accomplished through

the 500 Monte Carlo simulations described above, where the fits are based on the optimal

h, and A, given in Table 8.B.1.

142



Table 8.C.2 supplies the diagnostics of interest when forming 95% confidence
intervals for each of the sample size () and misspecification (y) combinations. To
facilitate the study, three X-values have been chosen based on the curves in Figure 8.A.1,
and confidence intervals have been constructed for each of these values. As seen in Table
8.C.2, these values are at the locations x, = 2, 4, and 7. These values have been chosen
due to their locations at points where there is much change in the underlying curves as y is
varied. In fact, these points have been chosen because it should be more difficult to obtain
adequate fits at these locations than at most other locations, especially for large y values.
The diagnostics presented to compare the fits at these points across fitting procedures are
the true y-value (E(y,)) at the particular x,, the (mean) fitted value (across the 500 Monte
Carlo runs) at x,, the (mean) confidence interval width at x,, and the observed coverage
probability of these C.I.’s at x,. The observed coverage probability is the percentage of
the C.I.’s in the 500 simulations that contain the true y-value at x,. Of course, it is desired
to have C.I. widths as small as possible (for precision), while still maintaining close to
95% coverage (for accuracy). Wide intervals with large coverage probabilities, as well as
narrow intervals with small coverage probabilities are indications of a need for improving
the procedures. Based on all of these considerations, many interesting conclusion can be
drawn from the information in Table 8.C.2, and some of these are discussed below.

First, note that the C.I. widths for a given fitting technique (OLS, LLR, MRR1,
MRR2, or PLR) are identical for the locations x,= 4 and 7. This occurs because the
variance portion of the confidence intervals (the hy'h, term in (6.D.2)) happens to be the
same for each of these points (also, the t-value and & used in the C.I.’s for any X-values
are always the same within a given fitting technique). An illustration of this occurrence is
supplied by Figures 6.C.10 (c¢) and 6.C.11 (c) in Chapter 6. These figures show the
variance curves (the same variances as used in the confidence intervals) for the model used
in these simulations with y = .35. For all fitting techniques, the variances are equal at the
locations x,= 4 and 7. With the variance portions equal, the only other values that

determine C.1. widths are the t-value and & For a given fitting technique, these values are
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Table 8.C.2 (a)-(0). Confidence interval diagnostics for the various optimal fits
for the 500 Monte Carlo runs. Values are reported for three X-locations: 2, 4, 7.

(@ [n=6 y=0]

®)

True Mean Mean Obs. Covrg.
Method Xo y Yo C.I. Width | Probability
2 34.5 34.55 15.086 938
OLS 4 245 24.42 13.833 .942
7 39.5 39.31 13.833 948
2 34.5 36.29 79.335 1
LLR 4 245 26.16 80.801 1
7 39.5 41.27 80.801 1
2 34.5 34.58 15.102 938
MRR1 4 245 24 .46 13.831 944
7 39.5 39.34 13.831 946
2 34.5 34.55 15.086 938
MRR2 4 24.5 24.42 13.834 .942
7 39.5 39.31 13.834 .948
2 34.5 34.54 15.111 938
PLR 4 245 24 42 13.848 944
7 39.5 39.31 13.848 .948
[n=6 y=.25]
True Mean Mean Obs. Covrg.
Method Xo y Yo C.I. Width | Probability
2 36.96 34.77 17.432 932
OLS 4 22.33 24.52 15.984 944
7 41.67 39.21 15.984 .920
2 36.96 36.99 125.619 1
LLR 4 22.33 25.08 129.033 1
7 41.67 42.10 129.033 1
2 36.96 3534 18.362 958
MRR1 4 22.33 24.66 16.813 .940
7 41.67 39.95 16.813 .948
2 36.96 34.77 17.432 932
MRR2 4 22.33 24,52 15,985 .944
7 41.67 39.21 15.985 .920
2 36.96 34.77 17473 932
PLR 4 22.33 2451 16.013 .944
7 41.67 39.21 16.013 .920
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Table 8.C.2. (continued)

) [n=6 vy=.5]

d

True Mean Mean Obs. Covrg.
Method Xo y Yo C.I. Width | Probability
2 39.42 35.00 23.280 938
OLS 4 20.17 24.61 21.347 936
7 43.83 39.11 21.347 916
2 39.42 37.74 571.503 1
LLR 4 20.17 23.79 600.149 1
7 43.83 43.06 600.149 1
2 39.42 36.80 38.215 .998
MRR1 4 20.17 24.08 36.987 .990
7 43.83 41.70 36.987 1
2 39.42 35.77 40.957 .988
MRR2 4 20.17 22,96 41.523 .992
7 43.83 40.78 41.523 .990
2 39.42 36.01 142.443 1
PLR 4 20.17 22.41 148.570 1
7 43.83 41.32 148.570 1
[n=6 v=.75]
True Mean Mean Obs. Covrg.
Method Xo y Jo C.I. Width | Probability
2 41.89 35.23 30.866 .956
OLS 4 18.00 2471 28.303 .956
7 46.00 39.02 28.303 942
2 41.89 38.54 8847.372 1
LLR 4 18.00 22.57 9244.707 1
7 46.00 44.14 9244.707 1
2 41.89 38.04 175.033 1
MRR1 4 18.00 22.89 177.014 1
7 46.00 43.37 177.014 1
2 41.89 36,72 214.386 998
MRR2 4 18.00 21.52 226.091 998
7 46.00 4222 226.091 1
2 41.89 36.89 3168.754 1
PLR 4 18.00 21.12 3338.471 1
7 46.00 42.61 3338.471 1
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Table 8.C.2. (continued)

(e) [n=6 y=1]

True Mean Mean Obs. Covrg.
Method Xo -y Yo C.I. Width | Probability
2 44.35 35.45 39.198 978
OLS 4 15.84 24 81 35.944 .972
7 48.16 38.92 35.944 .976
2 44.35 3935 460385 1
LLR 4 15.84 21.41 481998 1
7 48.16 45.24 481998 1
2 44 35 39.06 1953.368 1
MRRI1 4 15.84 21.67 2011.022 1
7 48.16 4476 2011.022 1
2 44.35 37.60 2658.005 1
MRR2 4 15.84 20.26 2841.556 1
7 48.16 43.48 2841.556 1
2 4435 37.73 255239 1
PLR 4 15.84 19.96 269552 1
7 48.16 43.77 269552 1
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Table 8.C.2. (continued)

®

(®

[n=10 y=0]
True Mean Mean Obs. Covrg.
Method Xo y Yo C.I. Width | Probability
2 34.5 34.36 9.661 950
OLS 4 24.5 24.43 8.089 954
7 39.5 39.48 8.089 .950
2 34.5 35.62 12.409 .962
LLR 4 24.5 25.80 12.017 .962
7 39.5 40.85 12,017 .962
2 34.5 34.37 9.648 .950
MRR1 4 245 24.45 8.073 .956
7 39.5 39.50 8.073 .948
2 34.5 34.36 9.661 .950
MRR2 4 24.5 2443 8.089 .954
7 39.5 39.48 8.089 .950
2 34.5 34.36 9.667 952
PLR 4 245 2443 8.090 .956
7 39.5 39.48 8.090 .952
[n=10 y=.25]
True Mean Mean Obs. Covrg.
Method Xo y Yo C.I1. Width | Probability
2 36.96 34.93 10,745 .906
OLS 4 22.33 24.68 8.997 .854
7 41.67 39.24 8.997 820
2 36.96 36.98 13.175 .984
LLR 4 22.33 24.43 12.892 932
7 41.67 41.90 12.892 .982
2 36.96 35.54 10.541 .924
MRRI1 4 22.33 24.60 8.931 .844
7 41.67 40.04 8.931 .890
2 36.96 35.11 10.616 914
MRR2 4 22.33 24.43 9.050 .880
7 41.67 39.47 9.050 .862
2 36.96 34.92 10.754 .902
PLR 4 22.33 24.67 9.000 856
7 41.67 39.24 9.000 820
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Table 8.C.2. (continued)

(h) [n=10 y=.5]

True Mean Mean Obs. Covrg.

Method Xo y Yo C.1. Width | Probability
2 39.42 35.49 13.535 .850
OLS 4 20.17 24.92 11.333 .648
7 43.83 38.99 11.333 .652
2 39.42 38.62 15613 .980
LLR 4 20.17 22.51 15.499 .946
7 43.83 43.23 15.499 .984
2 39.42 37.84 13.745 956
MRR1 4 20.17 23.11 12.920 .878
7 43.83 42.18 12.920 952
2 39.42 37.23 13.373 .926
MRR2 4 20.17 22.29 13.128 .932
7 43.83 41.65 13.128 918
2 39.42 37.49 14.342 946
PLR 4 20.17 21.96 13.909 .946
7 43.83 42.04 13.909 .942

(i) [n=10 y=.75]

True Mean Mean Obs. Covrg.

Method Xo y Yo C.I. Width | Probability
2 41.89 36.06 17.253 852
OLS 4 18.00 25.16 14.446 .488
7 46.00 38.75 14.446 480
2 41.89 40.66 20.133 992
LLR 4 18.00 20.31 20.096 .980
7 46.00 44.99 20.096 .994
2 41.89 40.41 19.168 .986
MRR1 4 18.00 20.56 18.951 970
7 46.00 44.65 18.951 .986
2 41.89 39.83 18.462 974
MRR2 4 18.00 19.85 18.646 .976
7 46.00 44.15 18.646 974
2 41.89 39.86 19.199 978
PLR 4 18.00 19.84 18.780 978
7 46.00 44.20 18.780 976
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Table 8.C.2. (continued)

G [r=10 y=1]

True Mean Mean Obs. Covrg.
Method | x, y Jo C.I. Width | Probability
2 4435 36.63 21423 868
OLS 4 15.84 25.41 17.938 .386
7 48.16 38.51 17.938 .396
2 4435 42,98 27.821 998
LLR 4 15.84 17.99 27.809 .998
7 48.16 47.02 27.809 1
2 44.35 42.98 27.821 .998
MRRI1 4 15.84 17.99 27.809 .998
7 48.16 47.02 27.809 1
2 44.35 42.39 26.046 998
MRR2 4 15.84 17.60 26.243 .996
7 48.16 46.43 26.243 .996
2 44.35 42.41 27.006 998
PLR 4 15.84 17.61 26.564 .996
7 48.16 46.46 26.564 .996
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Table 8.C.2. (continued)

k) [n=19 y=0]

O

True Mean Mean Obs. Covrg.
Method Xo y Yo C.1. Width | Probability
2 34.5 34.44 6.754 .958
OLS 4 24.5 24.47 5.279 .958
7 39.5 39.49 5.279 .958
2 34.5 35.21 7.746 .950
LLR 4 245 25.54 7.394 918
7 39.5 40.51 7.394 924
2 34.5 34.44 6.750 956
MRRI1 4 24.5 24.48 5.274 958
7 39.5 39.50 5.274 .958
2 34.5 34.44 6.754 958
MRR2 4 24.5 24 47 5.279 .958
7 39.5 39.49 5.279 .958
2 345 34.44 6.758 956
PLR 4 24.5 24 47 5.280 .956
7 39.5 39.50 5.280 .956
[n=19 y=.25]
True Mean Mean Obs. Covrg.
Method Xo y Yo C.1. Width | Probability
2 36.96 35.20 7.350 860
OLS 4 22.33 24.80 5.745 620
7 41.67 39.17 5.745 .588
2 36.96 36.82 7.961 .954
LLR 4 22.33 23.99 7.711 .866
7 41.67 41.77 7.711 .956
2 36.96 35.94 7.181 .902
MRRI1 4 22.33 24.43 5.949 .692
7 41.67 40.36 5.949 .866
2 36.96 35.62 7.123 872
MRR2 4 22.33 23.97 6.123 .806
7 41.67 40.01 6.123 .794
2 36.96 35.76 71.324 .884
PLR 4 22.33 23.68 6.580 .868
7 41.67 40.30 6.580 866
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Table 8.C.2. (continued)

(m) [n=19 y=.5]

(n)

True Mean Mean Obs. Covrg.
Method Xo y Yo C.I. Width | Probability
2 39.42 35.96 8.979 722
OLS 4 20.17 25.12 7.018 .146
7 43.83 38.84 7.018 .162
2 39.42 38.64 8.513 .922
LLR 4 20.17 22.00 8.410 .862
7 43.83 43.28 8.410 .962
2 39.42 38.35 8.323 .904
MRR1 4 20.17 22.34 7.989 .810
7 43.83 42.80 7.989 .930
2 39.42 37.86 8.107 870
MRR2 4 20.17 21.59 8.063 .888
7 43.83 42.41 8.063 .898
2 39.42 37.86 8.343 .876
PLR 4 20.17 21.57 8.043 .890
7 43.83 4242 8.043 910
[n=19 y=.75]
True Mean Mean Obs. Covrg.
Method | x, y Yo C.I. Width | Probability
2 41.89 36.71 11.214 386
OLS 4 18.00 25.45 8.765 .010
7 46.00 38.52 8.765 .018
2 41.89 40.72 9.144 908
LLR 4 18.00 19.87 9.109 .866
7 46.00 45.09 9.109 .948
2 4189 40.72 9.144 908
MRR1 4 18.00 19.87 9.109 .866
7 46.00 45.09 9.109 .948
2 41.89 40.17 8.925 .878
MRR2 4 18.00 19.49 8.972 .894
7 46.00 4452 8.972 910
2 41.89 40.16 9.151 .882
PLR 4 18.00 19.48 8.956 .888
7 46.00 44.52 8.956 912
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Table 8.C.2. (continued)

(0 [n=19 y=1]

True Mean Mean Obs. Covrg.
Method | x, y Fo C.1. Width | Probability
2 44.35 37.47 13.763 508
OLS 4 15.84 25.78 10.757 0
7 48.16 38.19 10.757 0
2 44 .35 42.95 9.735 .908
LLR 4 15.84 17.72 9.724 .872
7 48.16 47.04 9.724 .930
2 44.35 42.95 9.735 .908
MRR1 4 15.84 17.72 9.724 872
7 48.16 47.04 9.724 .930
2 44.35 42.52 9.593 882
MRR2 4 15.84 17.40 9.648 .896
7 48.16 46.61 9.648 914
2 44.35 42.52 9.788 .886
PLR 4 15.84 17.40 9.639 .898
7 48.16 46.60 9.639 916
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the same for any x,. Thus, the C.I. widths are identical for x,= 4 and 7. However, since
the true y-values and the (mean) fitted values differ for the different locations, the
coverage probabilities may also differ, and still need to be considered.

Now for the interesting comparisons and conclusions. To begin with, consider the
examples with n = 6. For these examples, the points x,= 2, 4, and 7 are not at locations of
actual data points (as they are for 7 = 10 and 19). There is a serious problem fitting these
points when the misspecification (y) increases. The problem originates with the
nonparametric fitting technique, and is compounded by the fact that » = 6 provides few
data points (little information) with large gaps between them. All of these factors together
result in nonparametric fits that have rather large variances. This is due to the
nonparametric technique placing almost all of the local weight used in obtaining fits on the
actual data points being fit. Thus, different possible data sets from the same underlying
model (with some error) will result in vastly different fits (especially if the errors are
large). This local weighting problem also causes the trace of the nonparametric hat matrix
to get larger (closer to n), and thus n-tr(H) gets closer to zero. Since n-tr(H) is the
degrees of freedom for the t-value in the C.1.’s, this t-value may become extremely large.
The large variances and large t-values cause wide confidence intervals. This phenomenon
is clear in parts (a) and (b) of Table 8.C.2, where there is zero or small misspecification.
In both of these cases, the model-robust procedures use entirely or mostly the parametric
fit of OLS (PLR does this by choosing 4,= 1). The C.I. widths are seen to be small for
OLS, MRR1, MRR2, and PLR, and the resulting coverage probabilities are very close to
95%. Comparing these values to LLR, one sees a tremendous difference. The local fitting
problem mentioned above causes the C.I. widths for LLR to be much too large, and the
resulting coverage probabilities are 100%. For moderate to large misspecification (y = .5,
.75, 1), the model-robust procedures use a little more LLR to achieve better fits. In doing
so, the confidence intervals become much too wide, which is especially evident in PLR,
which uses a complete LLR fit to its residuals. The OLS procedure maintains good

coverage probabilities for larger y’s, but needs rather wide C.1.’s to overcome its poor fits.
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These widths look fine compared to the other procedures, but even so, still need to be
improved upon. More work is needed in this area to find appropriate confidence intervals
for the nonparametric and model-robust techniques when the data available is sparse. Do
note, though, that for small misspecification (part (b) of table), the model-robust
procedures are doing as well as OLS. There is some evidence that the problems
mentioned here are alleviated when moving to a moderate sample size. In other words,
the problem here has more to do with » than it does with the x,-values not being data
points. Some support (albeit for a single data set) is given in Figure 6.D.1. Here the
C.I'’s for all fitting techniques are shown for data from a model equivalent to the model
used for the simulations, with y = .35. Notice that even for the nonparametric LLR
procedure, the confidence interval at any X-location has a reasonable width (somewhere
between 10 and 15). That is, locations between data points show no sign of causing
special problems. Thus, it appears sample size is of more importance than the location
being estimated in terms this C.1. problem.

Parts (f)-(0) of Table 8.C.2 provide the C.I. diagnostics for » = 10 and n = 19.
Clearly, with everything else held constant, the confidence interval widths drop
dramatically from n = 6 to n = 10 and are also quite a bit lower for n = 19 than for n = 10.
This result is expected since more information should provide for more precise estimates.
Now consider the effects of varying v, with other quantities held constant. For y = 0 (no
misspecification with the quadratic model), OLS and the model-robust procedures
perform extremely well for any n, as seen in the small widths and accurate coverage
probabilities of tables (f) and (k). LLR C.I.’s are still a little wide with slightly high
coverage probabilities for » = 10, and for n = 19 are a little wide, but with coverages a
little low. The first observation to be made as y increases is that the OLS coverage
probabilities become too small. For n = 10, this is apparent when y = .5 (where the
coverages are .850, .648, and .652 (in table (h)). For n = 19, the coverage probabilities
drop to .860, .620, and .588 as early as Y = .25. For larger y values, the OLS coverages
are extremely poor, actually equaling O for x,= 4 and 7 when n =19 and y = 1. This is all
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a reflection of the poor OLS fits, as seen in the mean y,’s compared to the true y’s. The
key part of these observations is the fact that OLS may perform poorly for even very small
misspecification. These are precisely the cases where the user would probably be led to
use OLS even after observing the data and possibly performing lack-of-fit tests. Recall
that the model-robust procedures were first conceived as an attempt to overcome this
problem. As seen in table (h) (» =10, y = .5) and in table (I) (7 = 19, y = .25), the model-
robust procedures consistently outperform OLS. This improvement is a little more
obvious in this case for MRR2 and PLR over MRR1. A disappointing coverage
probability appears for MRR1 when » = 19, y = .25, and x,= 4 (in table ()). This 69%
value is clearly the lowest of all model-robust values in Table 8.C.2, and results from a fit
that uses a large portion of OLS (A.= .458) (other than this .69 value, MRR1 performs
just as well as the other model-robust prdcedures). It is also seen in table (1) that for this
scenario, LLR is slightly outperforming the model-robust procedures. The C.I. widths for
LLR are a little larger, but not by a significant amount, and the coverage probabilities are a
bit closer to 95%. Even though this C.I. advantage is present here, one sees from Table
8.B.2 that in terms of INTMSE, LLR is performing noticeably worse than the model-
robust procedures.

The key observation that should be made here is that the model-robust procedures
very rarely are worse in terms of confidence intervals than LLR, and the case pointed out
above is one of these rare occurrences. The following observations lend support to this
contention. For n = 10 and y = .25 (table (g)), LLR has much wider C.1.’s that give
coverage probabilities too large for x,= 2 and 4. For the same case, the model-robust
techniques are slightly low in coverage probability (mid 80’s to low 90’s), but use much
narrower intervals. In moving to y = .5 the model-robust C.I.’s remain narrower than
those for LLR, and are much closer to 95% in coverage (whereas LLR remains too high).
For the larger misspecifications, the model-robust C.I.’s get closer in form to the LLR
intervals and all of these become a little too wide and result in coverage probabilities that

are too high. This phenomenon is similar to what happened for n = 6, but not nearly as
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serious. Still, improvements could be made in the confidence intervals in the future to try
and resolve this problem. These high coverage probabilities are not present when n = 19,
For v in the range of .5 to 1, the model-robust procedures become similar to LLR, and
have coverage probabilities consistently in the upper 80’s to lower 90’s. These coverages
are slightly low, but with the small widths of the C.1.’s here, these C.1.’s are considered to
be quite adequate. Also, do not forget that the points x,= 2, 4, and 7 were specially
picked in areas that should be difficult to fit, so achieving coverages around 90% for these
values is actually a very good result.

In summary, the model-robust confidence intervals have been shown to outperform
OLS in most situations, and to perform just as well as OLS even when there is no
misspecification present. The exception here is for very small sample sizes (7 = 6) and
larger misspecification (y = .5, .75, 1), where LLR and the model-robust procedures give
extremely wide C.1.’s. The OLS procedure looks good in comparison, but it too gives
wider intervals than desired. Possible improvements need to be researched in the future in
order to provide adequate model-robust confidence intervals for these situations (where
the model-robust procedures already greatly outperform OLS based on INTMSE, as seen
in Table 8.B.2). It has also been shown above that except in rare situations, the model-
robust C.1.’s tend to be better (narrower, with adequate coverage probabilities) than LLR,
with LLR often giving intervals that are much too wide. Thus, the model-robust
techniques, which have been established as having better fits based on INTMSE, also
provide adequate confidence intervals across different sample size and misspecification
combinations. References for possible improvements in these confidence intervals (say,

for small sample sizes) are briefly outlined in section 6.D.

8.D Simulation Results for Data-Driven 4 and A Selection

All simulation results presented so far have been based on the optimal values for
bandwidths and mixing parameters. These results are considered the “best” of each fitting

procedure, and show that the model-robust procedures (led by MRR2) have the ability to
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significantly outperform the individual parametric and nonparametric methods. Addressed
in this section is the effectiveness of data-driven methods in choosing # and A such that
these advantages are maintained. To determine the extent to which this is accomplished,
the bandwidths and mixing parameters chosen by the data-driven methods are compared in
value to h, and A,. Also compared are the INTMSE values resulting from the data-driven
fits to the INTMSE values for the optimal fits. Based on the preliminary bandwidth and A
selection study given in Chapter 7, the methods chosen to be analyzed here are PRESS*
and PRESS**.

The setup for the simulations parallels that of the previous sections in this chapter.
The same underlying function is used, with the same misspecification (y) levels and sample
sizes (n =6, 10, 19). Five hundred Monte Carlo runs are executed for each scenario. The
difference now is that 4 and A are determined by data-driven methods, instead of being
defined as the optimal A, and A,. These 4 and A values are averaged over the 500 runs to
give the (mean) bandwidth and (mean) mixing parameter to be associated with each fitting
technique. In addition to the direct comparisons of 4 and A to A, and A,, the INTMSE
values resulting from using the (mean) » and A are compared to the optimal INTMSE

values.

8.D.1 Simulation Results for PRESS*

The first results given here are based on using PRESS* as the data-driven selection
criterion. Recall that PRESS* is just the usual PRESS statistic, penalized for small
bandwidths. As discussed in section 7.3, PRESS* (as a function of 4) may often be
minimized at & = 1 when selecting 4 for the MRR2 or PLR procedures. Examples of this
behavior in PRESS* are shown in Figures 7.C.1 (c) and (d). It has also been pointed out
that for cases such as these, the proper method of selecting # would be to obtain the graph
of PRESS* vs. h and choose # where the curve starts leveling off (or at the first local
minimum). Unfortunately, this is not practical for the 500 Monte Carlo runs, and the

bandwidth chosen for each of these runs is the A chosen through a search routine to find

157



the value corresponding to the minimum PRESS*. The starting values for this search, as
described in section 7.C, are chosen in such a way that the bandwidth corresponding to the
first local minimum of PRESS* should be the one selected. This (usually) alleviates the
problem represented by Figure 7.C.1 (c). However, often PRESS* still results in choosing
a bandwidth of one, which results in poor fits for that particular procedure.

Table 8.D.1 contains the /’s and A’s chosen for each fitting technique for each of
the different simulation examples. Also shown for comparison are the optimal 4, and A,
values (in bold). A final column that has been included for each model-robust procedure
gives the number of times out of the 500 Monte Carlo runs that the bandwidth for the
particular procedure was chosen to be 1 (labeled # #~=1). The numbers in these “# #=1”"
columns provide the most obvious conclusion about PRESS*: the bandwidths for MRR2
and PLR are chosen much too often to be one, and the bandwidth is never chosen to be
one for MRR1. This phenomenon has two main implications. The “good news”
implication is that for the small misspecification cases (y = 0 or sometimes .25) where the
optimal bandwidths are large for MRR2 and PLR, PRESS* does an adequate job of
selecting 4. This is seen in any row of Table 8.D.1 with y = 0. To measure, in terms of
fitting performance, the closeness of # and A chosen by PRESS* to the optimal A, and A,,
Table 8.D.2 displays the INTMSE for 4 and A along with the optimal INTMSE. Note for
v = 0 that the model-robust fits based on PRESS* are close to optimal. (It appears that
there are discrepancies in A for these cases for MRR2: A larger than A,; however, A = 1
gives a nearly constant linear fit through zero for the nonparametric residual fit, and any
proportion of this added back to the parametric fit causes no real change to the parametric
fit). The A and A chosen by PRESS* for MRR1 are also adequate for y = 0, because A is
chosen close to the small optimal value (close to zero). The bandwidth is chosen a little
large for MRR1 (actually for LLR), but A = 0 compensates for this in MRR1. LLR is not
compensated, and the larger resulting INTMSE values are apparent in Table 8.D.2,
especially for the (n = 6, y = 0 or .25) cases. Even with this being the case for LLR,
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Table 8.D.1. Bandwidths and mixing parameters chosen by PRESS* for the model-
robust fitting procedures for 500 Monte Carlo simulations. Optimal A, and A, are in bold.
The column “# A=1” gives the number of times the bandwidth was chosen to be 1. (The A
for MRR1 is also A for LLR).

MRRI1 MRR2 PLR
n Y h A # h=1 h A # h=1 h # h=1
0 259 046 0 937 515 456 781 310
.146 020 1 016 1
25 270 060 0 943 518 460 801 324
.139 .256 1 016 1
6 5 299 082 0 969 A70 478 852 359
126 656 .140 .754 .140
75 335 .090 0 986 387 490 905 405
115 851 120 890 120
1 369 098 0 996 304 497 944 444
.108 924 110 939 .110
0 185 075 0 898 434 432 741 279
.130 013 1 016 1
25 188 068 0 898 459 433 768 293
122 .301 226 478 1
10 5 200 062 0 886 485 428 788 302
.105 751 118 884 .118
75 223 056 0 870 486 421 794 323
091 946 .095 996 .095
1 261 051 0 851 489 412 807 349
082 1 .083 1 .083
0 145 065 0 886 404 430 750 294
113 009 1 031 1
25 140 161 0 722 477 333 606 217
.104 458 .157 .739 .158
19 5 125 452 0 432 693 170 368 99
.089 892 .099 996 .099
75 110 756 0 185 866 39 173 20
077 1 .080 1 .080
1 .098 910 0 117 944 9 114 3
068 1 069 1 070
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Table 8.D.2. INTMSE values for fits based on PRESS* from 500 Monte Carlo runs.
Optimal INTMSE values are in bold.

n Y OLS LLR MRRI1 MRR2 PLR
0 6.384 42.170 6.403 6.387 6.398

6.384 11.789 6.382 6.384 6.391

25 9.295 45.198 9.336 9.297 9.306

9,295 12.695 8.985 9,295 9.301

6 5 18.028 58.289 18.136 18.027 18.031
18.028 15.220 14.143 13.596 13.659

75 32.583 78.839 32.730 32.579 32.576

32.583 19.190 19.293 18.229 17.907

1 52.959 105.466 53.169 52.952 52.941

52.959 24.630 25.127 23.915 23.408

0 4.105 7.926 4.117 4.106 4.119

4.105 7.689 4.104 4.105 4.110

25 6.818 9.535 6.688 6.820 6.826

6.818 8.243 6.300 6.490 6.825

10 5 14.956 14.427 14.530 14.960 14.961
14.956 9,456 9.262 8.884 8.867

5 28.520 25.556 27.860 28.527 28.523

28.520 10.721 10.819 10.403 10.450

1 47.509 61.576 47.116 47.517 47.514

47.509 11.883 11.883 11.675 11.722

0 2.314 5.589 2.322 2315 2.737

2.314 4.622 2.314 2.314 2.316

25 4.973 5.557 4.609 4.969 5917

4.973 4.971 4.104 4.041 4.080

19 5 12.951 6.348 8.390 12.542 12.738
12.951 5.695 5.680 5.348 5.381

75 26.247 7.230 9.331 15.558 13.287

26.247 6.430 6.430 6.251 6.283

1 44.861 8.067 9.261 12.234 10.881

44.861 7.089 7.089 6.979 7.010
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PRESS* does perform well for the model-robust procedures when the misspecification
present is low (y = 0 and sometimes y = .25).

The negative implication of the tendency of PRESS* to result in #’s = 1 is that for
cases of misspecification in the model, where a small optimal bandwidth is desired, the
bandwidths chosen by PRESS* are much too large for MRR2 and PLR. This discrepancy
is clear from any case in Table 8.D.1 when A, is not one. The INTMSE’s in Table 8.D.2
resulting from these large A’s are greatly inflated, and the benefits of using the model-
robust procedures are lost. For example, notice the drastic loss in performance for the
case where n = 10 and y = .5. Thus, MRR2 and PLR are obviously hampered by using
these selected A’s from PRESS*. In observing the results for MRR1, one sees that this
procedure is adversely affected also. The A’s are chosen consistently large, but the main
problem is with the selection of extremely small A’s (until y = .5 for » = 19). Recall that
PRESS* is penalizing for variance, and this characteristic affects MRR1 by choosing a
small A which prevents much of the (more variable) LLR fit from being used. The
consistently high bandwidths also cause increases in the INTMSE of LLR, as seen in Table
8.D.2.

For n=19, the model-robust procedures perform a little better, but still suffer from
bandwidths that are too large (still have 4’s =1 for MRR2 and PLR). The model-robust
procedures are now quite a bit better than OLS, but still are not as good as LLR. MRR1
shows the most improvement for the model-robust procedures, but still needs to be
improved upon even more.

Thus, the conclusions reached from these observations is that the #’s and A’s
chosen through the minimization of PRESS* are very inadequate, except for the case of
no misspecification. So if using PRESS*, one would definitely need to use the technique
of graphing PRESS* as a function of 4 and selecting the proper bandwidth according to
the slope of this plot. However, it is conjectured here that the #’s and A’s chosen by
PRESS* would still be inadequate. This statement is supported by the MRR1 results

given above (7’s too large even without 4’s equal 1, and A’s much too small), and by the
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preliminary “single data set” examples in Chapter 7. A possible alternative to PRESS* is

PRESS**, which is studied now to determine if it provides sufficient improvements.

8.D.2 Simulation Results for PRESS*#*

Banawidth, A, INTMSE

Recall that PRESS** (defined in equation 3.B.22) is designed to control (reduce)
the size of 4 chosen by PRESS*. This is accomplished by a penalty term for large 4 being
added to the denominator of PRESS*. It is hoped that PRESS** would prevent selection
of h =1 when a smaller bandwidth is desired. Tables 8.D.3 and 8.D.4 supply the results of
using PRESS** as the data-driven selection criterion for the simulation examples being
studied. Table 8.D.3 contains the values of the selected 4’s and A’s (with optimal values
in bold), along with the number of A#’s chosen to be one. Table 8.D.4 contains the
INTMSE’s for the chosen bandwidths and mixing parameters, and the INTMSE’s for the
optimal fits (in bold). These values can be used to measure how “close” the chosen 4’s
and A’s are to A, and A, in terms of fitting performance.

The first observance from Table 8.D.3 is the major reduction (from PRESS*) in
the number of bandwidths chosen to be one for MRR2 and PLR. Except for the cases
(=19, y = 0 or .25) the largest number of bandwidths chosen to be one (out of the 500
runs) for any particular case is 23 (which is only 4.6% of the time). This means that in
practice, one can be very confident that # will not be chosen as 1 when using PRESS**.
Unfortunately, there is one problem with this tendency to shy away from2=1. Fory=0
(no misspecification), the optimal bandwidth should be one for MRR2 and PLR (4, should
also be one in a few cases where y =.25). As seen in Table 8.D.3, the chosen A values are
far below one for these cases. This would not be a problem at all, though, if A were
chosen to be close to zero for these cases (giving OLS). Unfortunately, this does not
happen, and A is actually chosen rather large for the small y cases (seen in Table 8.D.3).

These large A values result from PRESS** penalizing for bias, and consequently desiring
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Table 8.D.3. Bandwidths and mixing parameters chosen by PRESS** for the model-
robust fitting procedures for 500 Monte Carlo simulations. Optimal 4, and A, are in bold.
The column “# A=1” gives the number of times the bandwidth was chosen to be 1. (The A
for MRR1 is also A for LLR).

MRR1 MRR2 PLR
n Y h A #h=1 h A # h=1 h # h=1
0 191 647 0 145 863 0 118 0
.146 .020 1 016 1
25 201 625 0 .140 824 0 127 0
139 256 1 016 1
6 5 229 590 0 132 747 0 126 0
.126 .656 .140 754 .140
75 270 566 0 127 692 0 125 0
115 851 120 890 .120
1 309 440 0 125 661 0 123 0
.108 924 .110 939 .110
0 156 378 0 138 755 14 123 5
.130 013 1 016 1
25 154 432 0 141 784 18 131 8
122 .301 226 478 1
10 5 149 555 0 133 844 14 139 15
.105 751 118 884 118
5 143 665 0 121 878 10 139 16
.091 946 .095 996 .095
1 136 742 0 109 899 5 116 5
082 1 .083 1 083
0 128 338 0 486 670 205 376 110
113 .009 1 031 1
25 122 497 0 338 765 123 268 63
.104 458 157 739 .158
19 5 108 782 0 144 908 23 123 5
089 892 099 996 .099
75 093 928 0 089 954 0 089 0
077 1 .080 1 .080
1 082 972 0 078 976 0 079 0
068 1 .069 1 070
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Table 8.D.4. INTMSE values for fits based on PRESS** from 500 Monte Carlo runs.
Optimal INTMSE values are in bold.

n Y OLS LLR MRR1 MRR2 PLR
0 6.384 16.448 10.477 8.597 10.453

6.384 11.789 6.382 6.384 6.391

25 9.295 18.814 12.656 9.778 11.029

9.295 12.695 8.985 9.295 9.301

6 5 18.028 28.350 20.728 13.439 13.669
18.028 15.220 14.143 13.596 13.659

75 32.583 50.968 37.320 20.055 18.015

32.583 19.190 19.293 18.229 17.907

1 52.959 80.155 57.096 29.787 23.969

52.959 24.630 25.127 23.915 23.408

0 4.105 7.826 4.621 5.197 6.592

4.105 7.689 4.104 4.105 4.110

25 6.818 8.234 6.321 6.358 7.027

6.818 8.243 6.300 6.490 6.825

10 5 14.956 10.048 10.529 9.321 9.275
14.956 9.456 9.262 8.884 8.867

75 28.520 12.733 15.498 12.569 13.251

28.520 10.721 10.819 10.403 10.450

1 47.509 16.024 20.672 15.469 14.854

47.509 11.883 11.883 11.675 11.722

0 2314 5.079 2.614 2.322 2.756

2.314 4.622 2.314 2.314 2.316

25 4973 5.078 4.190 4750 5.095

4.973 4.971 4.104 4.041 4.080

19 5 12.951 5.691 5.839 6.724 5.856
12.951 5.695 5.680 5.348 5.381

75 26.247 6.435 6.590 6.675 6.480

26.247 6.430 6.430 6.251 6.283

1 44861 7.089 7.222 7.441 7.278

44.861 7.089 7.089 6.979 7.010
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more of the nonparametric fit to be used. This problem with A (as with the problem of A
too small from PRESS*) is not really addressed in the current work, and is left for
possible future research. This is done for two reasons. First, most of the A values chosen
by PRESS** are indeed adequate (for larger » and some misspecification present).
Secondly, if the bandwidth could be improved upon (made closer to 1) (which may effect
A at the same time), the whole problem could be eliminated and it would not matter what
A was chosen to be. Thus, the discussion here centers on the bandwidth. For the large
sample size case (n = 19), PRESS** does result in (mean) bandwidths of .486 and .376 (at
y = 0). These h’s are large enough to give close to optimal fits, as seen in the INTMSE
values of Table 8.D.4 for (n = 19, y = 0). For the (n = 19, y = .25) case, the (mean)
bandwidths remain large for MRR2 and PLR (with “# A=1" of 123 and 63, respectively),
but they remain a little oo large. However, the optimal bandwidths are somewhat large
also (relative to higher y cases), and the resulting fits from PRESS** are not too far from
optimal. The MRR2 INTMSE is smaller than those for OLS or LLR, thus maintaining the
beneficial properties of this model-robust procedure. Thus, for larger sample sizes it
appears that the model-robust procedures are not overly impacted by these discrepancies
in bandwidth selection. But what about small to moderate sample sizes? For the cases of
n = 6 and 10 where A= 1 for MRR2 and PLR, the chosen bandwidths are .145, .140,
118, .127, .138, .123, and .131, as seen in various locations in Table 8.D.3. This appears
to be a huge misspecification that would result in fits far from optimal. However, as seen
in Table 8.D.4 for the cases (n = 6, y =0 or .25) and (n = 10, y = 0 or .25 for PLR), the
fits are actually not greatly different from optimal. To get an idea of a fit that would be
considered “greatly different” from optimal, one only needs to look at Table 8.D.2 (the
PRESS* INTMSE table). Fits such as those for LLR, MRR1, MRR2, and PLR for the
case (n = 10, y = .75) (or even (n = 10, y = .5)) are what is meant by this expression.
Differences in INTMSE’s like “28.527 vs. 10.403” represent extremely poor fits, and
differences like “14.960 vs. 8.884” also show significant problems. (These numbers are

from MRR2 for the cases (n = 10, y = .75) and (n = 10, y = .5), respectively). Now, for
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the PRESS** results, the largest difference in INTMSE’s for MRR2 or PLR is for PLR in
the case (n = 6, y = 0). Here the difference in values is 10.453 vs. the optimal 6.391. This
is the only location in the entire Table 8.D.4 where one of the MRR2 or PLR fits (based
on PRESS**) might be considered to be rather poor, but still it probably should not be
considered “greatly different” from optimal. (The MRR2 fit for (=6, y = 1) is a bit away
from its optimum, but it still strongly outperforms either OLS or LLR). The MRR2 for
the (n = 6, y = 0) case is actually not too bad at all and is much better than LLR. In this
situation, MRR2 uses a significant portion of the LLR residual fit, but the underlying
adequate OLS fit keeps the INTMSE at a somewhat low value. This is a case where
fitting the residuals (containing less structure), rather than the data, with the
nonparametric fit is beneficial. This is illustrated by the difference in INTMSE’s of MRR2
(8.597) compared to MRR1 (10.477). For all cases shown in Table 8.D.4, other than
(=6, y=0), the INTMSE values for the fits based on PRESS** remain relatively close to
optimal.

The following discussion provides the key points to be made about the fits
resulting from using PRESS** as the selector of # and A. First, nothing as of yet has been
said about the performance of MRR1. While the bandwidths are now somewhat smaller
than they were for PRESS* (which were quite a bit too large), they are still consistently a
little large. Also, the A’s chosen for MRR1 are somewhat erratic, especially for smaller
sample sizes. These characteristics result in many of the MRRI1 fits being quite poor when
based on PRESS**, as seen in the INTMSE values of Table 8.D.4. MRR1 does perform
very well for n = 19, but the problems for smaller » damage the reliability of MRR1 in
terms of performing well in a general setting. However, the most important point to be
made here is about the good, consistent performance of MRR2 and PLR when based on
PRESS**. Notice from Table 8.D.4 that for the no misspecification examples, MRR2 and
PLR have INTMSE values a little larger than OLS, but they are not far off (the possible
exception being PLR for (n = 6, y = 0 discussed above), and are much better than LLR.
Also, for large misspecification examples, the MRR2 and PLR INTMSE’s are just a little
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larger than those for LLR for the cases (n = 19 and y = .5, .75, or 1), and are lower
everywhere else. Also, the INTMSE’s are much lower than those for OLS, which fits
poorly. For small to moderate misspecification, MRR2 and PLR often give results much
better than either OLS or LLR, thus establishing the advantages of these model-robust
procedures over the individual parametric and nonparametric procedures. In conclusion
then, if the user does not know how much model misspecification may be present in a
certain situation, and wants to protect against all possibilities, then using MRR2 (or PLR)
based on 4 and A from PRESS** is the appropriate method to use. This would provide
adequate fits at either extreme of misspecification, and would perform better than either
OLS or LLR for anything in between. If OLS were used, then large problems could arise
if there happens to be misspecifications present. A similar statement applies for using
LLR, where much performance is lost if there happens to be no misspecification present.
These considerations are precisely why model-robust methods have been developed in this
work, and the previous discussion above shows that PRESS** can make the methods

work in practice.

Confidence Intervals

The final concern as to the actual effectiveness of using PRESS** as the selection
criterion is whether or not adequate confidence intervals can be obtained for the various
fitting techniques. Of main interest at this point are the performances of MRR2 and PLR,
which have been shown above to have the best potential for providing adequate fits based
on PRESS** Table 8.D.5 contains the 95% confidence interval diagnostics for the
simulations being studied, where the fits of the various procedures are based on /# and A
chosen by PRESS**. The information in Table 8.D.5 parallels that of Table 8.C.2 for the
optimal fits. Namely, the three x, locations 2, 4, and 7 are selected to be studied since
they are located at points where there is much change in the underlying curve as y is
varied. The diagnostics reported at each of these x,’s are the true y-value (E(y,)), the
(mean) fitted value (across the 500 Monte Carlo runs), the (mean) C.I. width, and
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Table 8.D.S (a)-(0). Confidence interval diagnostics for the various fits based on
PRESS** for the 500 Monte Carlo runs.

(@ [n=6 y=0]

(b)

True Mean Mean Obs. Covrg.
Method X, y Yo C.I. Width | Probability
2 34.5 34.55 15.086 938
OLS 4 24.5 24.42 13.833 942
7 39.5 39.31 13.833 .948
2 34.5 36.78 39.290 1
LLR 4 245 27.30 37.313 1
7 39.5 42.38 37.313 1
2 34.5 36.00 27.210 .990
MRR1 4 24.5 26.22 25.437 .986
7 39.5 41.27 25.437 .996
2 34.5 34.51 29.819 980
MRR2 4 24.5 24.32 30.929 988
7 39.5 39.41 30.929 .992
2 34.5 34.48 9.64 x 102 996
PLR 4 24.5 24.29 1.02 x 10** .990
7 39.5 39.39 1.02 x 10* .996
[n=6 v=.25]
True Mean Mean Obs. Covrg.
Method Xo y Yo C.1. Width | Probability
2 36.96 34.77 17.432 932
OLS 4 22.33 24.52 15.984 .944
7 41.67 39.21 15.984 .920
2 36.96 37.32 40.720 1
LLR 4 22.33 27.19 38.030 1
7 41.67 43.07 38.030 1
2 36.96 36.35 28.734 996
MRR1 4 22.33 26.13 26.499 982
7 41.67 41.56 26.499 .998
2 36.96 35.14 35.901 988
MRR2 4 22.33 23.55 37.081 986
7 41.67 40.19 37.081 980
2 36.96 35.27 3.77.x 10 996
PLR 4 22.33 23.28 3.99 x 10 992
7 41.67 40.43 3.99 x 102 .990
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Table 8.D.5. (continued)

©

(d)

[n=6 vy=.5]
True Mean Mean Obs. Covrg.
Method Xo y Yo C.I. Width | Probability
2 39.42 35.00 23.280 938
OLS 4 20.17 24.61 21.347 .936
7 43.83 39.11 21.347 916
2 39.42 37.85 44 462 1
LLR 4 20.17 27.91 39.592 1
7 43.83 44.10 39.592 1
2 39.42 36.66 33.445 988
MRR1 4 20.17 26.58 29.725 978
7 43.83 42.03 29.725 992
2 39.42 35.74 46.033 990
MRR2 4 20.17 22.88 46.989 992
7 43.83 40.86 46.989 .990
2 39.42 36.07 1.36 x 102 1
PLR 4 20.17 22.24 1.44 x 102 .998
7 43.83 4148 1.44 x 102 .998
[n=6 vy=.75]
True Mean Mean Obs. Covrg.
Method Xo y Yo C.I. Width | Probability
2 41.89 35.23 30.866 956
OLS 4 18.00 24.71 28.303 956
7 46.00 39.02 28.303 .942
2 41.89 38.26 49.799 1
LLR 4 18.00 29.36 41.623 .996
7 46.00 45.24 41.623 1
2 41 89 36.95 40.221 986
MRR1 4 18.00 27.45 34.494 970
7 46.00 42.47 34.494 988
2 41.89 36.33 57.829 998
MRR2 4 18.00 22.29 58.487 .994
7 46.00 41.45 58.487 .996
2 41.89 36.87 1,92 x 10% 1
PLR 4 18.00 21.18 2.03 x 102 1
7 46.00 42.54 2.03 x 102 1
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Table 8.D.5. (continued)

(e) [n=6 y=1]

True Mean Mean Obs. Covrg.
Method | x, y Jo C.I. Width | Probability
2 44.35 35.45 39.198 978
OLS 4 15.84 24 .81 35.944 .972
7 48.16 38.92 35.944 976
2 44.35 38.52 56.505 1
LLR 4 15.84 30.87 44,894 .980
7 48.16 46.24 44.894 1
2 44.35 36.87 46.425 992
MRR1 4 15.84 27.48 39.776 .976
7 48.16 42.07 39.776 .992
2 4435 36.90 67.659 1
MRR2 4 15.84 21.73 67.794 .998
7 48.16 42.01 67.794 1
2 44.35 37.68 2111.801 1
PLR 4 15.84 20.12 2222.729 1
7 48.16 43.61 2222.729 1
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Table 8.D.5. (continued)

®

®

[n=10 y=0]
True Mean Mean Obs. Covrg.
Method Xo y Yo C.1. Width | Probability
2 34.5 34.36 9.661 950
OLS 4 24.5 2443 8.089 .954
7 39.5 39.48 8.089 .950
2 34.5 35.76 12.593 986
LLR 4 24.5 26.51 11.462 .946
7 39.5 41.54 11.462 934
2 34.5 34.88 9.775 940
MRR1 4 245 25.06 8.435 946
7 39.5 40.06 ° 8.435 920
2 34.5 34.47 10.303 942
MRR2 4 245 24.42 9721 938
7 39.5 39.53 9.721 952
2 34.5 34.59 2.81 x 10% 964
PLR 4 24.5 24.43 2.81 x 10% 950
7 39.5 39.62 2.81 x 102 .956
[n=10 y=.25]
True Mean Mean Obs. Covrg.
Method Xo y Yo C.I. Width | Probability
2 36.96 34.93 10.745 .906
OLS 4 22.33 24.68 8.997 854
7 41.67 39.24 8.997 .820
2 36.96 36.98 13.303 986
LLR 4 22.33 25.51 12.167 846
7 41.67 42.43 12.167 .984
2 36.96 35.88 10.791 942
MRR1 4 22.33 24.65 9.394 840
7 41.67 40.58 9.394 .906
2 36.96 35.98 11.424 920
MRR2 4 22.33 23.38 10.886 916
7 41.67 40.58 10.886 914
2 36.96 36.28 4.16 x 10% 954
PLR 4 22.33 23.12 4.16 x 102 958
7 41.67 40.95 4.16 x 10%° 956
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Table 8.D.5. (continued)

(h) [n=10 y=.5]

True Mean Mean Obs. Covrg.

Method | x, y Yo C.I. Width | Probability
2 39.42 35.49 13.535 850
OLS 4 20.17 24.92 11.333 .648
7 43.83 38.99 11.333 .652
2 39.42 38.25 15.211 .987
LLR 4 20.17 24.35 14.060 .796
7 43.83 43.38 14.060 .984
2 39.42 37.14 13.364 .926
MRRI1 4 20.17 23.98 11911 .744
7 43.83 41.46 11911 .864
2 39.42 37.56 14.039 .932
MRR2 4 20.17 22,07 13.619 .900
7 43.83 41.90 13.619 910
2 39.42 37.82 17.037 .962
PLR 4 20.17 21.72 16.519 934
7 43.83 42.36 16.519 .938

@O [n=10 y=.75]

True Mean Mean Obs. Covrg.

Method Xo y Yo C.I. Width | Probability
2 41.89 36,06 17.253 852
OLS 4 18.00 25.16 14.446 488
7 46.00 38.75 14.446 480
2 41.89 39.63 17.914 .982
LLR 4 18.00 23.01 16.753 .800
7 46.00 44.47 16.753 986
2 41.89 38.59 16.644 942
MRR1 4 18.00 22.96 15.189 740
7 46.00 42.64 15.189 876
2 41.89 39.21 17.270 .958
MRR2 4 18.00 20.59 16,989 .938
7 46.00 43.40 16.989 934
2 41.89 39.40 18.884 .970
PLR 4 18.00 20.26 18.307 .942
7 46.00 43.76 18.307 .934
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Table 8.D.5. (continued)

0 [n=10 y=1]

True Mean Mean Obs. Covrg.

Method X, y Yo C.I. Width | Probability
2 4435 36.63 21.423 .868
OLS 4 15.84 25.41 17.938 .386
7 48.16 38.51 17.938 .396
2 4435 41.14 21.041 986
LLR 4 15.84 21.46 19.946 .838
7 48.16 45.72 19.946 .992
2 44.35 40.18 20.186 .968
MRR1 4 15.84 21.64 18.791 .794
7 48.16 43.99 18.791 .888
2 4435 40.87 20.778 978
MRR2 4 15.84 19.12 20.574 .964
7 48.16 44 .86 20.574 .956
2 44 35 41.13 21.932 .984
PLR 4 15.84 18.70 21.342 972
7 48.16 45.31 21.342 .962
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Table 8.D.5. (continued)

(k) [n=19 y=0]

)

True Mean Mean Obs. Covrg.
Method X, y Yo C.I. Width | Probability
2 34.5 34.44 6.754 958
OLS 4 24.5 24 .47 5.279 958
7 39.5 39.49 5.279 958
2 34.5 35.27 7.739 930
LLR 4 245 25.89 7.067 862
7 39.5 40.88 7.067 .868
2 34.5 34.66 6.734 944
MRRI1 4 24.5 24.82 5.538 914
7 39.5 39.82 5.538 926
2 34.5 34.39 6.803 920
MRR2 4 24.5 24.47 5.839 924
7 39.5 39.47 5.839 936
2 34.5 34.37 2.51 x 102 918
PLR 4 24.5 24.46 2.51 x 102 .922
7 39.5 39.45 2.51 x 102 .930
[n=19 vy=.25]
True Mean Mean Obs. Covrg.
Method Xo 'y Yo C.I. Width | Probability
2 36.96 35.20 7.350 860
OLS 4 22.33 24.80 5.745 620
7 41.67 39.17 5.745 .588
2 36.96 36.87 7.906 948
LLR 4 22.33 24.55 7.305 720
7 41.67 42.02 7.305 954
2 36.96 36.12 7.182 .904
MRR1 4 22.33 24.29 6.101 692
7 41.67 40.66 6.101 .808
2 36.96 35.88 7.174 866
MRR2 4 22.33 23.62 6.386 784
7 41.67 40.34 6.386 770
2 36.96 36.00 1.19 x 10% 878
PLR 4 22.33 23.41 1.19 x 102 810
7 41.67 40.54 1.19 x 10% .800
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Table 8.D.5. (continued)

(m) [n=19 y=.5]

@

True Mean Mean Obs. Covrg.
Method | x, y Jo C.I. Width | Probability
2 39.42 35.96 8.979 722
OLS 4 20.17 25.12 7.018 146
7 43.83 38.84 7.018 162
2 39.42 38.58 8.351 918
LLR 4 20.17 22.73 7.931 682
7 43.83 43.27 7.931 944
2 39.42 38.12 8.098 882
MRR1 4 20.17 22.94 7.359 .588
7 43.83 42.43 7.359 784
2 39.42 37.71 7.961 826
MRR2 4 20.17 22.00 7.542 748
7 43.83 42.00 7.542 758
2 39.42 37.92 2.95 x 10%° 850
PLR 4 20.17 21.74 2.95 x 10% 818
7 43.83 42.26 2.95 x 10%° 818
[n=19 y=.75]
True Mean Mean Obs. Covrg.
Method Xo y Yo C.I. Width | Probability
2 4189 36.71 11.214 586
OLS 4 18.00 25.45 8.765 010
7 46.00 38.52 8.765 018
2 41,89 40.51 8.924 892
LLR 4 18.00 20.65 8.677 722
7 46.00 44 85 8.677 934
2 41.89 40.28 8.905 884
MRR1 4 18.00 20.88 8.504 670
7 46.00 4445 8.504 870
2 41.89 39.90 8.716 834
MRR2 4 18.00 20.01 8.544 804
7 46.00 44.00 8.544 812
2 41.89 40.02 8.909 854
PLR 4 18.00 19.79 8.620 836
7 46.00 4421 8.620 854
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Table 8.D.5. (continued)

(0 [n=19 y=1]

True Mean Mean Obs. Covrg.
Method Xo y Yo C.1. Width | Probability
2 44,35 37.47 13.763 508
OLS 4 15.84 25.78 10.757 0
7 48.16 38.19 10.757 0
2 44.35 42,61 9.529 882
LLR 4 15.84 18.48 9.394 766
7 48.16 46.67 9.394 920
2 4435 42.49 9.566 .872
MRR1 4 15.84 18.64 9.356 .750
7 48.16 46.46 9.356 .882
2 4435 42.15 9.407 -840
MRR2 4 15.84 17.95 9.348 .836
7 48.16 46.07 9.348 .840
2 44.35 4223 9.573 .856
PLR 4 15.84 17.79 9.348 866
7 48.16 46.22 9.348 .866
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observed coverage probabilities of these C.1.’s. Several conclusions can be derived from
this table and are described below.

First, note that often the (mean) C.I. width for PLR is reported as an extremely
large number (9.64 x 107 for example). These values should not be interpreted to mean
that PLR will usually result in extremely wide C.1’s. The actual cause of these large
values is the tendency on rare occasions for PLR (based on PRESS**) to select a very
small bandwidth (such as .035 or .05). This results in small (close to zero) degrees of
freedom (n — tr(H)) for the t-value in the confidence interval, which results in a huge t-
value, which leads to wide C.1.’s. As mentioned above, this is a rare occurrence, but even
getting just one of these values out of the 500 simulations would result in a large (mean)
width. Thus, the large C.I. width values for PLR in Table 8.D.5 are really misleading, and
one should keep in mind that most of the 500 individual widths are not so large. In several
cases (tables (h), (i), (j), (n), (0)), no extremely low bandwidths were chosen for PLR, and
the (mean) width values are accurate. ~Whether or not the (mean) C.I. width
measurements are accurate, the observed coverage probability values can be interpreted as
being accurate. This is because the individual huge C.I. width problem only occurs in rare
data sets, and the coverage probabilities are barely affected, if at all.

For comparisons of the fitting techniques, consider first the small sample cases (n =
6), where the x,-values are not actual data points. Recall for the optimal fits (data in Table
8.C.2), the C.I.’s became much too wide for y > .5, and coverage probabilities (except for
OLS) were around .99 or larger. For OLS, these coverages were much more adequate,
but the C.I. width was still wider than desired. For y = 0 or .25 (for n = 6), the robust
procedures performed very well by selecting fits close to OLS (gave small widths and
accurate coverages). Similar results (for » = 6) hold for using PRESS** to choose 4 and
A, except that the C.I.’s are too wide even for small y values. For these small y, the
coverage probabilities are around .99 on average, compared to .94 to .95 for the optimal
fits. This drop in accuracy is due to the model-robust procedures based on PRESS**

selecting more of the LLR fit than the OLS fit, as was pointed out in the previous
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subsection. This results in much larger variances, and thus the wider CI’s. The
conclusion here (for small sample sizes) is that, while the fits are fine, improved methods
for confidence intervals are needed. This was also the conclusion from the optimal fits.

Now consider the cases of moderate to larger sample sizes (n = 10, 19). For these
cases, the performance of PRESS** is very adequate and the results look promising for
this selection criterion. In fact, for n = 10 the fits from using PRESS** often provide
confidence intervals that have even better properties than the optimal fits. This is seen in
the (g) tables of Tables 8.C.2 and 8.D.5 for y = .25, where MRR2 gives slightly higher
coverage probabilities that are closer to .95 and PLR gives much more accurate coverages
(~ .95 compared to coverages ranging from .82 to .90 for optimal fits). The greatest
improvement, though, can be found in the (i) and (j) tables for large y values. For these
cases, PRESS** yields C.I’s that are significantly narrower and have much better
coverage probabilities, especially for the model-robust procedures. For example, the
coverage probabilities at y = 1 for the model-robust procedures based on optimal fits were
all larger than .99. These values range from .956 to .984 for MRR2 and PLR from fits
based on PRESS**. The C.I. widths drop from around 26.5 on average (for optimal fits)
to around 21.0 on average (for PRESS** fits). MRRI1 confidence intervals are not
consistently as good as those of MRR2 and PLR. These MRRI1 intervals from PRESS**
still show improved behavior over those from optimal fits, but tend to often have
somewhat low coverage probabilities at x, = 4 and 7. This property of MRR1, coupled
with the problem of PLR on occasion selecting a bandwidth too small (resulting in wide
C.1’s), leads to the conclusion that MRR2 based on PRESS** as the selection criterion
seems to be the most promising model-robust technique to be used in practice (at least
based on » = 10).

For n = 19, the C.1. coverage probabilities for the fitting technique based on
PRESS** are always a little lower than those based on the optimal # and A values, and
thus a little further from .95. This is illustrated in any of tables (k)-(0) of Tables 8.C.2 and

8.D.5. It is important to observe, however, that all of the coverage probabilities are still
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very close to those from the optimal fits, along with C.I. widths being very close (slightly
wider for y = 0, .25, and noticeably narrower for y = .5, .75, 1). Observing the PRESS**-
based MRR2 results more closely (since this is the most advantageous technique thus far),
one sees that most of the coverage probabilities range from the upper 70%’s to the lower
mid 90%’s. These values are only slightly below the values for the optimal fits for MRR2,
and still provide “acceptable” coverages, especially considering again that the x,-values
were chosen at locations difficult to fit. The two coverage probabilities of .748 and .758
in the case y = .5 (for n = 19 for PRESS**) may be considered “undesirably” low, but they
are not unacceptable (as are values such as .146 and .162 for OLS). With these being the
lowest coverages for MRR2, it appears that MRR2 based on PRESS** also performs well
enough for n = 19 to be useful in practice. This is an important statement because it has
been shown in prior discussions that using PRESS** (in particular, for MRR2) maintains
the benefits of the fits of the model-robust procedures over the individual OLS and LLR
fits. These benefits are also apparent here. Clearly from tables (1)-(0), as the
misspecification increases, the OLS coverage probabilities become extremely low
(approaching zero). The model-robust procedures avoid this problem and hold a distinct
advantage over OLS. The benefits over LLR are not as clear for this case of n = 19,
where LLR provides mostly adequate results. In fact, LLR only shows one slight
problem: when fitting to x,= 4, the coverage probabilities are sometimes rather low (.720,
.682, .722). The model-robust procedures improve upon this situation by giving
consistently higher coverage probabilities at this location. For the scenarios involving x,=
2 or 7, LLR often provides better coverage probabilities than MRR2. However, the
MRR2 confidence intervals are always narrower than those for LLR, even when the
coverage probabilities are higher (and more accurate) for MRR2. Thus, the choice
between LLR and MRR2 is rather difficult for n = 19, but it does appear that MRR2
would be slightly more reliable, all cases considered. The smaller sample sizes are what
really hinder LLR as a general technique to be used in practice. This and other

conclusions from the simulation study presented here are summarized in the next section.
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8.E Conclusions

Based on the results of the simulations presented above, several general
conclusions can be made about the model-robust procedures developed in this work.
First, the model-robust procedures (MRR1, MRR2, and PLR) all have the ability to
outperform the individual procedures of OLS and LLR. This is supported by the
simulation results where the optimal fits were obtained. Namely, in section 8.C when the
optimal & and A (those that minimize AVEMSE) were used to obtain the various fits, the
INTMSE values for the model-robust procedures were lower than (or ~ equal to) those
for OLS and LLR. With no misspecification present in the chosen model, the model-
robust procedures performed as well or better than the ordinarily used OLS procedure. At
the other extreme, when the model was greatly misspecified, the model-robust procedures
performed as well as (or better than) the ordinarily used LLR procedure. In small to
moderate cases of misspecification, the model-robust procedures were consistently better
than OLS and LLR. Several other examples, presented in Chapter 6, also showed the
advantages of the model-robust procedures for single data sets. These results were based
on theoretical INTMSE values, and were validated in section 8.B when it was shown that
the theoretical MSE formulas for each fitting procedure were very accurate (close to the
simulated MSE’s). A study of confidence intervals for the optimal fits revealed two main
conclusions. First, for small sample sizes, it appears that some additional work is needed
to greatly decrease the widths of the LLR and model-robust C.I.’s to make them better
than the OLS intervals, which were also too wide, but look better than the others. For
larger sample sizes, however, it appears that the C.I.’s for the model-robust fitting
techniques (based on optimal fits) provide adequate results. While on occasion giving
slightly low coverage probabilities (for the three points at locations difficult to fit), the
various confidence intervals were shown to usually have very sufficient coverages
(probabilities in upper 80%’s to lower 90%’s) while maintaining appropriately small
widths. All of the conclusions just mentioned establish that the model-robust procedures

definitely have the potential to be very beneficial fitting techniques.
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With the potential established, the only remaining question is whether or not this
potential can be reached in practice. This issue was addressed in section 8.D by studying
data-driven selectors of 4 and A , and very promising results were found. PRESS* was
shown to provide inadequate results (large # and small A problems), but PRESS**
produced much improved fits. In comparing the fits based on PRESS** to the optimal fits
based on A, and A,, the PRESS** fits were found to perform relatively close to optimal in
almost all of the cases. These comparisons were made by observing the chosen 4# and A
values, the INTMSE values, and the confidence interval diagnostics. Actually, the MRR2
procedure was found to be the most consistent technique when using PRESS**, with
LLR, MRR1, and PLR each having some type of problem with their fits. (LLR and
MRRI1 had large bandwidth problems (especially for small to moderate sample sizes),
while PLR on occasion had problems with choosing a bandwidth too small, resulting in
extremely wide confidence intervals). The most important conclusion to come out of this
study is that the benefits of using a model-robust procedure over an individual parametric
or nonparametric procedure can be maintained in practice, with the best method appearing

to be MRR2 with # and A based on PRESS**,
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Chapter 9: Future Research

Each of the fitting techniques described in the preceding chapters involves only one
of many variations for that particular technique. For example, local linear regression is
just one of the many nonparametric fitting techniques described in chapter 3, and the LLR
procedure itself can be altered by changing the method of choosing the bandwidth. This
chapter briefly mentions some of the future work needed to determine if the forms of the
techniques proposed in this current research are appropriate or can be improved upon.

Also mentioned are some extensions and further developments of the techniques.

9.A Nonparametric Portion (Bandwidth Choice)

The most important component of nonparametric regression is the choice of the
bandwidth 4. As seen in previous chapters, an incorrect bandwidth can significantly affect
the performance of any fitting technique that is dependent on this choice of A. The
preliminary study presented in this paper studied a variety of possible data-driven
bandwidth selectors before deciding on PRESS** as a promising candidate. Simulation
results show this criterion to work relatively well, but there is still room for large
improvements. One such need is more consistency across sample sizes. Possible
improvements may include adjusting the current form of PRESS**, making use of current
popular bandwidth selectors in the recent literature (Ruppert (1995), for example), or
developing new procedures altogether. A possible approach in terms of adjusting the
current form of PRESS** may be to somehow combine it with PRESS*; the idea being to
somehow weight PRESS* more when there is little or no misspecification (when PRESS*
performs well) and to weight PRESS** more when there is significant misspecification.
Many alternatives to these ideas exist, and hopefully one can be found that consistently

performs well.
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9.B Model Robust Techniques

Choice of A

The main area of future research in terms of combining the separate parametric and
nonparametric fits is in choosing the mixing parameter A. The ideas here follow closely
those for further work on choosing the bandwidth. Studies are needed to better determine
the effectiveness of PRESS**, and whether or not adjustments to PRESS**, or even
totally different criteria, are needed. This information may be gathered by fixing the
bandwidth at A, and then observing the performances of various selection criteria (in

particular, PRESS**) in terms of how close they select A to A.,.

Error Variance, Confidence Intervals

More work is needed in developing better confidence intervals for the various
procedures. A particular need is a method of accounting for high variances of the fits in
small sample size cases, thus providing for a more consistent method of constructing
C.I’s. Also of interest is to find a method about as simple as those used in the current
work that gives a little bit higher coverage probabilities for LLR and the model-robust
techniques. Several more complicated techniques were introduced in section 6.D. Also of
interest, in addition to forming C.I.’s for just the three “difficult to fit” x,-values that were
used in this paper, would be to study the C.1.’s formed for other types of points (boundary

points, or points in smooth areas of the true underlying curve that should be fit easily).

Multiple Regression

Important for any regression technique is its ability to handle the multiple regressor
situation. Future work needs to involve extensions of the model-robust procedures to this
situation. Of interest are comparisons on the ease at which each procedure may be
extended and studies of the performances of the fits themselves. The key step here is

extending the nonparametric portions of the fits to multiple regression. For instance,
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kernel regression may be extended by replacing the usual one-dimensional distance
measure (X; — X;) with an appropriate multi-dimensional measure |x; — x;|. Local
polynomial regression may be extended by using regular weighted multiple regression,
where the weights are based on kernel weights achieved by the multiple regression
extension just mentioned above. These types of extensions need to be incorporated into
the model-robust procedures, allowing for the development of a vast amount of other

multiple regression techniques (such as variable selection methods).

Other Developments

To better establish model-robust regression as a basic regression tool, various
other measures need to be developed. These include such measures as lack-of-fit, R%-type
measures of model adequacy, or possibly distributional results for A (for MRR1 and/or
MRR2). Lack-of-fit measures could prove very useful in providing additional support for
the benefits of the model-robust procedures. In particular, it would be useful to have a
measure of how far a model prescribed by the user is to a particular known true underlying
model for the data structures used in this work (namely, for unreplicated data). One
approach to this problem is given by Lawrence (1994). For example, it would be
interesting to know how much lack-of-fit corresponds to each y in the simulation study of
this work (or how much power a lack-of-fit test would have (for each case). Such a
measure would give a good indication as to how likely it is that a user would stick with his
specified model, even when there is actually misspecification present. It is conjectured
that many cases would arise where the user would use the specified model when the
model-robust procedures would work much better. Such results could also be used to
further support the main conclusion of this research. That is, to use a model-robust
procedure (MRR2 seems best) for any regression situation where there is even the
slightest hint of doubt about the validity of the specified model. If the specified model
were actually correct (no lack-of-fit), then the model-robust procedure will perform as

well as a parametric procedure. If the specified model is a gross misspecification (high
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lack-of-fit), then the model-robust procedure will perform as well as a nonparametric
procedure. And finally, if the specified model is adequate for some (or most) but not all of
the data (moderate lack-of-fit), then the model-robust procedure will outperform either of

the individual parametric or nonparametric procedures, possibly to a large degree.
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Appendix A: Choice of Penalizing Function

Hirdle (1990) defines the general weight sequence {W;,,-(x)} | for obtaining kernel

n
j:
predictions at location x as

i)

="

(A1)
where 4 is the bandwidth, X is the kernel, and g() is the Rosenblatt-Parzen kernel density

estimator of the (marginal) density of X. (Note: the Nadaraya-Watson estimate of
equation (3.B.3) is achieved by defining

X=X,

&n(x) = n"jgh‘1 —;,—’) ). (A.2)

From the weight sequence in (A.1), the general kernel estimator of the true function f can

be expressed as

n n x—Xx; n (x-x;
. 2y J?;lh"K(—h") vi nH 2K ’)yf
M= r T aey 2 (0)

(A3)

Now, the argument u of the penalizing function Z(x) is defined to be n”’ Wi(x,), giving the

function Z[n” Wj(x)]. To see how this results in penalizing for small A, note that

(1]

A nK((x, - x;) /h)} _ [0 %'k (0) |

=[n! V=5
=l W)l “[ &n(x)) o) | A4

a function clearly increasing as / gets smaller (since Z(%) is defined to be increasing in u).
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Appendix B: Technical Assumptions

The following are the five technical assumptions necessary for the asymptotic bias

and variance expressions of equations (3.B.16-20). The first three are needed in the fixed

design case, with the last two added for the random design case.

Al

A2

A3.

A4.

AS.

fis twice continuously differentiable on a neighborhood of the point x;

K is a symmetric, probability density supported on [-1, 1], bounded

above 0 on [-1/2, 1/2], with a bounded derivative;

n — oo, with n’*® < h < n’®, for some § € (0, 1/2);

the marginal density g of x; has a bounded and continuous first

derivative and is bounded above zero, on a neighborhood of x;

x; and & are uncorrelated.
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Appendix C: X Matrix in PLR

For partial linear regression (PLR), suppose that H*® ( = Hp*™) is the kernel hat
matrix obtained from kernel smoothing on the regressor X, where the rows of H* each
sum to one. Defining X = (I- H*?)X and = X'X)'X'¥, the following proof shows

why the matrix of regressors X cannot contain a column of ones.

Proof: For H*® = (h,%*), it is known that (1) ilh}k“) =1 fori=1,2,... n(.e,the
Jj=

rows of H*™ each sum to one).
(2) Assume that X does contain a column of ones, say this is column c.
Consider the ¢ column of
X=XiX;.. X,]=(1-H*")X; X, . .. X,]=I-H*))X :
X.=@-H*)X,
=(I-H“)1 (by(2)
=1-H*1

_l_éw_

= I ¥

= =[Gy =) =0
L—IJ LOJ

1- A%

J=1

Hence, X contains a column of zeros, and X'X contains a column (and a row) of
zeros. Thus, X'X isa singular matrix, and (X' X)" does not exist. This implies
that ﬁ =(X'X)'X'¥ does not exist.

Thus, to obtain estimates for PLR, assumption (2) above must be incorrect, and so

X cannot contain a column of ones _

193



Appendix D: Bias and Variance Derivations

** Note that all results here are for fixed bandwidths (%) and mixing parameters ().

Appendix D.1: Kernel Regression
Consider the general underlying model y = g(x) + € = Xp + f + €, where E(g) = 0
and Var(g) = o’L. The kernel fitted values are §x = H*®y. To simplify notation, define

the kernel hat matrix as H*” = K. The bias and variance of Yker are then as follows:

Bias(Fxer) = E(Jxer) — E(y)
=E(Ky) - (Xp +1)
=KXB+H-XB-f
=KXB+Kf-XB-f
=—-(I-K)XB - I1-K)f
=-I-K)XB+f),

Var(yie) = Var(Ky)
= KVar(y)K'
= K(c’DK'

=o’KK'

These are equations (6.B.5) and (6.B.6), respectively.
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Appendix D.2: MRR1

Consider the underlying model y = g(x) + € = Xp + f + ¢, where E(g) = 0 and
Var(g) = ’I. The MRR1 fitted values are §yrr1 = HM®Vy = [AH®™ + (1-0)H"]y.
To simplify notation, define the kernel hat matrix as H*™® = K and the OLS hat matrix as
H®® = H. Also, note that () HX = X(X'X)'X'X =X, (2 H'=H, and (3) HH = H.

The bias and variance of ¥mgr; are then as follows:

Bias(§mrr1) = E(§mrr1) - E(y) = EHMVy) - (XB + ) =
=HMR)XB +1) - XB-f
= HMRUXB + HMRRD £_ XB — f

—(I- HMR)XB — (1 - HMR))f

= (I -2AK - 1-)H)XB — (I - H¥RD)yp

=_XB + AKXp + (1-A)HXP — (I - HMRD)f

= -XB + AKXB + (1-A)XB - (1 - HMD)f (by (1))

=X + AKXB + XB -AXP — (I - HME)yf

~AXB + AKX — (I - HM®RD)f

=-MI-K)XB - (I - H¥D))f

Var(§mrr1) = Var(HVy)
= HMRDyar(y)H MRRD (= FHMRRUMRRD)
= [AK + (1-A)H](c’T) [AK + (1-M)H]'
= o’ [A KK’ + (1-A)AHK' + A(1-A)KH' + (1-1)’HH']
=AM KK’ + (1-M)AHK' + A(1-A)KH + (1-A)H]  (by (2), 3)
= o*{ MAK + (I-MH]JK’ + (1-M)[(1-A)I + AKJH }
= o?{ AHMRVK’ + (1-A)[I -MI - K)JH },

These are equations (6.B.9) and (6.B.10), respectively.
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Appendix D.3: MRR2

Consider the underlying model y = g(x) + € = XB + f + ¢, where E(g) = 0 and
Var(e) = o’L. The MRR2 fitted values are §mrrz = H* Py = [H®® + AH,*(I-H°®)]y,
where H,*™ is the kernel hat matrix for a kernel fit to the residuals from the parametric
(OLS) fit. To simplify notation, define the kernel hat matrix as H,;**” = K and the OLS
hat matrix as H®” = H. Also, notice that (1) HX = X(X'X)'X'X =X, (2) H' = H, and

(3) HH = H. The bias and variance of ymrr2 are then as follows:

Bias(¥mrr2) = E(¥mrr2) — E(y)
= B ) — (XB + )
=HMIXB+H-XB - f
= H™®(Xp) + HMRIF_ XB -
= [H+ AK(-H)](XB) - X + HMIf — £
= HXB + AK(I-H)XB — XB — (I - HM)f
= HXB + AK(XB — HXB) - XB — (I - HMX)p
=XB + AK(XB - XB) - XB - (I - HMEp (by (1))
=— (I -HY)f

Var(§mrrz) = Var(H*?y)
= HM®Var(y) I'MRD (= o’ AMRRIgrMRRD)
= [H+ AK(I-H)](o’D[H+ AK(I-H)Y'
= o’[HH' + AK(I-H)H’ + AH(I-HYK' + A’K(I-H)(I-H)'K']
= o’[HH + AK(I-H)H + AHI-H)K' + A’ K(I-H)I-H)K'] (by (2))
= ¢’[H + AK(H-H) + A H-H)K' + A’ K(I-H)K'] (by (3))
=o’[H + PKI-H)K'] ,

These are equations (6.B.13) and (6.B.14), respectively.
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Appendix D.3: MRR2 (cont.)

In this section, the bias and variance expressions ((6.B.9) and (6.B.10)) for
determining the optimal bandwidth 4, for MRR2 will be developed. This bandwidth is for
the kernel fit to the residuals from the OLS fit, which may be expressed as = H,*r,
where r =y — Xﬁols and y = g(x) + € = XB + f + ¢, where E(g) = 0 and Var(e) = ¢°’L

Defining H,*™ = K and H®" = H, the bias and variance of  are as follows:

Bias(r ) = E(r ) — E(r) = E(Kr) - E(r) =
=KE(r) - E(r) =-(I- K)E(r) =
= —(I- K)[E(y - XBais)]
= (I - K)(E[(I - H)y]) (since Fois = Hy = XPoss)
= —(I1- K)[(I - H)E(y)]
= —(I - K)[(1 - H)(XB + )]
= —(I - K)[(1 - )XB + (1 - HDf]
= —(I- K)[XB - XB + (1 - H)f] by (1))
=-(I-K)I-H)f

Var(#) = Var[K(y - XBos)]
= KVar(y - XBoi)K’
= KVar[(I - H)y]K'
= K(I - H)Var(y)(I- HY'K'
= K({I - H)(cT)(I - H)’K’
= o’K( - H)(I - HYK'
=o’K(I-HK', (by 3))

These are equations (6.B.15) and (6.B.16), respectively.
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Appendix D.4 (a): PLR (when using kernel regression to fit residuals)

Consider the underlying model y = g(x) + € = XpBp + f + €, where E(g) = 0 and
Var(e) = 6°I, and Xp is the X matrix without a column of ones. The PLR fitted values are
Jer = HP®y = [H* + XX'X)'X'A - H:*)]y, where X= (I - Ho*")Xp. To
simplify notation, define the kernel hat matrix as Hp*™ = K. The bias and variance of

yrir are then as follows:

Bias(§pr) = E(§pir) — E(y) = EE™y) - (XpBp + f) =
= H*"™E(y) - Xpfp —
= H®"®(XpPp + f) — XpPp - f
=[K + X(X'X)"'X' (I - K)]XpBr + H*-®f - XpBp - f
= KXpfp + X(X'X)7'X' (1 - K)XpPBr — XoBp — (1 - HFR)F
= KXpBp + X(X' X)X X Br - XpBp - (I - HFL®)F
= KXpPBp + X PBr — XpPp — (I - HFLOYF
= KXpBp + (I - K)XpPp — XpPBp — (I - H-)f
= KXpBp + XpPpr — KXpBp — XpPp — (I - HFR)f
=-(I1-H"®)f

Var(§pir) = Var(H"y)
= H*®Var(y)H'®® (= FHERR PLR)
=K+ XX'X) X' -K)JK+ XX X' XT-K)T
= o’[K + Pg(I - K)][K +Pg (I - K)Y' (defining X(X'X)'X'= Py)
=o’[KK' + K(I- K) Py’ + Pg(I - K)K' + Pg(I - K)(I - K)'Pg']
" =o’[KK' + K(I-K)'Pg + Pg(I- KK’ + Pg(1 - K)I1 - K)'Pg],

These are equations (6.B.19) and (6.B.20), respectively.
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Appendix D.4 (b): PLR (when using local polyn. regression to fit residuals)
Consider the underlying model y = g(x) + € = XpPp + f + €, where E(g) = 0 and
Var(e) = oI, and Xp is the X matrix without a column of ones. The PLR fitted values are
yrr = H®y = [H;®® + (I - HB,"™)XpX'X) "X’ (I - Hp*)]y, where, once again,
X = (I - Hp**)X;. To simplify notation, define the kernel hat matrix as Hp®™ = K and the
LPR hat matrix for fitting the residuals as Hp"® = K, . The bias and variance of YPLR are

then as follows:

Bias(§rr) = E(Feir) - E(y) = EH" ) - (Xefp + ) =
= H""E(y) - XePp - f
= H*"®(XpBp + 1) - XpPp - f
=K.+ I - Ku)Xe X'X)'X' (I - K)]XeBr + HP®f — XpBp - £
= K XpPp + I - Kp)Xp (X' X)X’ (I - K)XpBp — Xpfp — (I - H®)f
= K XeBp + (I - K)Xp(X' X)X X Br — Xpfp - (1 - HO)f
= KiXeBr + (1 - Ku)XeBp — XePp — (1 - HFO)f
= K XpBp + XpfBr — K1 Xpfp — XpBp — (I - HFR)f
=-(1-H"Of

Var(§pir) = Var(™Py)
=H"®War(y) TP (= SHOPETR)
=o’[K. + (I - K)Xp(X'X)'X' I - K)J[KL + I - K)Xp(X' X)'X'T - K)I'
= o [K Ky’ + K@ - Ky XX X) ' Xp' (T - Ky)' +
I-K)Xe X'X)'X(J-KK +
I -Ko)Xe X'X)"'X' (I - K)(I - Ky XX' X) "' Xp' (- K1),

These are equations (6.B.21) and (6.B.22), respectively.
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