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STÉPHANE BOUCHERON bouchero@lri.fr
Laboratoire de Recherche en Informatique, Bâtiment 490, CNRS-Université Paris-Sud,
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Abstract. We study model selection strategies based on penalized empirical loss minimization. We point out
a tight relationship between error estimation and data-based complexity penalization: any good error estimate
may be converted into a data-based penalty function and the performance of the estimate is governed by the
quality of the error estimate. We consider several penalty functions, involving error estimates on indepen-
dent test data, empirical VC dimension, empirical VC entropy, and margin-based quantities. We also consider
the maximal difference between the error on the first half of the training data and the second half, and the ex-
pected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration.
Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation
is equivalent to empirical risk minimization over the training data with some labels flipped.
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1. Introduction

We consider the following prediction problem. Based on a random observation X ∈X , one
has to estimate Y ∈Y . A prediction rule is a measurable function f :X → Y , with loss
L( f ) = E�( f (X), Y ), where � :Y × Y → [0, 1] is a bounded loss function. The data

Dn = (X1, Y1), . . . , (Xn, Yn)

consist of a sequence of independent, identically distributed samples with the same distri-
bution as (X, Y ) and Dn is independent of (X, Y ). The goal is to choose a prediction rule
fn from some restricted class F such that the loss L( fn) = E[�( fn(X), Y ) | Dn] is as close
as possible to the best possible loss, L∗ = inf f L( f ), where the infimum is taken over all
prediction rules f :X → Y .

∗A shorter version of this paper was presented at COLT’2000.
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Empirical risk minimization evaluates the performance of each prediction rule f ∈ F in
terms of its empirical loss L̂n( f ) = 1

n

∑n
i=1 �( f (Xi ), Yi ). This provides an estimate whose

loss is close to the optimal loss L∗ if the class F is (i) sufficiently large so that the loss of
the best function in F is close to L∗ and (ii) is sufficiently small so that finding the best
candidate in F based on the data is still possible. These two requirements are clearly in
conflict. The trade-off is best understood by writing

EL( fn) − L∗ =
(

EL( fn) − inf
f ∈F

L( f )

)
+

(
inf
f ∈F

L( f ) − L∗
)

.

The first term is often called estimation error, while the second is the approximation error.
Often F is large enough to minimize L(·) for all possible distributions of (X, Y ), so that
F is too large for empirical risk minimization. In this case it is common to fix in advance
a sequence of smaller model classes F1,F2, . . . whose union is equal to F . Given the data
Dn , one wishes to select a good model from one of these classes. This is the problem of
model selection.

Denote by f̂k a function inFk having minimal empirical risk. One hopes to select a model
class FK such that the excess error EL( f̂K ) − L∗ is close to

min
k

EL( f̂k) − L∗ = min
k

[(
EL( f̂k) − inf

f ∈Fk

L( f )

)
+

(
inf
f ∈Fk

L( f ) − L∗
)]

.

The idea of structural risk minimization (also known as complexity regularization) is to add
a complexity penalty to each of the L̂n( f̂k)’s to compensate for the overfitting effect. This
penalty is usually closely related to a distribution-free upper bound for sup f ∈Fk

|L̂n( f ) −
L( f )| so that the penalty eliminates the effect of overfitting. Thus, structural risk mini-
mization finds the best trade-off between the approximation error and a distribution-free
upper bound on the estimation error. Unfortunately, distribution-free upper bounds may
be too conservative for specific distributions. This criticism has led to the idea of using
data-dependent penalties.

In the next section, we show that any approximate upper bound on error (including
a data-dependent bound) can be used to define a (possibly data-dependent) complexity
penalty Cn(k) and a model selection algorithm for which the excess error is close to

min
k

[
ECn(k) +

(
inf
f ∈Fk

L( f ) − L∗
)]

.

Section 3 gives several applications of the performance bounds of Section 2: Section 3.1
considers the estimates provided by an independent test sample. These have the disadvan-
tage that they cost data. Section 3.2 considers a distribution-free estimate based on the VC
dimension and a data-dependent estimate based on shatter coefficients. Unfortunately, these
are difficult to compute. Section 3.3 briefly considers margin-based error estimates, which
can be viewed as easily computed estimates of quantities analogous to shatter coefficients.
Section 3.4 looks at an estimate provided by maximizing the discrepancy between the error
on the first half of the sample and that on the second half. For classification, this estimate
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Table 1. Notation.

f prediction rule, f : X → Y
F1,F2, . . . sets of prediction rules (model classes)

F union of model classes Fk

f ∗
k element of Fk with minimal loss

f̂k element of Fk minimizing empirical loss

fn prediction rule from F minimizing L̃n( f̂k)

� loss function, � : Y × Y → [0, 1]

L loss, L( f ) = E�( f (X), Y )

L∗
k minimal loss of functions in Fk , L∗

k = inf f ∈Fk L( f )

L̂n empirical loss

Rn,k estimate (high confidence upper bound) of loss L( f̂k)

Cn(k) complexity penalty for class Fk

L̃n complexity penalized loss estimate, L̃n( f̂k) = L̂n( f̂k) + Cn(k)

L∗ loss of optimal prediction rule

can be conveniently computed, simply by minimizing empirical risk with half of the labels
flipped. Section 3.5 looks at a more complex estimate: the expected maximum discrepancy.
This estimate can be calculated by Monte Carlo integration, and can lead to better perfor-
mance bounds. In Section 4 we review some concentration inequalities that are central to our
proofs. Finally, in Section 5 we offer an experimental comparison of some of the proposed
methods.

For clarity, we include in Table 1 notation that we use throughout the paper.
For work on complexity regularization, see Akaike (1974), Barron (1985, 1991), Barron,

Birgé, and Massart (1999), Barron and Cover (1991), Birgé and Massart (1997, 1998),
Buescher and Kumar (1996a, 1996b), Devroye, Györfi, and Lugosi, (1996), Gallant (1987),
Geman and Hwang (1982), Kearns et al. (1995), Krzyżak and Linder (1998), Lugosi and
Nobel (1999) Lugosi and Zeger (1995, 1996), Mallows (1997), Meir (1997), Modha and
Masry (1996), Rissanen (1983), Schwarz (1978), Shawe-Taylor et al. (1998), Shen and
Wong (1994), Vapnik (1982), Vapnik and Chervonenkis (1979) and Yang and Barron (1998,
1999).

Data-dependent penalties are studied by Bartlett (1998), Freund (1998), Koltchinskii
(2001), Koltchinskii and Panchenko (2000), Lozano (2000), Lugosi and Nobel (1999),
Massart (2000), and Shawe-Taylor et al. (1998).

2. Penalization by error estimates

For each class Fk , let f̂k denote the prediction rule that is selected from Fk based on
the data. Our goal is to select, among these rules, one which has approximately minimal
loss. The key assumption for our analysis is that the true loss of f̂k can be estimated for
all k.
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Assumption 1. For every n, there are positive numbers c and m such that for each k an
estimate Rn,k on L( f̂k) is available which satisfies

P[L( f̂k) > Rn,k + ε] ≤ ce−2mε2
(1)

for all ε.

Notice that c and m might depend on the sample size n.
Now define the data-based complexity penalty by

Cn(k) = Rn,k − L̂n( f̂k) +
√

log k

m
.

The last term is required because of technical reasons that will become apparent shortly. It
is typically small. The difference Rn,k − L̂n( f̂k) is simply an estimate of the ‘right’ amount
of penalization L( f̂k) − L̂n( f̂k). Finally, define the prediction rule:

fn = arg min
k=1,2,...

L̃n( f̂k),

where

L̃n( f̂k) = L̂n( f̂k) + Cn(k) = Rn,k +
√

log k

m
.

The following theorem summarizes the main performance bound for fn .

Theorem 1. Assume that the error estimates Rn,k satisfy (1) for some positive constants
c and m. Then for all ε > 0,

P[L( fn) − L̃n( fn) > ε] ≤ 2ce−2mε2
.

Moreover, if for all k, f̂k minimizes the empirical loss in the model class Fk, then

EL( fn) − L∗ ≤ min
k

[
ECn(k) +

(
inf
f ∈Fk

L( f ) − L∗
)]

+
√

log(ce)

2m
.

The second part of Theorem 1 shows that the prediction rule minimizing the penalized
empirical loss achieves an almost optimal trade-off between the approximation error and
the expected complexity, provided that the estimate Rn,k on which the complexity is based
is an approximate upper bound on the loss. In particular, if we knew in advance which of
the classes Fk contained the optimal prediction rule, we could use the error estimates Rn,k

to obtain an upper bound on EL( f̂k) − L∗, and this upper bound would not improve on the
bound of Theorem 1 by more than O(

√
log k/m).

If the range of the loss function � is an infinite set, the infimum of the empirical loss might
not be achieved. In this case, we could define f̂k as a suitably good approximation to the
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infimum. However, for convenience, we assume throughout that the minimum always exists.
It suffices for this, and for various proofs, to assume that for all n and (x1, y1), . . . , (xn, yn),
the set

{(�( f (x1), y1), . . . , �( f (x1), y1)) : f ∈ Fk}
is closed.

Proof: For brevity, introduce the notation

L∗
k = inf

f ∈Fk

L( f ).

Then for any ε > 0,

P[L( fn) − L̃n( fn) > ε] ≤ P

[
sup

j=1,2,...

(L( f̂ j ) − L̃n( f̂ j )) > ε

]

≤
∞∑
j=1

P[L( f̂ j ) − L̃n( f̂ j ) > ε] (by the union bound)

=
∞∑
j=1

P

[
L( f̂ j ) − Rn, j > ε +

√
log j

m

]
(by definition)

≤
∞∑
j=1

ce−2m
(
ε+

√
log j

m

)2

(by Assumption 1)

≤
∞∑
j=1

ce−2m
(
ε2+ log j

m

)

< 2ce−2mε2
(since

∑∞
j=1 j−2 < 2).

To prove the second inequality, for each k, we decompose L( fn) − L∗
k as

L( fn) − L∗
k =

(
L( fn) − inf

j
L̃n( f̂ j )

)
+

(
inf

j
L̃n( f̂ j ) − L∗

k

)
.

The first term may be bounded, by standard integration of the tail inequality shown above
(see, e.g., Devroye, Györfi, & Lugosi, 1996, p. 208), as E[L( fn) − inf j L̃n( f̂ j )] ≤√

log(ce)/(2m). Choosing f ∗
k such that L( f ∗

k ) = L∗
k , the second term may be bounded

directly by

E inf
j

L̃n( f̂ j ) − L∗
k ≤ EL̃n( f̂k) − L∗

k

= EL̂n( f̂k) − L∗
k + ECn(k) (by the definition of L̃n( f̂k))

≤ EL̂n( f ∗
k ) − L( f ∗

k ) + ECn(k)

(since f̂k minimizes the empirical loss on Fk)

= ECn(k),
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where the last step follows from the fact that EL̂n( f ∗
k ) = L( f ∗

k ). Summing the obtained
bounds for both terms yields that for each k,

EL( fn) ≤ ECn(k) + L∗
k +

√
log(ce)/(2m),

which implies the second statement of the theorem. ✷

Sometimes bounds tighter than Assumption 1 are available, as in Assumption 2 below.
Such bounds may be exploited to decrease the term

√
log k/m in the definition of the com-

plexity penalty.

Assumption 2. For every n, there are positive numbers c and m such that for each k an
estimate R̄n,k of L( f̂k) is available which satisfies

P[L( f̂k) > R̄n,k + ε] ≤ ce−mε (2)

for all ε.

Define the modified penalty by

C̄n(k) = R̄n,k − L̂n( f̂k) + 2 log k

m

and define the prediction rule

f̄n = arg min
k=1,2,...

L̄n( f̂k),

where

L̄n( f̂k) = L̂n( f̂k) + C̄n(k) = R̄n,k + 2 log k

m
.

Then by a trivial modification of the proof of Theorem 1 we obtain the following result.

Theorem 2. Assume that the error estimates R̄n,k satisfy Assumption 2 for some positive
constants c and m. Then for all ε > 0,

P[L( fn) − L̄n( fn) > ε] ≤ 2ce−mε .

Moreover, if for all k, f̂k minimizes the empirical loss in the model class Fk, then

EL( f̄n) − L∗ ≤ min
k

[
EC̄n(k) +

(
inf
f ∈Fk

L( f ) − L∗
)]

+ log(2ec)

m
.
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So far we have only concentrated on the expected loss of the penalized estimate. However,
with an easy modification of the proof we obtain exponential tail inequalities. We work out
one such inequality in the scenario of Theorem 1.

Theorem 3. Assume that the error estimates Rn,k satisfy (1) for some positive constants
c and m, and that for all k, f̂k minimizes the empirical loss in the model class Fk . Then for
all ε > 0,

P

[
L( fn) > inf

k

(
L∗

k + Cn(k) +
√

log k

n

)
+ ε

]
≤ 2ce−mε2/2 + 2e−nε2/2.

Proof: Note that

P

[
L( fn) > inf

k

(
L∗

k + Cn(k) +
√

log k

n

)
+ ε

]

≤ P

[
L( fn) > inf

j
L̃n( f̂ j ) + ε

2

]

+ P

[
inf

j
L̃n( f̂ j ) > inf

k

(
L∗

k + Cn(k) +
√

log k

n

)
+ ε

2

]

≤ 2ce−mε2/2 + P

[
sup

k

(
L̃n( f̂k) − L∗

k − Cn(k) −
√

log k

n

)
>

ε

2

]

(by the first inequality of Theorem 1)

≤ 2ce−mε2/2 +
∞∑

k=1

P

[
L̂n( f̂k) − L∗

k >
ε

2
+

√
log k

n

]

(by the union bound and the definition of L̃n)

≤ 2ce−mε2/2 +
∞∑

k=1

P

[
L̂n( f ∗) − L∗

k >
ε

2
+

√
log k

n

]

(since f̂k minimizes the empirical loss on Fk)

≤ 2ce−mε2/2 +
∞∑

k=1

e−2n(ε/2+√
log k/n)

2

(by Hoeffding’s inequality)

≤ 2ce−mε2/2 + 2e−nε2/2.

This concludes the proof. ✷

In the examples shown below we concentrate on the expected loss of penalized empir-
ical error minimizers. Tail probability estimates may be obtained in all cases by a simple
application of the theorem above.
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3. Applications

3.1. Independent test sample

Assume that m independent sample pairs

(X ′
1, Y ′

1), . . . , (X ′
m, Y ′

m)

are available. We can simply remove m samples from the training data. Of course, this is
not very attractive, but m may be small relative to n. In this case we can estimate L( f̂k) by

Rn,k = 1

m

m∑
i=1

�( f̂k(X ′
i ), Y ′

i ). (3)

We apply Hoeffding’s inequality to show that Assumption 1 is satisfied with c = 1, notice
that E[Rn,k |Dn] = L( f̂k), and apply Theorem 1 to give the following result.

Corollary 1. Assume that the model selection algorithm of Section 2 is performed with
the hold-out error estimate (3). Then

EL( fn) − L∗

≤ min
k

[
E[L( f̂k) − L̂n( f̂k)] +

(
inf
f ∈Fk

L( f ) − L∗
)

+
√

log k

m

]
+ 1√

2m
.

In other words, the estimate achieves a nearly optimal balance between the approximation
error, and the quantity

E[L( f̂k) − L̂n( f̂k)],

which may be regarded as the amount of overfitting.
With this inequality we recover the main result of Lugosi and Nobel (1999), but now

with a much simpler estimate. In fact, the bound of the corollary may substantially improve
the main result of Lugosi and Nobel (1999).

The square roots in the bound of Corollary 1 can be removed by increasing the penalty
term by a small constant factor and using Bernstein’s inequality in place of Hoeffding’s as
follows: Choose the modified estimate

R̄n,k = 1

1 − α

[
1

m

m∑
i=1

�( f̂k(X ′
i ), Y ′

i )

]
,

where α < 1 is a positive constant. Then Bernstein’s inequality (see, e.g., Devroye, Györfi,
& Lugosi, 1996) yields

P [L( f̂k) ≥ R̄n,k + ε] ≤ e−3mεα(1−α)/8 .
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Thus, (2) is satisfied with m replaced by 3mα(1 − α)/8. Therefore, defining

C̄n,k = R̄n,k − L̂( f̂n,k) + 16 log k

3mα(1 − α)
,

we obtain the performance bound

EL( fn) − L∗ ≤ min
k

[
EC̄n(k) +

(
inf
f ∈Fk

L( f ) − L∗
)]

+ 16

3mα(1 − α)
.

3.2. Estimated complexity

In the remaining examples we consider error estimates Rn,k which avoid splitting the data.
For simplicity, we concentrate in this section on the case of classification (Y = {0, 1}

and the 0-1 loss, defined by �(0, 0) = �(1, 1) = 0 and �(0, 1) = �(1, 0) = 1), although
similar arguments may be carried out for the general case as well.

Recall the basic Vapnik-Chervonenkis inequality (Vapnik & Chervonenkis, 1971; Vapnik,
1995),

P

[
sup
f ∈Fk

(L( f ) − L̂n( f )) > ε

]
≤ 4ESk

(
X2n

1

)
e−nε2

, (4)

where Sk(Xn
1) is the empirical shatter coefficient of Fk , that is, the number of different ways

the n points X1, . . . , Xn can be classified by elements of Fk . It is easy to show that this
inequality implies that the estimate

Rn,k = L̂n( f̂k) +
√

log ESk
(
X2n

1

) + log 4

n

satisfies Assumption 1 with m = n/2 and c = 1. We need to estimate the quantity
log ESk(X2n

1 ). The simplest way is to use the fact that ESk(X2n
1 ) ≤ (2n + 1)Vk , where Vk is

the VC dimension of Fk . Substituting this into Theorem 1 gives

EL( fn) − L∗

≤ min
k

[√
Vk log(2n + 1) + log 4

n
+

(
inf
f ∈Fk

L( f ) − L∗
)

+
√

2 log k

n

]
+

√
1

n
.

(5)

This is the type of distribution-free result we mentioned in the introduction. A more inter-
esting result involves estimating ESk(X2n

1 ) by Sk(Xn
1).
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Theorem 4. Assume that the model selection algorithm of Section 2 is used with

Rn,k = L̂n( f̂k) +
√

12 log Sk
(
Xn

1

) + log 4

n

and m = n/80. Then

EL( fn) − L∗

≤ min
k




√
12E log Sk

(
Xn

1

) + log 4

n
+

(
inf
f ∈Fk

L( f ) − L∗
)

+ 8.95

√
log k

n




+ 8.23√
n

.

The key ingredient of the proof is a concentration inequality from Boucheron, Lugosi,
and Massart (2000) for the random VC entropy, log2 Sk(Xn

1).

Proof: We need to check the validity of Assumption 1. It is shown in Boucheron, Lugosi,
and Massart (2000) that f (x1, . . . , xn) = log2 Sk(xn

1 ) satisfies the conditions of Theorem 9
below.

First note that ESk(X2n
1 ) ≤ E

2Sk(Xn
1), and therefore

log ESk
(
X2n

1

) ≤ 2 log ESk
(
Xn

1

)
≤ 2

log 2
E log Sk

(
Xn

1

)
< 3E log Sk

(
Xn

1

)
by the last inequality of Theorem 9. Therefore,

P


L( f̂k) − L̂n( f̂k) > ε +

√
3E log Sk

(
Xn

1

) + log 4

n




≤ P


 sup

f ∈Fk

(L( f ) − L̂n( f )) > ε +
√

log ESk
(
X2n

1

) + log 4

n


 ≤ e−nε2

,

where we used the Vapnik-Chervonenkis inequality (4). It follows that

P[L( f̂k) > Rn,k + ε]

= P


L( f̂k) − L̂n( f̂k) >

√
12 log Sk

(
Xn

1

) + log 4

n
+ ε



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≤ P


L( f̂k) − L̂n( f̂k) >

ε

4
+

√
3E log Sk

(
Xn

1

) + log 4

n




+ P




√
12 log Sk

(
Xn

1

) + log 4

n
+ 3ε

4
<

√
3E log Sk

(
Xn

1

) + log 4

n




≤ e−nε2/16

+ P




√
12 log Sk

(
Xn

1

) + log 4

n
+ 3ε

4
<

√
3E log Sk

(
Xn

1

) + log 4

n


 .

The last term may be bounded using Theorem 9 as follows:

P




√
12 log Sk

(
Xn

1

) + log 4

n
+ 3ε

4
<

√
3E log Sk

(
Xn

1

) + log 4

n




≤ P

[
log Sk

(
Xn

1

)
< E log Sk

(
Xn

1

) − 3

4
E log Sk

(
Xn

1

) − 3

64
nε2

]

≤ exp


− 9

32

(
E log Sk

(
Xn

1

) + nε2

16 log 2

)2

E log Sk
(
Xn

1

)



≤ exp


− 9

32

(
E log Sk

(
Xn

1

) + nε2

16 log 2

)2

E log Sk
(
Xn

1

) + nε2

16 log 2




≤ exp

(
− 9nε2

512 log 2

)
.

Summarizing, we have that

P[L( f̂k) > Rn,k + ε] ≤ e−nε2/16 + e−9nε2/512 log 2

< 2e−nε2/40.

Therefore, Assumption 1 is satisfied with c = 2 and m = n/80. Applying Theorem 1 finishes
the proof. ✷

3.3. Effective VC dimension and margin

In practice it may be difficult to compute the value of the random shatter coefficients
Sk(Xn

1). An alternative way to assign complexities may be easily obtained by observing
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that Sk(Xn
1) ≤ (n + 1)Dk , where Dk is the empirical VC dimension of class Fk , that is, the

VC dimension restricted to the points X1, . . . , Xn . Now it is immediate that the estimate

Rn,k = L̂n( f̂k) +
√

12Dk log(n + 1) + log 4

n
,

satisfies Assumption 1 in the same way as the estimate of Theorem 4. (In fact, with a
more careful analysis it is possible to get rid of the log n factor at the price of an increased
constant.)

Unfortunately, computing Dk in general is still very difficult. A lot of effort has been
devoted to obtain upper bounds for Dk which are simple to compute. These bounds are
handy in our framework, since any upper bound may immediately be converted into a
complexity penalty. In particular, the margins-based upper bounds on misclassification
probability for neural networks (Bartlett, 1998), support vector machines (Shawe-Taylor,
et al., 1998; Bartlett & Shawe-Taylor, 1999; Vapnik, 1998; Cristianini & Shawe-Taylor,
2000), and convex combinations of classifiers (Schapire et al., 1998; Mason, Bartlett, &
Baxter, 2000) immediately give complexity penalties and, through Theorem 1, performance
bounds.

We recall here some facts which are at the basis of the theory of support vector machines,
see Bartlett and Shawe-Taylor (1999), Cristianini and Shawe-Taylor (2000), Vapnik (1998)
and the references therein.

A model classF is called a class of (generalized) linear classifiers if there exists a function
ψ : X → R

p such that F is the class of linear classifiers in R
p, that is, the class of all

prediction rules of the form

f (x) =
{

1 if ψ(x)T w ≥ 0

0 otherwise,

where w ∈ R
p is a weight vector satisfying ‖w‖ = 1.

Much of the theory of support vector machines builds on the fact that the “effective”
VC dimension of those generalized linear classifiers for which the minimal distance of the
correctly classified data points to the separating hyperplane is larger than a certain “margin”
may be bounded, independently of the linear dimension p, by a function of the margin. If
for some constant γ > 0, (2Yi − 1)ψ(Xi )

T w ≥ γ then we say that the linear classifier
correctly classifies Xi with margin γ . We recall the following result:

Lemma 1 (Bartlett and Shawe-Taylor (1999)). Let fn be an arbitrary ( possibly data
dependent) linear classifier of the form

fn(x) =
{

1 if ψ(x)T wn ≥ 0

0 otherwise,

where wn ∈ R
p is a weight vector satisfying ‖wn‖ = 1. Let R, γ > 0 be positive random

variables and let K ≤ n be a positive integer valued random variable such that ‖ψ(Xi )‖ ≤ R
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for all i = 1, . . . , n and fn correctly classifies all but K of the n data points Xi with margin
γ, then for all δ > 0,

P

[
L( fn) >

K

n
+ 27.18

√
1

n

(
R2

γ 2
(log2 n + 84) + log

4

δ

) ]
≤ δ.

Assume now that f̂ minimizes the empirical loss in a class F of generalized linear
classifiers, such that it correctly classifies at least n − K data points with margin γ and
‖ψ(Xi )‖ ≤ R for all i = 1, . . . , n. Choosing m = n log 2/8 and δ = 4e−2mε2

, an application
of the lemma shows that if we take

Rn = K

n
+ 27.18

√
1

n

(
R2

γ 2
(log2 n + 84)

)
,

then we obtain

P[L( f̂ ) > Rn + ε]

= P

[
L( f̂ ) >

K

n
+ 27.18

√
1

n

(
R2

γ 2
(log2 n + 84)

)
+

√
1

2m
log

4

δ

]

≤ P

[
L( f̂ ) >

K

n
27.18

√
1

n

(
R2

γ 2
(log2 n + 84) + log

4

δ

) ]

(using the inequality
√

x + y ≤ √
x + √

y )

≤ δ = 4e−2mε2
.

This inequality shows that if all model classesFk are classes of generalized linear classifiers
and for all classes the error estimate Rn,k is defined as above, then condition (1) is satisfied
and Theorem 1 may be used. As a result, we obtain the following performance bound:

Theorem 5.

EL( fn) − L∗ ≤ min
k

[
E

[
Kk

n
+ 27.18

√
1

n

(
R2

k

γ 2
k

(log2 n + 41)

)
− L̂( f̂k)

]

+
(

inf
f ∈Fk

L( f ) − L∗
)

+ 3.4

√
log k

n

]
+ 3.72√

n
,

where Kk, γk, and Rk are the random variables K , γ, R defined above, corresponding to
the class Fk .

The importance of this result lies in the fact that it gives a computationally feasible way
of assigning data-dependent penalties to linear classifiers. On the other hand, the estimates
Rn,k may be much inferior to the estimates studied in the previous section.



98 P.L. BARTLETT, S. BOUCHERON, AND G. LUGOSI

3.4. Penalization by maximal discrepancy

In this section we propose an alternative way of computing the penalties with improved
performance guarantees. The new penalties may be still difficult to compute efficiently,
but there is a better chance to obtain good approximate quantities as they are defined as
solutions of an optimization problem.

Assume, for simplicity, that n is even, divide the data into two equal halves, and define,
for each predictor f , the empirical loss on the two parts by

L̂(1)
n ( f ) = 2

n

n/2∑
i=1

�( f (Xi ), Yi )

and

L̂(2)
n ( f ) = 2

n

n∑
i=n/2+1

�( f (Xi ), Yi ).

Using the notation of Section 2, define the error estimate Rn,k by

Rn,k = L̂n( f̂k) + max
f ∈Fk

(
L̂(1)

n ( f ) − L̂(2)
n ( f )

)
. (6)

If Y = {0, 1} and the loss function is the 0-1 loss (i.e., �(0, 0) = �(1, 1) = 0 and �(0, 1) =
�(1, 0) = 1) then the maximum discrepancy,

max
f ∈Fk

(
L̂(1)

n ( f ) − L̂(2)
n ( f )

)
may be computed using the following simple trick: first flip the labels of the first half of the
data, thus obtaining the modified data set

D′
n = (X ′

1, Y ′
1), . . . , (X ′

n, Y ′
n)

with (X ′
i , Y ′

i ) = (Xi , 1 − Yi ) for i ≤ n/2 and (X ′
i , Y ′

i ) = (Xi , Yi ) for i > n/2. Next find
f −
k ∈ Fk which minimizes the empirical loss based on D′

n ,

1

n

n∑
i=1

�( f (X ′
i ), Y ′

i ) = 1

2
− 1

n

n/2∑
i=1

�( f (Xi ), Yi ) + 1

n

n∑
i=n/2+1

�( f (Xi ), Yi )

= 1 − L̂(1)
n ( f ) + L̂(2)

n ( f )

2
.

Clearly, the function f −
k maximizes the discrepancy. Therefore, the same algorithm that is

used to compute the empirical loss minimizer f̂k may be used to find f −
k and compute the

penalty based on maximum discrepancy. This is appealing: although empirical loss mini-
mization is often computationally difficult, the same approximate optimization algorithm



MODEL SELECTION AND ERROR ESTIMATION 99

can be used for both finding prediction rules and estimating appropriate penalties. In partic-
ular, if the algorithm only approximately minimizes empirical loss over the classFk because
it minimizes over some proper subset of Fk , the theorem is still applicable.

Vapnik, Levin, and Cun (1994) considered a similar quantity for the case of pattern
classification. Motivated by bounds (similar to (5)) on EL( fn) − L̂n( f ), they defined an
effective VC dimension, which is obtained by choosing a value of the VC dimension that
gives the best fit of the bound to experimental estimates of EL( fn) − L̂n( f ). They showed
that for linear classifiers in a fixed dimension with a variety of probability distributions,
the fit was good. This suggests a model selection strategy that estimates EL( fn) using these
bounds. The following theorem justifies a more direct approach (using discrepancy on the
training data directly, rather than using discrepancy over a range of sample sizes to estimate
effective VC dimension), and shows that an independent test sample is not necessary.

A similar estimate was considered in Williamson et al. (1999), although the error bound
presented in [Williamson et al. (1999), Theorem 3.4] can only be nontrivial when the
maximum discrepancy is negative.

Theorem 6. If the penalties are defined using the maximum-discrepancy error esti-
mates (6), and m = n/9, then

EL( fn) − L∗ ≤ min
k

[
E max

f ∈Fk

(
L̂(1)

n ( f ) − L̂(2)
n ( f )

)

+
(

inf
f ∈Fk

L( f ) − L∗
)

+ 3

√
log k

n

]
+ 2.13√

n
.

Proof: Once again, we check Assumption 1 and apply Theorem 1. Introduce the ghost sam-
ple (X ′

1, Y ′
1), . . . , (X ′

n, Y ′
n), which is independent of the data and has the same distribution.

Denote the empirical loss based on this sample by L ′
n( f ) = 1

n

∑n
i=1 �( f (X ′

i ), Y ′
i ). The

proof is based on the simple observation that for each k,

E max
f ∈Fk

(L ′
n( f ) − L̂n( f ))

= 1

n
E max

f ∈Fk

n∑
i=1

(�( f (X ′
i ), Y ′

i ) − �( f (Xi ), Yi ))

≤ 1

n
E

(
max
f ∈Fk

n/2∑
i=1

(�( f (X ′
i ), Y ′

i ) − �( f (Xi ), Yi ))

+ max
f ∈Fk

n∑
i=n/2+1

(�( f (X ′
i ), Y ′

i ) − �( f (Xi ), Yi ))

)

= 2

n
E max

f ∈Fk

n/2∑
i=1

(�( f (X ′
i ), Y ′

i ) − �( f (Xi ), Yi ))

= E max
f ∈Fk

(
L̂(1)

n ( f ) − L̂(2)
n ( f )

)
. (7)
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Figure 1. Note that all model selection techniques tend to be indistinguishable from the oracle selection method
for samples larger than 1000. However, in contrast to the GRM estimate, the Rademacher and the Maximum
Discrepancy selection methods are not outperformed by the HOLDOUT method for sample sizes smaller than 1000.

Thus, for each k,

P[L( f̂k) > Rn,k + ε]

= P

[
L( f̂k) − L̂n( f̂k) > max

f ∈Fk

(
L̂(1)

n ( f ) − L̂(2)
n ( f )

) + ε

]

≤ P

[
sup
f ∈Fk

(L( f ) − L̂n( f )) − max
f ∈Fk

(
L̂(1)

n ( f ) − L̂(2)
n ( f )

)
> ε

]

≤ P

[
sup
f ∈Fk

(L( f ) − L̂n( f )) − max
f ∈Fk

(
L̂(1)

n ( f ) − L̂(2)
n ( f )

)

> E

(
sup
f ∈Fk

(L( f ) − L̂n( f )) − max
f ∈Fk

(
L̂(1)

n ( f ) − L̂(2)
n ( f )

)) + ε

]
.

Now, the difference between the supremum and the maximum satisfies the conditions of
McDiarmid’s inequality (see Theorem 8 below) with ci = 3/n, so this probability is no
more than exp(−2ε2n/9). Thus, Assumption 1 is satisfied with m = n/9 and c = 1, and the
proof is finished. ✷
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Figure 2. As the noise level is increased, the three model selection methods exhibit more variance and tend to be
outperformed by the oracle for larger samples. HOLDOUT exhibits more variance than the other two penalization
methods.

3.5. A randomized complexity estimator

In this section we introduce an alternative way of estimating the quantity E max f ∈Fk (L( f ) −
L̂n( f )) which may serve as an effective estimate of the complexity of a model class F . The
maximum discrepancy estimate of the previous section does this by splitting the data into
two halves. Here we offer an alternative which allows us to derive improved performance
bounds: we consider the expectation, over a random split of the data into two sets, of the
maximal discrepancy. Koltchinskii (2001) considers a very similar estimate and proves a
bound analogous to Theorem 7 below.

Let σ1, . . . , σn be a sequence of i.i.d. random variables such that P{σi = 1} = P{σi =
−1} = 1

2 and the σi ’s are independent of the data Dn . Introduce the quantity

Mn,k = E

[
sup
f ∈Fk

2

n

n∑
i=1

σi�( f (Xi ), Yi )

∣∣∣∣ Dn

]
. (8)

We use Mn,k to measure the amount of overfitting in class Fk . Note that Mn,k is not known,
but it may be computed with arbitrary precision by Monte-Carlo simulation. In the case of
pattern classification, each computation in the integration involves minimizing empirical
loss on a sample with randomly flipped labels.
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Figure 3. The oracle now has a clear edge on the model selection techniques for sample sizes smaller than 1000.

Theorem 7. Let m = n/9, and define the error estimates Rn,k = L̂n( f̂k) + Mn,k, and
choose fn by minimizing the penalized error estimates

L̃n( f̂k) = L̂n( f̂k) + Cn(k) = Rn,k +
√

log k

m
,

then

EL( fn) − L∗ ≤ min
k

[
EMn,k +

(
inf
f ∈Fk

L( f ) − L∗
)

+ 3

√
log k

n

]
+ 2.13√

n
.

Proof: Introduce a ghost sample as in the proof of Theorem 6, and recall that by a sym-
metrization trick of Giné and Zinn (1984),

E

[
sup
f ∈Fk

(L( f ) − L̂n( f ))

]
= E

[
sup
f ∈Fk

E[L ′
n( f ) − L̂n( f ) | Dn]

]

≤ E

[
sup
f ∈Fk

(L ′
n( f ) − L̂n( f ))

]
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Figure 4. As the noise level becomes large, the three model selection methods remain distinguishable from the
oracle for all shown sample sizes.

= 1

n
E

[
sup
f ∈Fk

n∑
i=1

σi (�( f (X ′
i ), Y ′

i ) − �( f (Xi ), Yi ))

]

≤ 2

n
E

[
sup
f ∈Fk

n∑
i=1

σi�( f (Xi ), Yi )

]

= EMn,k . (9)

The rest of the proof of Assumption 1 follows easily from concentration inequalities:
for each k,

P[L( f̂k) > Rn,k + ε] = P[L( f̂k) − L̂n( f̂k) > Mn,k + ε]

≤ P

[
sup
f ∈Fk

(L( f ) − L̂n( f )) − Mn,k > ε

]

≤ P

[
sup
f ∈Fk

(L( f ) − L̂n( f )) − Mn,k

− E

(
sup
f ∈Fk

(L( f ) − L̂n( f )) − Mn,k

)
> ε

]
(by (9))

≤ e−2nε2/9,
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Figure 5. Each point represents the average complexity of the model selected by a given method or oracle at a
given sample size. Note that for sample sizes between 500 and 1000, the oracle tends to overcode the sample. This
corroborates the fact that liberal penalization methods (like MDL as used in Kearns et al. (1995)) tend to perform
better than conservative methods (like GRM) for that range of sample sizes. Note also that HOLDOUT selection
exhibits more variance than the two data-dependent penalty methods.

where at the last step we used McDiarmid’s inequality. (It is easy to verify that the difference
between the supremum and Mn,k satisfies the condition of Theorem 8 with ci = 3/n.) Thus,
Assumption 1 holds with c = 2 and m = n/9. Theorem 1 implies the result. ✷

4. Concentration inequalities

Concentration-of-measure results are central to our analysis. These inequalities guarantee
that certain functions of independent random variables are close to their mean. Here we
recall the two inequalities we used in our proofs.

Theorem 8 (McDiarmid (1989)). Let X1, . . . , Xn be independent random variables taking
values in a set A, and assume that f : An → R satisfies

sup
x1,...,xn ,

x ′
i ∈A

| f (x1, . . . , xn) − f (x1, . . . , xi−1, x ′
i , xi+1, . . . , xn)| ≤ ci
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Figure 6. Selected class indices are shown at medium noise level.

for 1 ≤ i ≤ n. Then for all t > 0

P{ f (X1, . . . , Xn) ≥ E f (X1, . . . , Xn) + t} ≤ e−2t2/
∑n

i=1 c2
i

and

P { f (X1, . . . , Xn) ≤ E f (X1, . . . , Xn) − t} ≤ e−2t2/
∑n

i=1 c2
i .

McDiarmid’s inequality is convenient when f ( ) has variance �(
∑n

i=1 c2
i ). In other

situations when the variance of f is much smaller, the following inequality might be more
appropriate.

Theorem 9 (Boucheron, Lugosi, & Massart (2000)). Suppose that X1, . . . , Xn are inde-
pendent random variables taking values in a set A, and that f : An → R is such that there
exists a function g : An−1 → R such that for all x1, . . . , xn ∈ A
(1) f (x1, . . . , xn) ≥ 0;
(2) 0 ≤ f (x1, . . . , xn) − g(x1, . . . , xi−1, xi+1, . . . , xn) ≤ 1 for all i = 1, . . . , n;
(3)

∑n
i=1[ f (x1, . . . , xn) − g(x1, . . . , xi−1, xi+1, . . . , xn)] ≤ f (x1, . . . , xn).
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Figure 7. Selected class indices at higher noise level.

Then for any t > 0,

P[ f (X1, . . . , Xn) ≥ E f (X1, . . . , Xn) + t] ≤ exp

[
− t2

2E f (X1, . . . , Xn) + 2t/3

]

and

P[ f (X1, . . . , Xn) ≤ E f (X1, . . . , Xn) − t] ≤ exp

[
− t2

2E f (X1, . . . , Xn)

]
.

Moreover,

E f (X1, . . . , Xn) ≤ log2 E
[
2 f (X1,...,Xn)

] ≤ 1

log 2
E f (X1, . . . , Xn).

5. Experimental comparison of empirical penalization criteria

5.1. The learning problem

In this section we report experimental comparison of some of the proposed model selection
rules in the setup proposed by Kearns et al. (1995). In this toy problem, the Xi ’s are drawn
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Figure 8. With increasing noise level, the propensity of model selection techniques to undercode and their
increasing instability becomes more visible. Note that HOLDOUT is more sensitive to noise than its two competitors.

from the uniform distribution on the interval [0, 1]. The class Fk is defined as the class of
all functions [0, 1] → {0, 1} such that for each f ∈Fk there exists a partition of [0, 1] into
k + 1 intervals such that f is constant over all these intervals. It is straightforward to check
that the VC-dimension of Fk is k + 1. Following Kearns et al. (1995), we assume that the
“target function” f ∗ belongs to Fk for some unknown k and the label Yi of each example
Xi is obtained by flipping the value of f ∗(Xi ) with probability η ∈ [0, .5) where η denotes
the noise level. Then clearly, for any function g:

L(g) = η + (1 − 2η)P{ f ∗ �= g}.

What makes this simple learning problem especially convenient for experimental study
is the fact that the computation of the minima of the empirical loss min f ∈Fk L̂n( f ) for
all k ≤ n can be performed in time O(n log n) using a dynamic programming algorithm
described in Kearns et al. (1995). Lozano (2000) also reports an experimental comparison
of model selection methods for the same problem.

In this paper we studied several penalized model selection techniques: a holdout (or cross-
validation) method based on independent test sample, penalization based on the empirical
VC entropy, a maximum discrepancy estimator, and a randomized complexity estimator. For
the investigated learning problem it is easy to see that the empirical VC entropy log2 Sk(Xn

1)
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Figure 9. Here and in the next two figures, the minimal penalized empirical loss infk L̃n( f̂k) is shown as a
function of the sample size for different levels of noise. At a low noise level, both Rademacher and Maximum
discrepancy estimates overestimate the difference between the training and generalization errors. This phenomenon
is due to the fact that these estimates deal with the maximum of the empirical process, which is only an upper
bound on the difference between the training and generalization errors. On the other hand, the HOLDOUT estimate
remains optimistic for sample sizes smaller than 1000. Note that although the HOLDOUT estimate is unbiased for
each particular class Fk , the infimum of the HOLDOUT estimates over all classes Fk for k ≤ K = 200 suffers an
optimistic bias of order

√
log K/n. This provides an explanation for the difference between the generalization

error of the oracle selection and the HOLDOUT estimate.

of class Fk is almost surely a constant and equal to

1 + log2

k∑
i=0

(
n − 1

i

)
,

and therefore penalization based on the empirical VC entropy is essentially equivalent to
the Guaranteed Risk Minimization (GRM) procedure proposed by Vapnik (1998). Thus, we
do not investigate empirically this method. Note that Lozano (2000) compares the GRM

procedure with a method based on Rademacher penalties, very similar to our randomized
complexity estimator and finds that Rademacher penalties systematically outperform the
GRM procedure.

In Kearns et al. (1995), GRM is compared to the Minimum Description Length principle
and the independent test sample technique which is regarded as a simplified cross-validation



MODEL SELECTION AND ERROR ESTIMATION 109

Figure 10. As noise increases, the pessimistic bias of the Rademacher and Maximum Discrepancy estimates
becomes smaller.

technique. The main message of Kearns et al. (1995) is that penalization techniques that
only take into account the empirical loss and some structural properties of the models cannot
compete with cross-validation for all sample sizes. On the contrary, our conclusion (based
on experiments) is that data-based penalties perform favorably compared to penalties based
on independent test data.

In figures 1–11 we report experiments for three methods: (1) the Holdout method (HOLD-
OUT) bases its selection on m = n/10 extra independent samples as described in Section 3.1;
(2) the Maximum Discrepancy (MD) method selects a model according to the method of Sec-
tion 3.4 and (3) Rademacher penalization (RP) performs the randomized complexity method
proposed in Section 3.5. When using Maximum Discrepancy (Section 3.4) in experiments,
the penalties were:

1

2
max
f ∈Fk

(
L̂(1)

n ( f ) − L̂(2)
n ( f )

)
.

We found that multiplying the penalty defined in Section 3.4 by 1/2 provides superior
performance. When using Randomized Complexity Estimators (Section 3.5), the penalties
were:

E

[
sup
f ∈Fk

2

n

n∑
i=1

σi�( f (Xi ), Yi )

∣∣∣∣∣Dn

]
.
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Figure 11. At high noise level, the Rademacher estimate becomes the most accurate approximation to the oracle.
The HOLDOUT estimate is unable to catch the true value for samples smaller than 3000.

Note that in all experiments, the
√

log k
n or log k

n terms were omitted from penalties. For
reasons of comparison, the performance of “oracle selection” is also shown on the pictures.
This method selects a model by minimizing the true loss L( f̂k) among the empirical loss
minimizers f̂k of all classes Fk , k = 1, 2, . . . .

The training error minimization algorithm described in Kearns et al. (1995) was imple-
mented using the templates for priority queues and doubly linked lists provided by the LEDA

library (Mehlhorn & Naher, 2000).

5.2. Results

The results are illustrated by figures 1–11. As a general conclusion, we may observe that the
generalization error (i.e., true loss) obtained by methods MDP and RP are favorable compared
to HOLDOUT. Even for sample sizes between 500 and 1000, the data-dependent penalization
techniques perform as well as HOLDOUT. The data dependent penalization techniques exhibit
less variance than HOLDOUT.

The main message of the paper is that good error estimation procedures provide good
model selection methods. On the other hand, except for the HOLDOUT method, the data-
dependent penalization methods do not try to estimate directly L( f̂k) − L̂n( f̂k), but rather
sup f ∈Fk

(L( f )− L̂n( f )). The figures show that this is accurate when noise level is high and
becomes rather inaccurate when noise level decreases. This is a strong incentive to explore
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further data-dependent penalization techniques that take into account the fact that not all
parts of Fk are equally eligible for minimizing the empirical loss.
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